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Abstract 

Purpose: High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI) has 

great potential for functional imaging of live neuronal tissue at single neuron scale. However, 

reaching high resolutions often requires long acquisition times which can lead to reduced image 

quality due to sample deterioration and hardware instability. Compressed Sensing (CS) 

techniques offer the opportunity to significantly reduce the imaging time. The purpose of this 

work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) 

sampling patterns for high resolution quantitative MEMRI imaging. 

Methods: Fully encoded and DLA-CS MEMRI images of Aplysia californica neural tissue were 

acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was 

quantified for both versions of the T1 weighted images.  

Results: For a 50% undersampling, DLA-CS leads to signal intensity differences, measured in 

individual neurons, of approximately 1.37% when compared to the fully encoded acquisition, 

with minimal impact on image spatial resolution.  

Conclusion: At the undersampling ratio of 50%, DLA-CS is capable of accurately quantifying 

signal intensities in MEMRI acquisitions. Depending on the image signal to noise ratio, higher 

undersampling ratios can be used to further reduce the acquisition time in MEMRI based 

functional studies of living tissues. 
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Introduction 

Recent advances in the static magnetic field strength of magnetic resonance scanners and in the 

radio-frequency (RF) detector designs has allowed magnetic resonance microscopy (MRM) to 

reach spatial resolutions suitable for functional imaging of single cells (1,2). However, in order to 

reach the full potential of MRM it is necessary to reduce the currently long acquisition times 

required for obtaining high resolution images. Based on the fact that MR images, among other 

types of images, are compressible, an image can be reconstructed from a small number of random 

measurements (3). This finding opened the field of Compressed Sensing (CS) which can 

significantly reduce the MRI scan time and found numerous applications in preclinical (4) and 

clinical (5) imaging.  

In CS, high-quality images can be obtained from data sampled well below the Nyquist rate 

provided that the sampling pattern is incoherent, the images are sparse in a transform domain, and 

a sparsity-promoting iterative reconstruction is used (3). The CS method has been previously 

utilized for the acceleration of T1 weighted acquisitions for knee cartilage quantification (6) as 

well as for MEMRI (7). In case of the MEMRI study, CS with random k-space undersampling 

patterns was employed for fast cardiac T1 mapping in mice (7), demonstrating the feasibility and 

performance of this approach. Both studies used random undersampling schemes in the high 

frequency domain while fully sampling the low frequency domain, which has been shown to 

reach a similar performance to that of the polynomial undersampling algorithms (7). Recently we 

have introduced a different approach for undersampling the k-space based on using the diffusion 

limited aggregation (DLA) random growth model to obtain reduced acquisition patterns in the 

phase encoding directions. We have demonstrated that this DLA-CS algorithm performs better 

than the polynomial approach and validated its use in high resolution T2 weighted imaging. In the 

present study we implement DLA-CS for T1 weighted acquisitions in order to perform high-

resolution quantitative functional MEMRI and we evaluate its performance. 
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Methods 

Undersampling pattern generation 

Undersampling pattern generation for DLA-CS RARE (Rapid Acquisition with Relaxation 

Enhancement) acquisitions was previously reported by Nguyen et al. (8). Briefly, the two phase 

encoding directions in a Cartesian 3D trajectory were undersampled using an acquisition pattern 

based on the diffusion limited aggregation random growth model (9) with the k-space points in 

the resulting patterns always being restricted to be a subset of the fully sampled Cartesian k-space 

points. 

In this study, following the same procedure, acquisition patterns were generated for seven 

undersampling ratios ranging from 30% to 90% for a T1 weighted FLASH (Fast Low Angle 

Shot) acquisition. For each undersampling ratio, 300 sets of undersampling patterns, each 

consisting of 100 candidates, were created. From each set, the one pattern (out of 100) with the 

lowest Point Spread Function was selected. Hence, 300 patterns were produced for each 

undersampling ratio, making a total of 300 x 7 = 2100 patterns. The 2100 patterns were applied 

to a library of six fully sampled T1 weighted images of Aplysia californica buccal ganglia. In 

order to compare the CS and fully sampled images, the l2-norm relative errors (RE) were 

calculated according to the equation:  

   
√∑ (     

 )  
   

√∑   
  

   

 
 

(1) 

 

where    and   
  are the signal intensities of voxel i in the fully encoded image and the 

undersampled image, respectively, and n is the total number of pixels. For each undersampling 

ratio, the averaged RE over the six images in the library was computed. The DLA undersampling 

pattern with the lowest RE was selected for each of the  seven undersampling ratios and 

implemented in Paravision 5.1 (Bruker BioSpin, Ettlingen, Germany) starting from the standard 

FLASH pulse sequence.  

