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In this work, in order to prove global existence in time of solutions for some strongly coupled reaction-di¤usion systems non-dissipative with a full di¤usion matrix, we present some simple techniques based on the construction of invariant regions. Applications to some chemical, biological and dynamics of populations models are presented. For such systems, namely when they are described by more then two equations and with nonlinearities growth more than exponential, we have not seen substantial research results in the front of global existence in time until recently. An inherent di¢ culty in systems of the type considered, is that the asymptotic sign condition in vector version

(where C is a positive constant and f is the nonlinear term, representing the reaction), is not satis…ed. Usually this condition plays a key role in the dissipation process, and thus if it is satis…ed, often leads to the existence of a bounded invariant regions and then global existence of the solutions for the system. In the case of systems formed with two equations and under the condition (*) satis…ed for all u = (u 1 ; u 2 ) 2 R 2 (i.e. C = 0) in the scalar version (i.e. u 1 :f 1 (u) and u 1 :f 2 (u) don't change sign, where f = (f 1 ; f 2 )), many partial results have been obtained when the balance law is strict and recently for more general nonlinearities. In this work, in order to construct bounded invariant regions and obtain global existence, we shall alleviate the condition (*) to be satis…ed in the direction of each eigenvector (with su¢ ciently large norm) associated to the di¤usion matrix. This means that we don't impose to the reactions to satisfy the condition (*) in both the vector and the scalar versions and not necessary on the whole space R m . In addition we don't impose any conditions on the growth of the nonlinearities.

Introduction

We consider the following reaction-di¤usion system @u i (t; x) @t m j=1 a ij u j (t; x) = f i (t; x; u); in R + ; i = 1; m; [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF] with the homogenous Neumann boundary conditions [START_REF] Friedman | Partial Di¤erential Equations of Parabolic Type[END_REF] @u i @ = 0, on R + @ ; i = 1; m and the initial data

u i (0; x) = u 0 i (x); in ; i = 1; m; (3) 
where is an open bounded domain of class C 1 in R N , with boundary @ and @ @ denotes the outward normal derivative on @ : The di¤usion matrix A = (a ij ) 1 i;j m is supposed to be diagonalizable with simple positive eigenvalues: 0 < 1 < 2 < ::: < m and corresponding eigenvectors 1 ; :::; m . The reaction term f = (f 1 ; :::; f m ) is Lipschitz continuous in (t; x; u 1 ; :::; u m ). The problem of global existence in time of strong solutions for systems such as these and their quasilinear generalizations have received much attention because they arise in several chemical, biological and dynamics of populations models. The unknowns u 1 ; :::; u m represent chemical concentrations or biological population densities and system ( 1) is a mathematical model describing various chemical and biological phenomena (see [START_REF] Garcia-Ybarra | Cross transport e¤ects in premixed ‡ames[END_REF] [1], [START_REF] Jorne | The di¤usion Lotka-Volterra oscillating system[END_REF], [START_REF] Lee | On the general linear coupled system for di¤usion in media with two di¤usivities[END_REF] and [START_REF] Savchik | Application of moments to the general linear multicomponent reaction-di¤usion equations[END_REF]). The technique based on the bounded invariant regions is among those used for this purpose. The reader is referred to the expository article by [START_REF] Kuiper | Invariant sets for elliptic and parabolic systems[END_REF] and to further references that may be found in [START_REF] Kuiper | Positively Invariant Regions for Strongly Coupled Reaction Di¤usion Systems with a Balance Law[END_REF], [START_REF] Redlinger | Invariant sets for strongly coupled reaction di¤usion systems under general boundary conditions[END_REF] and [START_REF] Smoller | Shock Waves and Reaction-Di¤usion Equations[END_REF].

