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We state a dictionary for thermodynamic formalism within the Curie-Weiss model between the Probability-Statistical Mechanics and the Ergodic viewpoints. Limits for probabilistic Gibbs measures are identified as combinations of, say N (β), dynamical conformal measures. Phase transitions are then related to a change in N (β) as β moves.

More surprising we point out that, to be closer to what is done in Statistical Mechanics, ergodicists should study the supremum of the sum of the entropy and the square of the integral of the potential instead of the sum of the entropy and the integral of the potential.

1. Introduction 1.1. Background, main motivations and results. The notion of Gibbs measure comes from Statistical Mechanics. It has been studied a lot from the probabilistic viewpoint (see [START_REF] Georgii | Gibbs measures and phase transitions[END_REF][START_REF] Costeniuc | Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model[END_REF][START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF][START_REF] Ellis | The statistics of Curie-Weiss models[END_REF]). This notion was introduced in Ergodic Theory in the 70's by Sinai, Ruelle and Bowen (see [START_REF] Sinai | Gibbs measures in ergodic theory[END_REF][START_REF] Sinaȋ | Theory of phase transitions: rigorous results[END_REF][START_REF] Ruelle | Thermodynamic formalism[END_REF][START_REF] Ruelle | Statistical mechanics[END_REF][START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]). Since that moment, the thermodynamic formalism became in Dynamical Systems a pure mathematical question and somehow disconnected from the original physical questions.

Since the 00's, ergodicists started to reconnect the questions in Dynamical Systems with the original physical ones. Notions as ground states and phase transitions were re-defined and investigated from the ergodic viewpoint. From that moment, the sharing of the vocabulary started to be a source of confusion, and the main motivation for this paper is to make clear some similitudes and differences between Gibbs measures within the probabilistic or the ergodic viewpoints.

Beyond stating a kind of dictionary between thermodynamic formalisms in Statistical Mechanics and Probability on the one hand, and Ergodic Theory on the other hand, the main byproduct of our work is a very strange discovery within the ergodic viewpoint.

Actually, and using the Ergodic viewpoint and vocabulary, Theorem 2 shows that, in Statistical Mechanics and Probability, one maximizes the entropy plus the square of an integral, whereas in Ergodic Theory one maximizes the entropy plus an integral. This has a lot of nice consequences and further possible research questions. Some of them are discussed later (see Subsubsection 1.2.3).

Our dictionary works as follows. In Statistical Mechanics and in Probability theory, the system is a finite set of sites. There is an interaction between sites given by an Hamiltonian. A Gibbs measure is a probability on the finite set of configurations which is optimal with respect to some quantity. All the objects depend on a parameter β equal to the inverse of the temperature. Then, the issue is to define the possible accumulation points for the Gibbs measures as the number of sites goes to +∞. A phase transition occurs if, as moving the parameter β, this set of accumulation points admits a discontinuity for some β c .

In Ergodic Theory (on symbolic dynamics) one immediately considers the set of infinite configurations Σ. Instead of having an Hamiltonian one considers a potential ψ : Σ → R. We consider here the case where ψ is Hölder continuous. The Gibbs measure is an invariant measure, also called equilibrium state, which maximizes the pressure (see below). The pressure function is the pressure for β.ψ considered as a function of β. Then, a phase transition occurs if the pressure function is not analytic at some β c . It is noteworthy that in this setting, the number of equilibrium states is almost independent of the regularity of the pressure function (see [START_REF] Thaler | Estimates of the invariant densities of endomorphisms with indifferent fixed points[END_REF][START_REF] Leplaideur | Chaos: butterflies also generate phase transitions[END_REF]).

Roughly speaking, our dictionary identifies accumulation points of Gibbs measures in Probability with conformal measures in Ergodic Theory. Conformal measures are not Gibbs measures (within the Ergodic viewpoint) but are strongly related to them. More precisely, we show that for the Curie-Weiss model (see Theorem 1) and the Curie-Weiss-Potts model (see Theorem 3) the Gibbs measures converge to a convex combination of conformal measures. A (probabilistic) phase transition occurs when the number of conformal measures in the limit changes. This notion of phase transition is thus different from the one used in Ergodic Theory.

Although some of the convergences we prove here were already known (see [START_REF] Orey | Large deviations for the empirical field of Curie-Weiss models[END_REF]), we point out that the identification of the limit with ergodic quantities was not stated. We claim that the novelty here does not concern the convergence but the dictionary and identification/similitude/differences between Gibbs measures and phase transitions in Probability Theory or Ergodic Theory. We point out that this dictionary works well for the Curie-Weiss and Curie-Weiss-Potts models probably because for these models, the Hamiltonian turns out to be easily writable as a function of a Birkhoff sum. This is the core of Theorem 2.

At last, we mention works of Cioletti and Lopes (see [START_REF] Cioletti | Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach[END_REF][START_REF] Cioletti | Interactions, Specifications, DLR probabilities and the Ruelle Operator in the One-Dimensional Lattice[END_REF][START_REF] Cioletti | Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures[END_REF]). There, for different settings (non Hölder continuous potentials and not for the Curie-Weiss models), the connection between DLR-Gibbs measures (within the Statistical Mechanics viewpoint) and the conformal measures (within the Ergodic viewpoint) is also done. 1.2. Precise settings and results.

1.2.1. Ergodic and Dynamical settings. We consider a finite set Λ with cardinality bigger or equal to 2. It is called the alphabet. Then we consider the one-sided full shift Σ = Λ N over Λ. A point x in Σ is a sequence x 0 , x 1 , . . . (also called an infinite word) where the x i are in Λ. Most of the times we shall use the notation x = x 0 x 1 x 2 . . .. A x i ∈ Λ can either be called a letter, or a digit or a symbol.

The shift map σ is defined by

σ(x 0 x 1 x 2 . . .) = x 1 x 2 . . . .
The distance between two points x = x 0 x 1 . . . and y = y 0 y 1 . . . is given by

d(x, y) = 1 2 min{n, xn =yn} •
A finite string of symbols x 0 . . . x n-1 is also called a word, of length n. For a word w, its length is |w|. A cylinder (of length n) is denoted by [x 0 . . . x n-1 ]. It is the set of points y such that y i = x i for i = 0, . . . n -1. We shall also talk about n-cylinder instead of cylinder of length n.

If w is the word of finite length w 0 . . . w n-1 and x is a word, the concatenation wx is the new word w 0 w 1 . . . w n-1 x 0 x 1 . . .. For ψ : Σ → R continuous and β > 0, the pressure function is defined by ( 1)

P(βψ) := sup µ h µ + β Σ ψ dµ ,
where the supremum is taken among the set M σ (Σ) of σ-invariant probabilities on Σ and h µ is the Kolmogorov-Sinaï entropy of µ. The real parameter β is assumed to be positive because it represents the inverse of the temperature in statistical mechanics.

