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Abstract

In this note, we propose two different approaches to rigorously justify a pseudo-
Markov property for controlled diffusion processes which is often (explicitly or im-
plicitly) used to prove the dynamic programming principle in the stochastic control
literature. The first approach develops a sketch of proof proposed by Fleming and
Souganidis [9]. The second approach is based on an enlargement of the original
state space and a controlled martingale problem. We clarify some measurability
and topological issues raised by these two approaches.
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1 Introduction

The dynamic programming principle (DPP) is a key step in the mathematical analy-
sis of optimal stochastic control problems. For various formulations and approaches,
among hundreds of references, see, e.g., Fleming and Rishel [7], Krylov [13], El
Karoui [5], Borkar [1], Fleming and Soner [8], Yong and Zhou [22], and the more
recent monographs by Pham [15] or Touzi [21].

The DPP has a very intuitive meaning but its rigorous proof for controlled dif-
fusion processes is a difficult issue in all cases where the set of admissible controls is
the set of all progressively measurable processes taking values in a given domain. In
particular this occurs in the stochastic analysis of Hamilton-Jacobi-Bellman equa-
tions. The highly technical approach to the DPP developed by Krylov in [13] con-
sists in establishing a continuity property of expected cost functions w.r.t. controls
(see [13, Cor.3.2.8]) in order to be in a position to only prove the DPP in the simpler
case where the controls are piecewise constant. When the controls belong to this
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restricted set, the DPP is obtained by proving that the corresponding controlled
diffusions enjoy a pseudo-Markov property which easily results from the classical
Markov property enjoyed by uncontrolled diffusions. See [13, Lem.3.2.14].

In their context of stochastic differential games problems, Fleming and Sougani-
dis [9, Lem.1.11] propose to avoid the control approximation procedure by estab-
lishing the pseudo-Markov property without restriction on the controls. Although
natural, this way to establish the DPP leads to various difficulties. In particular,
one needs to restrict the state space to the standard canonical space. Unfortunately
the proof of the crucial lemma 1.11 is only sketched.

Many other authors had implicitly or explicitly followed the same way and par-
tially justified the pseudo-Markov property in the case of general admissible controls:
see, e.g., Tang and Yong [20, Lem.2.2], Yong and Zhou [22, Lem.4.3.2], Bouchard
and Touzi [2] and Nutz [14]. However, to the best of our knowledge, there is no full
and precise proof available in the literature except in restricted situations (see, e.g.,
Kabanov and Klüppelberg [10]).

When completing the elements of proof provided by Fleming and Souganidis
and the other above mentioned authors, we found several subtle technical difficul-
ties to overcome. For example, the stochastic integrals and solutions to stochastic
differential equations are usually defined on a complete probability space equipped
with a filtration satisfying the usual conditions; on the other hand, the completion
of the canonical σ–field is undesirable when one needs to use a family of regular
conditional probabilities. See more discussion in Section 2.3.

We therefore find it useful to provide a precise formulation and a detailed full jus-
tification of the pseudo-Markov property for general controlled diffusion processes,
and to clarify measurability and topological issues, particularly the importance of
setting stochastic control problems in the canonical space rather to an abstract non
Polish probability space if the pseudo-Markov property is used to prove the DPP.

We provide two proofs. The first one develops the arguments sketched by Flem-
ing and Souganidis [9]. The second one is simpler in some aspects but requires some
more heavy notions; it is based on an enlargement of the original state space and a
suitable controlled martingale problem.

The rest of the paper is organized as follows. In Section 2, we introduce the
classical formulation of controlled SDEs. We then precisely state the pseudo-Markov
property for controlled diffusions, which is our main result. We discuss its use
to establish the DPP. To prepare its two proofs, technical lemmas are proven in
Section 3. Finally, in Sections 4 and 5 we provide our two proofs.

Notations. We denote by Ω := C(R+,Rd) the canonical space of continuous func-
tions from R

+ to R
d, which is a Polish space under the locally uniform convergence

metric. B denotes the canonical process and F = (Fs, s ≥ 0) denotes the canoni-
cal filtration. The Borel σ-field of Ω is denoted by F and coincides with

∨

s≥0 Fs.
We denote by P the Wiener measure on (Ω,F) under which the canonical process
B is a F-Brownian motion, and by N P the collection of all P–negligible sets of
F , i.e. all sets A included in some N ∈ F satisfying P(N) = 0. We denote by
F
P = (FP

s , s ≥ 0) the P–augmented filtration, that is, FP
s := Fs ∨ N P. We also set

FP := F ∨N P =
∨

s≥0F
P
s .

