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A Cayley graph on a group Γ with the generating set S ⊂ Γ is a graph costructed out of Γ. A circulant graph is a Cayley graph on a cyclic group denoted by Circ(n, S). In this paper, we address the problem domination in circulant graphs. We first give upper bounds for the domination number of certain circulant. The domination number of certain circulant graphs is obtained together with a corresponding dominating set. We also obtain the independent domination number and the total domination number for special cases of these circulant graphs.

Introduction

Cayley graphs are usefull in various domains of theoretical computer sciences such as computer architecture, routing problem, networking and coding theory. In the coding theory, the most interesting graphs are those having perfect e-codes, particulary regular graphs, vertex transitive graphs and distance transitive graphs. perfect 1-codes were introduced by Biggs [START_REF] Biggs | Perfect codes in graphs[END_REF] in the context of error correcting codes. A perfect 1-code is a single error correcting code, that is, it permits to correct one error. In the context of graph theory, a perfect 1-code is called an efficient dominating set. This is an independent dominating set in which every vertex not in the set is dominated by exactly one vertex of the set. Independent sets are also useful in the perspective of coding theory. In [START_REF] Chellali | Independent [1, k]-sets in graphs[END_REF] for example, Chellali et al. intoduce the independent [1,k]-sets and state that these sets are usefull in the context of error correcting codes as well. In fact, an independent [START_REF] Biggs | Perfect codes in graphs[END_REF][START_REF] Chellali | Independent [1, k]-sets in graphs[END_REF]-set will permit to correct most errors and those not corrected come from at most 2 sources. Cayley graphs are such regular graphs usable in coding theory. As example, hypercubes are used to represent Hamming codes.They are define out of groups. In fact, for a group(even infinite) Γ and a set S ⊂ Γ such that s ∈ S ≡ s -1 ∈ S and e(Γ) / ∈ S, the Cayley graph G on Γ with the generating set S ⊂ Γ is a graph with vertex set elements of Γ (V) and edge set E(G) = {(g, gs)|g ∈ Γ, s ∈ S}. Cayley graphs on finite cyclic groups are called circulant graphs and denoted by Circ(n, S).

Definitions. In a graph G = (V, E), a dominating is a set D of vertices such that every vertex of G is either in D or has a neighboor in D. The Dominating Set problem ask to find in a graph G = (V, E) a dominating set with minimum cardinality denoted γ(G). A dominating set is efficient if it is independent (i.e. no two vertices of D are adjacent) and each vertex v / ∈ D has exactly one neighboor in D. More generaly, an independent exact k-dominating set D of a graph G = (V, E) is a set of vertices such that every vertex not in D has exactly k neighboors in D. k-dominating set are usefull in the context of faulttolerence application. In this paper, we are investigating independent exacts 2-dominating sets of circulant graphs.

State of art. Minimum Dominating

Set problem ask to find a dominating set of minimum cardinality. This problem is an NP-complete for general graphs even when restricted to the class of planar graphs of maximum degree 3 [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF]. When restricted to certain classes of graphs such as trees, we can get polinomial time algorithms even linear. Many autors address the problem in the class of circulant graphs [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF][START_REF] Dejter | Efficient dominating sets in cayley graphs[END_REF][START_REF] Obradovi | Efficient domination in circulant graphs with two chord lengths[END_REF][START_REF] Chelvam | Subgroups as efficient dominating sets in cayley graphs[END_REF][START_REF] Chelvam | Bounds for domination parameters in circulant graphs[END_REF]. In [START_REF] Dejter | Efficient dominating sets in cayley graphs[END_REF], Dejter and Serra give a method to construct countable family of circulant graphs each admiting an efficient dominating set. Obradovic et al. [START_REF] Obradovi | Efficient domination in circulant graphs with two chord lengths[END_REF] give conditions based on the relationship between cordes length for cayley graphs of degree at most 4, to admit efficient dominating set together with the structure of these sets. In [START_REF] Chelvam | Subgroups as efficient dominating sets in cayley graphs[END_REF] is gived a necessarily condition for a subgroup to be an efficient dominating set. In [START_REF] Kumar | Efficient domination in circulant graphs[END_REF], Kumar and MacGillivray investigate efficient dominating sets in circulant graphs of large degree. They prove that if such graphs admit efficient dominating sets, then either its elements are equally spaced, or the graph is wreath product of a smaller circulant graph with an efficient dominating set and a complete graph. Yung-Ping [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF] generalyse the condition gived by [START_REF] Obradovi | Efficient domination in circulant graphs with two chord lengths[END_REF] together with techniques in [START_REF] Kumar | Efficient domination in circulant graphs[END_REF] to completly describe efficient dominating set in circulant graphs with domination number prime. The problem of determining efficient dominating sets in circulant graphs is so largely study, but no general upper bounds are known for the domination number of circulant graphs. In this paper, we are investigating the problem for graphs with generating sets of the form S = {a, a + 1, ..., a + k -1, n -a, ..., n -(a + k -1)} where a, k, n ∈ N. We also get independent number in certain cases of these graphs.

