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We show that the equivalence of linear top-down tree-toword transducers is decidable in polynomial time. Linear tree-to-word transducers are non-copying but not necessarily order-preserving and can be used to express XML and other document transformations. The result is based on a partial normal form that provides a basic characterization of the languages produced by linear tree-to-word transducers.

Introduction

Tree transformations are widely used in functional programming and document processing. Tree transducers are a general model for transforming structured data like a database in a structured or even unstructured way. Consider the following internal representation of a client database that should be transformed to a table in HTML. Deterministic top-down tree transducers can be seen as functional programs that transform trees from the root to the leaves with finite memory. Transformations where the output is not produced in a structured way or where, for example, the output is a string, can be modeled by tree-to-word transducers.

In this paper, we study deterministic linear tree-to-word transducers (ltws), a subset of deterministic tree-to-word transducers that are non-copying, but not necessarily order-preserving. Processing the subtrees in an arbitrary order is important to avoid reordering of the internal data for different use cases. In the example of the client database the names may be needed in different formats, e.g. <s a l u t a t i o n > <name> <surname> <surname >, <name> < t i t l e > <surname> < t i t l e > <surname >, <name>

The equivalence of unrestricted tree-to-word transducers was a long standing open problem that was recently shown to be decidable [START_REF] Seidl | Equivalence of deterministic top-down tree-tostring transducers is decidable[END_REF]. The algorithm by [START_REF] Seidl | Equivalence of deterministic top-down tree-tostring transducers is decidable[END_REF] provides an co-randomized polynomial algorithm for linear transducers. We show that the equivalence of ltws is decidable in polynomial time and provide a partial normal form.

To decide equivalence of ltws, we start in Section 3 by extending the methods used for sequential (linear and order-preserving) tree-to-word transducers (stws), discussed in [START_REF] Staworko | Equivalence of deterministic nested word to word transducers[END_REF]. The equivalence for these transducers is decidable in polynomial time [START_REF] Staworko | Equivalence of deterministic nested word to word transducers[END_REF]. Moreover a normal form for sequential and linear tree-toword transducers, computable in exponential time, is known [START_REF] Laurence | Normalization of sequential top-down tree-to-word transducers[END_REF][START_REF] Boiret | Normal form on linear tree-to-word transducers[END_REF]. Two equivalent ltws do not necessarily transform their trees in the same order. However, the differences that can occur are quite specific and characterized in [START_REF] Boiret | Normal form on linear tree-to-word transducers[END_REF]. We show how they can be identified. We use the notion of earliest states, inspired by the existing notion of earliest sequential transducers [START_REF] Laurence | Normalization of sequential top-down tree-to-word transducers[END_REF]. In this earliest form, two equivalent stws can transform subtrees in different orders only if they fulfill specific properties pertaining to the periodicity of the words they create. Computing this normal form is exponential in complexity as the number of states may increase exponentially. To avoid this size increase we do not compute these earliest transducers fully, but rather locally. This means we transform two ltws with different orders to a partial normal form in polynomial time (see Section 4) where the order of their transformation of the different subtrees are the same. ltws that transform the subtrees of the input in the same order can be reduced to sequential tree-to-word transducers as the input trees can be reordered according to the order in the transformation.

Due to space constraints some proofs are omitted. The full version of the paper can be found at http://arxiv.org/abs/1606.03758.

