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Abstract

Most of the literature on the brain impedance proposes a frequency independent

resistive model. Recently, this conclusion was tackled by a series of papers (Bé-

dard et al., 2006; Bédard and Destexhe, 2009; Gomes et al., 2016), based on mi-

croscopic scale modelling and measurements. Our paper aims to investigate the

impedance issue using simultaneous in vivo depth and surface signals recorded

during intracerebral electrical stimulation of epileptic patients, involving a pri-

ori different tissues with different impedances. Our results confirm the conclu-

sions from (Logothethis et al., 2007): there is no evidence of frequency depen-

dence of the brain tissue impedance (more precisely, there is no difference, in

terms of frequency filtering, between the brain and the skull bone), at least at

a macroscopic scale. In order to conciliate findings from both microscopic and

macroscopic scales, we recall different neural/synaptic current generators mod-

els from the literature and we propose an original computational model, based on

fractional dynamics.
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INTRODUCTION

In brain electro-physiology, the widely accepted model considers currents

sources embedded in the brain tissue and potential measurements using electrodes,

either implanted in the brain (micro-electrodes, SEEG), placed on the brain sur-

face (ECoG) or on the scalp (EEG). Different scales can be considered for the

sources and, consequently, for the measurements, from membrane patches and

single cells to synchronized neuronal populations. At the microscopic scale, cur-

rent sources are considered to be the ionic channels generating sub-threshold ac-

tivities or action potentials. At the macroscopic scale one assumes that the current

source is the synchronized synaptic activity, produced by several geometrically

aligned cells firing together. Common simplified source models at the microscopic

scale are point or spherical sources, seen as monopoles, while at the macroscopic

scale, dipolar sources allow simpler yet generally accurate modelling. Note that

single monopolar sources do not exist, as the various current sources in the brain

must cancel each other in order to respect charge conservation (as for the dipolar

case, which is an approximation of a two monopoles situation). Consequently,

accurate microscopic modelling implies collections of monopoles, often repre-

senting compartments of detailed neuron models (see (Einevoll et al., 2013) for a

review, as well as e.g. (Lindén et al., 2010; Leski et al., 2013; Ness et al., 2016)).

Forward problem consists in estimating the potentials in space (thus at the

measurement sites) given a source model and a propagation model1. Starting from

Maxwell equations, there is an abundant literature both for the microscopic and

macroscopic cases. The main difficulty consists in correctly modelling the propa-

gation environment, i.e., the impedances between the current sources and the mea-

sured potentials. Most of the research efforts are directed towards the evaluation

of the homogeneous/inhomogeneous isotropic/non-isotropic nature of the brain

and head tissues or to their geometrical approximations (see (e.g. Bangera et al.,

1All along this paper, by propagation we mean electrical field propagation in the brain tissues
and not axonal propagation.
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2010; Hofmanis et al., 2013)). In all these studies, the implicit assumption is that

there is no frequency dependence of the propagation model (impedance), at least

in the frequency range of interest. In other words, the environment is assumed

as purely resistive (although it might have different conductivities depending on

the spatial position and on the orientation of the electric field). Indirect confir-

mations for these hypothesis are provided by the extremely large inverse problem

literature: starting from the measurements and assuming a resistive propagation,

quite good source localizations are obtained, both at the microscopic scale (current

source density – CSD methods, (e.g. Pettersen et al., 2012)) and at macroscopic

scale (dipolar fit, e.g. (Caune et al., 2014)).Direct confirmation of the dominantly

resistive environment was provided by (Logothethis et al., 2007), who used an in-

jected controlled current source in a particular geometrical setup in order to asses

brain tissue impedance (which was found to have a rather insignificant frequency

dependency, at about 1dB per decade). Other studies arrived to more or less sim-

ilar conclusions: in (Gabriel et al., 1996) for example, even if the permittivity

displays a high negative slope with respect to the frequency on the whole tested

frequency band (10 Hz to 20 GHz), its influence on the absolute impedance value

(and on the its phase) is negligible below 1000 Hz, as pointed out also in (Bédard

and Destexhe, 2009) (note however that the measurement uncertainties are rather

important below 1000 Hz, and even bigger below 100 Hz (Gabriel et al., 1996)).

Moreover, further works of the same authors (Gabriel et al., 2009) only consider

the resistive part of the impedance (i.e., the conductivity). Roughly the same vari-

ations were observed in two recent in vivo studies (Wagner et al., 2014; Dowrick

et al., 2015), except for very low frequencies, below 100 Hz.

An alternative model was developed at microscopic scale by (Bédard et al.,

2006; Bédard and Destexhe, 2009; Bédard and Destexhe, 2014). In brief, this

model aims to take into account the ionic diffusion in the brain tissue and pro-

poses a Warburg type impedance of the propagation medium instead of the purely

resistive one. Unlike in the resistive models, the brain tissue is assumed to have a

complex impedance, scaling in modulus as the square root of the frequency (which
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yields a slope of 10 dB per decade, much higher than in previous studies). The

main motivation and indirect proof for this hypothesis is that it provides an ex-

planation for the experimentally observed 1/ f frequency scaling of the meso and

macroscopic signal power spectral densites (local field potentials, LFP) (Bédard

and Destexhe, 2009; Bédard et al., 2010; Destexhe and Bédard, 2013). Recently,

a more direct confirmation was proposed by (Gomes et al., 2016), which uses

an controlled intra-cellularly injected current source in order to determine a so-

called natural impedance from which one can potentially separate the membrane

impedance and the extracellular impedance.