Examples of k-space undersampling patterns are shown in Erreur ! Source du renvoi 

introuvable.. The k-space was undersampled along the two phase encoding directions and the 

pattern was repeated for every point in read direction.  
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Data acquisition 

All MRI acquisitions were performed at 19°C on a 17.2 T system (Bruker BioSpin, Ettlingen, 

Germany) equipped with 1 T/m gradients. The RF transceivers used for imaging were custom-

built solenoidal microcoils with an inner diameter of 2.4 mm, the design of which has been 

described previously (1). Two types of acquisitions were performed for each sample: a RARE 

acquisition, providing T2 contrast (TR = 3000 ms, TE = 20 ms, AF = 4, 25 µm isotropic 

resolution) and a FLASH acquisition providing T1 contrast (TR = 150 ms, TE = 2.441 ms, 3 

averages, 2 repetitions, 25 µm isotropic resolution) in fully encoded and CS variants. The FOV 

was either 10x2.2x2.2 mm
3
 or 10x2.0x2.0 mm

3
 corresponding to matrix sizes of 400x88x88 and 

400x80x80 and fully encoded FALSH acquisition times, per repetition, of 58 and 48 minutes, 

respectively. Since the FOV size was not found to influence the DLA performance, the two 

groups were pooled together.  

Sample preparation 

A total of fourteen Aplysia californica were used in this study. Images acquired on ganglia from 

six animals were used for generating the library necessary to optimize the DLA based CS 

trajectories. Six other animals were used for acquiring fully sampled data sets. Besides providing 

reference images, these data sets were retrospectively undersampled in order to determine the 

optimal undersampling ratio. Finally, two animals were used to acquire both fully encoded and 

CS images. These data were also retrospectively undersampled. For all experiments the animals 

were food deprived for 48h prior to the beginning of the experiment in order to increase their 

food seeking behavior and maximize the intracellular Mn
2+

 accumulation as described previously 

(2). On the day of the experiment, the animals were injected with 100 mM MnCl2 solution (500µl 

per 100g body weight; NaCl 345 mM, KCl 10mM, MgCl2 25mM, MnCl2 100mM, pH = 7.5) and 

were left in the aquarium for 45 minutes with unrestricted access to food (seaweed). The animals 

were then anesthetized with isotonic MgCl2 solution (50ml per 100g body weight; MgCl2 

360mM, HEPES 10mM, pH = 7.5). Buccal ganglia were resected and inserted in 1.5 mm ID 

borosilicate glass capillaries (Vitro-Com, Mountain Lakes, NJ, USA) containing artificial sea 

water (ASW; NaCl 450 mM, KCl 10mM, MgCl2 30mM, MgSO4 20mM, pH = 7.5) and then slid 

inside the transceiver for MRI. The Aplysia buccal ganglia consists of approximately 300 

neurons, some of which are up to 200 µm in diameter (10,11) and can therefore be resolved with 

the spatial resolution employed here. 
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Image reconstruction and analysis 

The fully encoded images were processed directly in Paravision 5.1 software. CS undersampled 

data were reconstructed following the Split-Bregman algorithm provided by Goldstein and Osher 

in 2009 (12), which was extended for this study to a 3D version with total variation (TV) penalty 

and Haar wavelet transform. Briefly, if we denote the undersampled Fourier transform 

corresponding to the undersampled pattern    and   is the Haar wavelet transform, the 

reconstructed image m is obtained by solving the following optimization problem: 
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Where y is the undersampled k-space data, µ is the expected noise level and   ( )  ‖  ‖  
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 |    |  , where      represents the value of gradient in k=x,y,z 

direction of image m at voxel index i. The original 2D code can be found in reference (13). 