Related Work. Different other classes of transducers, such as tree-to-tree transducers [START_REF] Engelfriet | Tree transducers, L systems and twoway machines[END_REF], macro tree transducers [START_REF] Engelfriet | Macro tree transducers[END_REF] or nested-word-to-word transducers [START_REF] Staworko | Equivalence of deterministic nested word to word transducers[END_REF] have been studied. Many results for tree-to-tree transducers are known, e.g. deciding equivalence [START_REF] Maneth | Deciding equivalence of top-down XML transformations in polynomial time[END_REF], minimization algorithms [START_REF] Maneth | Deciding equivalence of top-down XML transformations in polynomial time[END_REF] and Gold-style learning algorithms [START_REF] Lemay | A learning algorithm for top-down XML transformations[END_REF]. In contrast, transformations where the output is not generated in a structured way like a tree are not that well understood. In macro-tree transducers, the decidability of equivalence is a well-known and long-standing question [START_REF] Engelfriet | Some open question and recent results on tree transducers and tree languages[END_REF]. However, the equivalence of linear size increase macro-tree transducers that are equivalent to MSO definable transducers is decidable [START_REF] Engelfriet | Macro tree translations of linear size increase are MSO definable[END_REF][START_REF] Engelfriet | The equivalence problem for deterministic MSO tree transducers is decidable[END_REF].

Preliminaries

Let Σ be a ranked alphabet with Σ (n) the symbols of rank n. Trees on Σ (T Σ ) are defined inductively: if f ∈ Σ (n) , and t 1 , ..., t n ∈ T Σ , then f (t 1 , ..., t n ) ∈ T Σ is a tree. Let ∆ be an alphabet. An element w ∈ ∆ * is a word. For two words u, v we denote the concatenation of these two words by uv. The length of a word w is denoted by |w|. We call ε the empty word. We denote a -1 the inverse of a symbol a where aa -1 = a -1 a = ε. The inverse of a word w = u 1 . . . u n is w

-1 = u -1 n . . . u -1 1 .
A context-free grammar (CFG) is defined as a tuple (∆, N, S, P ), where ∆ is the alphabet of G, N is a finite set of non-terminal symbols, S ∈ N is the initial non-terminal of G, P is a finite set of rules of form A → w, where A ∈ N and w ∈ (∆ ∪ N ) * . A CFG is deterministic if each non-terminal has at most one rule.

We define the language L G (A) of a non-terminal A recursively: if A → u 0 A 1 u 1 ...A n u n is a rule of P , with u i words of ∆ * and A i non-terminals of N , and w i a word of L G (A i ), then u 0 w 1 u 1 ...w n u n is a word of L G (A). We define the context-free language L G of a context-free grammar G as L G (S).

A straight-line program (SLP) is a deterministic CFG that produces exactly one word. The word produced by an SLP (∆, N, S, P ) is called w S .

We denote the longest common prefix of all words of a language L by lcp(L).

Its longest common suffix is lcs(L).

A word u is said to be periodic of period w if w is the smallest word such that u ∈ w * . A language L is said to be periodic of period w if w is the smallest word such that L ⊆ w * .

A language L is quasi-periodic on the left (resp. on the right) of handle u and period w if w is the smallest word such that L ⊆ uw * (resp. if L ⊆ w * u). A language is quasi-periodic if it is quasi-periodic on the right or left. If L is a singleton or empty, it is periodic of period ε. Iff L is periodic, it is quasi-periodic on the left and the right of handle ε. If L is quasi-periodic on the left (resp. right) then lcp(L) (resp. lcs(L)) is the shortest word of L.

Linear Tree-to-Word Transducers

A linear tree-to-word transducer (ltw) is a tuple M = (Σ, ∆, Q, ax, δ) where -Σ is a ranked alphabet, -∆ is an alphabet of output symbols, -Q is a finite set of states, the axiom ax is of the form u 0 q(x)u 1 , where q ∈ Q and u 0 , u 1 ∈ ∆ * , δ is a set of rules of the form q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n where q, q 1 , . . . , q n ∈ Q, f ∈ Σ of rank n, u 0 , . . . , u n ∈ ∆ * and σ is a permutation from {1, . . . , n} to {1, . . . , n}. There is at most one rule per pair q, f . The partial function M q of a state q on an input tree f (t 1 , . . . , t n ) is defined inductively as

-u 0 M q1 (t σ(1) ) . . . M qn (t σ(n) )u n , if q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n ∈ δ -undefined, if q, f is not defined in δ.
The partial function M of an ltw M with axiom u 0 q(x)u 1 on an input tree t is defined as M (t) = u 0 M q (t)u 1 . Two ltws M and M are equivalent if M = M . A sequential tree-to-word transducer (stw) is an ltw where for each rule of the form q, f → u 0 q 1 (x σ(1) )u 1 . . . q n (x σ(n) )u n , σ is the identity on 1 . . . n.