Preliminaries

In the article by Deng [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF], the following theorem has been stated: Theorem 2.1 (Theorem 3.1, [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF]). Let n = |S 0 |d, where d is an integer. Then Circ(n, S) admits an efficient dominating set D which is a coset of some subgroup of Z n if and only is s i -s j = 0 mod (|S 0 |), ∀s i , s j ∈ S 0 = {0} ∪ S.

Remark 1. For any circulant graph G = circ(n, S) such that the connection set S is a symetric generating set of Z n and D is a subgroup generated by d(ussualy noted D =< d >), we have:

1. ∀s i ∈ S, s i ≡ 0 mod d is equivalent to the fact that vertex 0 ∈ D is adjacent to vertex s i which is also an element od D, hence, the set D is not independent.

2. ∀s i , s j ∈ S, if s i -s j ≡ 0 mod d then the vertices s i and s j have a common neighboor in D, hence the set D cannot be an exact 1-domination set (every vertex not in D has exactly one neigboor in D). 

∀s

i , s j ∈ S, if s i -s j = 0 mod d then
2a k + d = (2k + 1)d then 2a k + d divides n implies that gcd(n, S) ≥ d = 1.
We can reduce such cases of circulant graphs to general cases by just treating the connected components since these connected components are circulant graphs of the same degree. The corresponding subgraphs are all isomorphic to circ(n/d, S )

with S = a i /d, a i ∈ S. More generaly, such reductions can allways be applied when gcd(n, S) ≥ 1.

Dominating sets of circulant graphs

Using the theorem 2.1, we obtain the following corollary.

Corollary 1. Let n, k ∈ N such that n = (2k + 1)d. For each a such that a ≡ 1 mod (2k + 1) or a ≡ k + 1 mod (2k + 1), G = circ(n, S), γ(G) = n 2k+1 Proof. Since n ≡ 0 mod (2k + 1), that is n = (2k + 1)d, d ∈ N.
In fact, we have for a ≡ 1( mod 2k + 1) or a ≡ k + 1( mod 2k + 1), and S 0 = {0} ∪ {a, a + 1, ..., a+k -1, n-a, ..., n-(k +a-1)} the evidence that ∀s i , s j ∈ S 0 , s i -s j = 0( mod 2k + 1). By applying theorem 3.1 of [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF], the conclusion follows.

It is a bit surprising that the domination of such circulant graph is not bounded by a constant integer (γ(G) ≤ n 2k+1 + c) when (2k + 1) n and generating set still those described in the previews corollary. The following theorem give an upper bounds for the domination number of circulant graphs where connection set contains consecutive numbers as describe early. To prove this theorem we will construct a dominating set of these graphs.

Proof. First of all, suppose that 2a-1 is the minimum of the two quantities that is d = min{2a -1, n -2a -2k + 1} = 2a -1. Without loss of generality, suppose that the vertice 0 ∈ D, the dominating set been in construction. By adding 0 as a dominator, vertices [a, a+k-1] and [n-a, n-(a+k-1)] are dominated together by 0. To dominate vertices lying into the set

I 0 = [1, a -1] ∪ [n -(a -1), n -1]
we use the following strategy: take vertices v i = v i-1 + k with v 0 = 0 until all vertices of I 0 are dominated. Let γ 0 = 1 + 2a-1 k . γ 0 is the number of vertices to use to dominate all vertices in I 0 . Morever, vertices v i also dominate (γ 0 +1)k vertices other than the one in I 0 . Finally, the number of vertices dominated by

the set V = {v i |0 ≤ i ≤ γ 0 -1} is nd = (2a -1) + (γ 0 + 1)k
To dominate the rest of the graph, let consider the sets I 1 to I d with d = n nd = n (2a-1)+(γ0+1)k . Vertices each I i , i = 1..d -2 can be dominated with the same process the one used for I 0 with the vertex 0 replaced by vertex .... of each I i . Doing so, all I i 0 ≤ i ≤ d -2 have the same number of dominators namely γ 0 .