Finally, for all (t, ω) ∈ R
+ × Ω, the stopped path of ω at time t is denoted by

[ω]t := (ω(t ∧ s), s ≥ 0).
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2 A pseudo-Markov property for controlled dif-

fusion processes

2.1 Controlled stochastic differential equations

Let U be a Polish space and Sd,d be the collection of all square matrices of order d.
Consider two Borel measurable functions b : R+×Ω×U → R

d and σ : R+×Ω×
U → Sd,d satisfying the following condition: for all u ∈ U , the processes b(·, ·, u)
and σ(·, ·, u) are F–progressively measurable or, equivalently, (t,x) 7→ b(t,x, u) and
(t,x) 7→ σ(t,x, u) are B(R+)⊗F–measurable and

b(t,x, u) = b(t, [x]t, u), σ(t,x, u) = σ(t, [x]t, u), ∀(t,x) ∈ R
+ × Ω

(see Proposition 3.4 below). In addition, we suppose that there exists C > 0 such
that, for all (t,x,y, u) ∈ R

+ × Ω2 × U ,










|b(t,x, u)− b(t,y, u)| + ‖σ(t,x, u) − σ(t,y, u)‖ ≤ C sup
0≤s≤t

|x(s)− y(s)|,

sup
u∈U

(|b(t,x, u)| + ‖σ(t,x, u)‖) ≤ C

(

1 + sup
0≤s≤t

|x(s)|

)

.
(1)

Denote by U the collection of all U–valued F–predictable (or progressively mea-
surable, see Proposition 3.4 below) processes. Then, given a control ν ∈ U , consider
the controlled stochastic differential equation (SDE)

dXs = b(s,X, νs)ds + σ(s,X, νs)dBs. (2)

As B is still a Brownian motion on (Ω,FP,P,FP) (see, e.g., [12, Thm.2.7.9]) we may
and do consider (2) on this filtered probability space.

Under Condition (1), for all control ν ∈ U and initial condition (t,x) ∈ R
+ ×Ω,

there exists a unique (up to indistinguishability) continuous and F
P–progressively

measurable process Xt,x,ν in (Ω,FP,P), such that, for all θ in R
+,

X
t,x,ν
θ = x(t ∧ θ) +

∫ t∨θ

t

b(s,Xt,x,ν , νs)ds +

∫ t∨θ

t

σ(s,Xt,x,ν , νs)dBs, P− a.s.

(3)
Our two proofs of a pseudo-Markov property for Xt,x,ν use an identity in law

which makes it necessary to reformulate the controlled SDE (2) as a standard SDE.
Given (t, ν) ∈ R

+×U , we define b̄t,ν : R+×Ω2 → R
2d and σ̄t,ν : R+×Ω2 → S2d,d

as follows : for all s ∈ R
+, ω̄ = (ω, ω′) ∈ Ω2,

b̄t,ν(s, ω̄) :=

(

0
b(s, ω′, νs(ω))Is≥t

)

, σ̄t,ν(s, ω̄) :=

(

Idd

σ(s, ω′, νs(ω))Is≥t

)

.

Then, given x in Ω, Y t,x,ν := (B,Xt,x,ν) is the unique (up to indistinguishability)
continuous and F

P–progressively measurable process in (Ω,FP,P) such that, for all
θ in R

+,

Y
t,x,ν
θ =

(

0
x(t ∧ θ)

)

+

∫ θ

0
b̄t,ν(s, Y t,x,ν)ds+

∫ θ

0
σ̄t,ν(s, Y t,x,ν)dBs, P–a.s. (4)

Define pathwise uniqueness and uniqueness in law for standard SDEs as, respec-
tively, in Rogers and Williams [18, Def.V.9.4] and [18, Def.V.16.3]). In view of the
celebrated Yamada and Wanabe’s Theorem (see, e.g., [18, Thm.V.17.1]), the former
implies the latter and the SDE (4) satisfies uniqueness in law.
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Remark 2.1. (i)The stochastic integrals and the solution to the SDE (2) are defined
as continuous and adapted to the augmented filtration F

P.
(ii) In an abstract probability space equipped with a standard Brownian motion W ,
our formulation is equivalent to choosing controls as predictable processes w.r.t.
the filtration generated by W . Indeed such a process can always be represented as
ν(W·) for some ν in U (see Proposition 3.5 below). This fact plays a crucial role
in our justification of the pseudo-Markov property for controlled diffusions. In their
analyses of stochastic control problems, Krylov [13] or Fleming and Soner [8] do not
need to use this property and deal with controls adapted to an arbitrary filtration.
(iii) We could have defined controls as FP–predictable processes since any F

P–predictable
process is indistinguishable from an F–predictable process (see Dellacherie and Meyer [4,
Thm.IV.78 and Rk.IV.74]). Notice also that the notions of predictable, optional and
progressively measurable process w.r.t. F coincide (see Proposition 3.4 below).