The aim of this paper is to investigate the possible frequency dependency of

the electrical field generated by a dipolar current source, at different distances

from the source, at macroscopic scales (in the human brain). In this sense, our

approach is quite similar to the one proposed by (Logothethis et al., 2007). The

main difference is that we take the problem to the whole head scale. This leads

to two important consequences for the modelling: the geometry is different, as

the measurement electrodes can be far from the current source site (avoiding thus

possible saturation problems) and, moreover, we have to deal with extremely dif-

ferent tissues, with a priori different impedances (e.g. white/gray matter vs. skull

bone). As it will be shown, this allows us to tackle the possible frequency depen-

dence of the brain tissue impedance using only the measured potentials at different

locations, less dependent on the precise spectrum of the injected current source.

MATERIALS AND METHODS

Experimental setup

Our experimental setup is very similar to the one presented in (Bangera et al.,

2010). In brief, a current source is artificially inserted into the brain, generating

thus an electrical field (electrical stimulation). Current source and sink are neigh-

bouring contacts, placed on one of the multi-contact intra-cerebral electrodes (see

generic representation fig. 1). Measuring contacts are placed on several other

intra-cerebral electrodes and on the scalp surface.
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Potentials can then be measured at different points in the brain and on the

scalp with respect to a reference electrode placed itself on the scalp, sufficiently

far from the stimulation site (reference at ’infinite’ distance).

The intra-cerebral stimulations were delivered during standard presurgical eval-

uation of pharmacoresistant epileptic patients at the University Hospital (CHU)

Nancy, France (recording and stimulation devices from Micromed, Italy, elec-

trodes from Dixi Microelectronics, France). The patients gave their informed

consent and the protocol was approved by the ethics committee of the hospital.

The procedure used in this paper was applied on several stimulation sessions

(different stimulations sites, amplitudes and patients). We present here the details

for one patient, but the results and the conclusions are very similar for all tested

data.

The patient was implanted with 9 multi-contact electrodes (right hemisphere),

having in all 117 contacts inside the brain, between 10 and 18 collinear contacts by

electrode. Twenty surface EEG electrodes were used simultaneously, placed ac-

cording to the standardized 10-20 system. The recording followed a standardized

protocol: two neighbouring sensors on one of the depth electrodes (here the most

profound ones, situated in the lingual gyrus) were used for stimulation, creating

thus a current dipole. In order to avoid cells and tissue polarization, the stimula-

tion was biphasic, i.e., the polarity of the stimulation current dipole changed as

follows: a positive pulse lasting 0.5 ms was followed by a silent period of 0.05

ms and by a negative pulse with the same amplitude and duration as the positive

one. Thirty to 120 pulses were delivered with a 1 second period per stimulation

session, the sessions lasting thus between 30 seconds and 2 minutes. The used

amplitudes varied from one session to another according to the clinical protocol,

from 0.5 to 3 mA.

The remaining 115 intra-cerebral and 20 scalp sensors were used for record-

ing, at a sampling rate of 2048 Hz. The reference electrode was placed on the

scalp, at FPz position from the international 10-20 system. Because of its position

with respect of the stimulation site, the reference electrode can be safely consid-
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ered at ’infinite’ distance, thus null potential. The patient was asleep during the

protocol and did not display any clinical or electro-physiological signs (epileptic

spikes or seizures).

We did not consider in this analysis the signals recorded by sensors situated

on the stimulation electrode, in order to avoid possibly saturated signals and prop-

agation along the interface between the electrode and the tissue or within the

multi-contact electrode. Consequently, the set of working signals contains 107

intra-cerebral potentials and 20 scalp potentials.

Signal processing

Unlike scalp EEG recordings, the SEEG signals have a much better signal to

noise ratio and they are almost free of classical artefacts encountered in EEG, such

as eye-blinks and muscle activity.

On the other hand, regardless of the potential due to the stimulation, all elec-

trodes (reference electrode included) also record background physiological activ-

ity. If, by definition, we assume that this activity is independent from the stimu-

lation, then it can be cancelled out or at least reduced by averaging epochs of 1

second, centred on each stimulation pulse. Note that, if the background physio-

logical activity is low frequency and shows some coherence in time (e.g. regulars

alpha waves), it will not be necessarily completely cancelled by averaging.

The time instants of the stimulation pulses were detected as the highest ampli-

tude peaks recorded on a sensor close to the stimulation site and visually verified.

In order to avoid possible (small) jitter due to the finite sampling frequency, we

upsampled (8 times, from 2048 to 16384 Hz) the signals before alignment (a sim-

ilar approach was used for spike alignment before clustering in (Quian Quiroga

et al., 2004)). This upsampling, which is basically equivalent to an interpolation

between samples, is done using a low pass filter applied after inserting zeros be-

tween the samples of the original signal (see (Crochiere and Rabiner, 1983) for

the theoretical aspects of the method, implemented in Matlab R©). It is important

to mention here that upsampling cannot recover frequencies higher than the orig-

inal Nyquist frequency (i.e., half of the original sampling rate), and the spectral
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content of the upsampled signal above this frequency is purely artefactual. Note

finally that, if necessary, the unknown reference potential can also be cancelled by

beamforming, especially when no epoch averaging is done (Madhu et al., 2012;

Ranta and Madhu, 2012). In this study, reference cancelling by beamforming was

also tested, but it did not improve simple averaging results.