We define accessibility of states as the transitive and reflexive closure of appearance in a rule. This means state q is accessible from itself, and if q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n , and q is accessible from q , then all states q i , 1 ≤ i ≤ n, are accessible from q .

We denote by dom(M ) (resp. dom(q)) the domain of an ltw M (resp. a state q), i.e. all trees t ∈ T Σ such that M (t) is defined (resp. M q (t)). We only consider ltws with non-empty domains and assume w.l.o.g. that no state q in an ltw has an empty domain by eliminating transitions using states with empty domain.

We denote by L M (resp. L q ) the range of M (resp. M q ), i.e. the set of all images M (t) (resp. M q (t)). The languages L M and L q for each q ∈ Q are all context-free languages. We call a state q (quasi-)periodic if L q is (quasi-)periodic.

Note that a word u in a rule of an ltw can be represented by an SLP without changing the semantics of the ltw. Therefore a set of SLPs is added to the transducer and a word on the right-hand side of a rule is represented by an SLPs. The decidability of equivalence of stws in polynomial time still holds true with the use of SLPs.

The results of this paper require SLP compression to avoid exponential blowup. SLPs are used to prevent exponential blow-up in [START_REF] Plandowski | The complexity of the morphism equivalence problem for contextfree languages[END_REF], where morphism equivalence on context-free languages is decided in polynomial time.

The equivalence problem for sequential tree-to-word transducer can be reduced to the morphism equivalence problem for context-free languages [START_REF] Staworko | Equivalence of deterministic nested word to word transducers[END_REF]. This reduction relies on the fact that STWs transform their subtrees in the same order. As ltws do not necessarily transform their subtrees in the same order the result cannot be applied on ltws in general. However, if two ltws transform their subtrees in the same order, then the same reduction can be applied. To formalize that two ltws transform their subtrees in the same order we introduce the notion of state co-reachability. Two states q 1 and q 2 of ltws M 1 , M 2 , respectively, are co-reachable if there is an input tree such that the two states are assigned to the same node of the input tree in the translations of M 1 , M 2 , respectively.

Two ltws are same-ordered if for each pair of co-reachable states q 1 , q 2 and for each symbol f ∈ Σ, neither q 1 nor q 2 have a rule for f , or if

q 1 , f → u 0 q 1 (x σ1(1) ) . . . q n (x σ1(n) )u n and q 2 , f → v 0 q 1 (x σ2(1) ) . . . q n (x σ2(n) )v n are rules of q 1 and q 2 , then σ 1 = σ 2 .
If two ltws are same-ordered the input trees can be reordered according to the order in the transformations. Therefore for each ltw a tree-to-tree transducer is constructed that transforms the input tree according to the transformation in the ltw. Then all permutations σ in the ltws are replaced by the identity. Thus the ltws can be handled as stws and therefore the equivalence is decidable in polynomial time [START_REF] Staworko | Equivalence of deterministic nested word to word transducers[END_REF].

Theorem 1. The equivalence of same-ordered ltws is decidable in polynomial time.

Linear Earliest Normal Form

In this section we introduce the two key properties that are used to build a normal form for linear tree-to-word transducers, namely the earliest and eraseordered properties. The earliest property means that the output is produced as early as possible, i.e. the longest common prefix (resp. suffix) of L q is produced in the rule in which q occurs, and as left as possible. The erase-ordered property means that all states that produce no output are ordered according to the input tree and pushed to the right in the rules.