It is known that the supremum is actually a maximum and any measure for which the maximum is attained in (1) is called an equilibrium state for βψ. We refer the reader to [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF][START_REF] Ruelle | Thermodynamic formalism[END_REF] for basic notions on thermodynamic formalism in ergodic theory.

If ψ is Lipschitz continuous then the Ruelle-Griffith theorem (see [START_REF] Griffiths | Strict convexity (continuity) of the pressure in lattice systems[END_REF]) states that for every β, there is a unique equilibrium state for βψ, which is denoted by µ βψ . It is ergodic and it shall be called the dynamical Gibbs measure (DGM for short 1 ). It is the unique σ-invariant probability measure which satisfies the property that for every x = x 0 x 1 . . . and for every n,

(2) e -C β ≤ µ βψ ([x 0 . . . x n-1 ]) e β.Sn(ψ)(x)-nP(βψ) ≤ e C β
, where C β is a positive real number depending only on β and ψ (but not on x or n), and S n (ψ) stands for ψ

+ ψ • σ + . . . + ψ • σ n-1 .
With these settings, the βψ-conformal measure is the unique probability measure such that for every x and for every n,

(3) ν βψ ([x 0 . . . x n-1 ]
) = e βSn(ψ)(x 0 ...x n-1 y)-nP(βψ) dν βψ (y).

A precise (and more technical) definition of conformal measure is given in page 19.

Again, we refer the reader to [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF][START_REF] Ruelle | Thermodynamic formalism[END_REF] to see the connection between conformal measures and DGM. We emphasize that in our settings, conformal measures and DGM are equivalent measures and one can obtain one from the other.

If the choice of ψ is clear we shall drop the ψ and write µ β , ν β and P(β).

1.2.2.

The Curie-Weiss model. Probabilistic settings 1 and results. We consider the case Λ = {-1, +1}; Σ will be denoted by Σ 2 .

If ω 0 . . . ω n-1 is a finite word, we set (4)

H n (ω) := - 1 2n n-1 i,j=0 ω j ω i .
It is called the Curie-Weiss Hamiltonian. The empirical magnetization for ω is

m n (ω) := 1 n n-1 j=0 ω j . Then we have (5) H n (ω) = - n 2 (m n (ω)) 2 .
We denote by P := ρ ⊗N the product measure on Σ 2 , where ρ is the uniform measure on {-1, 1}, i.e. ρ({1}) = ρ({-1}) = 1 2 , and we define the probabilistic Gibbs measure (PGM for short) µ n,β on Σ 2 by [START_REF] Cioletti | Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures[END_REF] µ n,β (dω) := e -βHn(ω) Z n,β P(dω),

where Z n,β is the normalization factor

Z n,β = 1 2 n ω , |ω |=n e -βHn(ω ) .
Note that µ n,β can also be viewed as a probability defined on Λ n .

The measure P is a Bernoulli measure and is σ-invariant. In Ergodic Theory it is usually called the Parry-measure (see [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]) and turns out to be the unique measure with maximal entropy. With our previous notations it corresponds to the DGM µ 0 .

If 

µ n,β w -→ n→+∞    µ 0 if β ≤ 1, 1 2 µ + 2βξ β + µ - 2βξ β if β > 1.
Remark 1. Actually µ n,β converges towards 1 2 µ + 2βξ β + µ - 2βξ β for every β > 0 since we shall see that for β ≤ 1 we have ξ β = 0, and it is clear that µ + 0 = µ - 0 = µ 0 = ρ ⊗N .

We refer to [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF], sections IV.4 and V.9, for a discussion of the Curie-Weiss model and historical references (see also [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF], section 3.4). In Theorem IV.4.1 it is proved, using large deviations, that the sequence of image probabilities Q n defined by [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF] Q n (A) := µ n,β (m n ∈ A) converges to an atomic measure as n goes to +∞. By using this theorem, Orey ([19], Corollary 1.2) proved by a nice simple probabilistic argument the weak convergence of µ n,β towards an explicit atomic measure. We were not aware of the work of Orey when we proved our theorem 1. We think it is still interesting because it makes the link with dynamical Gibbs measures, and furthermore our proof is direct and does not use large deviations.

We emphasize the equality [START_REF] Ellis | Limit theorems for sums of dependent random variables occurring in statistical mechanics[END_REF] m n (ω

) := 1 n S n (1 1 [+1] -1 1 [-1] )(ω)
which shows that m n can be written as a Birkhoff mean of a continuous function.

A consequence of ( 9) is that (5) can be rewritten under the form

H n (ω) = - n 2 1 n S n (ψ)(ω) 2 ,
where

ψ := 1 1 [+1] -1 1 [-1]
. We are thus led to investigate about results similar to those of Theorem 1 but for a more general Hamiltonian. From that point we discovered a very strange result: to export the Curie-Weiss Model in Ergodic Theory, one should focus on the invariant measures µ which maximize

h µ + β 2 ψ dµ 2
instead of measures which maximize h µ + β ψ dµ.

Theorem 2. Convergence for a more general Hamiltonian

Let ψ be a locally constant function 2 on Σ 2 . Let H n be the Hamiltonian defined by

H n (ω) = - n 2 1 n S n (ψ)(ω) 2 .
Let µ n,β be the PGM defined by [START_REF] Cioletti | Ruelle Operator for Continuous Potentials and DLR-Gibbs Measures[END_REF] with this new value for H n . Then, for each β > 0,

(1) there are finitely many real numbers t 1 , . . . t J , and J depends on β such that the DGM µ βt j 's associated to βt j ψ are the unique measures which maximize

h µ + β 2 ψ dµ 2 .
(2) As n goes to +∞, µ n,β converges weakly to a convex combination of the conformal measures ν βt j 's associated to βt j ψ.

From this theorem it makes sense to define a new concept of pressure as

P 2 (βψ) := max h µ + β 2 ψ dµ 2 ,
and to study measures which realize this maximum. This quantity shall be referred to as the quadratic pressure. Note that upper semi-continuity for entropy shows that the maximum is well defined. The function β → P 2 (βψ) is obviously convex (thus continuous). Theorem 1 shows that it can be piecewise analytic and that the number of measures which realize the maximum may change with respect to β.

Remark 2. We emphasize that Theorem 1 is a particular case of Theorem 2 with

ψ = 1 1 [+] -1 1 [-]
. Note that for this particular case, the DGM is also the conformal measure.

