
HAL Id: hal-01429292
https://hal.science/hal-01429292v2

Preprint submitted on 9 Jun 2017 (v2), last revised 5 Sep 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of Discontinuous Skeletal methods on
arbitrary-dimensional, polytopal meshes using generic

programming
Matteo Cicuttin, Daniele Di Pietro, Alexandre Ern

To cite this version:
Matteo Cicuttin, Daniele Di Pietro, Alexandre Ern. Implementation of Discontinuous Skeletal meth-
ods on arbitrary-dimensional, polytopal meshes using generic programming. 2017. �hal-01429292v2�

https://hal.science/hal-01429292v2
https://hal.archives-ouvertes.fr

Implementation of Discontinuous Skeletal methods on

arbitrary-dimensional, polytopal meshes using generic

programming

M. Cicuttin, D. A. Di Pietro, A. Ern

June 9, 2017

Abstract

Discontinuous Skeletal methods approximate the solution of boundary-value problems by
attaching discrete unknowns to mesh faces (hence the term skeletal) while allowing these dis-
crete unknowns to be chosen independently on each mesh face (hence the term discontinuous).
Cell-based unknowns, which can be eliminated locally by a Schur complement technique (also
known as static condensation), are also used in the formulation. Salient examples of high-order
Discontinuous Skeletal methods are Hybridizable Discontinuous Galerkin methods and the
recently-devised Hybrid High-Order methods. Some major benefits of Discontinuous Skeletal
methods are that their construction is dimension-independent and that they offer the possi-
bility to use general meshes with polytopal cells and non-matching interfaces. In this work,
we show how this mathematical flexibility can be efficiently replicated in a numerical software
using generic programming. We describe a number of generic algorithms and data structures
for high-order Discontinuous Skeletal methods within a “write once, run on any kind of mesh”
framework. The computational efficiency of the implementation is assessed on the Poisson
model problem discretized using various polytopal meshes and the Hybrid High-Order method.

1 Introduction

Discontinuous Skeletal (DiSk) methods are based on discrete unknowns that are discontinuous poly-
nomials on the mesh skeleton. Additional cell-based unknowns are generally considered as well in
the formulation of the method; such unknowns can be eliminated locally by a Schur complement
technique (often referred to as static condensation in the finite element context). Eliminating the
cell-based unknowns then leads to a global transmission problem coupling the face-based unknowns
by means of a local stencil involving only adjacent elements in the sense of faces. DiSk meth-
ods present several attractive features: the mathematical construction is dimension-independent,
arbitrary polynomial orders can be used, and general meshes, including polytopal cells and non-
matching interfaces, are supported. Positioning unknowns at mesh faces is also a natural way to
express locally in each mesh cell the fundamental balance properties satisfied by the boundary-value
problem at hand.

Seminal instances of lowest-order discretization methods placing unknowns at mesh faces are
the Mimetic Finite Difference (MFD) methods (see [9] and the book [7]) and the Hybrid Finite
Volume (HFV) methods (see [24] and the unifying approach with MFD in [22]); see also the Cell

1

Boundary Element (CBE) method in [29]. Perhaps one of the most well-known high-order DiSk
methods are the Hybridizable Discontinuous Galerkin (HDG) methods introduced in [14] (see also
the review in [11] and the references therein); we also mention the Generalized CBE method in [28].
Another prominent example of DiSk methods are the Hybrid High-Order (HHO) methods, which
were recently introduced and analyzed in [16] for linear elasticity and in [18] for scalar diffusion,
see also the mixed formulation in [17] and the recent review in [19]. HHO methods are currently
undergoing a vigorous development, see, among others, their extensions to advection-diffusion [15],
Stokes [20], Cahn–Hilliard [10], and Biot’s poroelasticity [8] equations. HHO methods have been
recently bridged to HDG methods in [12], where a numerical flux trace for HHO methods has been
identified in the context of a diffusion model problem. The three major differences between HDG
and HHO methods are that HHO methods (i) are derived directly from the primal formulation,
(ii) reconstruct locally the flux in a smaller space (exploiting its representation as the gradient of a
potential) and (iii) deploy a (rather subtle) stabilization which achieves higher-order convergence
rates on general meshes even when using simple polynomial spaces for the discrete unknowns (in
contrast, similar properties for HDG methods generally require an enrichment of the underlying
polynomial spaces, see, e.g., the recent work in [13]). Other examples of recent methods placing
unknowns at mesh faces are the nonconforming Virtual Element method in [3] (which has been
bridged to the HHO method in [12]) and the Weak Galerkin method in [32] (which has been
bridged to HDG in [11]).

DiSk methods are devised at the mathematical level in a dimension-independent and cell-shape-
independent fashion. The implementation, at least in principle, should reproduce this feature: a
single piece of code should be able to work in any space dimension and to deal with any cell shape.
It is not common, however, to see software packages taking this approach. In the vast majority of
the cases, the codes are capable to run only on few very specific kinds of mesh, or only in 1D or 2D or
3D. On the one hand, this can happen simply because a fully general tool is not always needed. On
the other hand, the programming languages commonly used by the scientific computing community
(in particular Fortran and Matlab) are not easily amenable to an implementation which is generic
and efficient at the same time. The usual (and natural) approach, in conventional languages, is
to have different versions of the code, for example one specialized for 1D, one for 2D and one
for 3D applications, making the overall maintenance of the codes rather cumbersome. The same
considerations generally apply to the handling of mesh cells with various shapes, i.e., codes written
in conventional languages generally support only a limited (and set in advance) number of cell
shapes.

Generic programming [2] offers a valuable tool to address the above issues. Different libraries are
already using such an approach to different extents; we mention, among others, [4, 6, 21, 27, 30, 31].
What generic programming provides is the possibility to write code where the data types are not
immediately specified, but they are left as parameters. For example, a sort function written in
generic style will not make any assumption neither on the data it will sort nor on the structure
that contains data. Generic programming can be used also in a numerical code: by writing the
code generically, it is possible to avoid making any assumption neither on the dimension (1D, 2D,
3D) of the problem, nor on the kind of mesh. In some sense, writing generic code resembles writing
pseudocode: the compiler will take care of giving the correct meaning to each basic operation.
As a result, with generic programming there will still be different versions of the code, but they
will be generated by the compiler, and not by the programmer. As these considerations suggest,
generic programming is a static technique: if correctly realized, the abstractions do not penalize
the performance at runtime, because they will leave no trace in the generated code.

2

In the present work, we discuss a set of generic tools that can be used to implement DiSk
methods, with a particular focus on HHO methods. The tools include a generic data structure
to represent the discrete geometry (the mesh) and a set of operations on it. The data structure,
which is composed of a three-layer abstraction, allows the user to handle simply “cells” and “faces”
without having to care about what they really are (since the answer to this question depends on the
ambient space dimension and the shape of the cell). To achieve this goal, the first layer hides the low-
level details of a particular mesh format, and allows one to manipulate different “shapes” without
caring about where they did come from and how they were originally represented. The second
layer of abstraction hides the information about the shape of the cells and faces, but preserves
the information about the dimension. Finally, the third layer hides the information about the
dimension, presenting to the user just the concepts of cell and face. At this point, no matter what
cells and faces actually are, it is possible to manipulate them in a unified and consistent way, and
to obtain, at the same time, fine-tuned executable code.

This paper is organized as follows. In Section 2, we present the HHO method that we use as
our main example among DiSk methods. We recall the functional formulation of the HHO method
and, as a more practically-oriented presentation, we also describe its algebraic formulation (see also
[1] for an algebraic presentation of the hybridized mixed HHO method). For simplicity, we focus
on a simple model elliptic problem: the Poisson problem posed on a polytopal domain of Rd with
homogeneous Dirichlet boundary conditions. In Section 3, we describe a generic implementation
of DiSk methods on arbitrary-dimensional polytopal meshes. We first consider the various levels
of abstraction necessary to handle mesh data structures in this context. Then we describe how
various queries on the mesh can be implemented in this framework. In Section 4, we present a
profiling of the implementation of the HHO method using the approach of Section 3 on a model
elliptic problem using various two- and three-dimensional polytopal meshes. Finally, in Section 5,
some conclusions are drawn.

2 An example: The HHO method

The goal of this section is to illustrate both the functional and the algebraic formulations of the
HHO method when used to approximate the Poisson problem with homogeneous Dirichlet boundary
conditions. Let Ω ⊂ Rd, d ≥ 1, be an open, bounded, connected, strongly Lipschitz set in Rd. For
simplicity, we assume that Ω is a polygon/polyhedron. We want to approximate the weak solution
u ∈H1

0(Ω) such that

(∇u,∇v)Ω = (f, v)Ω, ∀v ∈H1
0(Ω), (1)

where (⋅, ⋅)Ω denotes , according to the context, the standard inner product of L2(Ω) or L2(Ω;Rd),
and we assume for simplicity that f ∈ L2(Ω).