The remaining 127 averaged signals of 1 sec duration can now be considered

as the potentials Vi due to the stimulation, plus some remaining background activ-

ities.

It is important to observe that, depending on the amplitude of the stimulation

current, it might trigger some evoked activities of the neurons close or connected

to the stimulation site. In other words, besides the possibly remaining background,

the recorded signals might still show activities which are not the image of the

injected current source but some physiological evoked activity secondarily gen-

erated by the stimulation. We tested several stimulation sessions with amplitudes

from 0.5 to 3 mA, and we present here two datasets, at 1 mA and 3 mA. In the first

case, no evoked activity appeared on any of the recording contacts, while in the

second case a clear low-frequency pattern was generated by the stimulation, and

it reached its maximum amplitude about 20 ms after the stimulation on several

contacts situated in the fusiform gyrus, at about 2 cm from the stimulation site

(1.2 mV peak to peak). Nevertheless, in both situations (apparent evoked activity

or not), it is safe to consider that the physiological activity remaining after aver-

aging is situated mainly in the low frequencies, while the stimulation has a much

broader and higher frequency band.

The amplitude spectra of depth and surface potentials (modulus of the Fourier

transforms), as well as the average respective spectra are superimposed figure

2. One can distinguish the stimulation spectra (roughly above 100 Hz), mainly

visible on the depth sensors, but also on the surface ones for the high amplitude

injected current. Background low frequency activity remains quite important.
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Biophysical model

Resistive medium. There is an abundant literature on modelling the electromag-

netic propagation in the human head tissues (see e.g. (Baillet et al., 2001; Hallez

et al., 2007; Bangera et al., 2010)). Most references, both in forward and inverse

modelling (i.e., estimate the measured potentials given the source, respectively

estimate the source given the measurements) focus on the geometry of the prob-

lem (numerical modelling of the anatomy) and use purely resistive models for the

different propagation mediums, including gray and white matters, cerebro-spinal

liquid, skull bones or skin and muscles. The assumption is that, in the frequency

range of interest (roughly below 1000 Hz, most of the times even below 100 Hz),

the tissues do not have significant frequency dependent characteristics.

Starting thus from the quasi-static Maxwell equations, the potentials generated

by a current source (point or spherical) in a homogeneous isotropic medium can

be computed as (Hallez et al., 2007; Logothethis et al., 2007):

Vi =
1

4πσ
I f (ri,ro) (1)

where σ is the medium conductivity, I is the stimulation current and f (ri,ro) is a

function depending on the (relative) positions of the stimulation site (source, ro)

and of the measuring site (sensor, ri). Commonly, f (.) varies in 1/ri, with ri being

the source-sensor distance ||ri− ro||.
The two close monopoles setup can be reduced to a dipole by simple limited

developments, in which case the f (.) function appearing in (1) will include the

distance between the two monopoles (assumed negligible compared to r, the dis-

tance between the source and the measurement point/electrode position) and it

will vary in 1/r2 rather than 1/r, as for monopoles. Note that the dipolar formal-

ism is the most widely used for modelling both forward and inverse problems at

macroscopic scales, where indeed the electrodes are far from the neural genera-

tors.

Non-resistive medium. Although the resistive models proved to be successful in

forward/inverse modelling, there is one intriguing question they do not explain,
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namely the power spectral density characteristics of the LFP/EEG signals, which

often display a 1/ f behaviour. In an attempt to tackle this issue, relatively recent

works introduced a more complex modelling of the propagation medium, taking

into account mainly the ionic diffusion and thus showing a frequency dependency.

We will not detail here the models proposed in the different cited publications

(Bédard et al., 2006; Bédard and Destexhe, 2009; Bédard et al., 2010; Bédard and

Destexhe, 2014). The main result that interests us here is the general potential

model for monopolar source in an isotropic medium, given by eq. (16) in (Bédard

and Destexhe, 2009). Assuming that the position of the source is at the origin and

due to the spherical symmetry of the problem,

Vi(ω) =
I(ω)
4π

∫
∞

ri

1
r′2

1
σ(ω,r′)+ iωε(ω,r′)

dr′ (2)

where ri is the distance between the source and the measuring point (ith sensor).

For an homogeneous medium, the conductivity and the permittivity do not

depend on the position in space, thus on r′, so they will factor out of the integral

(2). Let γ(ω)=σ(ω)+ iωε(ω) the complex conductivity of the medium, including

both resistive and reactive components. Then, after integrating (2), one obtains:

Vi(ω) =
1

4πγ(ω)ri
I(ω) (3)

or, for more general source configurations (e.g. dipoles, see above eq. (1)),

Vi(ω) =
1

4πγ(ω)
f (ri,ro)I(ω) (4)

The complex impedance writes then

Zi(ω) =
1

4πγ(ω)
f (ri,ro) (5)

and is similar to equation (17) from (Bédard and Destexhe, 2009) after integration.