In the triangular case (a 12 = 0) under the strict balance law condition (f 1 +f 2 = 0), S. Kouachi and A. Youkana [START_REF] Kouachi | Global existence and asymptotics for a class of reaction di¤usion systems[END_REF] have obtained global existence of solutions by taking nonlinearities f 1 (u 1 ; u 2 ) of a weak exponential growth. J. I. Kanel and M. Kirane [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of Reaction-Di¤usion Equations with a balance law[END_REF] and [START_REF] Kanel | Global solutions to a reaction di¤usion system[END_REF] have proved global existence when the di¤usion matrix is full but the reaction terms are polynomially growth (f

2 (u 1 ; u 2 ) = f 1 (u 1 ; u 2 ) = u 1 u n 2
and n is an odd integer) under a di¢ cult-to-establish bound on ja 12 a 21 j : H. J. Kuiper [START_REF] Kuiper | Positively Invariant Regions for Strongly Coupled Reaction Di¤usion Systems with a Balance Law[END_REF] proved global existence of solutions via bounded invariant regions technique under some conditions on the di¤usion matrix A to be diagonalizable with a 12 > 0 and the following conditions on the reaction terms (4)

u 1 f 1 0 and u 1 f 2 0; (u 1 ; u 2 ) 2 R 2 ;

and

(5)

( 1 a 22 ) jf 1 j a 12 jf 2 j ( 2 a 22 ) jf 1 j ; (u 1 ; u 2 ) 2 R 2 :
It is important to note that all the above results are contingent on the condition (*) in the scalar version (i.e. the dissipativity of each reaction term) which is not the case of the systems considered in this paper where the reaction terms are not necessary dissipative. The di¢ culty for this type of systems is that the reactions terms have not a constant sign and this means that none of the equations is good is the sense that neither conditions on the form (4) nor [START_REF] Jorne | The di¤usion Lotka-Volterra oscillating system[END_REF] are satis…ed on all R m :

Invariant regions and global existence

Usually to construct an invariant regions for systems such (1), we make a linear change of variables u i to obtain a new equivalent system with diagonal di¤usion matrix for which standard techniques can be applied to deduce global existence (see J. I. Kanel and M. Kirane [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of Reaction-Di¤usion Equations with a balance law[END_REF] and [START_REF] Kanel | Global solutions to a reaction di¤usion system[END_REF],S. Kouachi [START_REF] Kouachi | Uniform boundedness and global existence of solutions for reaction di¤usion systems with a balance law and a full matrix of di¤usion coe¢ cients[END_REF], [START_REF] Kouachi | Global existence of solutions for reaction di¤usion systems with a full matrix of di¤usion coe¢ cients and no homogeneous boundary conditions[END_REF] and [START_REF] Kouachi | Global existence of solutions in invariant regions for reaction di¤usion systems with a balance law and a full matrix of di¤usion coe¢ cients[END_REF], S. Kouachi and E. M. Al-Eid [START_REF] Kouachi | Explicit invariant regions and global existence of solutions for reaction-di¤usion systems with a full matrix of di¤usion coe¢ cients and nonhomogeneous boundary conditions[END_REF], H. j. Kuiper [START_REF] Kuiper | Invariant sets for elliptic and parabolic systems[END_REF] and [START_REF] Kuiper | Positively Invariant Regions for Strongly Coupled Reaction Di¤usion Systems with a Balance Law[END_REF], R. Redlinger [START_REF] Redlinger | Invariant sets for strongly coupled reaction di¤usion systems under general boundary conditions[END_REF] and J. A. Smoller [START_REF] Smoller | Shock Waves and Reaction-Di¤usion Equations[END_REF]). In [START_REF] Kouachi | Invariant regions and global existence of solutions for reaction di¤usion systems with a full matrix of di¤usion coe¢ cients and no homogeneous boundary conditions[END_REF], we constructed, for coupled reaction di¤usion systems, invariant rectangles bounded on one face reducing the system to the diagonal form with positive solutions. Then we proved, via functional techniques, the global existence of solutions when the reactions are polynomially growth.

Let i = ( i1 ; :::; im ) t be an eigenvector of the matrix A t (left eigenvector of A) associated with its eigenvalue i : Multiplying the kth equation of system (1) by ik ; k = 1; :::; m and adding the resulting equations, we get x ik f k ; i = 1; :::; m:

(6) @z i @t i z i = F i (t
In terms of matrices, If we denote by X the m m matrix formed with the rows i and D the diagonal matrix with entries i ; i = 1; :::; m, the system (1-3) can be written as follows [START_REF] Kouachi | Global existence of solutions in invariant regions for reaction di¤usion systems with a balance law and a full matrix of di¤usion coe¢ cients[END_REF] @u(t; x) @t A u(t; x) = f (t; x; u); in R + ;

with the boundary conditions (11) @u(t; x) @ = 0; in R + @ ; and the initial data where u = (u 1 ; :::; u m ) t : This transformed system, equivalent to system (1-3), can be written as follows @z(t; x) @t D z(t; x) = Xf (t; x; X 1 z); in R + ; i = 1; :::; m;

with the same boundary conditions (2) and initial data z(0; x) = Xu 0 (x); in ; i = i = 1; :::; m; where z = (z 1 ; :::; z m ) t :

De…nition 2.1. A subset (L 1 ( ))
m is called a positively invariant region (or more simply an invariant region) for system [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF], if all solutions with initial data in remain in for all time in their interval of existence.

