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EASY ISING
OR

CURIE-WEISS MODEL EXPLAINED TO ERGODICISTS

RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

Abstract. We state a dictionary for thermodynamic formalism within the Curie-
Weiss model between the Probability-Statistical Mechanics and the Ergodic view-
points. Limits for probabilistic Gibbs measures are identified as combinations of,
say N(β), dynamical conformal measures. Phase transitions are then related to a
change in N(β) as β moves.

More surprising we point out that, to be closer to what is done in Statistical
Mechanics, ergodicists should study the supremum of the sum of the entropy and
the square of the integral of the potential instead of the sum of the entropy and
the integral of the potential.

1. Introduction

1.1. Background, main motivations and results. The notion of Gibbs measure
comes from Statistical Mechanics. It has been studied a lot from the probabilistic
viewpoint (see [13, 7, 9, 10]). This notion was introduced in Ergodic Theory in
the 70’s by Sinai, Ruelle and Bowen (see [24, 25, 23, 22, 3]). Since that moment,
the thermodynamic formalism became in Dynamical Systems a pure mathematical
question and somehow disconnected from the original physical questions.

Since the 00’s, ergodicists started to reconnect the questions in Dynamical Systems
with the original physical ones. Notions as ground states and phase transitions
were re-defined and investigated from the ergodic viewpoint. From that moment,
the sharing of the vocabulary started to be a source of confusion, and the main
motivation for this paper is to make clear some similitudes and differences between
Gibbs measures within the probabilistic or the ergodic viewpoints.

Beyond stating a kind of dictionary between thermodynamic formalisms in Statis-
tical Mechanics and Probability on the one hand, and Ergodic Theory on the other
hand, the main byproduct of our work is a very strange discovery within the ergodic
viewpoint.
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2 RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

Actually, and using the Ergodic viewpoint and vocabulary, Theorem 2 shows that, in
Statistical Mechanics and Probability, one maximizes the entropy plus the square of
an integral, whereas in Ergodic Theory one maximizes the entropy plus an integral.

This has a lot of nice consequences and further possible research questions. Some
of them are discussed later (see Subsubsection 1.2.3).

Our dictionary works as follows. In Statistical Mechanics and in Probability theory,
the system is a finite set of sites. There is an interaction between sites given by
an Hamiltonian. A Gibbs measure is a probability on the finite set of configura-
tions which is optimal with respect to some quantity. All the objects depend on
a parameter β equal to the inverse of the temperature. Then, the issue is to de-
fine the possible accumulation points for the Gibbs measures as the number of sites
goes to +∞. A phase transition occurs if, as moving the parameter β, this set of
accumulation points admits a discontinuity for some βc.

In Ergodic Theory (on symbolic dynamics) one immediately considers the set of
infinite configurations Σ. Instead of having an Hamiltonian one considers a potential
ψ : Σ → R. We consider here the case where ψ is Hölder continuous. The Gibbs
measure is an invariant measure, also called equilibrium state, which maximizes the
pressure (see below). The pressure function is the pressure for β.ψ considered as a
function of β. Then, a phase transition occurs if the pressure function is not analytic
at some βc. It is noteworthy that in this setting, the number of equilibrium states
is almost independent of the regularity of the pressure function (see [27, 18]).

Roughly speaking, our dictionary identifies accumulation points of Gibbs measures
in Probability with conformal measures in Ergodic Theory. Conformal measures
are not Gibbs measures (within the Ergodic viewpoint) but are strongly related
to them. More precisely, we show that for the Curie-Weiss model (see Theorem
1) and the Curie-Weiss-Potts model (see Theorem 3) the Gibbs measures converge
to a convex combination of conformal measures. A (probabilistic) phase transition
occurs when the number of conformal measures in the limit changes. This notion of
phase transition is thus different from the one used in Ergodic Theory.

Although some of the convergences we prove here were already known (see [19]), we
point out that the identification of the limit with ergodic quantities was not stated.
We claim that the novelty here does not concern the convergence but the dictionary
and identification/similitude/differences between Gibbs measures and phase transi-
tions in Probability Theory or Ergodic Theory. We point out that this dictionary
works well for the Curie-Weiss and Curie-Weiss-Potts models probably because for
these models, the Hamiltonian turns out to be easily writable as a function of a
Birkhoff sum. This is the core of Theorem 2.

At last, we mention works of Cioletti and Lopes (see [5, 4, 6]). There, for different
settings (non Hölder continuous potentials and not for the Curie-Weiss models), the
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connection between DLR-Gibbs measures (within the Statistical Mechanics view-
point) and the conformal measures (within the Ergodic viewpoint) is also done.

1.2. Precise settings and results.

1.2.1. Ergodic and Dynamical settings. We consider a finite set Λ with cardinality
bigger or equal to 2. It is called the alphabet. Then we consider the one-sided
full shift Σ = ΛN over Λ. A point x in Σ is a sequence x0, x1, . . . (also called an
infinite word) where the xi are in Λ. Most of the times we shall use the notation
x = x0x1x2 . . .. A xi ∈ Λ can either be called a letter, or a digit or a symbol.

The shift map σ is defined by

σ(x0x1x2 . . .) = x1x2 . . . .

The distance between two points x = x0x1 . . . and y = y0y1 . . . is given by

d(x, y) =
1

2min{n, xn 6=yn}
·

A finite string of symbols x0 . . . xn−1 is also called a word, of length n. For a word
w, its length is |w|. A cylinder (of length n) is denoted by [x0 . . . xn−1]. It is the set
of points y such that yi = xi for i = 0, . . . n− 1. We shall also talk about n-cylinder
instead of cylinder of length n.

If w is the word of finite length w0 . . . wn−1 and x is a word, the concatenation wx
is the new word w0w1 . . . wn−1x0x1 . . ..

For ψ : Σ→ R continuous and β > 0, the pressure function is defined by

(1) P(βψ) := sup
µ

{
hµ + β

∫
Σ

ψ dµ

}
,

where the supremum is taken among the setMσ(Σ) of σ-invariant probabilities on Σ
and hµ is the Kolmogorov-Sinäı entropy of µ. The real parameter β is assumed to be
positive because it represents the inverse of the temperature in statistical mechanics.
It is known that the supremum is actually a maximum and any measure for which
the maximum is attained in (1) is called an equilibrium state for βψ. We refer the
reader to [3, 23] for basic notions on thermodynamic formalism in ergodic theory.

If ψ is Lipschitz continuous then the Ruelle-Griffith theorem (see [14]) states that
for every β, there is a unique equilibrium state for βψ, which is denoted by µ̃βψ. It
is ergodic and it shall be called the dynamical Gibbs measure (DGM for short1). It

1We prefer the adjective “dynamical” instead of “ergodic” to avoid the discussion if an ergodic
Gibbs measure is ergodic or not.



4 RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

is the unique σ-invariant probability measure which satisfies the property that for
every x = x0x1 . . . and for every n,

(2) e−Cβ ≤ µ̃βψ([x0 . . . xn−1])

eβ.Sn(ψ)(x)−nP(βψ)
≤ eCβ ,

where Cβ is a positive real number depending only on β and ψ (but not on x or n),
and Sn(ψ) stands for ψ + ψ ◦ σ + . . .+ ψ ◦ σn−1.