2.2 A pseudo-Markov property for controlled diffusion

processes

Before formulating our main result, we introduce the class of the shifted control
processes constructed by concatenation of paths: for all ν in U and (t,w) in R

+×Ω
we set

νt,ws (ω) := νs(w⊗t ω), ∀(s, ω) ∈ R
+ × Ω,

where w ⊗t ω is the function in Ω defined by

(w ⊗t ω)(s) :=

{

w(s), if 0 ≤ s ≤ t,

w(t) + ω(s)− ω(t), if s ≥ t.

Our main result is the following pseudo-Markov property for controlled diffusion
processes. As already mentioned, it is most often considered as classical or obvious;
however, to the best of our knowledge, its precise statement and full proof are
original.

Theorem 2.2. Let Φ : Ω → R
+ be a bounded Borel measurable function and let J

be defined as

J
(

t,x, ν
)

:= E
P
[

Φ
(

Xt,x,ν
)]

, ∀(t,x, ν) ∈ R
+ × Ω× U .

Under Condition (1), for all (t,x, ν) ∈ R
+ × Ω× U and F

P–stopping time τ taking
values in [t,+∞) we have

E
P

[

Φ
(

Xt,x,ν
)

∣

∣

∣
FP

τ

]

(ω) = J
(

τ(ω),
[

Xt,x,ν
]

τ
(ω), ντ(ω),ω

)

, P(dω)− a.s. (5)

Remark 2.3. (i) Our formulation slightly differs from Fleming and Souganidis [9]
who consider deterministic times τ = s and conditional expectations given the non-
augmented σ–field Fs.
(ii) We work with the augmented σ–fields F

P in order to make the solutions Xt,x,ν

adapted.
(iii) One motivation to consider stopping times τ rather than deterministic times is
that, to study viscosity solutions to Hamilton-Jacobi-Bellman equations, one often
uses first exit times of Xt,x,ν from Borel subsets of Rd.
(iv)It is not clear to us whether the function J is measurable w.r.t. all its arguments.
However Theorem 2.2 implies that the r.h.s. of (5) is a FP

τ –measurable random
variable.
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In Section 2.3 we discuss technical subtleties hidden in Equality (5) and point out
some of the difficulties which motivate us to propose a detailed proof. Before further
discussions, we show how the pseudo-Markov property is used to prove parts of the
DPP.

Consider the value function

V (t,x) := sup
ν∈U

E
P
[

Φ(Xt,x,ν)
]

, ∀(t,x) ∈ R
+ × Ω. (6)

Proposition 2.4. (i) For all (t,x) in R
+ × Ω, it holds that

V (t,x) = sup
µ∈Ut

E
P
[

Φ(Xt,x,µ)
]

, (7)

where U t denotes the set of all ν ∈ U which are independent of Ft under P.

(ii) Suppose in addition that the value function V is measurable. Then, for all
(t,x) ∈ R

+ × Ω, ε > 0, there exists ν ∈ U such that for all FP–stopping times τ

taking values in [t,∞), one has

V (t,x)− ε ≤ E
P
[

V
(

τ,
[

Xt,x,ν
]

τ

)]

. (8)

Proof. (i) For (7), it is enough to prove that

V (t,x) ≤ sup
µ∈Ut

E
P
[

Φ(Xt,x,µ)
]

,

since the other inequality results from U t ⊂ U . Now, let ν be an arbitrary control
in U . Apply Theorem 2.2 with τ ≡ t. It comes:

J
(

t,x, ν
)

=

∫

Ω
J
(

t, [x]t, ν
t,ω
)

P(dω) =

∫

Ω
J
(

t,x, νt,ω
)

P(dω).

Then (7) follows from the fact that, for all fixed ω ∈ Ω, the control νt,ω belongs to
U t.

(ii) Notice that, for all ε > 0, one can choose an ε–optimal control ν, that is,

V (t,x)− ε ≤ J(t,x, ν).

Apply Theorem 2.2 with this control ν. It comes:

V (t,x)− ε ≤

∫

Ω
J
(

τ(ω),
[

Xt,x,ν
]

τ
(ω), ντ(ω),ω

)

P(dω) ≤ E
P

[

V
(

τ,
[

Xt,x,ν
]

τ

)

]

.