The significant difference between models (1) and (4) is the complex and fre-

quency dependent conductance γ(ω). As for the resistive case, it is a medium
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property2 and it is independent from the distance between the source and the mea-

suring site (or orientation, for the dipolar case). Conversely, the position depen-

dence given by f (ri,ro) is independent from the medium physics.

We consider here, as in (Logothethis et al., 2007), that the current is injected

between two electrodes (source/sink). In our setup, they are neighbouring sensors

of a multi-sensors electrode. Consequently, seen from far measuring sensors, the

source can be modelled as a current dipole, placed at position ro, having an ori-

entation co along the stimulation electrode and an amplitude I(ω). Equation (4)

writes then:

Vi(ω) = Zi(ω)I(ω) (6)

where Zi(ω) embed the geometry of the problem (i.e., the positions of the dipole

and of the measuring electrode, ro and ri respectively, and the orientation of the

dipole co) and medium characteristics γ(ω), factorized separately (see eq. 5).

Current source spectrum

Stated differently, the measured potentials spectra are equal to the injected

current spectrum weighted by Zi(ω), that is by the (complex) conductance γ(ω)

and some frequency independent gain. Evaluating this conductance can then nat-

urally be done by imposing a specific spectrum to the current source (white noise

or sinusoidal for example, as in (Logothethis et al., 2007; Gomes et al., 2016)).

Specifically, the global impedance between the source and the i-th sensor writes:

Zi(ω) =
Vi(ω)

I(ω)
(7)

If I(ω) and the geometry of the problem f (ri,ro) are known, then Zi and next γ(ω)

can be directly estimated from the measurement Vi(ω) using (7) and (5). More-

over, if the injected current is white noise (i.e., has a flat spectrum, I(ω) = ct.),

2See (Bédard and Destexhe, 2009) for further developments of (5) depending on the medium
characteristics.
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Zi(ω) = kVi(ω), meaning that the spectrum of the measured potential is similar,

up to a multiplicative constant, to the medium impedance spectrum.

Even if the current is not white, the same approach can be safely used if I(ω)

is non-null for all frequencies, as long it is known. In our experimental setup, we

are constrained by the clinical protocols and clinically approved devices. First,

the injected current is not white. Still, as we know the injected pattern, we can

easily compute its spectrum: it is broadband and it has significant values up to

several kHz (unsurprisingly, considering that it is very brief in time). But on the

other hand, the recording device has a very low sampling frequency, in this case

fixed at 2048 Hz, and thus an anti-aliasing filter included in the acquisition chain

(2nd order low-pass filter at 500 Hz, according to the manufacturer). While this

anti-aliasing filter and sampling frequency are not a problem for physiological

macroscopic EEG signals used in medical routine, the stimulation spectrum is too

broad, and it remains too broad even after the anti-aliasing filter, easily above the

Shannon frequency (1024 Hz). Consequently, sampling it at 2048 Hz highly and

unpredictably distorts the signal, thus making it impossible to use in (7).

More precisely, the stimulation pattern writes:

i(t) =


Imax, t ∈ (0, t1)

0, t ∈ (t1, t1 + tp)

−Imax, t ∈ (t1 + tp,2t1 + tp)

with t1 the duration of the positive/negative pulse and tp the silent period between

them (in our case 0.5 and 0.05 ms respectively). The Fourier transform will then

be:

I(ω) =− 1
jω

(
e− jωt1(1+ e− jωtp)−1− e− jω(2t1+tp)

)
The amplitude spectrum (up to 2048 Hz, the sampling frequency of our instrumen-

tation) is given figure 3. Superimposed on the same figure, we show the spectrum

of the filtered version of the stimulation due to the anti-aliasing acquisition filter

(2nd order low-pass at 500 Hz). As it can be seen, significant energy remains

located in high frequencies, above Nyquist frequency (1024 Hz).

We propose next an alternative approach.
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Impedance ratio estimation

We assume in this development that I(ω) is non-null for all frequencies, but

not necessarily known. We assume also that we have several measuring elec-

trodes, situated at different distances/angles from the injected current dipole po-

sition. In particular, electrodes i and j (positions ri and r j, sufficiently far from

ro) record the potentials Vi(ω) and Vj(ω), with respect to an external reference.

Furthermore, we are not interested by gain differences (see the very complete

study (Bangera et al., 2010) for attenuation evaluation of the potential depending

on the distance and on the anisotropy of the medium), but only by the frequency

dependence.

The ratio between Vi(ω) and Vj(ω) writes then:

Hi j(ω) =
Vi(ω)

Vj(ω)
=

Zi(ω)

Z j(ω)
(8)

In principle, if ri 6= r j, the impedances should also be different, and their ratio

should vary depending on the their respective positions:

Zi(ω)

Z j(ω)
= f (ro,ri,r j,ω) (9)

According to the factorization proposed by (4), the frequency should vanish if the

sensors are placed inside the same homogeneous medium, as γ(ω) is the same,

thus the ratio (9) should be flat in ω.

Conversely, if the ratio (9) is the same for all ω (i.e., , the difference between

impedances Zi and Z j is limited to the gain, constant for all frequencies), one can

conjecture that the medium is the same for both electrodes i and j.