2.1 Functional formulation

This section describes the functional formulation of the HHO method to approximate the model
problem (1); for other boundary conditions, we refer the reader to [19]. This formulation has
been introduced in [16, 18] hinging on two key operators, the reconstruction and the stabiliza-
tion operator that are recalled below. We denote by T a mesh of Ω consisting of open disjoint
polygonal/polyhedral cells with planar faces such that Ω = ⋃T ∈T T . A generic mesh cell is denoted

3

T ∈ T . We say that any subset F ⊂ Rd is a mesh face if it is a subset with nonempty relative
interior of some affine hyperplane HF and if either there are two distinct mesh cells T1, T2 ∈ T

so that F = ∂T1 ∩ ∂T2 ∩HF and F is called an interface, or there is one mesh cell T ∈ T so that
F = ∂T ∩ ∂Ω∩HF and F is called a boundary face. By construction, mesh faces are closed subsets
of Rd and have mutually disjoint interiors. The mesh faces are collected in the set F , interfaces in
the set F i, and boundary faces in the set Fb. For all T ∈ T , let F∂T collect the mesh faces that are
subsets of ∂T . Note that we have {x ∈ ∂T} = ⋃F ∈F∂T

{x ∈ F} and ⋃T ∈T {x ∈ ∂T} = ⋃F ∈F{x ∈ F}.
In what follows, (⋅, ⋅)T and (⋅, ⋅)F denote the L2(T)- and L2(F)-inner products for all T ∈ T and

all F ∈ F , respectively. The same notation is used for the inner products of L2(T)d and L2(F)d.
Since DiSk methods only require mesh cells and faces (mesh edges and vertices are not needed), we
generically denote the mesh as the pair M ∶= (T ,F).

2.1.1 Local polynomial spaces

Let us fix a polynomial degree k ≥ 0. For each mesh cell T ∈ T , let Pkd(T) be the space composed
of d-variate polynomials of degree at most k restricted to T . For each face F ∈ F∂T , the space
Pkd−1(F) is composed of the restrictions to F of the polynomials in Pkd(T). Since the face F is
planar by assumption, this space can be described as Pkd−1(F) = Pkd−1 ○T

−1
F where TF ∶ Rd−1 →HF

is an affine bijective mapping and where HF is the affine hyperplane in Rd supporting the face F .
The space Pkd−1(F) is independent of the choice of TF ; indeed, considering another affine bijective

mapping T̂F ∶ Rd−1 →HF , one can observe that T−1
F ○ T̂F is an affine bijective mapping from Rd−1

onto itself, so that Pkd−1 ○ (T
−1
F ○ T̂F) = Pkd−1 and hence Pkd−1 ○T

−1
F = Pkd−1 ○ T̂

−1
F .

We define the piecewise polynomial space

Pkd−1(F∂T) ∶= ⨉
F ∈F∂T

Pkd−1(F), (2)

and we observe that an element v∂T ∈ Pkd−1(F∂T) is a collection of polynomials indexed by the faces
of T , i.e., we have v∂T = (vF)F ∈F∂T

where vF ∈ Pkd−1(F) for all F ∈ F∂T . Note that there is no
matching condition enforced on the polynomials vF at vertices (in 2D) or edges (in 3D) separating
neighboring faces in F∂T . Then, for each mesh cell T ∈ T , the local discrete space is

UkT ∶= P
k
d(T) ×Pkd−1(F∂T). (3)

2.1.2 Reconstruction operator

Let T ∈ T be a mesh cell. We define Pk+1
∗d (T) ∶= {q ∈ Pk+1

d (T) ∣ (q,1)T = 0} (any supplementary sub-
space of the subspace spanned by the constant function in Pk+1

d (T) can be equivalently considered).
The local reconstruction operator Rk+1

T ∶ UkT → P
k+1
∗d (T) is defined such that, for all (vT , v∂T) ∈ U

k
T

and all w ∈ Pk+1
∗d (T),

(∇Rk+1
T (vT , v∂T),∇w)T ∶= (∇vT ,∇w)T + ∑

F ∈F∂T

(v∂T − vT ,∇w⋅nT)F , (4)

where nT is the unit outward normal to T . By the Riesz representation theorem in ∇Pk+1
∗d (T) for

the L2(T ;Rd)-inner product, this uniquely defines ∇Rk+1
T (vT , v∂T) and, recalling the zero-average

condition, also Rk+1
T (vT , v∂T).

4

The local reconstruction operator Rk+1
T is used to build the following bilinear form on UkT ×U

k
T :

a
(1)
T ((vT , v∂T), (wT ,w∂T)) = (∇Rk+1

T (vT , v∂T),∇R
k+1
T (wT ,w∂T))T , (5)

which mimics locally the bilinear form in the left-hand side of (1).
One can show that the local reconstruction operator Rk+1

T enjoys a polynomial consistency
property of order (k + 1). To formalize this property, let Πk

T and Πk
F denote the L2-orthogonal

projectors onto Pkd(T) and Pkd−1(F), respectively. Let us then define the reduction map IkT ∶

H1(T)→ UkT so that, for a function v ∈H1(T), the cell component of IkT (v) is the cell L2-orthogonal
projection Πk

T (v) and the face components of IkT (v) are the face L2-orthogonal projections Πk
F (v),

for all F ∈ FT . Then, the following consistency property holds:

∇Rk+1
T (IkT (q)) = ∇q, ∀q ∈ Pk+1

d (T). (6)

2.1.3 Stabilization operator

For (vT , v∂T) ∈ UkT , the reconstructed gradient ∇Rk+1
T (vT , v∂T) is not stable in the sense that

∇Rk+1
T (vT , v∂T) = 0 does not necessarily mean that vT and v∂T are constant functions taking the

same value. To restore stability, we introduce a stabilization operator that relates the cell and face
polynomials at the boundary of T . We define the stabilization operator SkT ∶ UkT → Pkd−1(F∂T)

such that, for all (vT , v∂T) ∈ U
k
T , letting rk+1

T ∈ Pk+1
d (T) be such that ∇rk+1

T = ∇Rk+1
T (vT , v∂T) and

(rk+1
T − vT ,1)T = 0, we have

SkT (vT , v∂T) ∶= Πk
∂T (v∂T − (vT + r

k+1
T −Πk

T r
k+1
T)∣∂T) , (7)

where Πk
∂T is the L2-orthogonal projector onto Pkd−1(F∂T) acting on each face F ∈ F∂T as the

projector Πk
F defined above. Using this stabilization operator, we build the following bilinear form

on UkT ×U
k
T :

a
(2)
T ((vT , v∂T), (wT ,w∂T)) = ∑

F ∈F∂T

h−1
F (SkT (vT , v∂T), S

k
T (wT ,w∂T))F , (8)

where hF denotes the diameter of the face F .
The design of the stabilization operator SkT by means of (7) ensures the following polynomial

consistency property of order (k + 1):

SkT (I
k
T (q)) = 0, ∀q ∈ Pk+1

d (T). (9)

At the same time, the stabilization operator SkT achieves the following crucial stability property:
Defining on UkT the semi-norm

∣(vT , v∂T)∣
2
1,T ∶= ∥∇vT ∥

2
T + ∑

F ∈F∂T

h−1
F ∥v∂T − vT ∥

2
F , (10)

(so that ∣(vT , v∂T)∣1,T = 0 if and only if vT and v∂T are constant functions taking the same value),
one can show that there is a uniform constant c1 > 0 so that

c1∣(vT , v∂T)∣
2
1,T ≤ ∥∇Rk+1

T (vT , v∂T)∥
2
T + ∑

F ∈F∂T

h−1
F ∥SkT (vT , v∂T)∥

2
F , (11)

for all T ∈ T and all (vT , v∂T) ∈ U
k
T . Finally, we notice that the simpler definition SkT (vT , v∂T) ∶=

Πk
∂T (v∂T − vT ∣∂T) for the stabilization operator leads to SkT (I

k
T (v)) = Πk

∂T (v) − Πk
T (v)∣∂T for any

function v ∈ H1(T) and thus only ensures the polynomial consistency property SkT (I
k
T (q)) = 0 for

all q ∈ Pkd(T).