2 That is ψ is of the form ψ = k j=0 a j 1 1 Cj where the C j 's are disjoint cylinders 1.2.3. Some consequences of Theorem 2. Several questions arise from Theorem 2. Actually, the main goal for Thermodynamic Formalism is to furnish a way to select one (or finitely many) invariant ergodic measure via the variational principle (see [START_REF] Baraviera | Ergodic optimization, zero temperature limits and the max-plus algebra[END_REF]). In terms of mathematics, it does not make neither more nor less sense to select measures which maximize

h µ + β ψ dµ instead of h µ + β 2 ψ dµ 2 .
Therefore, we are naturally led to redo the Thermodynamic Formalism for all known Dynamical Systems but inquiring for measures µ which maximize

h µ + β 2 ψ dµ 2 .
In particular, a natural question is to inquire whether Theorem 2 holds for any sufficiently regular potential ψ and not only the locally constant ones. We point out that our proof cannot be easily adapted to that more general case. Moreover, the usual tool in Thermodynamic Formalism -that is the Transfer operator -does not seem to be well adapted to this question.

For more geometric dynamical systems, one usually considers or studies the special class of physical or/and SRB-measures. These measures are usually considered as the most natural ones with the measures of maximal entropy. It is clear that measures of maximal entropy also maximize h µ + ψ dµ 2 for ψ ≡ 0. A natural question is thus to know if SRB-measures can also be characterized as measures maximizing

h µ + ψ dµ 2 .
1.2.4. The Curie-Weiss-Potts model. Probabilistic settings 2 and result. The Curie-Weiss-Potts model will be for Λ = {θ 1 , . . . , θ q } with q > 2. In that case we shall write Σ q instead of Σ.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word

ω = ω 0 • • • ω n-1 by (10) H n (ω) := - 1 2n n-1 i,j=0 1 1 ω j =ω i .
We define the vector

L n (ω) = (L n,1 (ω), • • • , L n,q (ω))
where

L n,k (ω) = n-1 i=0 1 1 ω i =θ k
is the number of digits of ω which take the value θ k , so that we can write

n-1 i,j=0 1 1 ω j =ω i = q k=1 n-1 i=0 1 ω i =θ k 2 = L n (ω) 2 ,
where • stands for the euclidean norm on R q .

We denote by P := ρ ⊗N the product measure on Σ q , where ρ is the uniform measure on Λ, i.e. ρ = 1 q q k=1 δ θ k , and we define the probabilistic Gibbs measure µ n,β on Σ q by [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] µ n,β (dω

) := e -βHn(ω) Z n,β P(dω) = e β 2n Ln(ω) 2 Z n,β P(dω),
where Z n,β is the normalization factor

Z n,β = 1 q n ω , |ω |=n e β 2n Ln(ω ) 2 .
Now we can state the analog of Theorem 1.

Theorem 3. Weak convergence for the CWP model

For 1 ≤ k ≤ q, b ∈ R, let µ k b be the dynamical Gibbs measure for b1 1 [θ k ] . Let β c = 2(q-1) log(q-1) q-2
. For 0 < β < β c set s β = 0 and for β ≥ β c let s β be the largest solution of the equation [START_REF] Feng | Lyapunov spectrum of asymptotically sub-additive potentials[END_REF] s = e βs -1 e βs + q -1 .

Then,

(13) µ n,β w -→ n→+∞                ρ ⊗N if 0 < β < β c , 1 q q k=1 µ k βs β if β > β c , A µ 1 0 + B q k=1 µ k βcs βc A + qB if β = β c , with A = 1 -βc q(q-1) q-2 2 and B = 1 -βc q q-2 2 .
Remark 3. Actually µ n,β converges towards 1 q q k=1 µ k βs β for every β = β c since s β = 0 for β < β c , and it is clear that

µ k 0 = ρ ⊗N for each 1 ≤ k ≤ q.
We refer to [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] for a discussion of the Curie-Weiss-Potts model and historical references. Orey ([19], Theorem 4.4) mentions the weak convergence of µ n,β towards an explicit atomic measure, but he makes a mistake concerning the case β = β c , as pointed out in [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF].

It is highly probable that a similar result to Theorem 2 holds for the Curie-Weiss-Potts model. Note that as for Theorem 1, in the settings of Theorem 3 conformal and Gibbs measures are equal.

1.3. Plan of the paper. The paper is composed as follows.

In Section 2 we prove Theorem 1. In Section 3 we prove Theorem 3. Both proofs are very similar and are based on the convergence of µ n,β (C) where C is a cylinder in Σ.

Theorem 2 is proved in Section 4. The proof is similar to the ones of Theorem 1 and 3. The main difference is that the auxiliary function is more delicate to control.

For that, we need to use the Transfer Operator.

Proof of Theorem 1

To prove the convergence of µ n,β towards µ, it is enough to show that for every cylinder C,

(14) lim n→∞ µ n,β (C) = µ(C).
First we justify that ϕ I admits a unique maximum in [0, 1] and use this point to get convergence for µ n,β (C), where C is any cylinder. In the second subsection we show that this limit is equal to the right convex combinations of DGM's.

2.1. The auxiliary function ϕ I and limit for µ n,β . We recall that we set ϕ I (x) := log(cosh(βx)) -β 2 x 2 . Lemma 2.1. Maxima for ϕ I The function ϕ I attains its maximum on R + at a unique point ξ β which is the unique non-negative solution of the equation tanh

(βx) = x. If β ≤ 1, then ξ β = 0. Proof. Note that ϕ I (x) = β (tanh(βx) -x) and ϕ I (x) = β(β -1 -β tanh 2 (βx)). If β ≤ 1, ϕ I is non-positive,
thus ϕ I decreases and ϕ I (0) = 0 yields that ϕ I is a decreasing function. The maximum is then attained for ξ β = 0.

If β > 1, then ϕ I is positive and then negative, which yields that ϕ I is first an increasing and then a decreasing function. Note that ϕ I (0) = 0 and ϕ I (1) < 0, which shows that ϕ I is positive on some interval ]0, ξ β [ with 0 < ξ β < 1 and negative on ]ξ β , +∞[. Consequently, ϕ I reaches its maximal value on R at the points ±ξ β defined by [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] tanh(βξ β ) = ξ β .

Now we are ready to compute the limit of a fixed cylinder. Let ω = ω 0 . . . ω p-1 be a finite word of length p. We denote by S p (ω) = p-1 i=0 ω i the sum of the p digits of ω.

Lemma 2.2. Limit of the measure of a fixed cylinder

(16) lim n→∞ µ n,β ([ω 0 . . . ω p-1 ]) =      1 2 p if β ≤ 1, 1 2 (f (ξ β ) + f (-ξ β )) if β > 1,
where f (y) = e βySp(ω) (e βy + e -βy ) p .