One must note at this point that the previous argumentation holds only if Zi(ω)

and Z j(ω) are dominated by the tissue impedance, i.e., if the electrode impedances

are small compared to the tissue (in the opposite case, the ratio will be almost

constant whatever the brain impedance, presuming that the different electrodes

have the same impedances). Also, it is important to have a very high internal

impedance of the current generator and non-null current values for all explored
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frequencies, i.e., a broadband current source (in the opposite case, the ratio (8)

will be undefined, 0/0). Considering the stimulation pattern described above (very

brief, thus large spectrum), this assumption can be safely accepted, at least for

frequencies above 100 Hz.

RESULTS

Experimental findings

Among the intra-cerebral signals, the potential recorded in the fusiform gyrus

(at about 2cm from the stimulation dipole, in the lingual gyrus) was chosen for

normalization, as it has the best signal to noise ratio in the frequency band of

interest (roughly above 100 Hz, where the remaining background and the possible

evoked activity are negligible and where the stimulation is sufficiently energetic).

Let this signal be Vj(ω). All Vi(ω) (both intra-cerebral and scalp recorded

potentials) were normalized with respect to Vj(ω) to obtain Hi j(ω) (8). The results

(modulus) are presented fig. 4.

A first observation is that, below 100 Hz, the results are difficult to interpret.

First, because the energy of the stimulation signal is low in this band, so the ratio

Hi j(ω) is badly conditioned (see argumentation above). Next (and linked to the

first argument), this is the range of the classical brain background activities, pos-

sibly not completely canceled out by epoch averaging. As these activities can be

different from one recording site to another, the ratio can significantly vary. On

the other hand, above 100 Hz, one can assume that most of the signals’ energy is

due to the stimulation, at least for the depth intra-cerebral electrodes, so we will

focus on this part of the spectrum.

For surface electrodes, muscular artefacts can be important up to at least 250

Hz (van Boxtel, 2001); for a high amplitude stimulation (fig. 4, right panel, dashed

curve) the effect is less visible, but for the low amplitude stimulation, the surface

electrodes are very likely to be perturbed by the EMG and thus difficult to interpret

(fig. 4, left panel, dashed curve). Another possible cause is simply the noisier
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nature of surface recordings (the electrode-gel-skin impedance, electromagnetic

noise, . . . ).

With this considerations in mind, we can still note that the impedance ratios

(8) are flat above ∼200 Hz or even 100 Hz for the stronger injected current. This

observation can be more precisely quantified by computing the slopes of the lines

obtained by fitting first order polynomials on the impedance ratios (9), between

100 and 1000 Hz. For example, for the SEEG impedance ratios during the 3

mA stimulation (light grey curves in figure 4, right panel), the mean slope is 2.8

dB, with a standard deviation of 3dB. Among the 107 sensors, 93 have spectra

yielding impedance ratios with slopes between +5 and -5 dB, which we define as

“flat”. When computing the mean and the standard deviation for these 93 slopes,

the results are much less dispersed: the mean slope between 100 and 1000 Hz is 2

dB and the standard deviation is 1.5 dB. In order to illustrate the arguments above,

the slopes are graphically presented figure 5 for a 3 mA stimulation. The marked

points indicate the signals (sensors) Vi(ω) for which the slopes are outside the ±5

dB interval, thus cannot be considered flat.

These signals (an interval of 10 seconds) are displayed in the bottom panel of

figure 5, together with the Vj signal used for normalization (first row). As it can be

seen, there is almost no trace of stimulation on the 14 (=107-93) signals, meaning

that the impedance ratio for these sensors is not reliable.

The previous observations hold for surface EEG signals (same stimulation am-

plitude) and for lower stimulation amplitudes also. For completeness, the results

are summarized in table 1.

The results reported above lead to two conclusions: first, the factorization in

(4) holds, that is the effects dues to the medium frequency characteristics and those

dues to the source-sensors geometry can be decoupled. Second and most impor-

tant, the medium characteristics seem similar for surface and depth electrodes.

This conclusion holds after propagation at different distances and through differ-

ent mediums (gray and white matters, cerebro-spinal liquid, skull bones, skin),

indicating that they have similar complex conductivities γ(ω) up to a gain.
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Mean (STD) N f Mean f (STD f )

SEEG (3mA) 2.8 (3.0) 93/107 2.1 (1.5)

EEG (3mA) 2.3 (3.4) 19/ 20 3.0 (1.2)

SEEG (1mA) -0.4 (9.8) 87/107 0.2 (1.4)

EEG (1mA) -5.1 (5.6) 12/ 20 -1.5 (1.4)

Table 1: Quantified indication of the flatness of the impedance ratios for different stimulation
amplitudes and for depth and surface signals. Mean (STD) are the mean and standard deviation
values obtained for the whole set of signals, while Mean f (STD f ) are the values for the signals
yielding a “flat” impedance ratio (between ±5 dB). The number of flat impedance ratios is given
by N f , with respect to the total number of signals. Values for mean and standard deviation are in
dB.

Considering the different nature of the head tissues (bone vs. soft tissues

mainly), this is highly unlikely, and the most plausible conclusion is that, in the

frequency range 100 to 1000 Hz, the macroscopic scale conductance is actually

purely or overwhelmingly resistive, both inside the brain and in the other head

tissues, confirming thus the conclusion of (Logothethis et al., 2007).