For the global existence of solutions of the system (1-3), we use the following well known alternative (see [START_REF] Friedman | Partial Di¤erential Equations of Parabolic Type[END_REF], [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤erential Equations[END_REF], [START_REF] Roth | Global Solutions of Reaction-Di¤usion Systems[END_REF] and[4 Here ku(t; :)k 1 denotes the essential supremum norm of the function u(t; :) on . So, if there exists a bounded invariant set of system ( 6), then the solution of the system ( 1) is global whenever u 0 is in =: X 1 ( ). Let us de…ne the set

(13) = m \ i=1 i
where i represents the parallelepiped ( 14) i = fz 2 R m : i z i i g ; i = 1; :::; m; with edges the rectangles [START_REF] Kuiper | Positively Invariant Regions for Strongly Coupled Reaction Di¤usion Systems with a Balance Law[END_REF] j ( j ) = fz 2 R m : z j = j and i z i i ; i 6 = j = 1; :::; m; g ; and (16) j j = z 2 R m : z j = j and i z i i ; i 6 = j = 1; :::; m; : To …nd invariant regions, we state the following simpli…ed version of a well known result (see J. A. Smoller [START_REF] Smoller | Shock Waves and Reaction-Di¤usion Equations[END_REF]) Theorem 2.2. The region is invariant for system (6) under the following condition (17) F i (t; x; z) 0; for all z 2 i ( i ) and F i (t; x; z) 0; for all z 2 i ( i ) ; in ]0; T [ and for all i = 1; :::; m:

For technical reasons, namely when m 3; we suppose the di¤usion matrix A to be Symmetrizable, then there exists a diagonal matrix D with positive entries (called Symmetrizer), such that the matrix D:A is symmetric and the system (1) can be transformed by the change variable: v = D Our main result is the following Theorem 2.3. Suppose that the di¤ usion matrix is symmetrizable and that (18) W:f (t; x; W ) < 0; t > 0; x 2 ;

for each su¢ ciently large (in norm) eigenvector W of the di¤ usion matrix, then all solutions of the system (1) are global and uniformly bounded for all bounded initial data.

Proof. Since A is symmetrizable, then the system can be transformed to an equivalent system with symmetric di¤usion matrix. Thus, we can suppose that A is symmetric and then the matrix X formed with the rows i ; i = 1; :::m; can be orthogonalized (i.e. chosen such that X 1 = X t ): Consequently, we have

z i = m k=1 ik u k ; u i = m k=1 ki z k and F i (t; x; z) = m k=1 ik f k (t; x; u) ; i = 1; :::m;
where the unknown u can be written as follows

u = i1 z i + m k6 =i k1 z k ; i2 z i + m k6 =i k2 z k ; ::: ; im z i + m k6 =i km z k :
For z 2 i ( i ) ; we have z i = i and all the summations m k6 =i kj z k , j = 1; :::; m in the above expression of u are bounded ( k z k k ; k 6 = i). By writing F i (t; x; z) on the form

F i (t; x; z) = z i F i (t; x; z) z i = z i m k=1 ik f k (t; x; u) z i = (z i i ) :f (t; x; u) z i ;
choosing z i = i negative and su¢ ciently large in absolute value and taking into account the uniform continuity of the reaction f (t; x; u) on bounded sets, the condition (18) remains valid ( i z i is an eigenvector of A t ). Consequently we have i z i :f (t; x; u) < 0 for all z 2 i ( i ) and since i < 0; this gives the …rst part of condition [START_REF] Mahara | Three-variable reversible Gray-Scott model[END_REF] of the Theorem 2.2. Following the same reasoning for z 2 i ( i ) by choosing i positive and su¢ ciently large, we get from [START_REF] Parlett | The Symmetric Eigenvalue Problems[END_REF], i z i :f (t; x; u) < 0 for all z 2 i ( i ) and since i > 0; this gives the second part of condition [START_REF] Mahara | Three-variable reversible Gray-Scott model[END_REF] of the Theorem 2.2.