With these settings, the βψ-conformal measure is the unique probability measure
such that for every x and for every n,

(3) νβψ([x0 . . . xn−1]) =

∫
eβSn(ψ)(x0...xn−1y)−nP(βψ) dνβψ(y).

A precise (and more technical) definition of conformal measure is given in page 19.

Again, we refer the reader to [3, 23] to see the connection between conformal mea-
sures and DGM. We emphasize that in our settings, conformal measures and DGM
are equivalent measures and one can obtain one from the other.

If the choice of ψ is clear we shall drop the ψ and write µ̃β, νβ and P(β).

1.2.2. The Curie-Weiss model. Probabilistic settings 1 and results. We consider the
case Λ = {−1,+1}; Σ will be denoted by Σ2.

If ω0 . . . ωn−1 is a finite word, we set

(4) Hn(ω) := − 1

2n

n−1∑
i,j=0

ωjωi.

It is called the Curie-Weiss Hamiltonian. The empirical magnetization for ω is

mn(ω) :=
1

n

n−1∑
j=0

ωj. Then we have

(5) Hn(ω) = −n
2

(mn(ω))2.

We denote by P := ρ⊗N the product measure on Σ2, where ρ is the uniform measure
on {−1, 1}, i.e. ρ({1}) = ρ({−1}) = 1

2
, and we define the probabilistic Gibbs measure

(PGM for short) µn,β on Σ2 by

(6) µn,β(dω) :=
e−βHn(ω)

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

2n

∑
ω′, |ω′|=n

e−βHn(ω′).

Note that µn,β can also be viewed as a probability defined on Λn.



EASY ISING OR CURIE-WEISS MODEL EXPLAINED TO ERGODICISTS 5

The measure P is a Bernoulli measure and is σ-invariant. In Ergodic Theory it is
usually called the Parry-measure (see [20]) and turns out to be the unique measure
with maximal entropy. With our previous notations it corresponds to the DGM µ̃0.

If Pn, P are probability measures on the Borel sets of a metric space S, we say that
Pn converges weakly to P if

∫
S
f dPn →

∫
S
f dP for each f in the class Cb(S) of

bounded, continuous real functions f on S. In this case we write Pn
w−→

n→+∞
P .

Our first result concerns the weak convergence of the measures µn,β.

Theorem 1. Weak convergence for the CW model

Let ξβ be the unique point in [0, 1] which realizes the maximum for ϕI(x) := log(cosh(βx))−
β
2
x2. Let µ̃+

b and µ̃−b be the dynamical Gibbs measures for b11[+1] and b11[−1] respec-
tively. Then

(7) µn,β
w−→

n→+∞


µ̃0 if β ≤ 1,

1

2

[
µ̃+

2βξβ
+ µ̃−2βξβ

]
if β > 1.

Remark 1. Actually µn,β converges towards 1
2

[
µ̃+

2βξβ
+ µ̃−2βξβ

]
for every β > 0 since

we shall see that for β ≤ 1 we have ξβ = 0, and it is clear that µ̃+
0 = µ̃−0 = µ̃0 = ρ⊗N.

�

We refer to [8], sections IV.4 and V.9, for a discussion of the Curie-Weiss model
and historical references (see also [21], section 3.4). In Theorem IV.4.1 it is proved,
using large deviations, that the sequence of image probabilities Qn defined by

(8) Qn(A) := µn,β(mn ∈ A)

converges to an atomic measure as n goes to +∞. By using this theorem, Orey ([19],
Corollary 1.2) proved by a nice simple probabilistic argument the weak convergence
of µn,β towards an explicit atomic measure. We were not aware of the work of Orey
when we proved our theorem 1. We think it is still interesting because it makes the
link with dynamical Gibbs measures, and furthermore our proof is direct and does
not use large deviations.

We emphasize the equality

(9) mn(ω) :=
1

n
Sn(11[+1] − 11[−1])(ω)

which shows that mn can be written as a Birkhoff mean of a continuous function.

A consequence of (9) is that (5) can be rewritten under the form

Hn(ω) = −n
2

(
1

n
Sn(ψ)(ω)

)2

,
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where ψ := 11[+1]−11[−1]. We are thus led to investigate about results similar to those
of Theorem 1 but for a more general Hamiltonian. From that point we discovered a
very strange result: to export the Curie-Weiss Model in Ergodic Theory, one should
focus on the invariant measures µ which maximize

hµ +
β

2

(∫
ψ dµ

)2

instead of measures which maximize hµ + β

∫
ψ dµ.

Theorem 2. Convergence for a more general Hamiltonian

Let ψ be a locally constant function2 on Σ2. Let Hn be the Hamiltonian defined by

Hn(ω) = −n
2

(
1

n
Sn(ψ)(ω)

)2

.

Let µn,β be the PGM defined by (6) with this new value for Hn. Then, for each
β > 0,

(1) there are finitely many real numbers t1, . . . tJ , and J depends on β such that
the DGM µ̃βtj ’s associated to βtjψ are the unique measures which maximize

hµ +
β

2

(∫
ψ dµ

)2

.

(2) As n goes to +∞, µn,β converges weakly to a convex combination of the
conformal measures νβtj ’s associated to βtjψ.

From this theorem it makes sense to define a new concept of pressure as

P2(βψ) := max

{
hµ +

β

2

(∫
ψ dµ

)2
}
,

and to study measures which realize this maximum. This quantity shall be referred
to as the quadratic pressure. Note that upper semi-continuity for entropy shows
that the maximum is well defined. The function β 7→ P2(βψ) is obviously convex
(thus continuous). Theorem 1 shows that it can be piecewise analytic and that the
number of measures which realize the maximum may change with respect to β.

Remark 2. We emphasize that Theorem 1 is a particular case of Theorem 2 with
ψ = 11[+] − 11[−]. Note that for this particular case, the DGM is also the conformal
measure. �

2That is ψ is of the form ψ =

k∑
j=0

aj11Cj
where the Cj ’s are disjoint cylinders
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1.2.3. Some consequences of Theorem 2. Several questions arise from Theorem 2.
Actually, the main goal for Thermodynamic Formalism is to furnish a way to select
one (or finitely many) invariant ergodic measure via the variational principle (see
(1)). In terms of mathematics, it does not make neither more nor less sense to select

measures which maximize hµ + β

∫
ψ dµ instead of hµ +

β

2

(∫
ψ dµ

)2

.

Therefore, we are naturally led to redo the Thermodynamic Formalism for all known

Dynamical Systems but inquiring for measures µ which maximize hµ+
β

2

(∫
ψ dµ

)2

.

In particular, a natural question is to inquire whether Theorem 2 holds for any
sufficiently regular potential ψ and not only the locally constant ones. We point out
that our proof cannot be easily adapted to that more general case. Moreover, the
usual tool in Thermodynamic Formalism —that is the Transfer operator— does not
seem to be well adapted to this question.