For the sets I d-1 , the number of dominators is less or equal γ 0 . Since each set I i described bellow has at most γ 0 dominators, the whole graphs has at most γ 0 d dominators hence, γ(G) ≤ dγ 0 = γ 0 n (2a-1)+(γ0+1)k

As special cases of graphs describe in the preceding theorem, the next theorems gived most tight bounds for circulant graphs with connection set containing small consecutive numbers relatively to (a ≤ k + 1 ≤ n). In theorem 3.2 the dominating sets found have equally spaced vertices but are not independent. 

Theorem 3.2. Let n, k, a ∈ N s.t k 2 + 1 ≤ a ≤ k + 1, a + k ≤ n+1
I 0 = [1, a + k -1], I 1 = [a+k+1, 2(a+k)-1], ..., I d-2 = [(d-2)(a+k)+1, (d-1)(a+k)-1], I d-1 = [(d -1)(a + k) + 1, n -1]. For each 0 ≤ i ≤ d -2, element of I i are dominated by i(k + a) and (i + 1)(k + a). More precisely, the set I i , 0 ≤ i ≤ d -2, contains two subparts. the upper side [i(a + k) + a, (i + 1)(a + k) -1] dominated by the vertice i(a + k) and the lower part [i(a + k), i(a + k) + k] dominated by the vertice (i + 1)(a + k). for the set I d-1 Corollary 2. Let n, k, a ∈ N s.t k 2 + 1 ≤ a ≤ k + 1, a + k ≤ n+1
I 0 = [1, a + k -1], I 1 = [a + k + 1, 2(a + k) -1], ..., I d-2 = [(d -2)(a + k) + 1, (d -1)(a + k) -1], I d-1 = [(d -1)(a + k) + 1, n -1] with n -1 = d(a + k) -1. For each 0 ≤ i ≤ d -2,
element of I i are dominated by i(k + a) and (i + 1)(k + a). Thus D is a dominating set. To see the independence of the set D, one can use the remark 1. In fact it is easy to see that between a and a + k -1 there is no divisor of k + a since these numbers are all less than k + a in the settings of the theorem.

We assume the minimality of domination sets found in the two preceding theorems even in those coming down. However, we think it is provable using remark 1 and techniques inspired by Yung [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF].

Theorem 3.3. Let n, k, a ∈ N s.t 2 ≤ a ≤ k 2 , n = 2(3k + 2a -1)d, d ∈ N and S = {a, a + 1, ...a + k -1, n -a, ..., n -(a + k -1)}. The domination number of Circ(n, S) is γ(G) = 2d and < 3k + 2a -1 > ∪ < 3k + 2a -1 > +k is a dominating set. Proof. Let d = n 3k+2a-1 and v = d-1 2
. Vertices of G can be partioned into sets I i as follows.

I 0 = [0, 3k + 2a -1], I 1 = [3k + 2a, 2(3k + 2a -1) -1], I v-2 = [(v-2)(3k+2a-1)+1, (v-1)(3k+2a-1)] and I v-1 = [(v-1)(3k+2a-1)+1, n-1] where n -1 = v(3k + 2a -1) -1. Each intervalle I i = [i(3k + 2a -1), (i + 1)(3k + 2a -1) -1], 0 ≤ i ≤ v -1 is
dominated completely by two vertices namely x i1 = i(3k + 2a -1) + k + a -1 and x i2 = i(3k + 2a -1) + 2k + a -1.

Since Cayley graphs are vertex-transitive, we remove (4k + 3a -2) from each dominator we will get the set describes in the theorem.

The following theorem generalise the situations of theorem 3.3 to situations . Theorem 3.4.