Computational models

A resistive propagation medium, as indicated by the previous results, implies

that the LFP spectra is similar (up to the gain) to the current source spectra, in

particular to synaptic currents. We propose below a family of possible fractional

computational models of the synaptic currents, aiming to fit the observed 1/ f LFP

spectrum. These models are fitted to “golden standard” kinetic models (Destexhe

et al., 1998) and tested against established synaptic models from the literature3

and against simulated LFP data.

Assume a fractional system (Caponetto et al., 2010) of order 1/2, which is

basically similar to the Warburg impedances proposed in (Bédard and Destexhe,

3See Appendix for a brief presentation of these models
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2009; Gomes et al., 2016):

Hw(s) =
1

1+(sτw)1/2

Its impulse response h(t) can be obtained by inverse Laplace transform:

hw(t) =
1
√

πτn
t−1/2− 1

τn
et/τnerfc

(√
t
τn

)
(10)

where erfc(x) is the complementary error function:

erfc(x) =
2√
π

∫
∞

x
e−t2

A possible synapse model can then be the fractional system of order 3/2:

H3/2(s) =
1

1+ sτ
Hw(s) (11)

having an impulse response obtained by convolving the simple decaying exponen-

tial and (10):

h3/2(t) = hw(t)∗
1
τ

e−t/τ (12)

Although not analytically tractable (because of hw(t)), one can obtain the result

numerically for any causal system t > 0. This h3/2(t) represents now the time

course of the synaptic current (triggered by a Dirac pulse arriving in the pre-

synaptic neuron) and basically replaces the r(t) in (13) or the responses h(t) from

table 3). The two parameters (τ and τw) can be identified by fitting h3/2 to the ki-

netic models from (Destexhe et al., 1998). Note that for GABA-B synapse, a third

parameter is needed, corresponding to the time constant τ2 of the supplementary

low-pass filter. The results of these fits are presented in figure 6.

In order to have a quantitative evaluation, the relative errors between the com-

putational models and the kinetic ones (norm of the error normalized by the norm

of the kinetic response) are given table 2. Globally, as it can be seen and ex-

pected, less parameters are used, worse the fitting results. The α-function fitting

is consistently less accurate than the other three models, fractional included. This
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global impression need to be nuanced when trying to separate between fractional

and multiple exponential fittings. Indeed, for rapid synapses (AMPA and GABA-

A), the exponential models perform better and, as a matter of fact, almost similar.

For the slower (but simple kinetic) NMDA synapse, the fractional is better than

the double exponential (both having thus the same number of parameters / time

constants) but worse than the 3-exponential model (4 parameters). Finally, for

the more complicated kinetics of GABA-B, the 2 parameter fractional model fits

better than the others, including the 4 parameter model h3.

Model / Synapse AMPA GABA-A NMDA GABA-b
fractional 0.2071 0.1005 0.0936 0.1608

α-function hα 0.2431 0.2970 0.3513 0.2588

2 exponentials h2

(Dayan and Abbott, 2001) 0.1184 0.0201 0.1414 0.2567

3 exponentials h3

(Gerstner et al., 2014) 0.0863 0.0201 0.0089 0.2299

Table 2: Relative errors between the computational approximations and the respective kinetic
models.

The influence of the fractional synaptic impulse response (12) on the LFP

spectrum is illustrated by the simulation presented in figure 7. This figure, which

is to be compared with figure 4 in (Bédard and Destexhe, 2009) illustrates the

spectral characteristics of the LFP, assumed to be the result of the propagation

through a resistive medium of post-synaptic current sources. Clearly, a simple

exponential model does not exhibit odd slopes of the PSD, while fractional models

or multiple exponential models fit more or less the 1/ f real PSD characteristics

reported in the literature. Note that, unlike in (Bédard and Destexhe, 2009), the

propagation medium is here purely resistive.
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DISCUSSION

The experimental setup described here, using simultaneous depth and scalp

recordings of a stimulation signal allowed to tackle the brain impedance evalua-

tion problem in an original way. The aim was to confirm or infirm the different

results one can find in the literature, namely resistive vs. complex (frequency

dependent) impedance. If we consider only the intra-cerebral electrodes, we can-

not decide if there exists a frequency dependence of the intra-cerebral medium

described by some complex conductance γ(ω), because it factors out from the

measured spectra ratio (8). Based only on these intra-cerebral measurements, the

medium conductivity could be frequency dependent or purely resistive.

On the other hand, the spectra are also similar when considering the surface

measurements. This implies that the same frequency weighting of the injected

current spectrum is done for the depth and surface electrodes. In other words,

one might neglect the differences between the tissues and assume that the whole

propagation medium has the same complex conductivity γ(ω), except for the gain.