5

2.1.4 Discrete problem

Recall the notation M = (T ,F) for the mesh. The local discrete spaces UkT , for all T ∈ T , are
collected into a global discrete space

UkM ∶= UkT ×U
k
F , (12)

where

UkT ∶= Pkd(T) ∶= {vT = (vT)T ∈T ∣ vT ∈ Pkd(T), ∀T ∈ T }, (13a)

UkF ∶= Pkd−1(F) ∶= {vF = (vF)F ∈F ∣ vF ∈ Pkd−1(F), ∀F ∈ F}. (13b)

Given a pair vM ∶= (vT , vF) in the global discrete space UkM, for all T ∈ T , we denote by (vT , v∂T)
its restriction to the local discrete space UkT , where v∂T = (vF)F ∈F∂T

. We enforce strongly the
homogeneous Dirichlet boundary condition by considering the subspace

UkM,0 ∶= U
k
T ×U

k
F,0, (14)

where
UkF,0 ∶= {vF ∈ UkF ∣ vF ≡ 0, ∀F ∈ F

b
}. (15)

For all T ∈ T , we combine the bilinear forms built using the reconstruction and the stabilization
operators into a single bilinear form aT on UkT ×U

k
T such that

aT ∶= a
(1)
T + a

(2)
T . (16)

The discrete problem consists in seeking uM ∶= (uT , uF) ∈ UkM,0 such that

aM(uM,wM) = `M(wM), ∀wM ∶= (wT ,wF) ∈ UkM,0, (17)

where

aM(uM,wM) ∶= ∑
T ∈T

aT ((uT , u∂T), (wT ,w∂T)), (18a)

`M(wM) ∶= ∑
T ∈T

(f,wT)T . (18b)

The construction of the discrete problem (17) corresponds to a standard cellwise assembly as in finite
element methods. The convergence analysis performed in [16, 18] leads to energy-error estimates
of order hk+1 and to L2-error estimates of order hk+2 if full elliptic regularity holds for the model
problem.

Referring, e.g., to [19] for more details, we observe that the discrete problem (17) can be ef-
ficiently solved in a two-step procedure. In the first step, one expresses the cell unknowns uT in
terms of the face unknowns uF and the source term f by solving the following coercive problem:
Find uT ∈ UkT such that

aM((uT ,0), (wT ,0)) = `M(wT ,0) − aM((0, uF), (wT ,0)), (19)

for all wT ∈ UkT . This problem is easy to solve since the unknowns attached to distinct mesh cells
remain uncoupled, which is reflected by the fact that the matrix in the left-hand side is block

6

diagonal; see the discussion in Section 2.2.4. In the second step, one solves the following coercive
problem: Find uF ∈ UkF such that

aM((0, uF), (0,wF)) = aM((uT ,0), (0,wF)), (20)

for all wF ∈ UkF , where uT ∈ UkT results from (19). One can show that the discrete problem (20) is
a global transmission problem that expresses the fact that, across each interface F ∈ F i, the jump
of the numerical normal flux trace is zero.

2.2 Algebraic formulation

In this section we introduce the local matrices A
(1)
T and A

(2)
T that are the algebraic counterparts of

the bilinear forms a
(1)
T and a

(2)
T introduced above. The implementation of these matrices is further

described in Algorithm 1 from this Subsection and in the Listings 7 and 8 from Subsection 3.2.
Moreover, the entries of these matrices are computed with quadratures that are further described
in Algorithm 2 from Subsection 3.2.2.

In what follows, we adopt the convention that the indexing of vectors and matrices starts from
0. For integers l ≥ 0 and n ≥ 0, we denote by N l

n ∶= (
l+n
l
) the dimension of the space composed of

n-variate polynomials of degree at most l. In what follows, we shall need the numbers Nk
d , Nk

d−1,
and Nk+1

d , where k is the polynomial degree used in the HHO method and d is the space dimension.

2.2.1 Local basis functions

Let T ∈ T be a mesh cell. We fix a basis {φT,i}0≤i<Nk+1
d

of Pk+1
d (T). To simplify the presentation,

we assume that the basis functions are such that (i) φT,0 is the constant function (i.e., this function
spans the kernel of the gradient operator), (ii) {φT,i}0≤i<Nk

d
is a basis of Pkd(T). Letting N∂T denote

the number of faces composing the boundary of T , we enumerate these faces from 0 to N∂T −1. For
all 0 ≤m < N∂T , we fix a basis {ψFm,n}0≤n<Nk

d−1
of Pkd−1(Fm); it is natural to set ψFm,n = ψ̂n ○T

−1
Fm

,

where {ψ̂n}0≤n<Nk
d−1

is a basis of Pkd−1 and TFm ∶ Rd−1 →HFm is the above-introduced affine bijective

mapping from Rd−1 to the affine hyperplane HFm supporting Fm in Rd.
Then, a pair (uT , u∂T) ∈ U

k
T can be viewed as a vector UT ∈ RN

k
T , with

Nk
T ∶= N

k
d +N∂T ×N

k
d−1, (21)

in such a way that
uT = ∑

0≤i<Nk
d

UT,iφT,i, (22)

and u∂T = (uFm)0≤m<N∂T
where, for all 0 ≤m < N∂T ,

uFm = ∑
0≤n<Nk

d−1

UT,Nk
d
+mNk

d−1+nψFm,n, (23)

i.e., we order first the components of the polynomial attached to the cell and then, enumerating the
faces composing the boundary of T , we order the components of the polynomial attached to each
face.

We define the cell mass matrix MT ∈ RN
k
d ×Nk

d such that

MT,ij ∶= (φT,i, φT,j)T , 0 ≤ i, j < Nk
d , (24)

7

and for all 0 ≤m < N∂T , the face mass matrix MFm ∈ RN
k
d−1×Nk

d−1 such that

MFm,nn′ ∶= (ψFm,n, ψFm,n′)Fm , 0 ≤ n,n′ < Nk
d−1. (25)

All of the above mass matrices are symmetric positive definite. Finally, let us set Nk+1
∗d ∶= Nk+1

d − 1.

We define the stiffness matrix KT ∈ RN
k+1
∗d ×Nk+1

∗d such that

KT,ij ∶= (∇φT,i+1,∇φT,j+1)T , 0 ≤ i, j < Nk+1
∗d . (26)

Note that also KT is a symmetric positive definite matrix.
The implementation of the HHO method requires the inversion of the local stiffness matrix KT

to evaluate the reconstruction operator and of the local matrices MT and MFm , 0 ≤ m < N∂T , to
evaluate the stabilization operator. These operations can be efficiently and robustly accomplished
using the Cholesky algorithm. Notice that the cost of computing the Cholesky factorization of
the mass matrices (an operation required to compute the stabilization term) is basically negligible
with respect to the cost of factorizing the stiffness matrix for the computation of the reconstruction
term. As a matter of fact, the factorization cost scales as the cube of the matrix size, and the mass
matrices are related to polynomials of order k whereas the stiffness matrix is related to polynomials
of order (k + 1).

2.2.2 Reconstruction operator

We define the rectangular matrix VT ∈ RN
k+1
∗d ×Nk

T (whose block structure is depicted in Figure 1)
such that, for all 0 ≤ i < Nk+1

∗d and all 0 ≤ j < Nk
d ,

VT,ij ∶= (∇φT,j ,∇φT,i+1)T − ∑
0≤m<N∂T

(φT,j ,∇φT,i+1⋅nT)Fm , (27)

and for all 0 ≤ i < Nk+1
∗d and all Nk

d ≤ j < Nk
T ,

VT,ij ∶= (ψFm,n,∇φT,i+1⋅nT)Fm , (28)

where 0 ≤m < N∂T and 0 ≤ n < Nk
d−1 are uniquely defined by the relation j = Nk

d +mN
k
d−1+n. Then,

defining the symmetric positive semidefinite matrix (whose block structure is depicted in Figure 2)

A
(1)
T ∶=V�

TK
−1
T VT , A

(1)
T ∈ RN

k
T×Nk

T , (29)

where the superscript � denotes the transpose of a matrix, we infer that

a
(1)
T ((vT , v∂T), (wT ,w∂T)) =W�

TA
(1)
T VT , (30)

for all (vT , v∂T), (wT ,w∂T) ∈ U
k
T with components collected in the vectors VT and WT , respectively.

In the implementation, the inverse of KT is not computed, but only its Cholesky decomposition.

The pseudocode describing the computation of the matrix A
(1)
T is detailed in Algorithm 1.

2.2.3 Stabilization operator

We define the rectangular matrix NT ∈ RN
k
d ×Nk+1

∗d such that

NT,ij ∶= (φT,i, φT,j+1)T , 0 ≤ i < Nk
d , 0 ≤ j < Nk+1

∗d , (31)

8

VT =VT =

N
k
+
1

⇤d
N

k
+
1

⇤d

Nk
dNk
d Nk

d�1Nk
d�1 Nk

d�1Nk
d�1

Figure 1: Graphical representation of the block structure of the matrix VT . It consists in a first column
related to the interior of an element and of a variable number of additional columns related to the faces of
the same element.

N
k T

N
k T=

Nk
TNk
T

A
(1)
TA
(1)
T V†

TV†
T K−1

TK−1
T

Nk
∗dNk
∗d

Nk
∗dNk
∗d

VTVT

+1

+1

Figure 2: Graphical representation of the computation of the matrix A
(1)
T . The product K−1T VT is carried

out with a Cholesky factorization and a subsequent multi-rhs solve.

9

Algorithm 1 Procedure used to compute the matrix of the reconstruction operator. We denote
with integrate() a pseudocode function that returns a list of pairs (Qp,Qw) of quadrature points
Qp and weights Qw.