The performance of the DLA-CS strategy was evaluated by comparing signal intensities 

measured in individual neurons and in water in both fully encoded and undersampled images. 

Five biggest neurons in the Aplysia’s buccal ganglia (B1, B2, B3, B6 and B9) were identified and 

manually segmented on RARE (T2 weighted) images (Figure 2a). (Note that as the buccal 

ganglia are bilaterally symmetric, one sample contains two neurons of each type.) The 

corresponding ROIs were co-registered to the FLASH (T1 weighted) images and the mean signal 

intensity for each of them was calculated (Figure 2b). 

 

In order to evaluate the extent of resolution loss between the fully encoded and undersampled 

images, we computed the Pearson’s Correlation Coefficient (PCC) (14): 

    
∑ (        )(       
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(2) 

Where    and   
  represent signal intensities of voxel i in the fully encoded and undersampled 

image, respectively, and       and      
  represent the mean signal intensity values of all voxels 

in the fully encoded and the undersampled image, respectively.  ThePCC was calculated in 

manually drawn ROIs containing the ganglia and encompassing approximately 50 000 voxels.  

The signal intensity quantification was performed by normalization against the water signal. To 

correct for possible RF inhomogeneities, the images were normalized in a position-dependent 
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manner: the signal intensity of each voxel in the transverse plane (perpendicular to the 

longitudinal axis of the receiver coil) was normalized against the mean signal intensity of all 

voxels corresponding to ASW in this plane (2). 

Results 

Examples of fully encoded and retrospectively DLA-CS undersampled T1 weighted images of the 

buccal ganglia are shown in Figure 3Erreur ! Source du renvoi introuvable..  

In a first step we estimated the performance of the DLA-CS approach for seven different 

undersampling ratios both in terms of image resolution (characterized by PCC) and relative 

signal intensity error (Figure 4). As can be seen in Figure 4a, the PCC between the CS and fully 

encoded images for undersampling ratios higher than 50% drops to values below 0.8, generally 

considered as the threshold for a strong correlation (15). We observe an increase in PCC when 

averaging the signal over two repetitions. The relative signal intensity analysis was performed by 

comparing non-normalized fully encoded images with CS images retrospectively undersampled 

from the same raw data set. Measurements were performed in water (water ROI) and neuron 

bodies (cells ROI). For the latter the signal intensities were measured in the five biggest cells 

(B1, B2, B3, B6 and B9) and averaged. The relative error between the average signal intensities 

of fully encoded and CS images, for all the undersampling ratios considered, are displayed in 

Figure 4b. We notice that the error is inferior to 6% for all undersampling ratios considered. 

However, for undersampling ratios larger than 60% the error corresponding to the cells ROI and 

the water ROIs diverge, which could introduce a bias in the signal intensity quantification. The 

different behavior of the signal intensity error in water versus cell bodies at large undersamplings 

is most likely due to the loss in spatial resolution (increased blurring) as indicated by the PCC 

results. Surprisingly, the signal intensity error did not show SNR dependence. However, not only 

does the standard deviation of the error for the cell ROIs increase with the undersampling ratio 

(Fig. 4b) but we also found it to be significantly higher for one repetition when compared to two 

repetitions (Supporting Table S1). Specifically, a student t-test showed a statistical significance 

(p = 0.0005) while for the water ROI no difference was found (p = 0.26).  

Based on the results presented above we chose an undersampling of 50% for our next 

experiments which aimed at evaluating the performance of DLA-CS acquisitions for single 

neuron signal intensity quantification. Figure 5 presents Bland–Altman plots showing the 
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difference in the normalized signal intensity values measured in single neurons in the fully 

sampled dataset and the 50% prospectively undersampled dataset (a) or the 50% retrospectively 

undersampled dataset (b). The average difference in the normalized signal intensity values was 

1.3% and 0.5% for the prospectively and retrospectively undersampled data sets, respectively. 