An ltw is in earliest form if each state q is earliest, i.e. lcp(L q ) = lcs(L q ) = ε, and for each rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n , for each i,

1 ≤ i ≤ n, lcp(L qi u i ) = ε.
In [1, Lemma 9] it is shown that for each ltw M an equivalent earliest ltw M can be constructed in exponential time.

Intuitively, if lcp(L q ) = v = ε (resp. lcs(L q ) = v = ε) then q is constructed with L q = v -1 L q (resp. L q = L q v -1 ) and q(x) is replaced by vq (x) (resp. q (x)v). If lcp(L q u) = v = ε
and v is a prefix of u = vv then we push v through L q by constructing q with L q = v -1 L q v and replace q(x)u by vq (x)v .

Note that the construction to build the earliest form M of an ltw M creates a same-ordered M . Furthermore, if a state q of M and a state q of M are coreachable, then q is an "earliest" version of q, where some word u was pushed out of the production of q to make it earliest, and some word v was pushed through the production of q to ensure that the rules have the right property: there exists u, v ∈ ∆ * such that for all t ∈ dom(q), M q (t) = v -1 u -1 M q (t)v.

Theorem 2. For each ltw an equivalent same-ordered and earliest ltw can be constructed in exponential time.

The exponential time complexity is caused by a potential exponential size increase in the number of states as it is shown in [7, Example 5].

We call a state q that produces only the empty word, i.e. L q = {ε}, an erasing state. As erasing states do not change the transformation and can occur at any position in a rule we need to fix their position for a normal form.

An ltw M is erase-ordered if for each rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n in M , if q i is erasing then for all j ≥ i, q j is erasing, σ(i) ≤ σ(j) and u j = ε.

We test whether L q = {ε} in polynomial time and then reorder a rule according to the erase-ordered property. If an ltw is earliest it is still earliest after the reordering.

Lemma 3 (extended from [1, Lemma 18]). For each (earliest) ltw an equivalent (earliest) erase-ordered ltw can be constructed in polynomial time.

Example 4. Consider the rule q 0 , f → q 1 (x 4 )q 2 (x 3 )q 1 (x 2 )q 4 (x 1 ) where q 2 translates trees of the form f n (g), n ≥ 0 to (abc) n , q 4 translates trees of the form f n (g), n ≥ 0 to (abc) 2n , q 1 translates trees of the form f n (g), n ≥ 0 to ε. Thus the rule is not erase-ordered. We reorder the rule to the equivalent and eraseordered rule q 0 , f → q 2 (x 3 )q 4 (x 1 )q 1 (x 2 )q 1 (x 4 ).

If two equivalent ltws are earliest and erase-ordered, then they are not necessarily same-ordered. For example, the rule q, f → q 4 (x 1 )q 2 (x 3 )q 1 (x 2 )q 1 (x 4 ) is equivalent to the rule in the above example but the two rules are not sameordered. However, in earliest and erase-ordered ltws, we can characterize the differences in the orders of equivalent rules: Just as two words u, v satisfy the equation uv = vu if and only if there is a word w such that u ∈ w * and v ∈ w * , the only way for equivalent earliest and erase-ordered ltws to not be sameordered is to switch periodic states.

Theorem 5 ([1]

). Let M and M be two equivalent erase-ordered and earliest ltws and q, q be two co-reachable states in M , M , respectively. Let q, f → u 0 q 1 (x σ1(1) ) . . . q n (x σ1(n) )u n and q , f → v 0 q 1 (x σ2(1) ) . . . q n (x σ2(n) )v n be two rules for q, q . Then for k < l such that σ 1 (k) = σ 2 (l), all q i , k ≤ i ≤ l, are periodic of the same period and all

u j = ε, k ≤ j < l, -for k, l such that σ 1 (k) = σ 2 (l), M q k = M q l .
As the subtrees that are not same-ordered in two equivalent earliest and erase-ordered states are periodic of the same period the order of these can be changed without changing the semantics. Therefore the order of these subtrees can be fixed such that equivalent earliest and erase-ordered ltws are sameordered. Then the equivalence is decidable in polynomial time, see Theorem 1. However, building the earliest form of an ltw is in exponential time.