1: function BuildReconstructionOperator(T)

2: initialize VT ∈ RN
k+1
∗d ×Nk

T with zeros
3: Q← integrate(T)

4: for (Qp,Qw) ∈ Q do
5: for 0 ≤ i < Nk+1

∗d do
6: for 0 ≤ j < Nk

d do
7: VT,ij ←VT,ij +Qw∇φT,j(Qp) ⋅ ∇φT,i+1(Qp)

8: for Fm ∈ faces(T) do
9: Q = integrate(Fm)

10: for (Qp,Qw) ∈ Q do
11: for 0 ≤ i < Nk+1

∗d do
12: for 0 ≤ j < Nk

d do
13: VT,ij ←VT,ij +Qw∇φT,j(Qp) ⋅ ∇φT,i+1(Qp)

14: for 0 ≤ i < Nk+1
∗d do

15: for 0 ≤ n < Nk
d−1 do

16: j ← Nk
d +mN

k
d−1 + n

17: VT,ij ←VT,ij +QwψFm,n(Qp)∇φT,i+1(Qp)⋅nT

18: RT ←K−1
T VT

19: A
(1)
T ←V�

TK
−1
T VT

10

N
k d
�
1

N
k d
�
1

Nk
d�1Nk
d�1 Nk

TNk
T

-

Nk
TNk
T

Nk+1
⇤dNk+1
⇤d

-

MFmMFm CFmCFm Y1:k+1
Fm

Y1:k+1
Fm

RTRT

Y0:k
Fm

Y0:k
Fm

CT �M�1
T NTRTCT �M�1
T NTRT

Nk
TNk
T

Nk
dNk
d

N
k d
�
1

N
k d
�
1

SFmSFm=

Figure 3: Graphical representation of the computation of the matrix SFm .

and the rectangular matrices YFm ∈ RN
k
d−1×Nk+1

d , for all 0 ≤m < N∂T , such that

YFm,nj ∶= (ψFm,n, φT,j)Fm , 0 ≤ n < Nk
d−1, 0 ≤ j < Nk+1

d . (32)

It is convenient to extract the submatrices Y0∶k
Fm,nj

∈ RN
k
d−1×Nk

d and Y1∶k+1
Fm,nj

∈ RN
k
d−1×Nk+1

∗d such that

Y0∶k
Fm,nj

∶=YFm,nj , 0 ≤ n < Nk
d−1, 0 ≤ j < Nk

d , (33a)

Y1∶k+1
Fm,nj

∶=YFm,n(j+1), 0 ≤ n < Nk
d−1, 0 ≤ j < Nk+1

∗d . (33b)

We also need the component matrices CT ∈ RN
k
d ×Nk

T such that

CT,ij ∶= δij , 0 ≤ i < Nk
d , 0 ≤ j < Nk

T , (34)

and CFm ∈ RN
k
d−1×Nk

T , 0 ≤m < N∂T , such that

CFm,nj ∶= δn,j−Nk
d
−mNk

d−1
, 0 ≤ n < Nk

d−1, 0 ≤ j < Nk
T , (35)

where the δ’s are Kronecker symbols. These matrices simply recover the components attached to the

cell or those attached to a specific face from the full set of components of a vector in RN
k
T . Finally,

setting RT ∶= K−1
T VT ∈ RN

k+1
∗d ×Nk

T for the matrix associated with the reconstruction operator, we
define, for all 0 ≤m < N∂T ,

SFm
∶=MFmCFm −Y1∶k+1

Fm
RT −Y0∶k

Fm
(CT −M−1

T NTRT). (36)

The sequence of computations needed to compute SFm
is depicted in Figure 3. Introducing the

symmetric positive semidefinite matrix

A
(2)
T ∶= ∑

0≤m<N∂T

h−1
Fm

S�
Fm

M−1
Fm

SFm , A
(2)
T ∈ RN

k
T×Nk

T , (37)

we infer that
a
(2)
T ((vT , v∂T), (wT ,w∂T)) =W�

TA
(2)
T VT , (38)

for all (vT , v∂T), (wT ,w∂T) ∈ U
k
T with components collected in the vectors VT and WT , respectively.

11

2.2.4 Discrete problem

For any pair vM = (vT , vF) in the global discrete space UkM,0, its components using the polynomial

bases attached to the mesh cells and faces are collected in a global component vector VM ∈ RN
k
M,0

with
Nk
M,0 ∶= dim(UkM,0) = NT ×N

k
d +NF i ×Nk

d−1, (39)

where NT denotes the number of mesh cells and NF i the number of mesh interfaces. Then, the
algebraic realization of the discrete problem (17) is the linear system

AMUM = BM, (40)

where the unknown is the vector UM ∈ RN
k
M,0 collecting the components of the discrete solution

uM, the system matrix AM is assembled in the usual finite element fashion so that

AM = ∑
T ∈T

P�
T (A

(1)
T +A

(2)
T)PT , (41)

with the local matrices A
(1)
T and A

(2)
T defined in (29) and (37), respectively, while the restriction

matrix PT ∈ RN
k
T×Nk

M,0 collects the components of a vector attached to a given mesh cell T ∈ T

(and inserting zeros for components attached to possible boundary faces), and the right-hand side
vector BM is constructed in a similar manner from the linear form `M in (17).

As above, an efficient way of solving the linear system (40) consists of using a two-step procedure
based on a Schur complement. Let us order for simplicity the components attached to cell unknowns
first and then those attached to face unknowns. This induces the decomposition UM = (UT ,UF i)�

with UT ∈ RN
k
T with Nk

T = NT × Nk
d , and UF i ∈ RN

k

Fi with Nk
F i = NF i × Nk

d−1. Similarly, the

decomposition of the right-hand side vector is BM = (BT ,0)� and that of the system matrix leads
(with obvious notation) to four blocks AT T , AT F i , AF iT , and AF iF i . Introducing a similar block
decompositions for the right-hand side vector BM, the system (40) rewrites

⎡
⎢
⎢
⎢
⎣

AT T AT F i

AF iT AF iF i

⎤
⎥
⎥
⎥
⎦
[
UT
UF i

] = [
BT
0

] . (42)

Then, the algebraic realization of the cell-based problem (19) reads

AT T UT = BT −AT F iUF i , (43)

where the submatrix AT T is block-diagonal (each block having size Nk
d), and using (43), the

algebraic realization of the global transmission problem (19) becomes

ASUF i = −AF iTA
−1
T T BT , (44)

with the Schur complement matrix

AS ∶=AF iF i −AF iTA
−1
T TAT F i . (45)

12

3 Generic implementation tools for HHO methods

In this section, we describe generic programming tools for the implementation of DiSk methods.
We first present in Subsection 3.1 some tools related to the mesh data structure and the operations
to be performed on the elements of the mesh such as quadratures. These tools have a relatively
wide scope, and can actually be used to implement other methods than DiSk ones. They are
in essence similar to the tools used in other libraries using generic programming to different ex-
tents, as in [4, 6, 21, 27, 30, 31]. Then, in Subsection 3.2, we discuss generic programming tools
that are more specific to DiSk methods. For simplicity, we focus on HHO methods as an illus-
trative example, but the presentation can be adapted to other DiSk methods. We provide several
(short) listings to illustrate the generic implementation. For further insight, the reader may consult
the library, named DiSk++, which is available as open-source under MPL License at the address
https://github.com/datafl4sh/diskpp.

3.1 Mesh data structure

Although our main focus is on DiSk methods for which only mesh cells and faces are the relevant
geometric objects, we slightly broaden the discussion here so as to include mesh edges and vertices
as well. For a d-dimensional mesh, the cells are its elements of dimension d and the faces are its
elements of dimension (d − 1). We consider specifically cells that are d-polytopes (not necessarily
convex) and their faces are planar. Before getting started, let us provide a simple example of the
level of generality we want to achieve. The following listing describes how to implement in the
present setting a function to compute the measures of all the mesh elements.

1 template<typename Mesh>

2 void list_measures(const Mesh& msh)

3 {

4 for (auto& cl : msh)

5 {

6 std::cout << measure(msh, cl) << std::endl;

7 auto fcs = faces(msh, cl);

8

9 for (auto& fc : fcs)

10 std::cout << " - " << measure(msh, fc) << std::endl;

11 }

12 }

Listing 1: The code of this listing is an example of the level of generality we want to achieve in our library.
The code computes the measure of the mesh elements, and is suitable for any mesh.

3.1.1 Abstracting the various geometric entities

At the most basic level, a mesh is composed by different geometric entities having specific shapes:
nodes, edges, triangles, quadrangles, tetrahedra, hexahedra and so on. Depending on the kind of
the elements that a mesh contains, we can categorize the mesh as simplicial, hexahedral or - in

13

the most general cases - polyhedral. Keeping visible all the information about the exact kind of
elements, however, would prevent us from achieving the desired level of generality. We therefore
introduce three levels of abstraction:

� Transforming the mesh file in an internal representation of “shapes”,

� Mapping the “shapes” to generic nodes, edges, surfaces and volumes (n-polytopes with 0 ≤

n ≤ d),

� Mapping d-polytopes to cells, (d − 1)-polytopes to faces, and so on.