Remark 2.5. Inequality (8) is the ‘easy’ part of the DPP. Equality (7), combined
with the continuity of the value function, is a key step in classical proofs of the
‘difficult’ part of the DPP, that is: for all control ν in U and all FP–stopping time
τ taking values in [t,∞), one has

V (t,x) ≥ E
P

[

V
(

τ,
[

Xt,x,ν
]

τ

)

]

.
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2.3 Discussion on Theorem 2.2

On the hypothesis on b and σ. In Theorem 2.2 the coefficients b and σ

are supposed to satisfy Condition (1) and thus the solutions to the SDE (4) are
pathwise unique. However, we only need uniqueness in law in our second proof
of Theorem 2.2 which is based on controlled martingale problems related to the
SDE (4). Hence Condition (1) can be relaxed to weaker conditions which imply
weak uniqueness. However we have not followed this way here to avoid too heavy
notations and to remain within the classical family of controlled SDEs with pathwise
unique solutions.

Intuitive meaning and measurability issues. The intuitive meaning of
Theorem 2.2 is as follows. Notice that Xt,x,ν satisfies: for all θ ∈ R

+,

X
t,x,ν
θ = X

t,x,ν
τ∧θ +

∫ τ∨θ

τ

b(s,Xt,x,ν , νs)ds+

∫ τ∨θ

τ

σ(s,Xt,x,ν , νs)dBs, P−a.s. (9)

If a regular conditional probability (r.c.p.) (Pw,w ∈ Ω) of P given FP
τ were to exist

(see, e.g., Karatzas and Shreve [12, Sec.5.3.C]), then Equation (9) would be satisfied
Pw–almost surely and, in addition, we would have

Pw

(

τ = τ(w),
[

Xt,x,ν
]

τ
=
[

Xt,x,ν
]

τ
(w), ν = ντ(w),w

)

= 1. (10)

Hence, Theorem 2.2 would follow from the uniqueness in law of solutions to Equa-
tion (4). Unfortunately the situation is not so simple for the following reasons.
First, since FP

τ is complete, a r.c.p. of P given FP
τ does not exist (see [6, Thm.10]).

Second, even if τ were a F–stopping time and (Pw,w ∈ Ω) were a r.c.p. of P given
Fτ , then Pw would be defined as a measure on F whereas Xt,x,ν is adapted to the
P–augmented filtration F

P: hence, Equality (10) needs to be rigorously justified.
Third, one needs to check that the stochastic integral in (9), which is constructed
under P, agrees with the stochastic integral constructed under Pw for P-a.a. w.

3 Technical Lemmas

In order to solve the measurability issues mentioned above, we establish three tech-
nical lemmas which, to the best of our knowledge, are not available in the literature.

The first lemma improves the classical Dynkin theorem which states that, given
an arbitrary probability space and arbitrary filtration (Ht), a stopping time w.r.t.
to the augmented filtration of (Ht) is a.s. equal to a stopping time w.r.t. (Ht+):
see, e.g., [17, Thm.II.75.3]. The improvement here is allowed by the fact that we
are dealing with the augmented Brownian filtration (more generally, we could deal
with the natural augmented filtration generated by a Hunt process with continuous
paths: see Chung and Williams [3, Sec.2.3,p.30-32]).

Lemma 3.1. Let τ be a F
P–stopping time. There exists a F–stopping time η such

that
P
(

τ = η
)

= 1 and FP

τ = Fη ∨ N P. (11)

Proof. First step. As F
P is the augmented Brownian filtration, all F

P–optional
process is predictable and hence all FP–stopping time is predictable (see, e.g., Revuz
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and Yor [16, Cor.V.3.3]). It follows from Dellacherie and Meyer [4, Thm.IV.78] that
there exists a F–stopping time (actually, a predictable time) η such that

P(τ = η) = 1.

Second step. We now prove Fη ∨ N P ⊆ FP
τ . First, since FP

0 ⊂ FP
τ , we have

N P ⊂ FP
τ . Second, η is a F

P–stopping time. Since τ = η, P− a.s. and FP
τ , FP

η are

both P–complete, one has FP
τ = FP

η , from which Fη ⊂ FP
η = FP

τ .

Last step. It therefore only remains to prove FP
τ ⊂ Fη ∨ N P. Let A ∈ FP

τ . In
view of [4, Thm.IV.64], there exists a F

P–optional (or equivalently F
P–predictable)

process X such that IA = Xτ . By using Theorem IV.78 and Remark IV.74 in [4],
there exists a F–predictable process Y which is indistinguishable from X. It follows
that IA = Xτ = Yτ = Yη, P − a.s., which implies that A ∈ Fη ∨ N P since Yη is
Fη–measurable. This ends the proof.