The results and conclusions reported here do not agree with microscopic scale

findings, neither with the PSD of the synaptic related LFP, as for example reported

in (Bédard and Destexhe, 2009), nor with the findings from (Gomes et al., 2016)

(sub-threshold LFP measured after intracellular current injection). The explana-

tions advanced in (Bédard and Destexhe, 2009) are based on the nature of the

source: high intensity artificial sources (like in our case as well as in (Logothethis

et al., 2007)) block the ionic diffusion by diminishing the ionic gradient and only

the ohmic part of the impedance remains apparent. Indeed, in Logothethis in vivo

experiments (Logothethis et al., 2007), the measuring electrodes were placed be-

tween the injecting electrodes, on the maximum current density line. In our setup

though, the measuring electrodes were far from the current source, thus not af-

fected by the local gradient due to the current injection. Moreover, even if locally

the injected current was much higher that physiological sources, the potential gen-

erated on the far electrodes used in our experiments was well in the range of the

physiological activities, i.e., having similar or smaller amplitudes than distantly
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generated physiologic epileptic peaks for example. In other words, even if dif-

fusion is blocked near high intensity sources, it should not be blocked far from

them, in the distant brain tissue.

In our opinion, other explanations are needed to conciliate between macro-

scopic impedance measurements and the microscopic findings reported in (Bé-

dard and Destexhe, 2009; Gomes et al., 2016). A first possible explanation would

be that the diffusive impedance proposed in the cited papers appears only in the

immediate neighbourhood of the current sources, i.e., ionic channels on the mem-

brane (synaptic or not). Consequently, at the microscopic scale, it dominates the

overall impedance between the source and the measuring electrode. On the con-

trary, at a macroscopic scale, it is the resistive part that becomes predominant and

the Warburg-like impedance can be neglected.

Other explanations are possible, involving not the medium but the intrinsic

nature of the current generators, which might have a more complicated dynamics,

either fractal (thus fractional), see (Liebovitch, 1989; Liebovitch and Krekora,

2002) or simply involving much richer channel openings and closings, modelled

using sums of several exponentials (Colquhoun and Hawkes, 2009, chap. 18 in

Sakmann & Neher, Single-Channel Recordings). The latter explanation is to be

linked to realistic neuron morphologies, with detailed compartmental modelling

involving thus multiple current generators with different morphologies and spatial

positions with respect to the recording site. Indeed, as shown by (Lindén et al.,

2010) and further modelled by (Pettersen et al., 2014), more realistic neuron mod-

els yield different LFP spectra and spike morphologies through an “intrinsic den-

dritic filtering”, depending on the position of the recording electrode and of course

on the particular morphology of the neuron.

Note that, from a phenomenological point of view, the two types of source dy-

namics (i.e., fractal dynamics and sums of exponentials) are approximately equiv-

alent, as any irrational transfer function (i.e., including fractional power of ω) can

be approximated (in any arbitrarily chosen frequency band) by a product of ratio-

nal transfer functions with a dense interlacing of poles and zeros (Charef et al.,
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1992), which corresponds to a sum of exponentials in the time domain.

We might finally conjecture that all the previous explanations, although propos-

ing physically different mechanisms, are equivalent from a macroscopic phe-

nomenological point of view. Indeed, ionic diffusion creates an accumulation

of charges around open channels (Bédard and Destexhe, 2011), and this phe-

nomenon might need to be considered for evaluating the potential generated by

the opening/closing of the channel itself. Seen from a far away electrode, the cur-

rent source includes multiple channels, having different positions and dynamics,

together with their neighborhood. The resulting overall fractional dynamics can

then be approximated by rather simple fractional computational models, with a

reduced number of parameters.

CONCLUSION

This paper presents experimental results obtained in the in vivo human brain

at a macroscopic scale, aiming to evaluate the impedance of the propagation

medium. Using sensors placed in mediums having different impedances (depth

and surface electrodes) we try to alleviate the apparent contradictory experimen-

tal results from the literature. Indeed, while classical models assume a purely

resistive brain tissue (Logothethis et al., 2007), recent theories and results tend

to suggest that the propagation medium in the brain, or at least in the cortex, has

a frequency dependent impedance which can be factorized in a distance depen-

dent part and a frequency dependent part varying as 1/
√

ω, probably due to ionic

diffusion (Bédard and Destexhe, 2009; Gomes et al., 2016).

Our experimental results show that, at macroscopic scale, the brain tissue (as

well as the skull and the scalp) do not present frequency dependent conductivities

in a frequency range between 100 and 1000 Hz. This confirms classical resis-

tive models thoroughly used in forward an inverse modelling at the macroscopic

scale4.

4It is nevertheless important to note that the the fact that the source localization part of the
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One might conjecture then that non-resistive effects appear at a microscopic

scale, either near the current source (i.e., ionic channels on the neuron membrane

or in the synapse) or even inside it, that is incorporated in its dynamics. Compu-

tationally, they might be modelled either as a sum of several exponentials, thus

having several tuning parameters, or using fractional models.
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APPENDIX

We start by briefly recalling the kinetic models proposed in (Destexhe et al.,

1994, 1998), which we considered as golden standards for the simulations (see

also (Colquhoun and Hawkes, 2009) for the theoretical justification of this for-

malism). Next, we also recall some classical synaptic computational models.

Kinetic models

Biophysically founded kinetic synapse models, very close to actual measure-

ments, were proposed in (e.g. Destexhe et al., 1994, 1998). These models take into

account detailed biochemical mechanisms for different synapse types (AMPA,

NMDA, GABA-A, GABA-B). 5

inverse problems (not to be mistaken for the time course/frequency content estimation) yields valid
results is not an argument by itself in the favour of a resistive medium. Indeed, the localization
results are not affected by the frequency dependent tissue impedance, as long as the factorization
in (4) holds.