Note that the role of the abstraction is to hide information, and not to discard it. This means that
while writing code, the user does not care about what a cell or a face actually is, but the library
at all times has the knowledge of all the details. Note also that we keep a representation for the
various geometric mesh entities since in HHO methods for instance, mesh faces have to be handled
independently of the mesh cells. Moreover, keeping a fully explicit mesh representation allows us
to implement, in addition to DiSk methods, also discretization methods requiring the access to
elements different than cells and faces (e.g., conforming finite elements).

First level of abstraction The first level of abstraction can be implemented in the loaders and
in the storage classes. The role of a loader is to read a mesh file, find the “shapes” present in the
mesh, and generate shape objects that have some representation (reflected in the code by specific
types). That representation is dictated by the storage classes.

A storage class is a class tailored to encapsulate the representation of a specific kind of element
(which we call physical element) as efficiently as possible, exploiting the features of that element
to optimize memory usage and computational speed. Various storage classes can be provided, for
instance, simplicial element, the hexahedral element and generic element. Objects created
from the simplicial element and hexahedral element storage classes are very lightweight and
do not use dynamic memory, but they are limited in the kind of elements (and thus shapes) they
can represent. On the other hand, objects created from the generic element class can handle any
kind of element, but they require the usage of dynamic memory and are more expensive. Some
performance comparison between the different storage classes will be shown in Section 4 below.

To summarize, with the first abstraction level, the details of all the different mesh file formats
are hidden because elements are stored inside objects belonging to specific storage classes.

Second level of abstraction The second level of abstraction introduces the concepts of nodes,
edges, surfaces and volumes. We will call these objects abstract mesh elements. The goal of the
second abstraction layer is to map the abstract elements to the physical elements. For example, in
the case of a simplicial mesh, surfaces are mapped to triangles and volumes to tetrahedra.

This mapping is established in the mesh storage, via the tag StorageClass (see Listing 2), which
is required to instantiate the storage class trait and to retrieve the correct types of the physical
elements. In this way, from the user’s point of view, a mesh storage is nothing more than a container
for abstract elements; however, all the required information about the physical elements is retained
in the proper way.

14

1 template<typename T, size_t DIM, typename StorageClass>

2 class mesh_storage /* Main template */

3 {

4 static_assert(DIM > 0 && DIM <= 3, "Only 1D, 2D and 3D");

5 };

6

7 template<typename T, typename StorageClass>

8 struct mesh_storage<T, 3, StorageClass> /* 3D specialization*/

9 {

10 typedef storage_class_trait<StorageClass, 3> sc_trait;

11 typedef typename sc_trait::volume_type volume_type;

12 typedef typename sc_trait::surface_type surface_type;

13 typedef typename sc_trait::edge_type edge_type;

14 typedef typename sc_trait::node_type node_type;

15

16 std::vector<volume_type> volumes;

17 std::vector<surface_type> surfaces;

18 std::vector<edge_type> edges;

19 std::vector<node_type> nodes;

20 };

Listing 2: Definition of the mesh storage. The 3D specialization is shown; the 2D specialization does not
have the volumes member, while the 1D one has only the members nodes and edges.

The advantage of this structure is that, when a new kind of mesh has to be supported, the
modifications to the code are very localized. To add the support for a new kind of elements, it is
just needed to write:

� The storage classes that encapsulate the implementation details of the new physical elements,

� The loader (or the loaders) for the new mesh format(s),

� The trait specialization that specifies which are the actual types of the new physical elements.

Third level of abstraction The third level of abstraction is obtained by a template called mesh,
which (among other things) provides the methods to obtain the iterators on the cells and on the
faces. The mesh template has three specializations, which correspond to the dimensions 1, 2 and 3;
moreover, to be instantiated it needs also the type of the underlying storage. Thus, depending on
the dimension, the methods of mesh that return the iterators on the cells and on the faces do nothing
else than redirecting the call to the correct methods of its underlying storage. In other words, if cell
iterators are requested on a 3D mesh, the call is redirected to the member volumes of the storage,
while if face iterators of a 2D mesh are requested, the call is redirected to the member nodes of
the underlying storage. For reasons of modularity and decoupling, this third level of abstraction is
actually implemented by a hierarchy of three template classes: mesh bones, mesh base and mesh

(see Figure 4). The user interacts only with mesh.

15

+mesh()
…

mesh

+mesh_base()
…

priv::mesh_base

+mesh_bones()
…

priv::mesh_bones
+mesh_storage()
…

mesh_storage1..10..1

Implementation details,
not meant to be used by
the user

+loader()
…

loader

Ba
ck

en
d

Fr
on

te
nd

Figure 4: UML (Uniform Modeling Language) diagram of the class hierarchy implementing the mesh data
structure.

We emphasize that all the classes defined above (the storage and the classes of the mesh hier-
archy) are fully generic. A mesh becomes polyhedral, hexahedral, simplicial only because of the
StorageClass discussed before. Moreover, all the abstractions depend exclusively on static (i.e.,
compile time) information: this means that the implementation avoids the costs of dynamic method
selection or other mechanisms found in object-oriented programming.

3.1.2 Queries on the mesh elements

An essential capability of the above generic programming tools is to enable queries about properties
of the elements, like barycenter, volume, area and so on. Since the main goal is to provide a uniform
interface across different kinds of meshes, the functions computing these quantities are templates
parametrized on the type of the mesh and the type of the element.

Geometry-related queries The barycenter() function for example (see Listing 3) is parametrized
in a way that matches any kind of mesh and any kind of element, since in every case the barycenter
is computed by adding (coordinate-wise) all the points and by dividing by their cardinality.

16

1 template<typename Mesh, typename Element>

2 typename Mesh::point_type

3 barycenter(const Mesh& msh, const Element& elm)

4 {

5 auto pts = points(msh, elm);

6 auto bar = accumulate(next(pts.begin()), pts.end(), pts.front());

7 return bar / typename Mesh::coordinate_type(pts.size());

8 }

Listing 3: Computation of the barycenter

The measure() function, however, has different versions with parametrizations that match only
specific kinds of meshes and elements.

1 template<typename T>

2 T measure(const generic_mesh<T,2>& msh,

3 const typename generic_mesh<T,2>::face& fc);

Listing 4: Prototype of the function that computes the measure for a 2D generic face

In Listing 4, the signature matches only 2D general meshes and in this case the function will
compute and return a length. In Listing 5, however, the signature matches only the faces of a 3D
simplicial mesh and then the corresponding function will compute and return an area.

1 template<typename T>

2 T measure(const simplicial_mesh<T, 3>& msh,

3 const typename simplicial_mesh<T, 3>::face& surf);

Listing 5: Prototype of the function that computes the measure for a 3D simplicial face

Different functions will therefore be called on different kinds of mesh, and the right function to
use is selected at compile time by the compiler. This selection is based exclusively on information
available statically to the compiler, and therefore has zero runtime overhead. To conclude, when
the support for a specific operation has to be added to a new mesh format, it suffices to add the
right function specialization.

Polynomials, basis functions and quadratures Polynomial basis functions and quadrature
rules can also be made available as generic templates working on any kind of mesh. For instance,
if one wants to compute the integral (p, q)T on all the elements of the mesh, with p, q ∈ Pkd(T), one
just needs the code shown in Listing 6, which is mesh-independent.

17

1 template<typename Mesh>

2 void compute_integrals(const Mesh& msh)

3 {

4 /* assumes that degree, p and q are correctly defined */

5 typedef Mesh mesh_type;

6 typedef typename mesh_type::cell_type cell_type;

7

8 scaled_monomial_scalar_basis<mesh_type, cell_type> cb(degree);

9 quadrature<mesh_type, cell_type> cq(2*degree);

10 for (auto& cl : msh)

11 {

12 auto quadpoints = cq.integrate(msh, cl);

13 for (auto& qp : quadpoints)

14 {

15 auto phi = cb.eval_functions(msh, cl, qp.point());

16 mass_matrix += qp.weight() * phi * phi.transpose();

17 }

18

19 std::cout << "(p,q) = " << dot(q, mass_matrix*p) << std::endl;

20 }

21 }

Listing 6: Example of a function to compute an integral

3.2 Generic HHO Implementation

HHO methods only use mesh cells as faces. The overview of the mesh data structure for HHO
methods is schematized in Figure 5.

The two key ingredients in HHO methods are the gradient reconstruction operator (correspond-
ing to ∇Rk+1

T) and the stabilization operator. To compute the gradient reconstruction operator,
one can use the gradient reconstruction template, that can be instantiated as in Listing 7.