To circumvent this difficulty, we will show that the first part of Theorem 5 still holds even on a partial normal form, where only quasi-periodic states are earliest and the longest common prefix of parts of rules q(x)u with L q u being quasi-periodic is the empty word. Theorem 6. Let M and M be two equivalent erase-ordered ltws such that all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε for each part q(x)u of a rule where L q u is quasi-periodic, lcp(L q u) = ε Let q, q be two co-reachable states in M , M , respectively and q, f → u 0 q 1 (x σ1(1) ) . . . q n (x σ1(n) )u n and q , f → v 0 q 1 (x σ2(1) ) . . . q n (x σ2(n) )v n be two rules for q, q . Then for k < l such that σ 1 (k) = σ 2 (l), all q i , k ≤ i ≤ l, are periodic of the same period and all u j = ε, k ≤ j < l.

Partial Normal Form

In this section we introduce a partial normal form for ltws that does not suffer from the exponential blow-up of the earliest form. Inspired by Theorem 6, we wish to solve order differences by switching adjacent periodic states of the same period. Remember that the earliest form of a state q is constructed by removing the longest common prefix (suffix) of L q to produce this prefix (suffix) earlier.

It follows that all non-earliest states from which q can be constructed following the earliest form are quasi-periodic.

We show that building the earliest form of a quasi-periodic state or a part of a rule q(x)u with L q u being quasi-periodic is in polynomial time. Therefore building the following partial normal form is in polynomial time. Definition 7. A linear tree-to-word transducer is in partial normal form if 1. all quasi-periodic states are earliest, 2. it is erase-ordered and 3. for each rule q, f → u 0 q 1 (x σ(1) ) . . .

q n (x σ(n) )u n if L qi u i L qi+1 is quasi-periodic then q i (x σ(i) )u i q i+1 (x σ(i+1)
) is earliest and σ(i) < σ(i + 1).

Eliminating Non-Earliest Quasi-Periodic States

In this part, we show a polynomial time algorithm to build an earliest form of a quasi-periodic state. From which an equivalent ltw can be constructed in polynomial time such that any quasi-periodic state is earliest, i.e. lcp(L q ) = lcs(L q ) = ε. Additionally, we show that the presented algorithm can be adjusted to test if a state is quasi-periodic in polynomial time.

As quasi-periodicity on the left and on the right are symmetric properties we only consider quasi-periodic states of the form uw * (quasi-periodic on the left). The proofs in the case w * u are symmetric and therefore omitted here. In the end of this section we shortly discuss the introduced algorithms for the symmetric case w * u.

To build the earliest form of a quasi-periodic state we use the property that each state accessible from a quasi-periodic state is as well quasi-periodic. However, the periods can be shifted as the following example shows.

Example 8. Consider states q, q 1 and q 2 with rules q, f → aq 1 (x 1 )c, q 1 , f → aaq 2 (x 1 )ab, q 2 , f → q 2 (x 1 )abc, q 2 , g → abc. State q accepts trees of the form f n (g), n ≥ 2, and produces the language aaa(abc) n , i.e. q is quasi-periodic of period abc. State q 1 accepts trees of the form f n (g), n ≥ 1, and produces the language aa(abc) n ab, i.e. q 1 is quasi-periodic of period cab. State q 2 accepts trees of the form f n (g), n ≥ 0 and produces the language (abc) n+1 , i.e. q 2 is (quasi-)periodic of period abc.

We introduce two definitions to measure the shift of periods. We denote by

ρ n [u] the from right-to-left shifted word of u of shift n, n ≤ |u|, i.e. ρ n [u] = u -1 uu where u is the prefix of u of size n. If n ≥ |u| then ρ n [u] = ρ m [u] with m = n mod |u|.
For two quasi-periodic states q 1 , q 2 of period u = u 1 u 2 and u = u 2 u 1 , respectively, we denote the shift in their period by s(q 1 , q 2 ) = |u 1 |.