 

Conclusion and Discussion 

It has been shown previously that MEMRI can be used to perform functional imaging of the 

buccal network of Aplysia californica as the manganese ions accumulate differentially in animals 

exposed to different food stimuli (2). The purpose of this work was to reduce the acquisition time 

of such MEMRI protocols by implementing DLA-CS undersampling patterns (6) and evaluate 

whether a quantitative analysis of the signal enhancement remains feasible. To address this issue, 

we obtained and compared fully encoded and DLA compressed T1 weighted FLASH images of 

Aplysia californica buccal ganglia.  

The performance of the DLA-CS FLASH acquisition was evaluated at various undersampling 

ratios. We found an undersampling ratio of 50% acceptable both in terms of image resolution and 

signal intensity quantification. Regarding single neuron signal intensity quantification we found, 

on average, a 1.37% percentage error between the fully sampled and prospectively undersampled 

data. This error was observed to be higher than the error measured using retrospective 

undersampling of the fully encoded data, which was found to be 0.50%. The difference between 

the two undersampling scenarios can be due to experimental errors such as hardware instability, 

subtle changes in the sample position in the B0 field (resulting from vibrations associated with the 

strong encoding gradients), or slight sample modification. 

When evaluating the Pearson Correlation Coefficient between the fully encoded and the 

undersampled images we notice that the performance of the DLA-CS technique is influenced by 

the image signal to noise ratio, in agreement with earlier studies (5), suggesting that higher 

accelerations are possible for higher SNR data. To summarize, our results demonstrate that the 

DLA-CS strategy proposed here can significantly accelerate data collection in high resolution 

quantitative MEMRI studies of neuronal tissues. Even though the acquisitions times remain long 

when compared to fast techniques, such as EPI or spiral imaging, the DLA-CS appears to be a 

promising approach at high magnetic fields and high spatial resolutions, where single shot 

acquisitions are not feasible. Moreover, the DLA-CS is not limited to magnetic resonance 
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microscopy and could be also applied to preclinical and clinical studies, where shortening the 

acquisition time is equally desirable. 
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Figure Captions 

Figure 1. DLA acquisition patterns for 50%, 70% and 90% undersampling ratios. The horizontal 

axis represents the read direction, and the other two axes represent the phase encoding directions, 

as shown in the lower right corner. 

Figure 2. Schematic representation of the ROI selection for signal intensity quantification. Two 

acquisitions were performed for each sample: a T2 weighted RARE (a), providing information 

about the sample anatomy and a T1 weighted FLASH (b) reflecting the intracellularly 

accumulated Mn
2+

 ions. Neurons were manually segmented on the RARE image and the 

corresponding ROIs were co-registered with the FLASH image. The drawn ROIs correspond to 

neurons B9 (red), B6 (orange) and B3 (green). Spatial resolution: 25 m isotropic.  

Figure 3. Fully encoded FLASH image (leftmost) and corresponding undersampled images after 

CS reconstruction (50%, 70% and 90% undersampling ratios). The CS images shown here were 

obtained by retrospectively undersampling the fully encoded k-space data. 

Figure 4. Evaluation of the performance of CS-DLA for different undersampling ratios. (a). PCC 

between fully and CS encoded images as a function of undersampling ratio for one (red) and two 

(blue) repetitions. The PCC was calculated according to Eq. 2 over the ganglia region containing 

approximately 50 000 voxels. Error bars represent standard deviations. (b) Percentage signal 

intensity difference between the fully encoded and CS images (the data represented is the average 

over two repetitions). Blue and red marks correspond to cell bodies and water regions, 

respectively. Error bars represent standard deviations. The data was obtained from 6 samples. 

Figure 5. Bland–Altman plots showing the difference in the normalized signal intensity values 

estimated from the fully sampled dataset and the 50% prospectively undersampled dataset (a) and 

the 50% retrospectively undersampled dataset (b). Each point corresponds to the signal intensity 

measured in one single neuron (2 samples, 10 neurons per sample).  

Supporting Table S1: Signal intensity errors (Error) and corresponding standard deviations (SD) between 

fully encoded and compressed sensing acquisitions for one and two repetitions calculated in cells and 

water ROIs. 
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