Proof. For big n,

[ω] = [ω 0 . . . ω p-1 α p . . . α n-1 ] = α, |α|=n-p [ωα],
and

µ n,β ([ω]) = α, |α|=n-p µ n,β ([ωα]) = α, |α|=n-p e -βHn(ωα)
α, |α|=n e -βHn(α) .

For any word x = x 0 x 1 x 2 . . . and any n ∈ N * , we denote by S n (x) = n-1 i=0 x i the sum of the n first digits of x. Then We use the equality

e a 2 = 1 √ 2π +∞ -∞ e -x 2 2 + √ 2ax dx,
sometimes called the Hubbard-Stratonovich transformation ( [START_REF] Hubbard | Calculation of partition functions[END_REF], [START_REF] Stratonovič | A method for the computation of quantum distribution functions[END_REF]), to compute the following. X i ) where the X i 's are independent identically distributed with law P(X i = -1) = P(X i = 1) = 1 2 , and we deduce that α, |α|=n-p e βyS n-p (α) = (e βy + e -βy ) n-p = 2 n cosh(βy) n (e βy + e -βy ) p .

α, |α|=n-p e -βHn(ωα) = 1 √ 2π +∞ -∞ e -x 2 2 α e √ β n xSn(ωα) dx = 1 √ 2π +∞ -∞ e -x 2 2 + √ β n xSp(ω) α e √ β n xS n-p (α) dx = √ nβ √ 2π +∞ -∞ e -n
Eventually we obtain [START_REF] Keller | Equilibrium states in ergodic theory[END_REF] α, |α|=n-p

e -βHn(ωα) = 2 n √ nβ √ 2π +∞ -∞
e nϕ I (y) f (y) dy.

Similarly, p = 0 yields

α, |α|=n e -βHn(α) = 2 n √ nβ √ 2π +∞ -∞
e nϕ I (y) dy, therefore we obtain that

(18) µ n,β ([ω]) = +∞ -∞ e nϕ I (y) f (y) dy +∞ -∞ e nϕ I (y) dy .
We recall that the Laplace method shows that if ϕ I vanishes on a single point ξ in the interior of the interval I and if ϕ I (ξ) < 0 and f (ξ) = 0, then

I e nϕ I (y) f (y)dy ∼ n→∞ √ 2π |ϕ I (ξ)| e nϕ I (ξ) f (ξ)n -1/2 . (19) 
We remind that

u n ∼ n→+∞ v n means u n = v n (1 + ε(n)) with lim n→+∞ ε(n) = 0.
If β < 1: we may consider I = R and ξ = ξ β = 0. We thus get ϕ I (0)) = β(β -1), f (0) = 1 2 p , and

µ n,β ([ω]) ∼ n→∞ f (0) 1 = 1 2 p .
If β = 1: in this case ϕ I (0)) = 0 but the Laplace method still works if we consider the least integer k such that ϕ (k) I (0) = 0. We do not need to calculate it because we have as in the preceding case that 

e nϕ I (y) f (y)dy ∼ n→∞ √ 2π |ϕ I (ξ β )| e nϕ I (ξ β ) (f (ξ β ) + f (-ξ β )) n -1/2 , which yields µ n,β ([ω]) ∼ n→∞ f (ξ β ) + f (-ξ β ) 2 .
2.2. Identification of the limit as a convex combination of DGM's. First, we point out that Lemma 2.2 yields lim n→+∞ µ n,β = µ 0 if β ≤ 1. We thus have to deal with the case β > 1.

Let us first compute the dynamical Gibbs measures µ + b and µ - b . We denote by L p,+ (ω) := p-1 k=0 1 ω k =1 the number of digits of ω which take the value 1, and similarly L p,-(ω) := p-1 k=0 1 ω k =-1 is the number of digits which take the value -1. Proof. 

-p log p -(1 -p) log(1 -p) + bp = sup q∈[0,1] (-q log q -(1 -q) log(1 -q) + bq) .
It is easy to show that p = e b 1+e b , and then

µ + b ([ω]) = e bL p,+ (ω) (e b + 1) p .
Exchanging the roles of +1 and -1 gives the equality

µ - b ([ω]) = e bL p,-(ω) (e b + 1) p .
We recall that S p (ω

) = p-1 k=0 ω k = L p,+ (ω) -L p,-(ω) = 2L p,+ (ω) -p = p -2L p,-(ω). Then f (ξ β ) = e βξ β Sp(ω) (e βξ β + e -βξ β ) p = e βξ β (2L p,+ (ω)-p) (e βξ β + e -βξ β ) p = e 2βξ β L p,+ (ω) (e 2βξ β + 1) p .
Similarly we have f (-ξ β ) = e 2βξ β L p,-(ω) (e 2βξ β + 1) p and replacing these values in [START_REF] Hubbard | Calculation of partition functions[END_REF] we get

lim n→+∞ µ n,β ([ω]) = 1 2 ( µ + 2βξ β ([ω]) + µ - 2βξ β ([ω])),
and the theorem is proved.

Proof of Theorem 3

The proof follows the same lines as the proof of Theorem 1. In the first step we use an auxiliary function ϕ P . Note that the function was already studied by Ellis and Wang in [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF]. Then we deduce that µ n,β (C) converge for any cylinder C. In the second step we identify the limit as the relevant convex combination of dynamical measures.

3.1. Auxiliary function ϕ P and convergence for µ n,β . We shall need the function ϕ P defined on R q by (21)

ϕ P (z) = - β 2 z 2 + log q k=1 e βz k .
This function attains its maximum on R q since ϕ P (z) ≤ -c z 2 as z tends to ∞. We recall Theorem 2.1 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF], which describes precisely the global maximum points of ϕ P .

Theorem 4. (Ellis Wang [11])

Let β c = 2(q-1) log(q-1) q-2 . For 0 < β < β c set s β = 0 and for β ≥ β c let s β be the largest solution of the equation [START_REF] Ruelle | Statistical mechanics[END_REF] s = e βs -1 e βs + q -1 .

The function β → s β is strictly increasing on the interval [β c , +∞[, s(β c ) = q-2 q-1 , and lim β→∞ s β = 1.

Denote by φ the function from

[0, 1] into R q defined by φ(s) = 1 + (q -1)s q , 1 -s q , • • • , 1 -s q ,
the last (q -1) components all equal 1-s q . Let K β denote the set of global maximum points of the symmetric function ϕ P . Define

ν 0 = φ(0) = 1 q , • • • , 1 q . For β ≥ β c , define ν 1 (β) = φ(s β ) and let ν i (β), i = 2, • • • , q denote the
points in R q obtained by interchanging the first and ith coordinates of ν 1 (β). Then

K β =      {ν 0 } for 0 < β < β c , {ν 1 (β), ν 2 (β), • • • , ν q (β)} for β > β c , {ν 0 , ν 1 (β c ), ν 2 (β c ), • • • , ν q (β c )} for β = β c .
For β ≥ β c the points in K β are all distinct.