The two next lemmas are used in Section 4 only. They concern the r.c.p. (Pw)w∈Ω
of P given a σ–algebra G ⊂ F . They allow us to circumvent the difficulties raised
by the fact that Pw is not a measure on FP. The key idea is to notice that, if N
in F satisfies P(N) = 0, then there is a P–null set M ∈ F (depending on N) such
that Pw(N) = 0 for all w ∈ Ω \M . Hence any subset of N belongs to N P and, for
all w ∈ Ω \M , to the set N Pw of all Pw–negligible sets of F .

Lemma 3.2. Define GP := G ∨ N P and GPw := G ∨ N Pw . Let E be a Polish space
and ξ : Ω → E be a GP–random variable. Then
(i) There exists a G–random variable ξ0 : Ω → E such that

P
(

ξ = ξ0
)

= 1.

(ii) For P–a.a. w ∈ Ω, ξ is a GPw–random variable and

Pw (ξ = ξ(w)) = 1.

(iii) Let FPw := F ∨ N Pw and ζ be a P–integrable FP–random variable. Then for
P–a.a. w ∈ Ω, ζ is FPw–measurable and

E[ζ | GP](w) =

∫

Ω
ζ(w′)Pw(dw

′).

Proof. (i) As E is Polish, there exists a Borel isomorphism between E and a subset
of R. This allows us to only consider real-valued random variables. A monotone
class argument allows us to deal with random variables of the type IG with G in
GP, from which the result (i) follows since

GP =
{

G ∈ FP; ∃G0 ∈ G, G△G0 ∈ N P

}

, (12)

where △ denotes the symmetric difference (see, e.g., Rogers and Williams [17,
Ex.V.79.67a]).
(ii) Let ξ0 be a G–random variable such that P(ξ = ξ0) = 1. In other words, there is
a P–null set N ∈ F such that ξ0(ω) = ξ(ω) for all ω ∈ Ω \N . Hence, for P–a.a. w,
we have Pw(N) = 0 and {ξ ∈ A}△{ξ0 ∈ A} ⊂ N belongs to N Pw for all Borel set
A. It results from (12) with Pw in place of P that ξ is GPw–measurable. Moreover,
since ξ0 is an G–random variable taking values in a Polish space, we have

Pw

(

ξ0 = ξ0(w)
)

= 1,

7



for P–a.a. w ∈ Ω. Then, for all w ∈ Ω \N such that

Pw(N) = 0 and Pw

(

ξ0 = ξ0(w)
)

= 1,

we have
Pw (ξ = ξ(w)) = 1.

(iii) Using the same arguments as in the proof of (ii), we get that ζ is FPw–
measurable. Now, let χ be a bounded GP–measurable random variable. In view
of (i), there exists a G–measurable (resp. F–measurable) χ0 (resp. ζ0) random
variable such that χ = χ0 (resp. ζ = ζ0) P–a.s. Therefore,

E
P [ζχ] = E

P [ζ0χ0] = E
P

[

E
P[ζ0 | G]χ

]

.

Hence it holds

E
P[ζ | GP](w) =

∫

Ω
ζ0(w

′)Pw(dw
′), P(dw) − a.s.

We then conclude by using that ζ is FPw–measurable and Pw(ζ = ζ0) = 1 for P–a.a
w ∈ Ω.

Lemma 3.3. Let FPw be the Pw–augmented filtration of F. Let E be a Polish space
and Y : R+ × Ω → E be a F

P–predictable process. Then, for P–a.a. w ∈ Ω, Y is
F
Pw–predictable.

Proof. As already noticed in the proof of Lemma 3.1, there exists a F–predictable
process indistinguishable from Y under P. The result thus follows from our first
arguments in the proof of Lemma 3.2 (ii).

We end this section by two propositions which will not be used in the proof of
the main results but were implicitly used in the formulation of stochastic control
problems in Section 2.1.

The proposition below ensures that classical notions of measurability coincide
for processes defined on the canonical space Ω. This is no longer true when Ω is the
space of càdlàg functions. For a precise statement, see Dellacherie and Meyer [4,
Thm.IV.97].

Proposition 3.4. Let E be a Polish space and Y : R+ × Ω → E be a stochastic
process. Then the following statements are equivalent :
(i) Y is F–predictable.
(ii) Y is F–optional.
(iii) Y is F–progressively measurable.
(iv) Y is B(R+)⊗F–measurable and F–adapted.
(v) Y is B(R+)⊗F–measurable and satisfies

Ys(ω) = Ys([ω]s), ∀(s, ω) ∈ R
+ × Ω.