For more geometric dynamical systems, one usually considers or studies the special
class of physical or/and SRB-measures. These measures are usually considered as the
most natural ones with the measures of maximal entropy. It is clear that measures

of maximal entropy also maximize hµ +

(∫
ψ dµ

)2

for ψ ≡ 0. A natural question

is thus to know if SRB-measures can also be characterized as measures maximizing

hµ +

(∫
ψ dµ

)2

.

1.2.4. The Curie-Weiss-Potts model. Probabilistic settings 2 and result. The Curie-
Weiss-Potts model will be for Λ = {θ1, . . . , θq} with q > 2. In that case we shall
write Σq instead of Σ.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word ω = ω0 · · ·ωn−1 by

(10) Hn(ω) := − 1

2n

n−1∑
i,j=0

11ωj=ωi .

We define the vector Ln(ω) = (Ln,1(ω), · · · , Ln,q(ω)) where

Ln,k(ω) =
n−1∑
i=0

11ωi=θk

is the number of digits of ω which take the value θk, so that we can write

n−1∑
i,j=0

11ωj=ωi =

q∑
k=1

(
n−1∑
i=0

1ωi=θk

)2

= ‖Ln(ω)‖2,

where ‖ · ‖ stands for the euclidean norm on Rq.
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We denote by P := ρ⊗N the product measure on Σq, where ρ is the uniform measure
on Λ, i.e. ρ = 1

q

∑q
k=1 δθk , and we define the probabilistic Gibbs measure µn,β on Σq

by

(11) µn,β(dω) :=
e−βHn(ω)

Zn,β
P(dω) =

e
β
2n
‖Ln(ω)‖2

Zn,β
P(dω),

where Zn,β is the normalization factor

Zn,β =
1

qn

∑
ω′, |ω′|=n

e
β
2n
‖Ln(ω′)‖2 .

Now we can state the analog of Theorem 1.

Theorem 3. Weak convergence for the CWP model

For 1 ≤ k ≤ q, b ∈ R, let µ̃kb be the dynamical Gibbs measure for b11[θk]. Let

βc = 2(q−1) log(q−1)
q−2

. For 0 < β < βc set sβ = 0 and for β ≥ βc let sβ be the largest

solution of the equation

(12) s =
eβs − 1

eβs + q − 1
.

Then,

(13) µn,β
w−→

n→+∞



ρ⊗N if 0 < β < βc,

1

q

q∑
k=1

µ̃kβsβ if β > βc,

A µ̃1
0 +B

∑q
k=1 µ̃

k
βcsβc

A+ qB
if β = βc,

with A =
(

1− βc
q(q−1)

) q−2
2

and B =
(

1− βc
q

) q−2
2

.

Remark 3. Actually µn,β converges towards 1
q

∑q
k=1 µ̃

k
βsβ

for every β 6= βc since

sβ = 0 for β < βc, and it is clear that µ̃k0 = ρ⊗N for each 1 ≤ k ≤ q. �

We refer to [11] for a discussion of the Curie-Weiss-Potts model and historical ref-
erences. Orey ([19], Theorem 4.4) mentions the weak convergence of µn,β towards
an explicit atomic measure, but he makes a mistake concerning the case β = βc, as
pointed out in [11].

It is highly probable that a similar result to Theorem 2 holds for the Curie-Weiss-
Potts model. Note that as for Theorem 1, in the settings of Theorem 3 conformal
and Gibbs measures are equal.
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1.3. Plan of the paper. The paper is composed as follows.

In Section 2 we prove Theorem 1. In Section 3 we prove Theorem 3. Both proofs
are very similar and are based on the convergence of µn,β(C) where C is a cylinder
in Σ.

Theorem 2 is proved in Section 4. The proof is similar to the ones of Theorem 1
and 3. The main difference is that the auxiliary function is more delicate to control.
For that, we need to use the Transfer Operator.

2. Proof of Theorem 1

To prove the convergence of µn,β towards µ, it is enough to show that for every
cylinder C,

(14) lim
n→∞

µn,β(C) = µ(C).

First we justify that ϕI admits a unique maximum in [0, 1] and use this point to get
convergence for µn,β(C), where C is any cylinder. In the second subsection we show
that this limit is equal to the right convex combinations of DGM’s.

2.1. The auxiliary function ϕI and limit for µn,β. We recall that we set ϕI(x) :=

log(cosh(βx))− β
2
x2.

Lemma 2.1. Maxima for ϕI

The function ϕI attains its maximum on R+ at a unique point ξβ which is the unique
non-negative solution of the equation tanh(βx) = x. If β ≤ 1, then ξβ = 0.

Proof. Note that ϕ′I(x) = β (tanh(βx)− x) and ϕ′′I (x) = β(β − 1 − β tanh2(βx)).
If β ≤ 1, ϕ′′I is non-positive, thus ϕ′I decreases and ϕ′I(0) = 0 yields that ϕI is a
decreasing function. The maximum is then attained for ξβ = 0.

If β > 1, then ϕ′′I is positive and then negative, which yields that ϕ′I is first an
increasing and then a decreasing function. Note that ϕ′I(0) = 0 and ϕ′I(1) < 0,
which shows that ϕ′I is positive on some interval ]0, ξβ[ with 0 < ξβ < 1 and negative
on ]ξβ,+∞[. Consequently, ϕI reaches its maximal value on R at the points ±ξβ
defined by

�(15) tanh(βξβ) = ξβ.

Now we are ready to compute the limit of a fixed cylinder. Let ω = ω0 . . . ωp−1 be a

finite word of length p. We denote by Sp(ω) =
∑p−1

i=0 ωi the sum of the p digits of ω.
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Lemma 2.2. Limit of the measure of a fixed cylinder

(16) lim
n→∞

µn,β([ω0 . . . ωp−1]) =


1

2p
if β ≤ 1,

1

2
(f(ξβ) + f(−ξβ)) if β > 1,

where

f(y) =
eβySp(ω)

(eβy + e−βy)p
.

Proof. For big n,

[ω] =
⊔

[ω0 . . . ωp−1αp . . . αn−1] =
⊔

α, |α|=n−p

[ωα],

and

µn,β([ω]) =
∑

α, |α|=n−p

µn,β([ωα]) =

∑
α, |α|=n−p

e−βHn(ωα)

∑
α, |α|=n

e−βHn(α)
.

For any word x = x0x1x2 . . . and any n ∈ N∗, we denote by Sn(x) =
∑n−1

i=0 xi the
sum of the n first digits of x. Then

e−βHn(ωα) = e

(√
β
2n
Sn(ωα)

)2
and Sn(ωα) = Sp(ω) + Sn−p(α).