Subgroups as independent domination sets

Dominating sets of graphs described in the theorem 3.3 are not independent dominating sets. To obtain independent dominating sets in certain cases, it is possible to use the following theorem. The independent domination number of G is i(G) = n k+a . Proof. Using techniques of theorem 3.2, it is easy to show that the subgroup generated by k + a is a dominating sets. to see the indepence, recall that these sets have equally spaced vertices hence, the distance between two consecutive elements is allways the same. This distance has the value a + k which is greater than the maximum distance between two adjacent vertices (a + k -1). Then the subgroup < a + k > is also an independent sets for these circulant graphs.

The theorem bellow gives a constructive tool to get circulant graphs that admit subgroups as independent domination sets. We thing that it is possible to give a caracterization as those gives in [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF] for circulant graphs admiting subgroups as independent dominating set. The next theorem will give a caracterisation of those graphs with independent dominating sets that are subgroups and their cosets. Using notations of theorem 2.1, we can make the following remarks. Base on these remarks, we can formulate the following theorem. 1. ∀s i ∈ S, s i = 0 mod d;

2. the number of tuples s i , s j such that s i -s j = 0 mod d is at least 2d The prof of this theorem is based on the reamark 1. The first condition ensures the independence of the subgroup and the second ensures that the set D is a dominating set. It worth noticed that in certain cases, well choosed D will also be a minimum dominating set. Theorem 3.1 describes such cases for graph with generating sets that are consecutive integers. The following corollary complete theorem 3.1 and theorem 4.2 by giving a criterion like the one in corollary 1 for circulant graphs with generating that are consecutive integers to admit subgroups as minimum independent set. It is easy to see that this theorem is clearly an extension of corollary 1, in fact, by setting a = k + 1 we clearly get the corollary. In this corollary, if the order n of the graph is not a multiple of

Conclusion and future work

In this work we give some bounds for the domination number of circulant graphs where connection sets are consecutive integers. We got some subgroups that are minimum dominating sets and independent dominating sets for these circulant graphs. We are planning to use these results and those in [START_REF] Yung-Ping | Efficient dominating sets in circulant graphs with domination number prime[END_REF] in the perspective of coding theory. The problem of finding domination sets of circulant graphs remains not completely solve. Is this problem solvable or MDS is also NP-Complete for circulant graphs?
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 311 Let a, k, n ∈ N such that 2k + 1 ≤ n, S = {a, a + 1, ..., a + k -1, n -a, ..., n -(a + k -1)}. Let d = min{2a -1, n -2a -2k + 1} and γ 0 = d k +The domination number of the circulant graph circ(n, S) is upper bounded by γ ≤ γ 0 n (2a-1)+(γ0+1)k .

2 andS

 2 = {a, a + 1, ...a + k -1, n -a, n -(a + 1), ..., n -(a + k -1)}. The domination number of the circulant graph G = circ(n, S) is upper-bounded by γ(G) ≤ n k+a . Proof. Let d = n k+a and D = {0, k + a, 2(k + a), ..., (d -1)(k + a)}. Vertices of the graph G = Circ(n, S) can be partioned into sets
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 2 = {a, a + 1, ...a + k -1, n -a, n -(a + 1), ..., n -(a + k -1)}. If n divides k + a then γ(G) = nk+a and the subgroups < k + a > is an independent domination set for Circ(n, S). Proof. Let d = n k+a and D =< k + a >= {0, k + a, 2(k + a), ..., (d -1)(k + a)}. As we did in the proof of theorem 3.2, we partitioned the vertices of the graph into following sets
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 41 Let n, k, a ∈ N such that k+a divides n, a ≤ k+1 and n ≥ 2k+1. Let S = {a, a + 1, ..., a + k -1, n -a, ..., n -(a + k -1)} and G = Circ(n, S).

Theorem 4 . 2 .

 42 Let n ∈ Z, S with |S| = 2k a symetric generating set of Z n , and D be a subgroup of Z n generated by some integer d = max k+1 a=2 {k + a}. D is an independent dominating set if the following conditions are meet.

Corollary 3 . 2 .

 32 Let n, a, k ∈ N such that a + k ≤ n+1 2 , a ≤ k + 1, and (k + a) | n.Let a ∈ N such that a ≡ a mod (a + k) or a ≡ 1 mod (a + k), and a + k ≤ n+1 The circulant graph Circ(n, S) where S = {a , a + 1, ..., a + k -1, na , ..., n -(a + k -1)} admits the subgroup generated by a + k and its cosets as minimum independent dominating set.