18

2D Simplicial
loader(s)

2D Cartesian
loader(s)

2D General
loader(s)

3D Simplicial
loader(s)

CellsFaces

Faces
and cells

Polytopes

Shapes, as
defined by
storage class

Raw file

Lo
ad

er
s

St
or

ag
e

cl
as

se
s

O
bj

ec
t

st
or

ag
e

M
es

h

Abstract geometric operations on the mesh

Figure 5: Overview of the mesh data structure for HHO.

1 gradient_reconstruction<mesh_type,

2 cell_basis_type,

3 cell_quadrature_type,

4 face_basis_type,

5 face_quadrature_type> gradrec(degree);

6 for (auto& cl : msh)

7 {

8 gradrec.compute(msh, cl);

9 // gradrec.oper contains the operator

10 // gradrec.data contains a
(1)
T

11 }

Listing 7: Gradient reconstruction operator declaration. The template implementing gradient reconstruc-
tion must be instantiated specifying the type of the mesh, the types of the bases and the types of the
quadratures. These parameters allow the compiler to specialize the operator to the specific kind of problem
being solved. Then, the actual operator can be computed inside of the assembly loop by calling the method
compute(), which is the counterpart of the pseudocode of Algorithm 1.

To compute the stabilization, one can use the diffusion like stabilization template, that
can be instantiated as in Listing 8.

19

1 diffusion_like_stabilization<mesh_type,

2 cell_basis_type,

3 cell_quadrature_type,

4 face_basis_type,

5 face_quadrature_type> stab(degree);

6

7 for (auto& cl : msh)

8 {

9 stab.compute(msh, cl);

10 // stab.data contains a
(2)
T

11 }

Listing 8: Stabilization operator declaration. The stabilization operator, like the gradient reconstruction,
must be instantiated specifying the type of the mesh, the types of the bases and the types of the quadratures.

There are similar template classes specific for the static condensation and for the assembler,
that are omitted for brevity.

With all these classes instantiated, after loading the mesh with a specific loader that fills the
msh object, the assembly phase of the problem reduces to the code described in Listing 9.

1 for (auto& cl : msh)

2 {

3 /* build a
(1)
T + a

(2)
T */

4 gradrec.compute(msh, cl);

5 stab.compute(msh, cl, gradrec.oper);

6

7 auto cell_rhs =

8 disk::compute_rhs<cell_basis_type,

9 cell_quadrature_type>(msh, cl, load, degree);

10

11 /* local cell contribution: a
(1)
T + a

(2)
T */

12 matrix_type loc = gradrec.data + stab.data;

13

14 /* do static condensation */

15 auto sc = statcond.compute(msh, cl, loc, cell_rhs);

16 assembler.assemble(msh, cl, sc);

17 }

18

19 assembler.impose_boundary_conditions(msh, bc_func);

20 assembler.finalize();

Listing 9: Assembly of the model diffusion problem using the HHO method.

The code can run on any mesh of the kinds supported by the library. Once the code above

20

has executed, the assembler object provides two members, matrix and rhs, that give access to the
global linear system. These two members can then be passed to a suitable solver.

3.2.1 Choice of basis functions

As discussed in Section 2, we need polynomial basis functions associated with the cells and the
faces of the mesh. In the results reported below, we used a basis composed of scaled monomials to
generate them. Let x̄T ∈ Rd be the barycenter of the cell T , x ∈ T a point in T , and hT the diameter
of T defined as the maximal distance between two vertices. A scaled monomial is of the form

mT (x) =
d

∏
i=1

x̃αi

T,i, (46)

where x̃T = (x−x̄T)/hT and x̃T,i is the i-th component of x̃T . The scaled monomial basis for Pkd(T)

is formed by taking all the monomials mT (x) of degree up to k:

Pkd(T) = span{
d

∏
i=1

x̃αi

T,i ∣ 1 ≤ i ≤ d ∧ 0 ≤
d

∑
i=1

αi ≤ k} . (47)

One advantage of the above choice of basis functions is that the two quantities that depend on T
(x̄T and hT) can be coded in a generic fashion, independent of the actual shape of the element.

Regarding the basis functions associated with the faces, since they are (d−1)-variate polynomials,
we need to consider the affine bijective mapping TF ∶ Rd−1 → HF introduced in Section 2.1.1. To
this aim, we introduce a local coordinate system on the face F with origin at the barycenter xF
and with local coordinates denoted by ξF = (ξF,i)1≤i≤d−1. This coordinate system is obtained by
choosing (d−1) edges of F with a vertex in common and such that they give rise to a set of linearly
independent edge vectors (ki)1≤i≤d−1. These vectors are subsequently made orthonormal using
the Gram–Schmidt process as originally proposed in [5] in the context of Discontinuous Galerkin
methods. Given a point x ∈ F , its local coordinates (ξF,i)1≤i≤d−1 are computed by first calculating
the rescaled vector x̃F = (x − x̄F)/hF and then by projecting x̃F on all the vectors ki. A scaled
monomial is of the form

mF (ξ) =
d−1

∏
i=1

ξαi

F,i. (48)

The scaled monomial basis for Pkd−1(F) is finally formed by taking all the monomials mF (ξ) of
degree up to k:

Pkd−1(F) = span{
d−1

∏
i=1

ξαi

F,i ∣ 1 ≤ i ≤ d − 1 ∧ 0 ≤
d−1

∑
i=1

αi ≤ k} . (49)

3.2.2 Quadratures

The code employs different quadratures, depending on the kind of element on which integration
is required. On edges, standard Gauss quadrature is used. When integration on triangles and on
tetrahedra is needed, the Dunavant quadrature [23] and the Grundmann–Moeller quadrature [26]
are used respectively. If elements are quadrilaterals or hexahedra, the quadrature is obtained by
tensorizing the one-dimensional Gauss quadratures. Finally, when the elements are polytopes that

21

are star-shaped with respect to their barycenter (as is the case for the meshes we consider), they
are broken up into simplices and the integration is computed simplex by simplex. The appropriate
quadrature is selected statically during the instantiation of the quadrature template. The efficiency
of generic quadratures on elements for which specific quadratures are available (e.g., simplices) is
guaranteed by a templated implementation resembling the pseudocode provided in Algorithm 2.

Algorithm 2 Selection of appropriate quadratures. According to the data type of the cell, the
compiler selects at compile time the appropriate quadrature method. The user however sees only
one integrate() function. TetrahedralQuadratures(T) and LineGaussPoints() are pseudocode
functions returning sets of pairs of quadrature points and corresponding weights, as in Algorithm 1.

1: template<typename CellType>
2: function integrate(CellType T)
3: Q← ∅

4: {S1, . . . , Sn}← SplitInSimplices(T)

5: for S ∈ {S1, . . . , Sn} do
6: Qs ← TetrahedralQuadrature(S)
7: Q← Q ∪Qs

return Q

8: template<>
9: function Integrate(TetrahedralCellType T)

10: Q← TetrahedralQuadrature(T)

return Q

11: template<>
12: function Integrate(CartesianCellType T)
13: G← LineGaussPoints()
14: Q← TensorizeGaussPoints(T,G)

return Q

4 Profiling on a model elliptic problem

The goal of this section is to present a profiling of the generic programming tools described in
Section 3. We profiled different parts of the library, in particular the computation of the recon-
struction operator, the computation of the stabilization operator, the static condensation and the
solver. DiSk++ uses the Eigen library for the linear algebra operations, at the time of writing Eigen
3.3.1 was available. For the solution of the linear system, we used the PARDISO sparse linear solver
from the Intel MKL library. The reported timings represent the total time, tcpu, spent by the pro-
gram on all the CPUs. Since the program was run on a 4-core CPU (Intel Core i7-3615QM), actual
wall-clock times were much lower. We note that the assembly is sequential whereas the solver is
run in parallel on 4 cores. The reported CPU times are as per getrusage(). The code has been
compiled both with clang and gcc, and the usual optimization level is -O3.

We have collected data about the running times on 2D triangular and hexagonal meshes and
on 3D tetrahedral, hexahedral, and polyhedral meshes. The 3D meshes were obtained from the

22

FVCA6 benchmark [25]; some meshes are illustrated in Figure 6. The timings are reported against
the total number of face-based components in the linear system, which we denote by DOFs, i.e.,

DOFs ∶= Nk
F i = NF i ×Nk

d−1. (50)

The right-hand term we used to solve (1) was f = sin(πx) sin(πy) in the 2D case and f =

sin(πx) sin(πy) sin(πz) in the 3D case, and the domain Ω was, respectively, the unit square and
the unit cube. Chp. 8. Elliptic equations

Figure 8.5 – Coarsest mesh of each mesh sequence considered for numerical tests. From top
left to bottom right: Hex, PrT, PrG, HLR, CB, and Ker mesh sequences.

8.4.1 Postprocessed quantities
Quantities related to convergence. We compute discrete and continuous error norms
to evaluate the convergence rates of CDO schemes. Two generic discrete error norms are
considered: one based on the discrete functional norms and the other one induced by a discrete
Hodge operator.