We fix a finite word ω = ω 0 • • • ω p-1 of length p and we compute the limit of µ n,β ([ω]).

Lemma 3.1.

lim n→∞ µ n,β ([ω]) =                    1 q p if β < β c , 1 q 1 (e βs β + q -1) p q k=1 e βs β L p,k (ω) if β > β c , A q p + B (e βs β +q-1) p q k=1 e βcs βc L p,k (ω) A + qB if β = β c .
Proof. The proof is very much the same as the proof of Lemma 2.2, but the Hamiltonian has changed and we are in dimension q instead of dimension one. We want to evaluate the limit of

µ n,β ([ω]) = α, |α|=n-p µ n,β ([ωα]) = α, |α|=n-p e β 2n Ln(ωα) 2 α, |α|=n e β 2n Ln(α) 2 .
With the help of the identity ( 23) 

e u 2 = 1 (2π) q/2 R q exp - 1 2 y 2 + √ 2 
) 2 = 1 (2π) q/2 R q exp - 1 2 y 2 + β n y, L p (ω) + (n -p) log q k=1 e √ β n y k dy.
Now we make the change of variable βz = β n y, and we obtain [START_REF] Sinai | Gibbs measures in ergodic theory[END_REF] α, |α|=n-p

e β 2n Ln(ωα) 2 = nβ 2π q/2
R q e nϕ P (z) f (z) dz, where ϕ P was defined in ( 21) and f is defined on R q by ( 25)

f (z) = exp β z, L p (ω) -p log q k=1 e βz k .
Similarly, p = 0 yields

α, |α|=n e β 2n Ln(α) 2 = nβ 2π q/2
R q e nϕ P (z) dz, hence = R q e nϕ P (z) f (z) dz R q e nϕ P (z) dz .

µ n,β ([ω]) = α,
We denote by Dϕ P (z), respectively H(z), the gradient, respectively the Hessian matrix, of ϕ P at z. It is proved in Proposition 2.2 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] that the Hessian matrix of ϕ P is negative definite at each global maximum point of ϕ P . Now if Dϕ P vanishes at a single point z 0 in an open set O of R q , if H(z 0 ) is negative definite and if f (z 0 ) = 0, then we know by Laplace's method that

0 e nϕ P (z) f (z) dz ∼ n→∞ (2π) q/2 f (z 0 )e nϕ P (z 0 ) n q/2 |det H(z 0 )| .
If 0 < β < β c : according to Theorem 4, ϕ P attains its maximum at the unique point ν 0 so applying Laplace's method yields

µ n,β ([ω]) ∼ n→∞ f (ν 0 ) 1 = 1 q p .
If β > β c : Theorem 4 states that ϕ P attains its maximum at exactly q points ν i (β), i = 1, • • • , q, where ν i (β), i = 2, • • • , q is obtained by interchanging the first and ith coordinates of ν 1 (β). Due to the symmetry of the function

ϕ P it is clear that det H(ν i ) = det H(ν 1 ), i = 2, • • • , q. Considering a family of disjoint open sets (O i ) 1≤i≤q such that O i contains ν i and R q = ∪ q i=1 O i ∪N ,
where N is a set of measure zero, Laplace's method yields

µ n,β ([ω]) ∼ n→∞ 1 q q i=1 f (ν i ).
Recall that

f (ν i ) = e β ν i ,Lp(ω) q k=1 e βν i k p with ν i k =        1 -s β q if k = i, 1 + (q -1)s β q if k = i.
As q k=1 L p,k (ω) = p it is easily seen that ( 26)

e β ν i ,Lp(ω) = exp βp(1 -s β ) q + βs β L p,i (ω) .
As ν i is a critical point of ϕ P and ∂ϕ P ∂z i (z) = βe βz i q k=1 e βz k -βz i , we know that [START_REF] Thaler | Estimates of the invariant densities of endomorphisms with indifferent fixed points[END_REF] q k=1 e βν i k = e βν i j

ν i j = q 1 -s β e β(1-s β ) q
.

Putting together ( 26) and ( 27) we obtain

f (ν i ) = 1 -s β q p e βs β L p,i (ω) ,
which can also be written

(28) f (ν i ) = 1 (e βs β + q -1) p e βs β L p,i (ω)
since s β is solution of the equation [START_REF] Feng | Lyapunov spectrum of asymptotically sub-additive potentials[END_REF]. Therefore

µ n,β ([ω]) ∼ n→∞ 1 q
1 (e βs β + q -1) p q i=1 e βs β L p,i (ω) .

If β = β c : the function ϕ P admits exactly q + 1 maximun points ν i (β), i = 0, • • • , q but det H(ν 0 ) = det H(ν 1 ), therefore Laplace's method yields

(29) µ n,β ([ω]) ∼ n→∞ |det H(ν 0 )| -1/2 f (ν 0 ) + |det H(ν 1 )| -1/2 q i=1 f (ν i ) |det H(ν 0 )| -1/2 + q |det H(ν 1 )| -1/2 .
In the proof of Proposition 2.2 of [START_REF] Ellis | Limit theorems for the empirical vector of the Curie-Weiss-Potts model[END_REF] it is proved that H(ν 0 ) has a simple eigenvalue at β and an eigenvalue of multiplicity (q-1) at βq -1 (q-β) whereas H(ν 1 ) has simple eigenvalues at β and β -β 2 qab and an eigenvalue of multiplicity (q -2) at β -β 2 b, where a = q -1 (1

+ (q -1)s β ) and b = q -1 (1 -s β ). Recalling that s(β c ) = q-2 q-1 we deduce that |det H(ν 0 )| = β q c (1 -q -1 β c ) q-1 , |det H(ν 1 )| = β q c (1 -q -1 β c ) 1 - β c q(q -1) q-2 .
Reporting in (29) and recalling (28) we get the result.

3.2. Identification of the limit. We can already deduce from Lemma 3.1 that

µ n,β w -→ n→+∞ µ 0 if β < β c . Lemma 3.2. Computation for µ k b For k = 1, . . . , q, (30) µ k b ([ω]) = e bL p,k (ω) (e b + q -1) p .
Proof. The function b1 1 [θ k ] depends only on the zero coordinate, therefore the supremum in ( 1) is attained for the product measure (m k ) ⊗N , where the probability vector (m k j ) 1≤j≤q on Λ maximizes the quantity q j=1 p j log p j + bp k over all the probability vectors (p j ) 1≤j≤q on Λ, and is given by [START_REF] Keller | Equilibrium states in ergodic theory[END_REF]). The result is then clear.

m k k = e b e b +q-1 , m k j = 1 e b +q-1 if j = k (see for instance Example 4.2.2 of
The limit in ( 13) is now a direct consequence of the lemmas 3.1 and 3.2.

