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EASY ISING
OR

CURIE-WEISS MODEL EXPLAINED TO ERGODICISTS

RENAUD LEPLAIDEUR AND FREDERIQUE WATBLED

ABSTRACT. We state a dictionary for thermodynamic formalism within the Curie-
Weiss model between the Probability-Statistical Mechanics and the Ergodic view-
points. Limits for probabilistic Gibbs measures are identified as combinations of,
say N(B), dynamical conformal measures. Phase transitions are then related to a
change in N () as 8 moves.

More surprising we point out that, to be closer to what is done in Statistical
Mechanics, ergodicists should study the supremum of the sum of the entropy and
the square of the integral of the potential instead of the sum of the entropy and
the integral of the potential.

1. INTRODUCTION

1.1. Background, main motivations and results. The notion of Gibbs measure
comes from Statistical Mechanics. It has been studied a lot from the probabilistic
viewpoint (see [I3], [7, O 10]). This notion was introduced in Ergodic Theory in
the 70’s by Sinai, Ruelle and Bowen (see [24], 25| 23] 22| B]). Since that moment,
the thermodynamic formalism became in Dynamical Systems a pure mathematical
question and somehow disconnected from the original physical questions.

Since the 00’s, ergodicists started to reconnect the questions in Dynamical Systems
with the original physical ones. Notions as ground states and phase transitions
were re-defined and investigated from the ergodic viewpoint. From that moment,
the sharing of the vocabulary started to be a source of confusion, and the main
motivation for this paper is to make clear some similitudes and differences between
Gibbs measures within the probabilistic or the ergodic viewpoints.

Beyond stating a kind of dictionary between thermodynamic formalisms in Statis-
tical Mechanics and Probability on the one hand, and Ergodic Theory on the other
hand, the main byproduct of our work is a very strange discovery within the ergodic
viewpoint.
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Key words and phrases. thermodynamic formalism, equilibrium states, Curie-Weiss model,
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2 RENAUD LEPLAIDEUR AND FREDERIQUE WATBLED

Actually, and using the Ergodic viewpoint and vocabulary, Theorem [2|shows that, in
Statistical Mechanics and Probability, one maximizes the entropy plus the square of
an integral, whereas in Ergodic Theory one maximizes the entropy plus an integral.

This has a lot of nice consequences and further possible research questions. Some
of them are discussed later (see Subsubsection (1.2.3)).

Our dictionary works as follows. In Statistical Mechanics and in Probability theory,
the system is a finite set of sites. There is an interaction between sites given by
an Hamiltonian. A Gibbs measure is a probability on the finite set of configura-
tions which is optimal with respect to some quantity. All the objects depend on
a parameter [ equal to the inverse of the temperature. Then, the issue is to de-
fine the possible accumulation points for the Gibbs measures as the number of sites
goes to +00. A phase transition occurs if, as moving the parameter 3, this set of
accumulation points admits a discontinuity for some S..

In Ergodic Theory (on symbolic dynamics) one immediately considers the set of
infinite configurations . Instead of having an Hamiltonian one considers a potential
Y ¥ — R. We consider here the case where v is Holder continuous. The Gibbs
measure is an invariant measure, also called equilibrium state, which maximizes the
pressure (see below). The pressure function is the pressure for 8.1 considered as a
function of 5. Then, a phase transition occurs if the pressure function is not analytic
at some (.. It is noteworthy that in this setting, the number of equilibrium states
is almost independent of the regularity of the pressure function (see [27, [1§]).

Roughly speaking, our dictionary identifies accumulation points of Gibbs measures
in Probability with conformal measures in Ergodic Theory. Conformal measures
are not Gibbs measures (within the Ergodic viewpoint) but are strongly related
to them. More precisely, we show that for the Curie-Weiss model (see Theorem
and the Curie-Weiss-Potts model (see Theorem |3) the Gibbs measures converge
to a convex combination of conformal measures. A (probabilistic) phase transition
occurs when the number of conformal measures in the limit changes. This notion of
phase transition is thus different from the one used in Ergodic Theory.

Although some of the convergences we prove here were already known (see [19]), we
point out that the identification of the limit with ergodic quantities was not stated.
We claim that the novelty here does not concern the convergence but the dictionary
and identification/similitude/differences between Gibbs measures and phase transi-
tions in Probability Theory or Ergodic Theory. We point out that this dictionary
works well for the Curie-Weiss and Curie-Weiss-Potts models probably because for
these models, the Hamiltonian turns out to be easily writable as a function of a
Birkhoff sum. This is the core of Theorem [

At last, we mention works of Cioletti and Lopes (see [0, [4, [6]). There, for different
settings (non Holder continuous potentials and not for the Curie-Weiss models), the
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connection between DLR-Gibbs measures (within the Statistical Mechanics view-
point) and the conformal measures (within the Ergodic viewpoint) is also done.