We use the equality

ea
2

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

2ax dx,

sometimes called the Hubbard-Stratonovich transformation ([16],[26]), to compute
the following.∑

α, |α|=n−p

e−βHn(ωα) =
1√
2π

∫ +∞

−∞
e−

x2

2

∑
α

e
√

β
n
xSn(ωα) dx

=
1√
2π

∫ +∞

−∞
e−

x2

2
+
√

β
n
xSp(ω)

∑
α

e
√

β
n
xSn−p(α) dx

=

√
nβ√
2π

∫ +∞

−∞
e−n

βy2

2
+βySp(ω)

∑
α

eβySn−p(α) dy

where we made the change of variable βy :=

√
β

n
x. Now we notice that the sum∑

α, |α|=n−p e
βySn−p(α) is equal to 2n−pE(eβy

∑n−p−1
i=0 Xi) where the Xi’s are independent

identically distributed with law P(Xi = −1) = P(Xi = 1) = 1
2
, and we deduce that∑

α, |α|=n−p

eβySn−p(α) = (eβy + e−βy)n−p = 2n
cosh(βy)n

(eβy + e−βy)p
.
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Eventually we obtain

(17)
∑

α, |α|=n−p

e−βHn(ωα) =
2n
√
nβ√

2π

∫ +∞

−∞
enϕI(y)f(y) dy.

Similarly, p = 0 yields∑
α, |α|=n

e−βHn(α) =
2n
√
nβ√

2π

∫ +∞

−∞
enϕI(y) dy,

therefore we obtain that

(18) µn,β([ω]) =

∫ +∞
−∞ enϕI(y)f(y) dy∫ +∞
−∞ enϕI(y) dy

.

We recall that the Laplace method shows that if ϕ′I vanishes on a single point ξ in
the interior of the interval I and if ϕ′′I (ξ) < 0 and f(ξ) 6= 0, then

(19)

∫
I

enϕI(y)f(y)dy ∼n→∞
√

2π√
|ϕ′′I (ξ)|

enϕI(ξ)f(ξ)n−1/2.

We remind that un ∼n→+∞ vn means un = vn(1 + ε(n)) with limn→+∞ ε(n) = 0.

If β < 1: we may consider I = R and ξ = ξβ = 0. We thus get ϕ′′I (0)) = β(β − 1),
f(0) = 1

2p
, and

µn,β([ω]) ∼n→∞
f(0)

1
=

1

2p
.

If β = 1: in this case ϕ′′I (0)) = 0 but the Laplace method still works if we consider

the least integer k such that ϕ
(k)
I (0) 6= 0. We do not need to calculate it because we

have as in the preceding case that∫
R
enϕI(y)f(y)dy ∼n→∞

1

2p

∫
R
enϕI(y)dy,

therefore we still have µn,β([ω]) ∼n→+∞
1

2p
.

If β > 1: we may consider two intervals R− and R+ and ξ = ±ξβ. Then we get

∫ +∞

−∞
enϕI(y)f(y)dy ∼n→∞

√
2π√

|ϕ′′I (ξβ)|
enϕI(ξβ) (f(ξβ) + f(−ξβ))n−1/2,

which yields

µn,β([ω]) ∼n→∞
f(ξβ) + f(−ξβ)

2
. �
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2.2. Identification of the limit as a convex combination of DGM’s. First,
we point out that Lemma 2.2 yields lim

n→+∞
µn,β = µ̃0 if β ≤ 1. We thus have to deal

with the case β > 1.

Let us first compute the dynamical Gibbs measures µ̃+
b and µ̃−b . We denote by

Lp,+(ω) :=
∑p−1

k=0 1ωk=1 the number of digits of ω which take the value 1, and similarly

Lp,−(ω) :=
∑p−1

k=0 1ωk=−1 is the number of digits which take the value −1.

Lemma 2.3. Computation for µ̃±b

(20) µ̃+
b ([ω]) =

ebLp,+(ω)

(eb + 1)p
and µ̃−b ([ω]) =

ebLp,−(ω)

(eb + 1)p
.

Proof. The function b11[+1] depends only on the zero coordinate. It is shown for
instance in Example 4.2.2 of [17] that in this case the supremum in (1) is attained
for the product measure Pp := ρ⊗Np , where p ∈ [0, 1], ρp = pδ1 + (1 − p)δ−1, and p
satisfies

−p log p− (1− p) log(1− p) + bp = sup
q∈[0,1]

(−q log q − (1− q) log(1− q) + bq) .

It is easy to show that p = eb

1+eb
, and then

µ̃+
b ([ω]) =

ebLp,+(ω)

(eb + 1)p
.

Exchanging the roles of +1 and −1 gives the equality

µ̃−b ([ω]) =
ebLp,−(ω)

(eb + 1)p
. �

We recall that Sp(ω) =
∑p−1

k=0 ωk = Lp,+(ω)−Lp,−(ω) = 2Lp,+(ω)−p = p−2Lp,−(ω).
Then

f(ξβ) =
eβξβSp(ω)

(eβξβ + e−βξβ)p

=
eβξβ(2Lp,+(ω)−p)

(eβξβ + e−βξβ)p

=
e2βξβLp,+(ω)

(e2βξβ + 1)p
.

Similarly we have f(−ξβ) =
e2βξβLp,−(ω)

(e2βξβ + 1)p
and replacing these values in (16) we get

lim
n→+∞

µn,β([ω]) =
1

2
(µ̃+

2βξβ
([ω]) + µ̃−2βξβ([ω])),

and the theorem is proved.
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3. Proof of Theorem 3

The proof follows the same lines as the proof of Theorem 1. In the first step we use
an auxiliary function ϕP . Note that the function was already studied by Ellis and
Wang in [11]. Then we deduce that µn,β(C) converge for any cylinder C. In the
second step we identify the limit as the relevant convex combination of dynamical
measures.

3.1. Auxiliary function ϕP and convergence for µn,β. We shall need the func-
tion ϕP defined on Rq by

(21) ϕP (z) = −β
2
‖z‖2 + log

q∑
k=1

eβzk .

This function attains its maximum on Rq since ϕP (z) ≤ −c‖z‖2 as ‖z‖ tends to ∞.
We recall Theorem 2.1 of [11], which describes precisely the global maximum points
of ϕP .

Theorem 4. (Ellis Wang [11])

Let βc = 2(q−1) log(q−1)
q−2

. For 0 < β < βc set sβ = 0 and for β ≥ βc let sβ be the largest

solution of the equation

(22) s =
eβs − 1

eβs + q − 1
.

The function β 7→ sβ is strictly increasing on the interval [βc,+∞[, s(βc) = q−2
q−1

,

and limβ→∞ sβ = 1.

Denote by φ the function from [0, 1] into Rq defined by

φ(s) =

(
1 + (q − 1)s

q
,
1− s
q

, · · · , 1− s
q

)
,

the last (q − 1) components all equal 1−s
q

. Let Kβ denote the set of global maximum

points of the symmetric function ϕP . Define ν0 = φ(0) =
(

1
q
, · · · , 1

q

)
. For β ≥ βc,

define ν1(β) = φ(sβ) and let νi(β), i = 2, · · · , q denote the points in Rq obtained by
interchanging the first and ith coordinates of ν1(β). Then

Kβ =


{ν0} for 0 < β < βc,

{ν1(β), ν2(β), · · · , νq(β)} for β > βc,

{ν0, ν1(βc), ν
2(βc), · · · , νq(βc)} for β = βc.

For β ≥ βc the points in Kβ are all distinct.