Proof. It is well known that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Now we show that (iv) ⇒
(v). Remember that Fs = σ([·]s : ω 7→ [ω]s) for all s ∈ R

+. Since Ys is Fs–
measurable and E is Polish, Doob’s functional representation Theorem (see, e.g.,

8



Kallenberg [11, Lem.1.13]) implies that there exists a random variable Zs such that
Ys(ω) = Zs([ω]s) for all ω ∈ Ω. By noticing that [·]s ◦ [·]s = [·]s, we deduce that

Ys([ω]s) = Zs([ω]s) = Ys(ω), ∀(s, ω) ∈ R
+ × Ω.

To conclude it remains to prove that (v) ⇒ (i). Clearly it is enough to show that
[·] : (s, ω) 7→ [ω]s is a predictable process. In other words, we have to show that
for any C ∈ F , [·]−1(C) is a predictable event. When C is of the type B−1

t (A)
with t ∈ R

+ and A ∈ B(Rd), the result holds true since Bt ◦ [·] : (s, ω) 7→ ω(t ∧ s)
is predictable as a continuous and adapted R

d–valued process. We conclude by
observing that the former events generate the σ–algebra F .

Now, let (Ω∗,F∗) be an abstract measurable space equipped with a measurable,
continuous process X∗ = (X∗

t )t≥0. Denote by F
∗ = (F∗

t )t≥0 the filtration generated
by X∗, i.e. F∗

t = σ
{

X∗
s , s ≤ t

}

.

Proposition 3.5. Let E be a Polish space. Then a process Y : R+ × Ω∗ → E is
F
∗-predictable if and only if there exists a process φ : R+ × Ω → E defined on the

canonical space Ω and F–predictable such that

Yt(ω
∗) = φ

(

t,X∗(ω∗)
)

= φ
(

t, [X∗]t (ω
∗)
)

, ∀(t, ω∗) ∈ R
+ × Ω∗. (13)

Proof. First step. Let φ : R+ ×Ω → E be a F–predictable process on the canonical
space. Notice that (t, ω∗) 7→ t and (t, ω∗) 7→ [X∗]t(ω

∗) are both F
∗–predictable. It

follows that (t, ω∗) 7→ Yt(ω
∗) := φ(t, [X∗]t(ω

∗)) is also F
∗–predictable.

Second step. We now prove the converse relation. Suppose that Y is a F
∗–

predictable process of the type Ys(ω
∗) = I(t1,t2]×A(s, ω

∗), where 0 < t1 < t2 and
A ∈ F∗

t1
. There exists C in F such that A = ([X∗]t1)

−1(C), so that (13) holds true
with

φ(s,w) := I(t1,t2]×C(s, [w]t1).

In view of Proposition 3.4, it is clear that the above φ is F–predictable. The same
arguments show that (13) holds also true if Y is of the form Ys(ω

∗) = I{0}×A with
A ∈ F∗

0 . Notice that the predictable σ-field on R
+ × Ω∗ w.r.t. F

∗ is generated by
the collection of all sets of the form {0}×A with A ∈ F∗

0 and of the form (t1, t2]×A

with 0 < t1 < t2 and A ∈ F∗
t1

(see, e.g., [4, Thm.IV.64]). It then remains to use the
monotone class theorem to conclude.

4 A first proof of Theorem 2.2

In this section we develop the arguments sketched by Fleming and Souganidis [9] in
the proof of their Lemma 1.11.

Let τ be a F
P–stopping time taking values in [t,+∞). We have

X
t,x,ν
θ = X

t,x,ν
τ∧θ +

∫ τ∨θ

τ

b(s,Xt,x,ν , νs)ds+

∫ τ∨θ

τ

σ(s,Xt,x,ν , νs)dBs, ∀θ ≥ 0, P–a.s.

Now, it follows from Lemma 3.1 that there is a F–stopping time η such that (11)
holds true. Let (Pw)w∈Ω be a family of r.c.p. of P given Fη . In view of Lemma 3.2,
for P–a.a. w ∈ Ω,

E
P

[

Φ
(

Xt,x,ν
)

∣

∣

∣
FP

τ

]

(w) = E
Pw

[

Φ
(

Xt,x,ν
)]

, (14)
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and
Pw

(

τ = τ(w), [Xt,x,ν ]τ = [Xt,x,ν ]τ (w), ν = ντ(w),w
)

= 1. (15)

In view of Lemma 4.1 below we have, for P–a.a. w ∈ Ω,

∫

P

[τ,θ]
σ
(

s,Xt,x,ν , νs
)

dBs =

∫

Pw

[τ(w),θ]
σ
(

s,Xt,x,ν , νs
)

dBs, ∀ θ ≥ τ(w), Pw − a.s.,

where the l.h.s. (resp. r.h.s.) term denotes the stochastic integral constructed under
P (resp. Pw). It follows from (15) that, for P–a.a. w ∈ Ω,

X
t,x,ν
θ = X

t,x,ν
τ∧θ (w) +

∫ τ(w)∨θ

τ(w)
b(s,Xt,x,ν , ντ(w),ws )ds

+

∫ τ(w)∨θ

τ(w)
σ(s,Xt,x,ν , ντ(w),ws )dBs, ∀θ ≥ 0, Pw − a.s.