5For the detailed models, the reader is referred to the cited publications (Destexhe et al., 1994,
1998).
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The first three synapse types can be well approximated by simplified kinetics

as proposed (Destexhe et al., 1998), which can be further described by one non-

linear differential equation (the non-linearity being related to the neuro-transmitter

release, itself related to the action potential of the pre-synaptic neuron for the

detailed models):

I(t) = ḡr(t)(V −E) (13)

where I is the synaptic current, ḡ is its maximal conductance, V is the membrane

potential of the postsynaptic neuron and E is the respective reversal potential. The

time dynamics is given by r(t), modeled as:

dr
dt

= α[T ](1− r)−βr (14)

In (14), [T ] is a non-linear pulse of transmitter release and α and β are synapse

specific parameters.

The last synapse (GABA-B) has a more complicated kinetics, but it can also

be modelled using 2 coupled differential equations, the first one similar to (13),

the second one being a simple first order linear differential equation:

ds
dt

= K2r−K4s (15)

Note that this last equation corresponds to first order low-pass filter with a time

constant τ2 = 1/K4 (s(t) being the filtered version of r(t)).

Computational models

In the literature one can find a lot of phenomenological/computational synap-

tic models, from simple decaying exponentials as the one used in (Bédard and

Destexhe, 2009), passing through alpha functions (Rall, 1967), to multiple expo-

nentials (Dayan and Abbott, 2001; Gerstner et al., 2014) 6. A summary of the time

6We do not intend to present an exhaustive list, but rather to illustrate the diversity of the
models
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expressions (impulse responses h(t)) and corresponding transfer functions (H(s),

the Laplace transforms of h(t)) is given table 3.

As said previously, under the hypothesis that the medium is resistive, the time

courses and consequently the spectral characteristics of the synaptic currents de-

termine the LFP power spectrum. As it can readily be seen, they computational

models from table 3 are all exponentials and their spectral characteristics do not

match the measured LFP as reported in (Bédard and Destexhe, 2009).
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Figures

Figure 1: Example of electrode implantation (stimulation contacts in black) and schematic repre-
sentation of an intracerebral electrode (dimensions in mm)

Figure 2: Superimposed spectra of the recorded signals for different electrodes (depth: left panels
/ surface: right panels) and different stimulation amplitudes (1 mA: top panels / 3 mA: bottom
panels). Averaged spectra are superimposed in black. Note the different amplitude scales for
depth and surface spectra

Figure 3: Theoretical stimulation spectrum I(ω) before (solid line) and after anti-aliasing filter
(dotted line). The vertical line represents the Nyquist frequency, half of the sampling frequency

Figure 4: Impedance ratios considering the stimulation source at 1mA (left panel) and 3 mA (right
panel). Clear grey curves correspond to intracerebral sensors, while dark grey curves correspond
to surface EEG sensors. Averaged ratios are superimposed in black, dashed line for the surface
signals

Figure 5: Up: the slopes of the fitted lines for the 107 SEEG computed impedance ratios (3 mA
stimulation). The marked values are outside the ±5 dB interval (14 values out of 107). Bottom:
the normalization signal Vj and the 14 signals Vi yielding impedance ratios Vi(ω)

V j(ω)
with slopes > 5

dB/dec (absolute values)

Figure 6: Normalized synaptic impulse responses: kinetic models (Destexhe et al., 1998) in black
dashed line vs. computational approximations (fractional, α-functions, double (Dayan and Abbott,
2001) and triple exponentials (Gerstner et al., 2014)). AMPA synapse (top left), NMDA (top right),
GABA-A (bottom left) and GABA-B (bottom right)

Figure 7: Synaptic activities LFP. A: raster plot of 8 simulated units (Poisson processes with
variating λ(t); B-E: Power spectral densities (PSD, normalized) of the generated LFP, using the
δ functions given by the raster convolved with different synaptic responses: simple exponential
decay (τ = 10 ms, as in (Bédard and Destexhe, 2009)) (B); fractional NMDA model (C); double
exponential (Dayan and Abbott, 2001) (C) and triple exponential (Gerstner et al., 2014) (E). The
lines on figure (B) have slopes of 0 and -2, while on figures (C) to (E) they have slopes of -1 and
-3, more consistent with the real observed PSD of the LFP
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Tables

Table 1: Quantified indication of the flatness of the impedance ratios for different stimulation
amplitudes and for depth and surface signals. Mean (STD) are the mean and standard deviation
values obtained for the whole set of signals, while Mean f (STD f ) are the values for the signals
yielding a “flat” impedance ratio (between ±5 dB). The number of flat impedance ratios is given
by N f , with respect to the total number of signals. Values for mean and standard deviation are in
dB

Table 2: Relative errors between the computational approximations and the respective kinetic
models

Table 3: Synaptic impulse response models and their Laplace transforms. For the 3 exponential
model, the a parameter balances between fast (τ2) and slow (τ3) components of the response. The
expected slopes are only given for ω→∞, but several inflexion points might exist for multiple ex-
ponentials models. Also, these slopes are valid assuming that the spike trains are unsynchronized
and rather sparse (i.e., the time interval between spikes is generally bigger than the decay time)
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