We fix a finite word ω = ω0 · · ·ωp−1 of length p and we compute the limit of µn,β([ω]).
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Lemma 3.1.

lim
n→∞

µn,β([ω]) =



1

qp
if β < βc,

1

q

1

(eβsβ + q − 1)p

q∑
k=1

eβsβLp,k(ω) if β > βc,

A
qp

+ B

(e
βsβ+q−1)p

∑q
k=1 e

βcsβcLp,k(ω)

A+ qB
if β = βc.

Proof. The proof is very much the same as the proof of Lemma 2.2, but the Hamil-
tonian has changed and we are in dimension q instead of dimension one. We want
to evaluate the limit of

µn,β([ω]) =
∑

α, |α|=n−p

µn,β([ωα]) =

∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2

∑
α, |α|=n

e
β
2n
‖Ln(α)‖2

.

With the help of the identity

(23) e‖u‖
2

=
1

(2π)q/2

∫
Rq

exp

(
−1

2
‖y‖2 +

√
2〈y, u〉

)
dy,

and noticing that Ln(ωα) = Lp(ω) + Ln−p(α), we write∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

1

(2π)q/2

∫
Rq
e−

1
2
‖y‖2

∑
α

e
√

β
n
〈y,Ln(ωα)〉 dy

=
1

(2π)q/2

∫
Rq
e−

1
2
‖y‖2+
√

β
n
〈y,Lp(ω)〉

∑
α

e
√

β
n
〈y,Ln−p(α)〉 dy.

It is easily seen that ∑
α,|α|=n−p

e
√

β
n
〈y,Ln−p(α)〉 =

(
q∑

k=1

e
√

β
n
yk

)n−p

,

therefore we get∑
α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

1

(2π)q/2

∫
Rq

exp

(
−1

2
‖y‖2 +

√
β

n
〈y, Lp(ω)〉+ (n− p) log

(
q∑

k=1

e
√

β
n
yk

))
dy.

Now we make the change of variable βz =
√

β
n
y, and we obtain

(24)
∑

α, |α|=n−p

e
β
2n
‖Ln(ωα)‖2 =

(
nβ

2π

)q/2 ∫
Rq
enϕP (z)f(z) dz,
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where ϕP was defined in (21) and f is defined on Rq by

(25) f(z) = exp

(
β〈z, Lp(ω)〉 − p log

(
q∑

k=1

eβzk

))
.

Similarly, p = 0 yields∑
α, |α|=n

e
β
2n
‖Ln(α)‖2 =

(
nβ

2π

)q/2 ∫
Rq
enϕP (z) dz,

hence

µn,β([ω]) =

∑
α, |α|=n−p e

β
2n
‖Ln(ωα)‖2∑

α, |α|=n e
β
2n
‖Ln(α)‖2

=

∫
Rq e

nϕP (z)f(z) dz∫
Rq e

nϕP (z) dz
.

We denote by DϕP (z), respectively H(z), the gradient, respectively the Hessian
matrix, of ϕP at z. It is proved in Proposition 2.2 of [11] that the Hessian matrix of
ϕP is negative definite at each global maximum point of ϕP . Now if DϕP vanishes at
a single point z0 in an open set O of Rq, if H(z0) is negative definite and if f(z0) 6= 0,
then we know by Laplace’s method that∫

0

enϕP (z)f(z) dz ∼n→∞
(2π)q/2f(z0)enϕP (z0)

nq/2
√
|detH(z0)|

.

If 0 < β < βc : according to Theorem 4, ϕP attains its maximum at the unique
point ν0 so applying Laplace’s method yields

µn,β([ω]) ∼n→∞
f(ν0)

1
=

1

qp
.

If β > βc : Theorem 4 states that ϕP attains its maximum at exactly q points
νi(β), i = 1, · · · , q, where νi(β), i = 2, · · · , q is obtained by interchanging the first
and ith coordinates of ν1(β). Due to the symmetry of the function ϕP it is clear
that detH(νi) = detH(ν1), i = 2, · · · , q. Considering a family of disjoint open sets
(Oi)1≤i≤q such that Oi contains νi and Rq = ∪qi=1Oi∪N , where N is a set of measure
zero, Laplace’s method yields

µn,β([ω]) ∼n→∞
1

q

q∑
i=1

f(νi).

Recall that

f(νi) =
eβ〈ν

i,Lp(ω)〉(∑q
k=1 e

βνik
)p

with

νik =


1− sβ
q

if k 6= i,

1 + (q − 1)sβ
q

if k = i.
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As
∑q

k=1 Lp,k(ω) = p it is easily seen that

(26) eβ〈ν
i,Lp(ω)〉 = exp

(
βp(1− sβ)

q
+ βsβLp,i(ω)

)
.

As νi is a critical point of ϕP and ∂ϕP
∂zi

(z) = βeβzi∑q
k=1 e

βzk
− βzi, we know that

(27)

q∑
k=1

eβν
i
k =

eβν
i
j

νij
=

q

1− sβ
e
β(1−sβ)

q .

Putting together (26) and (27) we obtain

f(νi) =

(
1− sβ
q

)p
eβsβLp,i(ω),

which can also be written

(28) f(νi) =
1

(eβsβ + q − 1)p
eβsβLp,i(ω)

since sβ is solution of the equation (12). Therefore

µn,β([ω]) ∼n→∞
1

q

1

(eβsβ + q − 1)p

q∑
i=1

eβsβLp,i(ω).

If β = βc : the function ϕP admits exactly q+1 maximun points νi(β), i = 0, · · · , q
but detH(ν0) 6= detH(ν1), therefore Laplace’s method yields

(29) µn,β([ω]) ∼n→∞
|detH(ν0)|−1/2f(ν0) + |detH(ν1)|−1/2

∑q
i=1 f(νi)

|detH(ν0)|−1/2 + q |detH(ν1)|−1/2
.

In the proof of Proposition 2.2 of [11] it is proved that H(ν0) has a simple eigenvalue
at β and an eigenvalue of multiplicity (q−1) at βq−1(q−β) whereasH(ν1) has simple
eigenvalues at β and β − β2qab and an eigenvalue of multiplicity (q− 2) at β − β2b,
where a = q−1(1 + (q − 1)sβ) and b = q−1(1 − sβ). Recalling that s(βc) = q−2

q−1
we

deduce that

|detH(ν0)| = βqc (1− q−1βc)
q−1,

|detH(ν1)| = βqc (1− q−1βc)

(
1− βc

q(q − 1)

)q−2

.

Reporting in (29) and recalling (28) we get the result. �

3.2. Identification of the limit. We can already deduce from Lemma 3.1 that
µn,β

w−→
n→+∞

µ̃0 if β < βc.
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Lemma 3.2. Computation for µ̃kb

For k = 1, . . . , q,

(30) µ̃kb ([ω]) =
ebLp,k(ω)

(eb + q − 1)p
.

Proof. The function b11[θk] depends only on the zero coordinate, therefore the supre-

mum in (1) is attained for the product measure (mk)⊗N, where the probability vector
(mk

j )1≤j≤q on Λ maximizes the quantity

−
q∑
j=1

pj log pj + bpk

over all the probability vectors (pj)1≤j≤q on Λ, and is given by mk
k = eb

eb+q−1
, mk

j =
1

eb+q−1
if j 6= k (see for instance Example 4.2.2 of [17]). The result is then clear. �

The limit in (13) is now a direct consequence of the lemmas 3.1 and 3.2.