Notice that, by Lemma 3.3, Xt,x,ν is F
Pw–adapted, for P–a.a. w ∈ Ω. Hence,

Xt,x,ν is the solution of SDE (2) with initial condition (τ(w), [Xt,x,ν ]τ (w)) and
control ντ(w),w in (Ω,FPw ,Pw) for P–a.a. w ∈ Ω. As the SDE (4) satisfies uniqueness

in law, the law of Xt,x,ν under Pw coincides with the law of Xτ(w),[Xt,x,ν ]τ (w),ντ(w),w

under P. We then conclude the proof by using (14).

Lemma 4.1. Let H be a F
P–predictable process such that

∫ θ

0
(Hs)

2ds < +∞, ∀θ ≥ 0, P− a.s.

Then, using the same notation as above for the stochastic integrals, we have: For
P–a.a. w ∈ Ω,

∫

P

[τ,θ]HsdBs is FPw–measurable and

∫

P

[τ,θ]
HsdBs =

∫

Pw

[τ(w),θ]
HsdBs, ∀ θ ≥ τ(w), Pw − a.s. (16)

Proof. In this proof we implicitly use Lemma 3.3 to consider F
P–predictable pro-

cesses, such as the stochastic integrals defined under P, as FPw–predictable processes
for P–a.a. w ∈ Ω. In particular, the l.h.s. of (16) is FPw–measurable for P–a.a.
w ∈ Ω.

A standard localizing procedure allows us to assume that

E
P

[
∫ +∞

0
(Hs)

2ds

]

< +∞.

Now let (H(n))n∈N be a sequence of simple processes such that

lim
n→∞

E
P

[
∫ +∞

0

(

H(n)
s −Hs

)2
ds

]

= 0. (17)

We then write
∫

P

HsdBs −

∫

Pw

HsdBs =

∫

P

H(n)
s dBs −

∫

Pw

H(n)
s dBs

+

∫

P

(Hs −H(n)
s )dBs −

∫

Pw

(Hs −H(n)
s )dBs

10



and notice that the first difference is null since the stochastic integral is defined
pathwise when the integrand is a simple process.

By taking conditional expectations in (17), we get that there exists a subsequence
such that

lim
n→∞

E
Pw

[
∫ +∞

0

(

H(n)
s −Hs

)2
ds

]

= 0,

for P–a.a. w ∈ Ω. Hence, by Doob’s inequality and Itô’s isometry,

lim
n→∞

E
Pw



 sup
θ≥τ(w)







(

∫

Pw

[τ(w),θ]
H(n)

s dBs −

∫

Pw

[τ(w),θ]
HsdBs

)2








 = 0.

To conclude, it thus suffices to prove that

lim
n→∞

E
Pw



 sup
θ≥τ(w)







(

∫

P

[τ(w),θ]
H(n)

s dBs −

∫

P

[τ,θ]
HsdBs

)2








 = 0.

for P–a.a. w ∈ Ω. We cannot use Doob’s inequality and Itô’s isometry without care
because the stochastic integrals are built under P and the expectation is computed
under Pw. However we have

lim
n→∞

E
P



sup
θ≥0







(

∫

P

[0,θ]
H(n)

s Is≥τdBs −

∫

P

[0,θ]
HsIs≥τdBs

)2








 = 0.

Thus we can proceed as above by taking conditional expectation and extracting a
new subsequence. That ends the proof.

Remark 4.2. To avoid the technicalities of this first proof of Theorem 2.2, a natural
attempt consists in solving the equations (2) in the space Ω equipped with the non
augmented filtration. This may be achieved by following Stroock and Varadhan’s
approach [19] to stochastic integration. This way leads to right-continuous and only
P–a.s continuous stochastic integrals and solutions. As they are not valued in a
Polish space, new delicate technical issues arise: for example, (14) and (15) need to
be revisited.

5 A second proof of Theorem 2.2

In this section we provide a second proof of Theorem 2.2. Compared to the above
first proof, the technical details are lighter. However we emphasize that it uses that
weak uniqueness for Brownian SDEs is equivalent to uniqueness of solutions to the
corresponding martingale problems. Therefore it may be more difficult to extend
this second methodology than the first one to stochastic control problems where the
noise involves a Poisson random measure.