Remark 2.1. Theorem 2.2 also holds if we replace any of the constants i by 1 and i by +1 provided we use the convention

F i (t; x; 1; z 2 ) = F i (t; x; z 1 ; 1) = 1:
Note that we still get global existence when the homogenous Neumann boundary conditions [START_REF] Friedman | Partial Di¤erential Equations of Parabolic Type[END_REF] are replaced by nonhomogeneous Dirichlet boundary conditions [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤erential Equations[END_REF] u i (t; x) = i (x) , on R + @ : But when (2) are replaced by the nonhomogeneous Neumann boundary conditions (20) @u @ = g (x; u) = (g 1 (x; u) ; :::; g m (x; u)) , on R + @ ;

we apply a more generalized version of Theorem 2.2 (see for example [START_REF] Kuiper | Invariant sets for elliptic and parabolic systems[END_REF]), where we should suppose, with condition (18), the following analogous condition on the boundary [START_REF] Prigogine | Symmetry breaking instabilities in dissipative systems[END_REF] u:g (x; u) < 0; x 2 @ ; for all u in the direction of any eigenvector of the di¤usion matrix and su¢ ciently large (in norm).

3. Some models 3.1. Strongly coupled reaction-di¤usion equations. In this case, Theorem 2.3 is of course applicable when the di¤usion matrix is symmetrizable. Since in this case the eigenvalues 1 and 2 and their corresponding eigenvectors can be calculated explicitly, we don't need to suppose the di¤usion matrix to be symmetrizable. Let us choose as eigenvector associated to i i = a 21 ; j t ; i 6 = j = 1; 2;

where j = j a 22 ; j = 1 and 2, then ( 22)

z i = a 21 u + j v; i 6 = j = 1; 2;
and

(23) u = a 1 z 1 + a 2 z 2 and v = b 1 z 1 + b 2 z 2 ;
where

a 1 = 1 a 21 ( 2 1 
)

; a 2 = 2 a 21 ( 2 1 ) 
; b 1 = b 2 = 1 

:

The left hand side of ( 18) can be written, for the eigenvector W = i ; 2 R; as follows W:f (W ) = a 21 f 1 a 21 ; j + j f 2 a 21 ; j :

3.1.1. Strongly coupled reaction-di¤ usion equations with strict balance law. When the strict balance law is satis…ed

f 1 (u; v) = h(u; v); f 2 (u; v) = h(u; v);
Then condition (18) can be written as follows The case when vh(u; v) does not change sign for juj ; jvj su¢ ciently large can be treated by analogy. We have the following alternative: When (29) vh(u; v) > 0;

W:f (W ) = j +
for juj ; jvj su¢ ciently large in the direction of the eigenvectors of A, following the same reasoning, ( 18) is satis…ed under the conditions j + a 21 j < 0 j = 1; 2; Theorem 3.1. Suppose that uh(u; v) or vh(u; v) does not change sign for juj ; jvj su¢ ciently large, then all solutions of the strongly coupled reaction-di¤ usion equations with strict balance law are global and uniformly bounded for all bounded initial data, without conditions on the growth of the reaction terms in the following cases:

which
1) The di¤ usion and reaction terms satisfy conditions ( 26) and ( 24) respectively or ( 28) and ( 27) respectively, when uh(u; v) does not change sign for juj ; jvj su¢ciently large.

2) The di¤ usion and reaction terms satisfy conditions (30) and (29) respectively or (32) and (31) respectively, when uh(u; v) does not change sign for juj ; jvj su¢ ciently large.

Remark 3.1. Theorem 2.2 is applicable and the region given by (13-16) for m = 2 is invariant for the coupled reaction-di¤ usion equations with strict balance law.

The Brusselator. The Brusselator model is a famous model of chemical reactions with oscillations and a theoretical model for a type of autocatalytic reaction.