4. Proof of Theorem 2

We consider a function ψ of the form

ψ :=
∑
i

ai11Ci ,

where the sum is finite, the Ci’s are disjoint cylinders, and the ai’s are real numbers
which are not all equal to zero. We can always assume that all the cylinders have
the same length, say q.

In the following we assume that we have chosen an order on q-cylinders and we
consider the vector a := (a1, . . . , a2q).

4.1. Convergence of µn,β. Let ω = ω0 . . . ωp−1 be a finite word of length p. To fix
the ideas, we assume that p is bigger than q. Note that if the convergence holds for
any cylinder with length larger than q then it holds for any cylinder.

For n very big and x ∈ Σ2, Sn(ψ)(x) involves digits x0, . . . , xn+q−2. Then, we get

µn,β([ω]) =
∑

α, |α|=n−p+q−1

µn,β([ω0 . . . ωp−1α0 . . . αn−p+q−2]).
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For simplicity we write Sn(ωα) for Sn(ψ)(ωα) (which is well defined if |α| ≥ n− p+
q − 1). Again, using the Hubbard-Stratonovich transformation we get∑

α, |α|=n−p+q−1

e
β
2n
S2
n(ωα) =

1√
2π

∫ +∞

−∞
e−

x2

2

∑
α

e
√

β
n
xSn(ωα) dx,(31)

=

√
βn

2π

∫ +∞

−∞
e−n

β
2
z2
∑
α

eβzSn(ωα) dz,

where we have made the change of variable βz =

√
β

n
x.

We point out the equality

(32) Sn(ωα) = Sp−q+1(ω) + Sq−1(σp+1−q(ωα)) + Sn−p(α).

This equality means that the first p+ 1− q terms in the Birkhoff sum Sn(ωα) only
involve the ωi’s, then come q − 1 terms which involve the tail of ω and the head of
α, and then comes the tail of the sum which only depends on α.

Let us define the operator Lξ, depending on a real or complex parameter ξ, by

Lξ(T )(x) := eξψ(−1x)T (−1x) + eξψ(1x)T (1x).

Here x is a point in Σ2, T is a continuous function on Σ2, and we remind that ix,
with i = ±1, is the infinite word ix0x1x2 . . .. Lξ is the transfer operator3 associated
to the potential ξ.ψ. We notice that for any m ∈ N∗,

Lmξ (T )(x) :=
∑

α, |α|=m

eξSm(αx)T (αx).

Now, we write α = α′α′′, with |α′| = n− p and |α′′| = q− 1. Using the equality (32)
it is easy to check that

(33)
∑
α

eβzSn(ωα) = eβzSp−q+1(ω)
∑

α′′ |α′′|=q−1

Ln−pβ.z (eβzSq−1(σp+1−q(ω.)))(α′′x).

We point out that the x on the right hand side of this equality is just there to make
sense but the expression actually does not depend on x because |α′′| = q − 1.

It is known (see [3]) that Lξ acts on continuous and Hölder continuous functions.
Moreover on the space of Hölder continuous functions it is quasi-compact: its spec-
tral radius, say λ(ξ), is a simple dominating eigenvalue associated to a positive eigen-
function, say Hξ. The adjoint operator acts on measures and it admits a unique
eigenmeasure associated to the spectral radius, say νξ. Moreover

∫
Hξdνξ = 1 and

for every continuous function T ,

lim
n→+∞

max
x∈Σ2

∣∣∣∣λ(ξ)−nLnξ (T )(x)−
(∫

Tdνξ

)
Hξ(x)

∣∣∣∣ = 0.

3also called the Ruelle Perron Frobenius operator.
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Remark 4. The measure νξ is exactly the conformal measure associated to ξψ. �

We refer the reader to [15] for properties of quasi-compact operators ,in particular
regularity of the maximal eigenvalue and the eigenvectors with respect to ξ.

Furthermore, Lξ acts on functions constant on (q−1)-cylinders because ψ is constant
on q-cylinders. In that case we can give a simple characterization for λ(ξ). First, we
order the (q − 1)-cylinders, say K1, . . . , K2q−1 , and the q-cylinders, say C1, . . . , C2q .
Let z = (z1, . . . , z2q) be a vector in R2q . We consider the 2q−1 × 2q−1 matrix M(z)
whose entries are defined as follows: From the (q − 1)-cylinder Ki = [ωi0, . . . ω

i
q−2]

we can construct two new (q − 1)-cylinders

[ωi1, . . . , ω
i
q−2,+1] and [ωi1, . . . , ω

i
q−2,−1],

corresponding respectively to sayKj1(i) andKj2(i). We can also define two q-cylinders
Ck1(i) = [ωi0, . . . , ω

i
q−2,+1] and Ck2(i) = [ωi0, . . . , ω

i
q−2,−1]. Then we set

M(z)ij =


0 if j /∈ {j1(i), j2(i)},
ezk1(i) if j = j1(i),

ezk1(i) if j = j2(i).

A simple computation shows that

Lξ(11Ki) = eξak1(i)11Kj1(i) + eξak2(i)11Kj2(i) .

Let us call Eq−1 the vector space of functions constant on (q− 1)-cylinders. The set
{11Ki ; 1 ≤ i ≤ 2q−1} is a basis of Eq−1, which can be identified with the canonical

basis (ei)1≤i≤2q−1 of R2q−1
. With this identification we get that the restriction of

Lξ to Eq−1 is a linear operator whose matrix is exactly the transpose tM(ξ.a) of
M(ξ.a). Therefore, λ(ξ) is the dominating eigenvalue for M(ξ.a). We emphasize
that this matrix is aperiodic and then the Perron Frobenius theorem on matrices
holds. Furthermore, Hξ is a left eigenvector for M(ξ.a) associated to λ(ξ).

Let us denote by Tξ the function x 7→ eξSq−1(σp+1−q(ωx)). This function Tξ belongs to
Eq−1, and

‖Tξ‖∞ ≤ e(q−1)|ξ|A,

where A := max{|ai|; 1 ≤ i ≤ 2q}. The spectral properties of Lξ then yield that

(34)

∥∥∥∥∥L
n−p
ξ (Tξ)

λ(ξ)n−p
−
∫
Tξ dνξ .Hξ

∥∥∥∥∥
∞

≤ C(ξ)

(1 + ε(ξ))n−p
e(q−1)|ξ|A,

where ε(ξ) is continuous and positive (in ξ) and C(ξ) does only depend on ξ.

Lemma 4.1. Let ϕOS be defined be ϕOS(t) = −β
2
t2 + log λ(βt). Then, for each β,

ϕOS attains its maximum on R at finitely many points.

Proof. Recall that A = max |ai|. We do the case t ≥ 0, the case t ≤ 0 being the
same with −A instead of A.



20 RENAUD LEPLAIDEUR AND FRÉDÉRIQUE WATBLED

Inequalities between eigenvalues of matrices and coefficients yield

λ(βt) ≤ 2eAβt.