The size of the periods of a quasi-periodic state and the states accessible from this state can be computed from the size of the shortest words of the languages produced by these states. Lemma 9. If q is quasi-periodic on the left with period w, and q accessible from q, then q is quasi-periodic with period ε or a shift of w. Moreover we can calculate the shift s(q, q ) in polynomial time.

We now use these shifts to build, for a state q in M that is quasi-periodic on the left, a transducer M q equivalent to M where each occurrence of q is replaced by its equivalent earliest form, i.e. a periodic state and the corresponding prefix.

Algorithm 1. Let q be a state in M that is quasi-periodic on the left. M q starts with the same states, axiom, and rules as M .

-For each state p accessible from q, we add a copy p e to M q .

-For each rule p, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n in M with p accessible from q, we add a rule p e , f → u p q e 1 (x σ( 1) )q e 2 (x σ(2) ) . . . q e n (x σ(n) ) with u p = ρ s(q,p) lcp(p) -1 u 0 lcp(q 1 ) . . . lcp(q n )u n in M q .

-We delete state q in M q and replace any occurrence of q(x) in a rule or the axiom of M q by lcp(q)q e (x).

Note that lcp(p) -1 u 0 lcp(q 1 ) . . . lcp(q n )u n is equivalent to deleting the prefix of size |lcp(p)| from the word u 0 lcp(q 1 ) . . . lcp(q n )u n . Intuitively, to build the earliest form of a state q that is quasi-periodic on the left we need to push all words and all longest common prefixes of states on the right-hand side of a rule of q to the left. Pushing a word to the left through a state needs to shift the language produced by this state. We explain the algorithm in detail on state q from Example 8.

Example 10. Remember that q produces the language aaa(abc) n , n ≥ 2 and q 1 , q 2 accessible from q produce languages aa(abc) n ab, n ≥ 1 and (abc) n+1 , n ≥ 0, respectively. Therefore lcp(q) = aaaabcabc, lcp(q 1 ) = aaabcab and lcp(q 2 ) = abc. We start with state q. As there is only one rule for q the longest common prefix of q and the longest common prefix of this rule are the same and therefore eliminated.

q e , f → ρ s(q,q) [lcp(q) -1 alcp(q 1 )c]q e 1 (x 1 ) → ρ s(q,q) [(aaaabcabc) -1 aaaabcabc]q e 1 (x 1 ) → q e 1 (x 1 ) As there is only one rule for q 1 the argumentation is the same and we get q e 1 , f → q e 2 . For the rule q 2 , f we calculate the longest common prefix of the right-hand side lcp(q 2 )abc = abcabc that is larger than the longest common prefix of q 2 . Therefore we need to calculate the shift s(q, q 2 ) = s(q, q 1 ) + s(q 1 , q 2 ) = |c| + |ab| = 3 as q 1 is accessible from q in rule q, f and q 2 is accessible from q 1 in rule q 1 , f . This leads to the following rule.

q e 2 , f → ρ s(q,q2) [lcp(q 2 ) -1 lcp(q 2 )abc]q e 2 (x 1 ) → ρ 3 [(abc) -1 abcabc]q e 2 (x 1 ) → abcq e 2 (x 1 ) As the longest common prefix of q 2 is the same as the longest common prefix of the right-hand side of rule q 2 , g we get q e 2 , g → ε. The axiom of M q is lcp(q)q e (x 1 ) = aaaabcabcq e (x 1 ). Lemma 11. Let M be an ltw and q be a state in M that is quasi-periodic on the left. Let M q be constructed by Algorithm 1 and p e be a state in M q accessible from q e . Then M and M q are equivalent and p e is earliest.