Proof of Theorem 2

We consider a function ψ of the form

ψ := i a i 1 1 C i ,
where the sum is finite, the C i 's are disjoint cylinders, and the a i 's are real numbers which are not all equal to zero. We can always assume that all the cylinders have the same length, say q.

In the following we assume that we have chosen an order on q-cylinders and we consider the vector a := (a 1 , . . . , a 2 q ). 4.1. Convergence of µ n,β . Let ω = ω 0 . . . ω p-1 be a finite word of length p. To fix the ideas, we assume that p is bigger than q. Note that if the convergence holds for any cylinder with length larger than q then it holds for any cylinder.

For n very big and x ∈ Σ 2 , S n (ψ)(x) involves digits x 0 , . . . , x n+q-2 . Then, we get

µ n,β ([ω]) = α, |α|=n-p+q-1 µ n,β ([ω 0 . . . ω p-1 α 0 . . . α n-p+q-2 ]).
For simplicity we write S n (ωα) for S n (ψ)(ωα) (which is well defined if |α| ≥ n -p + q -1). Again, using the Hubbard-Stratonovich transformation we get We point out the equality (32) S n (ωα) = S p-q+1 (ω) + S q-1 (σ p+1-q (ωα)) + S n-p (α).

This equality means that the first p + 1 -q terms in the Birkhoff sum S n (ωα) only involve the ω i 's, then come q -1 terms which involve the tail of ω and the head of α, and then comes the tail of the sum which only depends on α.

Let us define the operator L ξ , depending on a real or complex parameter ξ, by L ξ (T )(x) := e ξψ(-1x) T (-1x) + e ξψ(1x) T (1x).

Here x is a point in Σ 2 , T is a continuous function on Σ 2 , and we remind that ix, with i = ±1, is the infinite word ix 0 x 1 x 2 . . .. L ξ is the transfer operator L n-p β.z (e βzS q-1 (σ p+1-q (ω.)) )(α x).

We point out that the x on the right hand side of this equality is just there to make sense but the expression actually does not depend on x because |α | = q -1.

It is known (see [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]) that L ξ acts on continuous and Hölder continuous functions. Moreover on the space of Hölder continuous functions it is quasi-compact: its spectral radius, say λ(ξ), is a simple dominating eigenvalue associated to a positive eigenfunction, say H ξ . The adjoint operator acts on measures and it admits a unique eigenmeasure associated to the spectral radius, say ν ξ . Moreover H ξ dν ξ = 1 and for every continuous function T ,

lim n→+∞ max x∈Σ 2 λ(ξ) -n L n ξ (T )(x) - T dν ξ H ξ (x) = 0.
3 also called the Ruelle Perron Frobenius operator.

Inequalities between eigenvalues of matrices and coefficients yield λ(βt) ≤ 2e Aβt .

This shows that for t ≥ 0, ϕ OS (t) ≤ -β 2 t 2 + Aβt + log 2, and this upper bound goes to -∞ if t goes to +∞. On the other hand, ϕ OS (0) = log 2. Therefore, ϕ OS reaches its maximum on R + only on some compact set [0, κ(β)].

Furthermore, any t which realizes the maximum must be a critical point of the derivative. Note that ξ → λ(ξ) admits an analytic continuation in a complex neighborhood of R which prohibits to get infinitely many zeros of ϕ OS on the segment [0, κ(β)]. Proposition 4.2. Let β be fixed. Let (t i ) 1≤i≤J be the finitely many real numbers where ϕ OS reaches its maximum4 . Then, there exist finitely many positive b i , 1 ≤ i ≤ J such that J i=1 b i = 1 and such that µ n,β ([ω]) converges to

J i=1 b i ν βt i ([ω]).
Proof. From the definition of µ n,β we know that .

Using (31) and (33) we get

(35) µ n,β ([ω]) = |α|=q-1 +∞ -∞ e -n β 2 z 2 e βzS p-q+1 (ω) L n-p βz (T βz )(α) dz |α|=q-1 +∞ -∞ e -n β 2 z 2 L n βz (1 1)(α) dz .
We can rewrite the numerator as a sum of q terms of the form

+∞

-∞ e nϕ OS (βz) e βzS p-q+1 (ω)-p log λ(βz) L n-p βz λ(βz) n-p (T βz )(α) dz, and the denominator as a sum of q terms of the form

+∞ -∞ e nϕ OS (βz) L n βz λ(βz) n (1 1)(α) dz.
We want to use the Laplace method for these terms. Lemma 4.1 shows that the exponential term (in n) has only finitely many maximum. But we are not yet done and the problem comes from the last term in the integral which depends on n. Inequality (34) shows that this term converge as n goes to +∞ but the speed of convergence depends on z and z may goes to ±∞.

To deal with this fact, we recall that A is max |a i | and we notice that for every continuous T ,

||L βz (T )|| ∞ ≤ 2e Aβ|z| ||T || ∞ , therefore ||L βz (T βz )|| ∞ ≤ 2e qβ|z|A , and 
|e -n β 2 z 2 e βzS p-q+1 (ω) L n-p βz (T βz )(α)| ≤ e n(-β 2 z 2 +β|z|A(p+1)+log 2) .
As -β 2 z 2 + |z|(βA(p + 1) + 1) + log 2 goes to -∞ as |z| goes to +∞, we can deduce that there exists κ(β) > 0 such that for every n ≥ 2, (36)

|z|≥κ(β) e -n β 2 z 2 e βzS p-q+1 (ω) L n-p βz (T βz )(α) dz ≤ e -nκ(β) .
We choose κ(β) big enough so that all the points t j , 1 ≤ j ≤ J, where ϕ OS reaches its maximum, are in the interior of the interval [-κ(β), κ(β)]. Then we can write the integral over the segment [-κ(β), κ(β)] as a finite sum of integrals over segments [a j , b j ] where each segment [a j , b j ] contains exactly one of the points t j , 1 ≤ j ≤ J.