This shows that for t ≥ 0, ϕOS(t) ≤ −β
2
t2 +Aβt+ log 2, and this upper bound goes

to −∞ if t goes to +∞. On the other hand, ϕOS(0) = log 2. Therefore, ϕOS reaches
its maximum on R+ only on some compact set [0, κ(β)].

Furthermore, any t which realizes the maximum must be a critical point of the
derivative. Note that ξ 7→ λ(ξ) admits an analytic continuation in a complex neigh-
borhood of R which prohibits to get infinitely many zeros of ϕ′OS on the segment
[0, κ(β)]. �

Proposition 4.2. Let β be fixed. Let (ti)1≤i≤J be the finitely many real numbers
where ϕOS reaches its maximum4. Then, there exist finitely many positive bi, 1 ≤
i ≤ J such that

∑J
i=1 bi = 1 and such that µn,β([ω]) converges to

J∑
i=1

biνβti([ω]).

Proof. From the definition of µn,β we know that

µn,β([ω]) =

∑
α, |α|=n−p+q−1 e

β
2n
S2
n(ωα)∑

γ, |γ|=n+q−1 e
β
2n
S2
n(γ)

.

Using (31) and (33) we get

(35) µn,β([ω]) =

∑
|α|=q−1

∫ +∞
−∞ e−n

β
2
z2eβzSp−q+1(ω)Ln−pβz (Tβz)(α) dz∑

|α|=q−1

∫ +∞
−∞ e−n

β
2
z2Lnβz(11)(α) dz

.

We can rewrite the numerator as a sum of q terms of the form∫ +∞

−∞
enϕOS(βz)eβzSp−q+1(ω)−p log λ(βz)

Ln−pβz

λ(βz)n−p
(Tβz)(α) dz,

and the denominator as a sum of q terms of the form∫ +∞

−∞
enϕOS(βz)

Lnβz
λ(βz)n

(11)(α) dz.

We want to use the Laplace method for these terms. Lemma 4.1 shows that the
exponential term (in n) has only finitely many maximum. But we are not yet done
and the problem comes from the last term in the integral which depends on n.
Inequality (34) shows that this term converge as n goes to +∞ but the speed of
convergence depends on z and z may goes to ±∞.

4We emphasize that the ti’s depend on β but we drop the index β to get lighter notations.
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To deal with this fact, we recall that A is max |ai| and we notice that for every
continuous T ,

||Lβz(T )||∞ ≤ 2eAβ|z|||T ||∞,

therefore

||Lβz(Tβz)||∞ ≤ 2eqβ|z|A,

and

|e−n
β
2
z2eβzSp−q+1(ω)Ln−pβz (Tβz)(α)| ≤ en(−β

2
z2+β|z|A(p+1)+log 2).

As −β
2
z2 + |z|(βA(p+ 1) + 1) + log 2 goes to −∞ as |z| goes to +∞, we can deduce

that there exists κ(β) > 0 such that for every n ≥ 2,

(36)

∫
|z|≥κ(β)

e−n
β
2
z2eβzSp−q+1(ω)Ln−pβz (Tβz)(α) dz ≤ e−nκ(β).

We choose κ(β) big enough so that all the points tj, 1 ≤ j ≤ J , where ϕOS reaches
its maximum, are in the interior of the interval [−κ(β), κ(β)]. Then we can write
the integral over the segment [−κ(β), κ(β)] as a finite sum of integrals over segments
[aj, bj] where each segment [aj, bj] contains exactly one of the points tj, 1 ≤ j ≤ J .
We state the following lemma, which is an immediate adaptation of the Laplace
method.

Lemma 4.3. Let ϕ : [a, b]→ R a function of class C2, with ϕ′ vanishing on a single
point c in ]a, b[ and ϕ′′(c) < 0. Let (fn)n≥1, f some continuous functions from [a, b]
to R such that fn converges to f uniformly on [a, b], and f(c) 6= 0. Then as n→∞∫ b

a

enϕ(x)fn(x) dx ∼
√

π

2|ϕ′′(c)|
enϕ(c)f(c)n−1/2.

We apply this lemma on every [aj, bj] to the functions fn defined by

fn(z) = eβzSp−q+1(ω)−p log λ(βz)
Ln−pβz

λ(βz)n−p
(Tβz)(α).

Thanks to (34) the functions fn converge uniformly on [aj, bj] to f defined by

f(z) =
eβzSp+1−q(ω)

λ(βz)p

∫
eβzSq−1(σp+1−q(ωx)) dνβz(x) .Hβz(α)

=
1

λ(βz)p

∫
eβzSp(ωx) dνβz(x) .Hβz(α)

=
1

λ(βz)p

∫
Lpβz(11[ω])(x) dνβz(x) .Hβz(α)

= Hβz(α)νβz([ω]).
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Putting together (36) and the result of Lemma 4.3 applied to every [aj, bj] we obtain
that the numerator of µnβ([ω]) in (35) is equivalent to∑

|α|=q−1

J∑
j=1

√
π

2|ϕ′′OS(tj)|
enϕOS(tj)Hβtj(α)νβtj([ω])n−1/2.

Similarly, the denominator of µnβ([ω]) in (35) is equivalent to∑
|α|=q−1

J∑
j=1

√
π

2|ϕ′′OS(tj)|
enϕOS(tj)Hβtj(α)n−1/2.

We then get that µnβ([ω]) is equivalent to∑J
j=1

∑
|α|=q−1

Hβtj(α)√
|ϕ′′OS(tj)|

νβtj([ω])

∑J
j=1

∑
|α|=q−1

Hβtj(α)√
|ϕ′′OS(tj)|

.

Let us set

bi :=

∑
α,|α|=q−1

Hβti(α)√
|ϕ′′OS(ti)|∑

j,α,|α|=q−1

Hβtj(α)√
|ϕ′′OS(tj)|

.

Then the bi’s are positive, they satisfy
∑

i bi = 1, and µn,β([ω]) converges to∑
i

biνβti([ω]).

�

4.2. End of the Proof of Theorem 2.

4.2.1. Some properties for Pressure function. We recall here some properties for the
pressure function. If g is Hölder continuous on Σ2 then t 7→ P(tg) is convex thus
continuous. The Ruelle theorem also yields

(37)
∂

∂t
P(tg)t=t0 =

∫
g dµ̃t0 ,

where µ̃t0 is the DGM for t0g.

We recall also that for g = ψ =
2q∑
i=1

ai11Ci , P(βtψ) = log λ(βt), where λ(βt) is the

spectral radius for the matrix M(βta).
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4.2.2. Maximizing the quadratic pressure. There are 2q q-cylinders in Σ2. If µ and
ν are invariant measures, then

µ ≈ ν ⇐⇒ µ([ω0 . . . ωq−1]) = ν([ω0 . . . ωq−1]) for every q-cylinder.

defines an equivalence relation over the set of invariant probabilities. If µ ≈ ν then∫
ψ dµ =

∫
ψ dν holds because ψ is constant on q-cylinders.

Note that hµ +
β

2

(∫
ψ dµ

)2

is maximal among elements of the same class for ≈ if

and only if hµ is maximal.