To replace all quasi-periodic states by their equivalent earliest form we need to know which states are quasi-periodic. Algorithm 1 can be modified to test an arbitrary state for quasi-periodicity on the left in polynomial time. The only difference to Algorithm 1 is that we do not know how to compute lcp(p) in polynomial time and s(q, p) does not exist. We therefore substitute lcp(p) by some smallest word of L p and we define a mock-shift s (q, p) as follows s (q, q) = 0 for all q, if q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n , we say s (q, q i ) = |u i w qi+1 . . . w qn u n |, where w q is a shortest word of L q , if s (q 1 , q 2 ) = n and s (q 2 , q 3 ) = m then s (q 1 , q 3 ) = n + m. If several definitions of s (q, p) exist, we use the smallest. If p is accessible from a quasi-periodic q, then s (q, p) = s(q, p). Algorithm 2. Let M = (Σ, ∆, Q, ax, δ) be an ltw and q be a state in M . We build an ltw T q as follows.

-For each state p accessible from q, we add a copy p e to T q .

-The axiom is w q q e (x) where w q is a shortest word of L q .

-For each rule p, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n in M with p accessible from q, we add a rule p e , f → u p q e 1 (x σ(1) )q e 2 (x σ(2) ) . . . q e n (x σ(n) )

in T q , where u p is constructed as follows.

• We define u = u 0 w 1 . . . w n u n , where w i is a shortest word of L qi .

• Then we remove from u its prefix of size |w |, where w is a shortest word of L p . We obtain a word u . • Finally, we set u p = ρ s (q,p) [u ].

As the construction of Algorithms 1 and 2 are the same if the state q is quasi-periodic, M q and T q are equivalent if q is quasi-periodic. Moreover, q is quasi-periodic if M q and T q are equivalent. Lemma 12. Let q be a state of an ltw M and T q be constructed by Algorithm 2. Then M and T q are same-ordered and q is quasi-periodic on the left if and only if M q = T q and q e is periodic.

As M and T q are same-ordered we can test the equivalence in polynomial time, cf. Theorem 1. Moreover testing a CFG for periodicity is in polynomial time and therefore testing a state for quasi-periodicity is in polynomial time.

Algorithm 2 can be applied to a part q(x)u of a rule to test L q u for quasiperiodicity on the left. In this case for each rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n a rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n u is added to M and each occurrence of the part q(x)u in a rule of M is replaced by q(x). We then apply the above algorithm to q and test M q and T q for equivalence and qe for periodicity.

We introduced algorithms to test states for quasi-periodicity on the left and to build the earliest form for such states. These two algorithms can be adapted for states that are quasi-periodic on the right. There are two main differences. First, as the handle is on the right the shortest word of a language L that is quasi-periodic on the right is lcs(L). Second, instead of pushing words through a periodic language to the left we need to push words through a periodic language to the right.

Hence, we can test each state q of an ltw M for quasi-periodicity on the left and right. If the state is quasi-periodic we replace q by its earliest form. Algorithm 1 and 2 run in polynomial time if SLPs are used. This is crucial as the shortest word of a CFG can be of exponential size. However, the operations that are needed in the algorithms, namely constructing the shortest word of a CFG and removing the prefix or suffix of a word, are in polynomial time using SLPs, cf. [START_REF] Lohrey | The Compressed Word Problem for Groups[END_REF]. Theorem 13. Let M be an ltw. Then an equivalent ltw M where all quasiperiodic states are earliest can be constructed in polynomial time.

Switching Periodic States

In this part we obtain the partial normal form by ordering periodic states of an erase-ordered transducer where all quasi-periodic states are earliest. Ordering means that if the order of the subtrees in the translation can differ, we choose the one similar to the input, i.e. if q(x 3 )q (x 1 ) and q (x 1 )q(x 3 ) are equivalent, we choose the second order. We already showed how we can build a transducer where each quasi-periodic state is earliest and therefore periodic. However, we need to make parts of rules earliest such that periodic states can be switched as the following example shows.