Our second proof of Theorem 2.2 is based on the notion of controlled martingale
problems on the enlarged canonical space Ω := Ω2. Denote by F = (F t)t≥0 the
canonical filtration, and by (B,X) the canonical process.

Fix (t, ν) ∈ R
+ × U . Let b̄t,ν and σ̄t,ν be defined as in Section 2.1. For all

functions ϕ in C2
c (R

2d), let the process (M
t,ν,ϕ
θ , θ ≥ t) be defined on the enlarged

space Ω by

M
t,ν,ϕ
θ (ω̄) := ϕ(ω̄θ) −

∫ θ

t

Lt,ν
s ϕ(ω̄)ds, θ ≥ t, (18)
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where Lt,ν is the differential operator

Lt,ν
s ϕ(ω̄) := b̄t,ν(s, ω̄) ·Dϕ(ω̄s) +

1

2
āt,ν(s, ω̄) : D2ϕ(ω̄s);

here, we set āt,ν(s, ω̄) := σ̄t,ν(s, ω̄)σ̄t,ν(s, ω̄)
∗

and the operator “ :” is defined by

p : q := Tr(pq∗) for all p and q in S2d,d. It is clear that the process M
t,ν,ϕ

is
F–progressively measurable.

Let (t,x, ν) ∈ R
+×Ω×U . Denote by P

t,x,ν
the probability measure on Ω induced

by (B,Xt,x,ν) under the Wiener measure P. For all ϕ in C2
c (R

2d), the process M
t,ν,ϕ

is a martingale under P
t,x,ν

and

P
t,x,ν(

Xs = x(s), 0 ≤ s ≤ t
)

= 1.

Let τ be a F
P–stopping time taking values in [t,+∞) and let η be the F–stopping

time defined in Lemma 3.1. Set ν̄(w̄) := ν(w) and η̄(w̄) := η(w) for all w̄ = (w,w′) ∈

Ω. It is clear that η̄ is a F–stopping time. Then there is a family of r.c.p. of P
t,x,ν

given F η̄ denoted by (P
t,x,ν
w̄

)
w̄∈Ω, and a P

t,x,ν
–null set N ⊂ Ω such that

P
t,x,ν
w̄

(

η̄ = η(w), Bs = w(s),Xs = w
′(s), 0 ≤ s ≤ η(w)

)

= 1 (19)

for all w̄ = (w,w′) ∈ Ω \N . In particular, one has

P
t,x,ν
w̄

(

ν̄s = νη(w),ws , ∀ s ≥ 0
)

= 1

for all w̄ = (w,w′) ∈ Ω\N . Moreover, Lemma 6.1.3 in [19] combined with a standard

localization argument implies that for P
t,x,ν

–a.a. w̄ ∈ Ω, for all ϕ ∈ C2
c (R

2d), the
process

ϕ(ω̄θ) −

∫ θ

η(w)
Lt,ν
s ϕ(ω̄)ds, θ ≥ η(w),

is a martingale under P
t,x,ν
w̄

. It follows by (19) that for P
t,x,ν

–a.a. w̄ ∈ Ω, for all

ϕ ∈ C2
c (R

2d), M
η(w),νη(w),w ,ϕ

is a martingale under P
t,x,ν
w̄

.
As weak uniqueness is equivalent to uniqueness of solutions to martingale prob-

lem1, for P
t,x,ν

–a.a. w̄ ∈ Ω, P
t,x,ν
w̄

coincides with the probability measure on Ω

induced by
(

w⊗η(w)B,Xη(w),w′,νη(w),w
)

under the Wiener measure P. Therefore, for
all bounded random variable Y in Fη we have

E
P
[

Φ
(

Xt,x,ν
)

Y
]

=

∫

Ω

(

Φ(w′)Y (w)
)

P
t,x,ν

(dw̄)

=

∫

Ω

(

E
P
t,x,ν

w̄ [Φ(X)] Y (w)
)

P
t,x,ν

(dw̄)

=

∫

Ω

(

E
P

[

Φ
(

Xη(w),w′,νη(w),w
)]

Y (w)
)

P
t,x,ν

(dw̄)

=

∫

Ω

(

J
(

η(ω),Xt,x,ν(ω), νη(ω),ω
)

Y (ω)
)

P(dω).

Since η = τ P− a.s., we have completed the proof.

1 Here the SDE to consider is : for all θ ∈ R
+,

Zθ = w̄(η(w) ∧ θ) +

∫ η(w)∨θ

η(w)

b̄η(w),ν
η(w),w

(s, Z)ds+

∫ η(w)∨θ

η(w)

σ̄η(w),νη(w),w

(s, Z)dBs.
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