It was proposed by Prigogine and Lefever in 1968 and the name was coined by Tyson (see [START_REF] Tyson | The Belousov-Zhabotinskii Reaction[END_REF]). In the middle of the last century Belousov and Zhabotinsky discovered chemical systems exhibiting oscillations. It appears in the modeling of chemical morphogenetic processes ( [START_REF] Prigogine | Symmetry breaking instabilities in dissipative systems[END_REF], [START_REF] Prigogine | Biological order, structure and instabilities[END_REF], [START_REF] Turing | The chemical basis of morphogenesis[END_REF]). It is characterized by the reactions (33)

A ! U; 2U + V ! 3X; B + U ! V + D; U ! E;
under conditions where A and B are in vast excess and can thus be modeled at constant concentrations a and b respectively. The reaction terms become (34)

f 1 = a (b + 1) u + u 2 v and f 2 = bu u 2 v;
where u and v are the concentrations of the reactants U and V respectively. The left hand side of ( 18) can be written, for the eigenvector W = i ; as follows (35) W:f (W ) = a 21 f 1 a 21 ; j + j f 2 a 21 ; j ; j = 1; 2;

which can be written as follows

W:f (W ) = 2 + a 21 2 1 1 a 21 ( 2 1 
)

2 4 + P 1 ( ) ;
and

W:f (W ) = 1 + a 21 2 1 1 a 21 ( 2 1 ) 2 4 
+ P 2 ( ) ;

where P 1 ( ) and P 2 ( ) are both third degree polynomials of the variable . Suppose that (36) (a 22 a 11 + a 12 a 21 ) a 21 > 0;

then 1 + a 21 < 0 < 2 + a 21 : Theorem 2.
3 is applicable and we have Theorem 3.2. Suppose that the di¤ usion terms satisfy (36), then all solutions the system (1) with reaction terms given by (34) are global and uniformly bounded for all bounded initial data. and the system modelling this reaction is given by (1) with m=3 and the following nonlinearities

(38) f 1 = f 2 = f 3 = ku v + hw
where u; v and w are the concentrations respectively of the reactants U ; V and W and k > 0 and h > 0 are the reaction constants. We can state as example of applications, the well known chemical reaction Hydrogen + Oxygen = Water, which can be written in term of molecules as follows

2H 2 + O 2 k h 2H 2 O;
where = = 2 and = 1: Or the reversible Gray-Scott model was introduced by H. Mahara et al [START_REF] Mahara | Three-variable reversible Gray-Scott model[END_REF], which is based on scheme of biochemical reactions.

In order to apply Theorem 2.3 and prove global existence of solutions to system (38) with homogenous Neumann boundary conditions and bounded initial conditions, we choose an eigenspace f 1 ; 2 ; 3 g : The hypothesis (18) can be written, for the eigenvector W = i ; as follows (39

) i :f ( i ) = 3 k=1 ik f k ( i ) =: ( i1 i2 + i3 ) h + ( i1 ) ( i2 ) ( i3 ) i < 0 
; for i = 1; 2; 3. As we are interested with the sign of i :f ( i ) for j j taken su¢ciently large, we have three cases: When + > ; then (39) is satis…ed if we suppose + odd and (40)

( i1 i2 + i3 ) ( i1 ) ( i2 )
< 0; i = 1; 2; 3: -When is odd, then is even, conditions (40) become ( 41) 

( i1 i2 + i3 ) ( i1 ) < 0; i =
( i1 i2 + i3 ) h ( i1 ) ( i2 ) ( i3 ) + i < 0; i = 1; 2; 3;
which can be written

( i1 i2 + i3 ) ( i3 ) + " i1 i3 i2 i3 1 # < 0; i = 1; 2; 3:
When and are positive integers with + odd, by choosing as eigenvectors those given by (46), the above inequalities can be written as follows (48)

( i1 i2 + i3 ) i3 " i1 i3 i2 i3 1 #
< 0; i = 1; 2; 3: < 1 for the eigenvalues su¢ ciently large, then (48) can be deduced.

As ( i1 i2 + i3 ) i3 >
Theorem 3.3. The solutions of the system (1) with reaction terms given by (38) and symmetrizable di¤ usion matrix diagonally dominant are global and uniformly bounded for all bounded initial data, for all positive integers ; and such that + or is odd.

3.2.