Definition 8.39 (Discrete error norms). Let a œ SX (�) be an exact solution of a di�usion
problem and let a œ X be the related discrete solution. Then, we set

ErX (a) := |||RX (a) ≠ a|||2,X
|||RX (a)|||2,X

, Er–,X (a) := |||RX (a) ≠ a|||–,X
|||RX (a)|||–,X

. (8.78)

We recall that the discrete norms |||·|||2,X and |||·|||–,X are defined in Section 6.1.
In what follows, we compute ErV(p) and ErŸ,E(g) to evaluate the discrete error on the

potential and its gradient in vertex-based schemes, ErÂV(p) and ErŸ≠1,F („) to evaluate the
discrete error on the potential and its flux in mixed cell-based schemes, and ErÂV(p) and
Erú

Ÿ,ÂE(g) to evaluate the discrete error on the potential and its gradient in hybrid cell-based
schemes. The last discrete error is adapted from (8.78) as follows:

Erú
Ÿ,ÂE(g)2 :=

q
cœC|||RÂEc

(g) ≠ gc|||2
Ÿ,ÂEcq

cœC|||RÂEc
(g)|||2

Ÿ,ÂEc

, (8.79)

where |||bc|||2
Ÿ,ÂEc

:= vHẼcFc
Ÿ (bc),bcwFcẼc

for all c œ C and all bc œ ÂEc. Two continuous error norms
are also evaluated.

Definition 8.40 (Continuous error norms). Let a œ SX (�) be an exact solution of a di�usion
problem and a œ X be the related discrete solution. Then, we set

ErL2(a) :=
||a ≠ LX (a)||L2(�)

||a||L2(�)
, Er–(a) := ||a ≠ LX (a)||–

||a||–
, (8.80)

where we recall that ||a||2– =
s

� a · – a.

120

Chp. 8. Elliptic equations

Figure 8.5 – Coarsest mesh of each mesh sequence considered for numerical tests. From top
left to bottom right: Hex, PrT, PrG, HLR, CB, and Ker mesh sequences.

8.4.1 Postprocessed quantities
Quantities related to convergence. We compute discrete and continuous error norms
to evaluate the convergence rates of CDO schemes. Two generic discrete error norms are
considered: one based on the discrete functional norms and the other one induced by a discrete
Hodge operator.

Definition 8.39 (Discrete error norms). Let a œ SX (�) be an exact solution of a di�usion
problem and let a œ X be the related discrete solution. Then, we set

ErX (a) := |||RX (a) ≠ a|||2,X
|||RX (a)|||2,X

, Er–,X (a) := |||RX (a) ≠ a|||–,X
|||RX (a)|||–,X

. (8.78)

We recall that the discrete norms |||·|||2,X and |||·|||–,X are defined in Section 6.1.
In what follows, we compute ErV(p) and ErŸ,E(g) to evaluate the discrete error on the

potential and its gradient in vertex-based schemes, ErÂV(p) and ErŸ≠1,F („) to evaluate the
discrete error on the potential and its flux in mixed cell-based schemes, and ErÂV(p) and
Erú

Ÿ,ÂE(g) to evaluate the discrete error on the potential and its gradient in hybrid cell-based
schemes. The last discrete error is adapted from (8.78) as follows:

Erú
Ÿ,ÂE(g)2 :=

q
cœC|||RÂEc

(g) ≠ gc|||2
Ÿ,ÂEcq

cœC|||RÂEc
(g)|||2

Ÿ,ÂEc

, (8.79)

where |||bc|||2
Ÿ,ÂEc

:= vHẼcFc
Ÿ (bc),bcwFcẼc

for all c œ C and all bc œ ÂEc. Two continuous error norms
are also evaluated.

Definition 8.40 (Continuous error norms). Let a œ SX (�) be an exact solution of a di�usion
problem and a œ X be the related discrete solution. Then, we set

ErL2(a) :=
||a ≠ LX (a)||L2(�)

||a||L2(�)
, Er–(a) := ||a ≠ LX (a)||–

||a||–
, (8.80)

where we recall that ||a||2– =
s

� a · – a.

120

Figure 6: Examples of tetrahedral, hexahedral, and polyhedral meshes from the FVCA6 benchmark used
in the tests.

4.1 2D test cases

The 2D test cases were run on triangular and hexagonal meshes. The triangular meshes have 56,
224, 896, and 3584 elements respectively, whereas the hexagonal meshes have 76, 280, 1072, and 4192
elements respectively. In Figures 7, 8, and 9, we compare the running time of the various parts of the
computation process, in particular the assembly (Reconstruction operator, Stabilization operator,
Static condensation) and the global linear system solution (Solver). The computation times are
obtained on meshes of triangles, a mix of triangles and hexagons and only hexagons respectively.
The mixed meshes are obtained from the hexagonal meshes by splitting in triangles half of the
hexagons. It is possible to see that the shape of the elements influences the computation time, this
is in particular due to the quadratures that, to be computed on hexagons, must split the element
in a collection of triangles. For all meshes, the assembly time scales linearly with the number of
degrees of freedom. We observe that, on the coarser meshes, the running time for the linear solver
may not be representative of the trend for finer meshes. Finally, in Table 1, we summarize the
speedups obtained using specialized versus generic data structure on triangular meshes.

23

10-4

10-3

10-2

10-1

100

102 103 104

Recostruction
Stabilization

Stat. Condens.
Solver

10-4

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 7: Timings on triangular meshes with respect to DOFs using generic data structure (from left to right
and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

DOFs Rec Stab
108 1.25x 0.91x
384 1.45x 1.10x
1440 1.52x 1.24x
5568 1.83x 1.49x

DOFs Rec Stab
216 1.56x 1.33x
768 1.48x 1.18x
2880 1.78x 1.47x
11136 1.77x 1.47x

DOFs Rec Stab
324 1.83x 1.63x
1152 1.66x 1.44x
4320 1.53x 1.39x
16704 1.53x 1.39x

DOFs Rec Stab
432 1.59x 1.61x
1536 1.45x 1.35x
5760 1.35x 1.31x
22272 1.32x 1.27x

Table 1: Speedup in the assembly process (Reconstruction and Stabilization) due to the usage of a spe-
cialized data structure. Triangular meshes, from left to right and from top to bottom: k = 0, k = 1, k = 2,
k = 3.

24

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 8: Timings on mixed triangular (50%) and hexagonal (50%) meshes with respect to DOFs using
generic data structure (from left to right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses:
Solver, (red) circles: Stabilization, (blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

25

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 9: Timings on hexagonal meshes with respect to DOFs using generic data structure (from left to right
and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

26

4.2 3D test cases

The 3D test cases were run on tetrahedral, hexahedral, and polyhedral meshes obtained from the
FVCA6 benchmark set. The tetrahedral meshes have 2003, 3898, 7711 and 15266 elements, the
hexahedral meshes have 8, 64, 512 and 4096 elements, and the polyhedral meshes have 1042, 8820
and 28830 elements. In Figures 10, 11, 12, 13 we compare the running time of the various parts
of the computation process, in particular the assembly and the global linear system solution. The
assembly time scales linearly with the number of degrees of freedom, as expected. In Tables 2 and 3,
we summarize the speedups obtained using specialized versus generic data structure on tetrahedral
and hexahedral meshes. We observe both in 2D and 3D that assembly times on specialized data
structures are significantly lower than assembly times on the generic data structure, confirming
that the approach taken in DiSk++ is advantageous. The speedup is particularly welcome in 3D,
where the assembly process takes a significant part of the computation time. As a final remark, the
solver was not run on the polyhedral meshes because of memory constraints.

10-2

10-1

100

103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-2

10-1

100

101

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

10-2

10-1

100

101

102

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

10-1

100

101

102

103

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 10: Timings on tetrahedral meshes with respect to DOFs using specialized data structure (from left to
right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

27

10-2

10-1

100

101

103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-2

10-1

100

101

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

10-1

100

101

102

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

10-1

100

101

102

103

104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 11: Timings on tetrahedral meshes with respect to DOFs using generic data structure (from left to
right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

DOFs Rec Stab
4912 3.45x 2.44x
9152 2.79x 1.99x
17600 2.77x 1.98x
34009 3.30x 2.34x

DOFs Rec Stab
14736 2.89x 2.66x
27456 2.88x 2.64x
52800 2.54x 2.36x
102027 2.83x 2.58x

DOFs Rec Stab
29472 2.30x 1.97x
54912 2.57x 2.18x
105600 3.08x 2.61x
204054 2.75x 2.33x

DOFs Rec Stab
49120 2.58x 2.11x
91520 2.48x 2.00x
176000 2.71x 2.22x
340090 2.53x 2.08x

Table 2: Speedup in the assembly process (Reconstruction and Stabilization) due to the usage of a special-
ized data structure. Tetrahedral meshes, from left to right and from top to bottom: k = 0, k = 1, k = 2,
k = 3.