We state the following lemma, which is an immediate adaptation of the Laplace method. 

nϕ(x) f n (x) dx ∼ π 2|ϕ (c)| e nϕ(c) f (c)n -1/2 .
We apply this lemma on every [a j , b j ] to the functions f n defined by

f n (z) = e βzS p-q+1 (ω)-p log λ(βz) L n-p βz λ(βz) n-p (T βz )(α).
Thanks to (34) the functions f n converge uniformly on [a j , b j ] to f defined by

f (z) = e βzS p+1-q (ω) λ(βz) p e βzS q-1 (σ p+1-q (ωx)) dν βz (x) .H βz (α) = 1 λ(βz) p e βzSp(ωx) dν βz (x) .H βz (α) = 1 λ(βz) p L p βz (1 1 [ω] )(x) dν βz (x) .H βz (α) = H βz (α)ν βz ([ω]).
Putting together (36) and the result of Lemma 4.3 applied to every [a j , b j ] we obtain that the numerator of µ nβ ([ω]) in ( 35) is equivalent to

|α|=q-1 J j=1 π 2|ϕ OS (t j )| e nϕ OS (t j ) H βt j (α)ν βt j ([ω])n -1/2 .
Similarly, the denominator of µ nβ ([ω]) in ( 35) is equivalent to

|α|=q-1 J j=1 π 2|ϕ OS (t j )| e nϕ OS (t j ) H βt j (α)n -1/2 .
We then get that µ nβ ([ω]) is equivalent to 

J j=1 |α|=q-1 H βt j (α) |ϕ OS (t j )| ν βt j ([ω]) J j=1 |α|=q-1 H βt j (α) |ϕ OS (t j )| . Let us set b i := α,|α|=q-1 H βt i (α) |ϕ OS (t i )| j,α,
= g d µ t 0 ,
where µ t 0 is the DGM for t 0 g.

We recall also that for g = ψ = 2 q i=1 a i 1 1 C i , P(βtψ) = log λ(βt), where λ(βt) is the spectral radius for the matrix M (βta).

4.2.2.

Maximizing the quadratic pressure. There are 2 q q-cylinders in Σ 2 . If µ and ν are invariant measures, then µ ≈ ν ⇐⇒ µ([ω 0 . . . ω q-1 ]) = ν([ω 0 . . . ω q-1 ]) for every q-cylinder.

defines an equivalence relation over the set of invariant probabilities. If µ ≈ ν then ψ dµ = ψ dν holds because ψ is constant on q-cylinders.

Note that h µ + β 2 ψ dµ 2 is maximal among elements of the same class for ≈ if and only if h µ is maximal.

Because we are considering probability measures, it is sufficient to know µ(C i ) for all i < 2 q to know all of the measure µ. If y i , i = 1, . . . 2 q -1 are non-negative real numbers such that y i ≤ 1, then we denote by ≈ y , the class of measures such that µ(C i ) = y i for all i < 2 q . Now, we state a lemma that is an adapted version of results from [START_REF] Barreira | Higher-dimensional multifractal analysis[END_REF] (th. 7, 8) and [START_REF] Feng | Lyapunov spectrum of asymptotically sub-additive potentials[END_REF] (th 4.8). These papers focus on multifractal analysis and they have different ways to state the result we need here. It is not clear to us if their statements can be directly applied in our case. Lemma 4.4. Let y be such that ≈ y is non-empty. Then max {h µ , µ ∈≈ y } ≤ inf z∈R 2 q -1 , z =0

P z i 1 1 C i - z i y i
Proof. Note the immediate equality: inf t∈R + , z∈S 2 q -2 P(t

z i 1 1 C i ) -t z i y i = inf z∈R 2 q -1 , z =0 P z i 1 1 C i - z i y i
For our proof, we prefer to use the left hand side characterization. Let us pick z ∈ S 2 q -2 . First we assume that z i y i = max z i 1 1 C i dµ, where the maximum is taken among all invariant measures. Then, it is well known (see [START_REF] Baraviera | Ergodic optimization, zero temperature limits and the max-plus algebra[END_REF]) that t → P(t z i 1 1 C i ) -t z i y i is a convex decreasing function which converges to the residual entropy:

lim t→+∞ P(t z i 1 1 C i ) -t z i y i = max h µ , z i 1 1 C i is maximal .
Clearly the residual entropy is bigger than max {h µ , µ ∈≈ y }.

Let us now assume that the class ≈ y is not included into the set of maximizing measures for z i 1 1 C i . Then lim t→+∞ P(t z i 1 1 C i ) -t z i y i = +∞ and the convex function admits a unique minimum on R + .

We immediately get the following sequence of inequalities:

h y + β 2 t 2 ≤ log λ(βt) -βta 2 q -βt (a i -a 2 q )y i + β 2 t 2
≤ log λ(βt) + β 2 t 2 -βt ψ|y

≤ log λ(βt) + β 2 t 2 -βt 2 = ϕ OS (t),
where the last inequality uses t = ψ|y .

Lemma 4.6. If t is a critical point for ϕ OS , we consider the DGM µ tβψ associated to tβψ. We also set y i = µ tβψ (C i ) for 1 ≤ i ≤ 2 q and y := (y 1 , . . . y 2 q -1 ).

Then, t = ψ d µ tβψ and h y + β 2 t 2 = ϕ OS (t).

Proof. The DGM µ tβψ has pressure log λ(βt). Moreover Equality (37) yields

λ (βt) λ(βt) = ψ d µ βtψ .
As t is a critical point for ϕ OS we have βt = β. λ (βt) λ(βt) , and then t = ψ d µ tβψ holds. We deduce that P(βtψ) -βt ψ|y = log λ(βt) -βt 2 = ϕ OS (t) -

β 2 t 2 .
Now by definition of the DGM we know that P(βtψ) -βt ψ|y = h µ tβψ which is smaller than h y by definition of this last term, therefore

ϕ OS (t) ≤ h y + β 2 t 2 .
The reverse inequality holds true thanks to Lemma 4.5, which finishes the proof.

We can now finish the proof of Theorem 2. We have seen that the PGM µ β,n converges to j b j ν βt j , where the t j 's are the maxima for ϕ OS .

For these t j 's, Lemmas 4.5 and 4.6 show that

h µ + β 2 ψ dµ 2 ≤ ϕ OS (t j ),
with equality if µ is one of the DGM's, µ βt k ψ .

e

  -βHn(ωα) = e √ β 2n Sn(ωα) 2 and S n (ωα) = S p (ω) + S n-p (α).

βy 2 2

 2 +βySp(ω) α e βyS n-p (α) dy where we made the change of variable βy := β n x. Now we notice that the sum α, |α|=n-p e βyS n-p (α) is equal to 2 n-p E(e βy n-p-1 i=0

Re

  nϕ I (y) f (y)dy ∼ n→∞ 1 2 p R e nϕ I (y) dy, therefore we still have µ n,β ([ω]) ∼ n→+∞ 1 2 p . If β > 1: we may consider two intervals R -and R + and ξ = ±ξ β . Then we get +∞ -∞

Lemma 2 . 3 .