Because we are considering probability measures, it is sufficient to know µ(Ci) for
all i < 2q to know all of the measure µ. If yi, i = 1, . . . 2q − 1 are non-negative real
numbers such that

∑
yi ≤ 1, then we denote by ≈y, the class of measures such that

µ(Ci) = yi for all i < 2q.

Now, we state a lemma that is an adapted version of results from [2] (th. 7, 8) and
[12] (th 4.8). These papers focus on multifractal analysis and they have different
ways to state the result we need here. It is not clear to us if their statements can
be directly applied in our case.

Lemma 4.4. Let y be such that ≈y is non-empty. Then

max {hµ, µ ∈≈y} ≤ inf
z∈R2q−1, z 6=0

{
P
(∑

zi11Ci

)
−
∑

ziyi

}
Proof. Note the immediate equality:

inf
t∈R+, z∈S2q−2

{
P(t

∑
zi11Ci)− t

∑
ziyi

}
= inf

z∈R2q−1, z 6=0

{
P
(∑

zi11Ci

)
−
∑

ziyi

}
For our proof, we prefer to use the left hand side characterization. Let us pick

z ∈ S2q−2. First we assume that
∑

ziyi = max

∫ ∑
zi11Cidµ, where the maxi-

mum is taken among all invariant measures. Then, it is well known (see [1]) that
t 7→ P(t

∑
zi11Ci)− t

∑
ziyi is a convex decreasing function which converges to the

residual entropy:

lim
t→+∞

P(t
∑

zi11Ci)− t
∑

ziyi = max

{
hµ,

∫ ∑
zi11Ci is maximal

}
.

Clearly the residual entropy is bigger than max {hµ, µ ∈≈y}.

Let us now assume that the class ≈y is not included into the set of maximizing

measures for
∑
zi11Ci . Then lim

t→+∞
P(t

∑
zi11Ci)− t

∑
ziyi = +∞ and the convex

function admits a unique minimum on R+.
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If this minimum is reached at t = 0, then its value is h> = log 2 which is bigger than
any metric entropy.

The last case holds if the minimum is reached at a critical point, say t0. Note that
if νt0 is the equilibrium state for t0

∑
zi11Ci , then

∂

∂t
P(t

∑
zi11Ci)|t=t0 =

∫ ∑
zi11Cidνt0 .

The fact that t0 is a critical point yields∫ ∑
zi11Cidνt0 =

∑
ziyi,

and then for any µ in ≈y, we get

hµ+t0
∑

ziyi = hµ+t0

∫ ∑
zi11Cidµ ≤ hνt0 +t0

∫ ∑
zi11Cidνt0 = P(t0

∑
zi11Ci),

which concludes the proof. �

Let y be such that ≈y is non-empty. Note that for every µ ∈≈y,

∫
ψ dµ is the

constant a2q +
∑

(ai − a2q)yi. For simplicity we denote this quantity by 〈ψ|y〉.
Upper semi-continuity for the entropy yields the existence of measures µ ∈≈y such
that

hµ = max{hν , ν ∈≈y}.
Then we set hy := hµ.

Lemma 4.5. For every y such that ≈y is non-empty, set t = 〈ψ|y〉. Then,

hy +
β

2
t2 ≤ ϕOS(t).

Proof. Let µ̃t be the DGM associated to the potential βt
∑

(ai − a2q)11Ci . Note the
following equality

βt
∑

(ai − a2q)11Ci = βtψ − βta2q .

Set

z := (z1, . . . , z2q−1), with zi := βt(ai − a2q).

The properties of the Pressure function (see Subsubsec. 4.2.1) yield that the pressure

for βt
∑

(ai − a2q)11Ci is equal to

P(βtψ)− βta2q = log λ(βt)− βta2q .

On the other hand Lemma 4.4 yields

(38) hy ≤ P(
∑

zi11Ci)−
∑

ziyi.
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We immediately get the following sequence of inequalities:

hy +
β

2
t2 ≤ log λ(βt)− βta2q − βt

∑
(ai − a2q)yi +

β

2
t2

≤ log λ(βt) +
β

2
t2 − βt〈ψ|y〉

≤ log λ(βt) +
β

2
t2 − βt2 = ϕOS(t),

where the last inequality uses t = 〈ψ|y〉. �

Lemma 4.6. If t is a critical point for ϕOS, we consider the DGM µ̃tβψ associated
to tβψ. We also set yi = µ̃tβψ(Ci) for 1 ≤ i ≤ 2q and

y := (y1, . . . y2q−1).

Then, t =

∫
ψ dµ̃tβψ and hy +

β

2
t2 = ϕOS(t).

Proof. The DGM µ̃tβψ has pressure log λ(βt). Moreover Equality (37) yields

λ′(βt)

λ(βt)
=

∫
ψ dµ̃βtψ.

As t is a critical point for ϕOS we have

βt = β.
λ′(βt)

λ(βt)
,

and then t =

∫
ψ dµ̃tβψ holds. We deduce that

P(βtψ)− βt〈ψ|y〉 = log λ(βt)− βt2 = ϕOS(t)− β

2
t2.

Now by definition of the DGM we know that

P(βtψ)− βt〈ψ|y〉 = hµ̃tβψ

which is smaller than hy by definition of this last term, therefore

ϕOS(t) ≤ hy +
β

2
t2.

The reverse inequality holds true thanks to Lemma 4.5, which finishes the proof. �

We can now finish the proof of Theorem 2. We have seen that the PGM µβ,n
converges to

∑
j bjνβtj , where the tj’s are the maxima for ϕOS.

For these tj’s, Lemmas 4.5 and 4.6 show that

hµ +
β

2

(∫
ψ dµ

)2

≤ ϕOS(tj),

with equality if µ is one of the DGM’s, µ̃βtkψ.
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It remains to prove that the DGM’s are the only maximizers of the quadratic pres-
sure. We define a new functional

φr(t) := max

{
hµ +

β

2
t2,

∫
ψ dµ = t

}
.

This function is defined on some intervalM(ψ). If µ is a measure, Lemma 4.5 shows

for

∫
ψ dµ =: t

hµ +
β

2
t2 ≤ ϕOS(t).

This yields that for all t ∈M(ψ),

(39) φr(t) ≤ ϕOS(t).

Therefore, Lemma 4.6 shows that the maxima for φr are the maxima for ϕOS. If a
measure µ maximizes the quadratic pressure, then we have

P2(βψ) = hµ +
β

2

(∫
ψ dµ

)2

and setting t :=

∫
ψ dµ we must have φr(t) = maxϕOS(t) which yields that t is one

of the tj’s. Now we have ∫
ψ dµ = tj =

∫
ψ dµ̃βtjψ,

and then

P2(βψ) = hµ +
β

2

(∫
ψ dµ

)2

= ϕOS(tj) = hµ̃βtjψ +
β

2

(∫
ψ dµ̃βtjψ

)2

hence hµ = hµ̃βtjψ . Therefore

hµ +
β

2

∫
ψ dµ = hµ̃βtjψ +

β

2

∫
ψ dµ̃βtjψ

and µ must be the DGM µ̃βtjψ. This finishes the proof of Theorem 2.
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