28

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-4

10-3

10-2

10-1

100

101

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-4

10-3

10-2

10-1

100

101

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

102

102 103 104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 12: Timings on hexahedral meshes with respect to DOFs using specialized data structure (from left to
right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

29

10-4

10-3

10-2

10-1

100

101

101 102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-4

10-3

10-2

10-1

100

101

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

102

102 103 104 105

Recostruction
Stabilization

Stat. Condens.
Solver

10-3

10-2

10-1

100

101

102

102 103 104 105 106

Recostruction
Stabilization

Stat. Condens.
Solver

Figure 13: Timings on hexahedral meshes with respect to DOFs using generic data structure (from left to
right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (violet) crosses: Solver, (red) circles: Stabilization,
(blue) diamonds: Reconstruction, (yellow) stars: Static condensation.

DOFs Rec Stab
60 9.37x 5.09x
336 7.15x 4.98x
2112 8.10x 5.67x
14592 5.98x 4.27x

DOFs Rec Stab
180 3.98x 3.11x
1008 3.08x 2.54x
6336 3.07x 2.66x
43776 3.70x 3.19x

DOFs Rec Stab
360 2.19x 1.94x
2016 3.69x 2.77x
12672 3.22x 2.54x
87552 3.50x 2.77x

DOFs Rec Stab
600 4.19x 3.06x
3360 4.62x 3.43x
21120 3.53x 2.71x
145920 3.35x 2.63x

Table 3: Speedup in the assembly process (Reconstruction and Stabilization) due to the usage of a special-
ized data structure. Hexahedral meshes, from left to right and from top to bottom: k = 0, k = 1, k = 2,
k = 3.

30

10-2

10-1

100

101

102

103 104 105 106

Recostruction
Stabilization

Stat. Condens.

10-1

100

101

102

104 105 106

Recostruction
Stabilization

Stat. Condens.

10-1

100

101

102

104 105 106

Recostruction
Stabilization

Stat. Condens.

100

101

102

103

104 105 106 107

Recostruction
Stabilization

Stat. Condens.

Figure 14: Timings on polyhedral meshes with respect to DOFs using generic data structure (from left to
right and from top to bottom: k = 0, k = 1, k = 2, k = 3); (red) circles: Stabilization, (blue) diamonds:
Reconstruction, (yellow) stars: Static condensation.

31

5 Conclusions

In this work, we have presented generic programming tools to implement the recently-devised HHO
methods, and we have profiled the implementation on a model elliptic problem in two and three
space dimensions. As an interesting follow-up of this work, it would be interesting to use similar
generic programming tools to implement, e.g., HDG methods and to profile the implementation on
the above test cases. Profiling on more challenging model problems would also be very valuable.

Acknowledgment. This work was partially supported by the project HHOMM (ANR-15-CE40-
0005).

References

[1] J. Aghili, S. Boyaval, and D. A. Di Pietro. Hybridization of mixed high-order methods on gen-
eral meshes and application to the Stokes equations. Comput. Methods Appl. Math., 15(2):111–
134, 2015.

[2] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[3] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method.
ESAIM Math. Model. Numer. Anal., 50(3):879–904, 2016.

[4] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and D. Wells. The deal.II library, version 8.4. Journal of Numerical Mathemat-
ics, 24, 2016.

[5] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini. On the flexibility of ag-
glomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys.,
231(1):45–65, 2012.

[6] P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in
the distributed and unified numerics environment (DUNE). Kybernetika (Prague), 46(2):294–
315, 2010.

[7] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Difference Method for
Elliptic Problems, volume 11 of MS&A. Springer, New York, 2014.

[8] D. Boffi, M. Botti, and D. A. Di Pietro. A nonconforming high-order method for the Biot
problem on general meshes. SIAM J. Sci. Comput., 38(3):A1508–A1537, 2016.

[9] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic finite difference method
for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal., 43(5):1872–1896, 2005.

[10] F. Chave, D. A. Di Pietro, F. Marche, and F. Pigeonneau. A hybrid high-order method for
the Cahn-Hilliard problem in mixed form. SIAM J. Numer. Anal., 54(3):1873–1898, 2016.

32

[11] B. Cockburn. Static condensation, hybridization, and the devising of the HDG methods. In
G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges:
Connections and Challenges in Modern Approaches to Numerical Partial Differential Equa-
tions, volume 114 of Lecture Notes in Computational Science and Engineering, pages 129–178,
Switzerland, 2016. Springer.

[12] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the Hybrid High-Order and Hybridizable
Discontinuous Galerkin methods. ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):635–650,
2016.

[13] B. Cockburn, G. Fu, and F. J. Sayas. Superconvergence by M-decompositions. Part I: General
theory of HDG methods for diffusion. Math. Comp., 2016. To appear.

[14] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM
J. Numer. Anal., 47(2):1319–1365, 2009.

[15] D. A. Di Pietro, J. Droniou, and A. Ern. A discontinuous-skeletal method for advection-
diffusion-reaction on general meshes. SIAM J. Numer. Anal., 53(5):2135–2157, 2015.

[16] D. A. Di Pietro and A. Ern. A Hybrid High-Order locking-free method for linear elasticity on
general meshes. Comput. Meth. Appl. Mech. Engrg., 283:1–21, 2015.

[17] D. A. Di Pietro and A. Ern. Arbitrary-order mixed methods for heterogeneous anisotropic
diffusion on general meshes. IMA J. Numer. Anal., 37(1):40–63, 2017.

[18] D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization
of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl.
Math., 14(4):461–472, 2014.

[19] D. A. Di Pietro, A. Ern, and S. Lemaire. A review of Hybrid High-Order methods: formulations,
computational aspects, comparison with other methods. In G. R. Barrenechea, F. Brezzi,
A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in
Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes
in Computational Science and Engineering, pages 205–236, Switzerland, 2016. Springer.

[20] D. A. Di Pietro, A. Ern, A. Linke, and F. Schieweck. A discontinuous skeletal method for
the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Engrg., 306:175–195,
2016.

[21] D. A. Di Pietro, J.-M. Gratien, and C. Prud’homme. A domain-specific embedded language in
C++ for lowest-order discretizations of diffusive problems on general meshes. BIT, 53(1):111–
152, 2013.

[22] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite
difference, hybrid finite volume and mixed finite volume methods. M3AS Mathematical Models
and Methods in Applied Sciences, 20(2):1–31, 2010.

[23] D. Dunavant. High degree efficient symmetrical gaussian quadrature rules for the triangle. Int.
J. Numer. Methods Engrg., 21:1129–1148, 1985.

33

[24] R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic
diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and
hybrid interfaces. IMA J. Numer. Anal., 30(4):1009–1043, 2010.

[25] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn, and G. Manzini. 3D benchmark on
discretization schemes for anisotropic diffusion problems on general grids. In Proceedings of
Finite Volumes for Complex Applications VI, pages 895–930. Springer, 2011.

[26] A. Grundmann and M. Moeller. Invariant integration formulas for the n-simplex by combina-
torial methods. SIAM Journal on Numerical Analysis, 15(2):282–290, 1978.

[27] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.

[28] Y. Jeon and E.-J. Park. A hybrid discontinuous Galerkin method for elliptic problems. SIAM
J. Numer. Anal., 48(5):1968–1983, 2010.

[29] Y. Jeon, E.-J. Park, and D. Sheen. A cell boundary element method for elliptic problems.
Numer. Methods Partial Differential Equations, 21(3):496–511, 2005.

[30] C. Prud’Homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake, C. Pena, C. Daversin,
and C. Trophime. Advances in Feel++: a domain specific embedded language in C++ for
partial differential equations. In Eccomas12 - European Congress on Computational Methods
in Applied Sciences and Engineering. Vienna, Austria, 2012.

[31] P. Saramito. Efficient C++ finite element computing with Rheolef: volume 2: discon-
tinuous Galerkin methods. CNRS and LJK, 2015. http://cel.archives-ouvertes.fr/

cel-00863021.

[32] J. Wang and X. Ye. A weak Galerkin element method for second-order elliptic problems. J.
Comput. Appl. Math., 241:103–115, 2013.

34

http://cel.archives-ouvertes.fr/cel-00863021
http://cel.archives-ouvertes.fr/cel-00863021

	Introduction
	An example: The HHO method
	Functional formulation
	Local polynomial spaces
	Reconstruction operator
	Stabilization operator
	Discrete problem

	Algebraic formulation
	Local basis functions
	Reconstruction operator
	Stabilization operator
	Discrete problem

	Generic implementation tools for HHO methods
	Mesh data structure
	Abstracting the various geometric entities
	Queries on the mesh elements

	Generic HHO Implementation
	Choice of basis functions
	Quadratures

	Profiling on a model elliptic problem
	2D test cases
	3D test cases

	Conclusions