Example 14. Consider the rule q, h → q 1 (x 2 )bq 2 (x 1 ) where q 1 , q 2 have the rules q 1 , f → bcabcaq 1 (x), q 1 , g → ε, q 2 , f → cabq 2 (x), q 2 , g → ε. States q 1 and q 2 are earliest and periodic but not of the same period as a subword is produced in between. We replace the non-earliest and quasi-periodic part q 1 (x 2 )b by their earliest form. This leads to q, h → bq e 1 (x 2 )q 2 (x 1 ) with q e 1 , f → cabcabq e 1 (x), q e 1 , g → ε. Hence, q e 1 and q 2 are earliest and periodic of the same period and can be switched in the rule.

To build the earliest form of a quasi-periodic part of a rule q(x)u each occurrence of this part is replaced by a state q(x) and for each rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n a rule q, f → u 0 q 1 (x σ(1) ) . . . q n (x σ(n) )u n u is added. Then we apply Algorithm 1 on q to replace q and therefore q(x)u by their earliest form. Iteratively this leads to the following theorem.

Theorem 15. For each ltw M where all quasi-periodic states are earliest we can build in polynomial time an equivalent ltw M such that each part q(x)u of a rule in M where L q u is quasi-periodic is earliest.

In Theorem 6 we showed that order differences in equivalent erase-ordered ltws where all quasi-periodic states are earliest and all parts of rules q(x)u are earliest are caused by adjacent periodic states. As these states are periodic of the same period and no words are produced in between these states can be reordered without changing the semantics of the ltws.

Lemma 16. Let M be an ltw such that -M is erase-ordered, all quasi-periodic states in M are earliest and each q i (x σ(i) )u i in a rule of M that is quasi-periodic is earliest. Then we can reorder adjacent periodic states q i (x σ(i) )q i+1 (x σ(i+1) ) of the same period in the rules of M such that σ(i) < σ(j) in polynomial time. The reordering does not change the transformation of M .

We showed before how to construct a transducer with the preconditions needed in Lemma 16 in polynomial time. Note that replacing a quasi-periodic state by its earliest form can break the erase-ordered property. Thus we need to replace all quasi-periodic states by its earliest form before building the eraseordered form of a transducer. Then Lemma 16 is the last step to obtain the partial normal form for an ltw.

Theorem 17. For each ltw we can construct an equivalent ltw that is in partial normal form in polynomial time.

Testing Equivalence in Polynomial Time

It remains to show that the equivalence problem of ltws in partial normal form is decidable in polynomial time. The key idea is that two equivalent ltws in partial normal form are same-ordered.

Consider two equivalent ltws M 1 , M 2 where all quasi-periodic states and all parts of rules q(x)u with L q u is quasi-periodic are earliest. In Theorem 6 we showed if the orders σ 1 , σ 2 of two co-reachable states q 1 , q 2 of M 1 , M 2 , respectively, for the same input differ then the states causing this order differences are periodic with the same period. The partial normal form solves this order differences such that the transducers are same-ordered.

Lemma 18. If M and M are equivalent and in partial normal form then they are same-ordered.

As the equivalence of same-ordered ltws is decidable in polynomial time (cf. Theorem 1) we conclude the following.

Corollary 19. The equivalence problem for ltws in partial normal form is decidable in polynomial time.

To summarize, the following steps run in polynomial time and transform a ltw M into its partial normal form.

1. Test each state for quasi-periodicity. If it is quasi-periodic replace the state by its earliest form. 2. Build the equivalent erase-ordered transducer. 3. Test each part q(x)u in each rule from right to left for quasi-periodicity on the left. If it is quasi-periodic replace the part by its earliest form. 4. Order adjacent periodic states of the same period according to the input order. This leads to our main theorem.

Theorem 20. The equivalence of ltws is decidable in polynomial time.
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