The four dimensional case. We study in this section a reaction-di¤usion system on the form (1) consisting of four coupled two-cell Brusselator equations associated with cubic autocatalytic kinetics with the following reactions (49) 8 > > < > > :

f 1 = ( + 1) u + u 2 v + D 1 (w u) ; f 2 = u u 2 v + D 2 (z v) ; f 3 = ( + 1) w + w 2 z + D 3 (u w) ; f 4 = w w 2 z + D 4 (v z) :
The four compartment Brusselator, in its original form, is a system of 2 ODE's that model cubic autocatalytic chemical reactions describing the scheme of chemical reactions (33) (see [START_REF] Prigogine | Symmetry breaking instabilities in dissipative systems[END_REF]). The unknowns can be interpreted as the components in chemical kinetics or species in ecology.

The expression of the vector version W:f (W ) in the direction of an eigenvector i of the di¤usion matrix (i.e. the left hand side of hypothesis [START_REF] Parlett | The Symmetric Eigenvalue Problems[END_REF]) can be written as follows (50) i :f ( i ) =:

4 k=1 ik f k ( i ) = ( i1 i2 ) 2 i1 i2 + ( i3 i4 ) 2 i3 i4
4 + P 2 ( ) ; i = 1; 2; 3; 4;

which is a fourth degree polynomial of the variable with leading coe¢ cient L i = L i1 + L i2 where

L i1 = ( i1 i2 ) 2 i1 i2 ; L i2 = ( i3 i4 ) 2 i3 
i4 ; i = 1; 2; 3; 4;

and where P 2 ( ) is a second degree polynomial of the variable : For technical reasons we choose the components of the eigenvector i to be ij = ( 1) j+1 ij , where ij is the determinant of the three order matrix obtained from (A t i I)

by deleting its second row and jth column, j = 1; 2 ; i = 1; 2; 3 and 4: We can remark easily that L i1 is a tenth degree polynomial of the variable i with leading coe¢ cient 1; conversely L i2 is of degree eight. Consequently we can conclude that, for the eigenvalues su¢ ciently large, L i is negative and then for su¢ ciently large the left hand side of (50) is also negative for all i = 1; 2; 3 and 4: We have therefore proved the following Theorem 3.4. The solutions of the system (1) with reaction terms given by (49) and symmetrizable di¤ usion matrix diagonally dominant are global and uniformly bounded for all bounded initial data.

  x) = u 0 (x); in ; i = 1; :::; m;

]) Theorem 2 . 1 .

 21 The problem[START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF][START_REF] Friedman | Partial Di¤erential Equations of Parabolic Type[END_REF][START_REF] Garcia-Ybarra | Cross transport e¤ects in premixed ‡ames[END_REF] admits a unique classical solution u(t; x) on an interval [0; T max [ and either (i) ku(t; :)k 1 is bounded on [0; T max [ and the solution is global ( i.e. T max = +1). (ii) Or lim t!Tmax ku(t; :)k 1 = +1 and the solution is not global, we say that it blows up in …nite time T max or that it ceases existing.

1 2 u 2 1 2.

 221 to an equivalent system with symmetric matrix D 1 AD Note that sign symmetric (i.e. a ij :a ji > 0 and a ij = 0 ) a ji = 0) Tridiagonal, Pentadiagonal, Heptadiagonal and particularly, Symmetric matrices are examples of Symmetrizable matrices.

3. 1 . 3 .

 13 The three dimensional case. A three-component reversible model describing the following scheme of reversible chemical or biochemical reaction:

  are equivalent to (30) (a 22 a 11 + a 12 a 21 ) a 21 < 0:

	When	
	(31)	vh(u; v) < 0;
	the condition becomes as follows
	(32)	(a 22 a

11 + a 12 a 21 ) a 21 > 0:

  ; 3 and 4. Explicitly, we have

		a 21	a 31		a 41				a 11	i	a 31	a 41
	i1 =	a 23 a 33	i	a 43	;		i2 =	a 13	a 33	i	a 43	;
		a 24	a 34	a 44	i			a 14		a 34	a 44	i
		a 11	i	a 21	a 41			a 11	i	a 21	a 31
	i3 =	a 13	a 23	a 43	;	i4 =	a 13	a 23 a 33	i
		a 14	a 24 a 44	i			a 14	a 24	a 34
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