 23 Computation for µ ± b (20) µ + b ([ω]) = e bL p,+ (ω) (e b + 1) p and µ - b ([ω]) = e bL p,-(ω) (e b + 1) p .

  y, u dy, and noticing that L n (ωα) = L p (ω) + L n-p (α), we write α, L n-p (α) dy. It is easily seen that α,|α|=n-p e √ β n y,L n-p (α) =

  |α|=n-p e β 2n Ln(ωα) 2 α, |α|=n e β 2n Ln(α) 2

e -n β 2 z 2 αe

 2 βzSn(ωα) dz, where we have made the change of variable βz = β n x.

3

 3 associated to the potential ξ.ψ. We notice that for any m ∈ N * , L m ξ (T )(x) := α, |α|=m e ξSm(αx) T (αx). Now, we write α = α α , with |α | = n -p and |α | = q -1. Using the equality (32) it is easy to check that (33) α e βzSn(ωα) = e βzS p-q+1 (ω) α |α |=q-1

Lemma 4 . 3 .

 43 Let ϕ : [a, b] → R a function of class C 2 , with ϕ vanishing on a single point c in ]a, b[ and ϕ (c) < 0. Let (f n ) n≥1 , f some continuous functions from [a, b] to R such that f n converges to f uniformly on [a, b], and f (c) = 0. Then as n → ∞ b a e

  P n , P are probability measures on the Borel sets of a metric space S, we say that P n converges weakly to P if S f dP n → S f dP for each f in the class C b (S) of bounded, continuous real functions f on S. In this case we write P n

	w -→ n→+∞	P .
	Our first result concerns the weak convergence of the measures µ n,β .	
	Theorem 1. Weak convergence for the CW model	
	Let ξ β be the unique point in [0, 1] which realizes the maximum for ϕ I (x) := log(cosh(βx))-
	β 2 x 2 . Let µ + b and µ -b be the dynamical Gibbs measures for b1 1 [+1] and b1 1 [-1] respec-
	tively. Then	
	(7)	

  End of the Proof of Theorem 2. 4.2.1. Some properties for Pressure function. We recall here some properties for the pressure function. If g is Hölder continuous on Σ 2 then t → P(tg) is convex thus continuous. The Ruelle theorem also yields

	(37)	∂ ∂t	P(tg) t=t 0

|α|=q-1 H βt j (α) |ϕ OS (t j )| . Then the b i 's are positive, they satisfy i b i = 1, and µ n,β ([ω]) converges to i b i ν βt i ([ω]).

4.2.

We prefer the adjective "dynamical" instead of "ergodic" to avoid the discussion if an ergodic Gibbs measure is ergodic or not.

We emphasize that the t i 's depend on β but we drop the index β to get lighter notations.

Remark 4. The measure ν ξ is exactly the conformal measure associated to ξψ.

We refer the reader to [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] for properties of quasi-compact operators ,in particular regularity of the maximal eigenvalue and the eigenvectors with respect to ξ.

Furthermore, L ξ acts on functions constant on (q-1)-cylinders because ψ is constant on q-cylinders. In that case we can give a simple characterization for λ(ξ). First, we order the (q -1)-cylinders, say K 1 , . . . , K 2 q-1 , and the q-cylinders, say C 1 , . . . , C 2 q . Let z = (z 1 , . . . , z 2 q ) be a vector in R 2 q . We consider the 2 q-1 × 2 q-1 matrix M (z) whose entries are defined as follows: From the (q -1)-cylinder

] and [ω i 1 , . . . , ω i q-2 , -1], corresponding respectively to say K j 1 (i) and K j 2 (i) . We can also define two q-cylinders C k 1 (i) = [ω i 0 , . . . , ω i q-2 , +1] and

A simple computation shows that

Let us call E q-1 the vector space of functions constant on (q -1)-cylinders. The set

} is a basis of E q-1 , which can be identified with the canonical basis (e i ) 1≤i≤2 q-1 of R 2 q-1 . With this identification we get that the restriction of L ξ to E q-1 is a linear operator whose matrix is exactly the transpose t M (ξ.a) of M (ξ.a). Therefore, λ(ξ) is the dominating eigenvalue for M (ξ.a). We emphasize that this matrix is aperiodic and then the Perron Frobenius theorem on matrices holds. Furthermore, H ξ is a left eigenvector for M (ξ.a) associated to λ(ξ).

Let us denote by T ξ the function x → e ξS q-1 (σ p+1-q (ωx)) . This function T ξ belongs to E q-1 , and

where ε(ξ) is continuous and positive (in ξ) and C(ξ) does only depend on ξ. Lemma 4.1. Let ϕ OS be defined be ϕ OS (t) = -β 2 t 2 + log λ(βt). Then, for each β, ϕ OS attains its maximum on R at finitely many points.

Proof. Recall that A = max |a i |. We do the case t ≥ 0, the case t ≤ 0 being the same with -A instead of A.

If this minimum is reached at t = 0, then its value is h = log 2 which is bigger than any metric entropy.

The last case holds if the minimum is reached at a critical point, say t 0 . Note that if ν t 0 is the equilibrium state for t 0 z i 1 1 C i , then

The fact that t 0 is a critical point yields

and then for any µ in ≈ y , we get

which concludes the proof.

Let y be such that ≈ y is non-empty. Note that for every µ ∈≈ y , ψ dµ is the constant a 2 q + (a i -a 2 q )y i . For simplicity we denote this quantity by ψ|y . Upper semi-continuity for the entropy yields the existence of measures µ ∈≈ y such that h µ = max{h ν , ν ∈≈ y }.

Then we set h y := h µ .

Lemma 4.5. For every y such that ≈ y is non-empty, set t = ψ|y . Then,

Proof. Let µ t be the DGM associated to the potential βt (a i -a 2 q )1 1 C i . Note the following equality

Set z := (z 1 , . . . , z 2 q -1 ), with z i := βt(a i -a 2 q ).

The properties of the Pressure function (see Subsubsec. 4.2.1) yield that the pressure for βt (a i -a 2 q )1 1 C i is equal to P(βtψ) -βta 2 q = log λ(βt) -βta 2 q .

On the other hand Lemma 4.4 yields (38) h y ≤ P(

It remains to prove that the DGM's are the only maximizers of the quadratic pressure. We define a new functional

This function is defined on some interval M(ψ). If µ is a measure, Lemma 4.5 shows for ψ dµ =: t

This yields that for all t ∈ M(ψ),

Therefore, Lemma 4.6 shows that the maxima for φ r are the maxima for ϕ OS . If a measure µ maximizes the quadratic pressure, then we have and µ must be the DGM µ βt j ψ . This finishes the proof of Theorem 2.