1.2. Precise settings and results.

1.2.1. Ergodic and Dynamical settings. We consider a finite set A with cardinality
bigger or equal to 2. It is called the alphabet. Then we consider the one-sided

full shift ¥ = AN over A. A point x in ¥ is a sequence xg,z1,... (also called an
infinite word) where the z; are in A. Most of the times we shall use the notation
T = Toxr1%y.... A x; € A can either be called a letter, or a digit or a symbol.

The shift map o is defined by

O'($0£C1£E2 .. ) = X1T9....

The distance between two points © = zoxy ... and y = yoy1 . .. is given by

1

d(m, Z/) = 2min{n, xn;ﬁyn}.

A finite string of symbols zg...x,_1 is also called a word, of length n. For a word
w, its length is |w|. A cylinder (of length n) is denoted by [zq...x,_1]. It is the set
of points y such that y; = z; for i = 0,...n — 1. We shall also talk about n-cylinder
instead of cylinder of length n.

If w is the word of finite length wy ... w,_; and x is a word, the concatenation wx
is the new word wow ... w,_1x9x7 . . ..

For v : ¥ — R continuous and § > 0, the pressure function is defined by
) Pow) =sup {5 [ wan}.
p b

where the supremum is taken among the set M, (X) of o-invariant probabilities on ¥
and h, is the Kolmogorov-Sinai entropy of ;. The real parameter 3 is assumed to be
positive because it represents the inverse of the temperature in statistical mechanics.
It is known that the supremum is actually a maximum and any measure for which
the maximum is attained in (1)) is called an equilibrium state for 5. We refer the
reader to [3, 23] for basic notions on thermodynamic formalism in ergodic theory.

If ¢ is Lipschitz continuous then the Ruelle-Griffith theorem (see [14]) states that
for every f3, there is a unique equilibrium state for S+, which is denoted by figy. It
is ergodic and it shall be called the dynamical Gibbs measure (DGM for shortl|). It

We prefer the adjective “dynamical” instead of “ergodic” to avoid the discussion if an ergodic
Gibbs measure is ergodic or not.
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is the unique o-invariant probability measure which satisfies the property that for
every r = xox; ... and for every n,

—cy — Bau([mo .- ai])
(2) ¢S E e mw ) =

where Cj is a positive real number depending only on 5 and % (but not on x or n),
and S, (1) stands for ) + oo+ ...+ oo™ L

ecﬁ,

With these settings, the Sy -conformal measure is the unique probability measure
such that for every x and for every n,

(3) Vﬁuj([%o---%nq]) _ /eﬁsn(w)(xo...m_ly)nP(ﬁw) dyﬁw(y)_

A precise (and more technical) definition of conformal measure is given in page .

Again, we refer the reader to [3, 23] to see the connection between conformal mea-
sures and DGM. We emphasize that in our settings, conformal measures and DGM
are equivalent measures and one can obtain one from the other.

If the choice of 9 is clear we shall drop the ¢ and write g, vz and P(f).
1.2.2. The Curie-Weiss model. Probabilistic settings 1 and results. We consider the
case A = {—1,+1}; ¥ will be denoted by .

If wy...w,—1 is a finite word, we set

(4) H,(w) = L > wiw.

It is called the Curie-Weiss Hamiltonian. The empirical magnetization for w is
n—1
1

— Z w;. Then we have
n

J=0

(5) H,(w) = =5 (ma (@)

my,(w) ==

We denote by P := p®N the product measure on ¥, where p is the uniform measure
on {—1,1}, ie. p({1}) = p({—1}) = 3, and we define the probabilistic Gibbs measure
(PGM for short) p, 3 on X9 by

e_BHn (UJ)

T,ﬁp(dw)’

(6) pin,p(dw) =

where Z,, 5 is the normalization factor

1 /
Zng = on Z e PHn (W),

W, W =n

Note that j, g can also be viewed as a probability defined on A".
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The measure P is a Bernoulli measure and is o-invariant. In Ergodic Theory it is
usually called the Parry-measure (see [20]) and turns out to be the unique measure
with maximal entropy. With our previous notations it corresponds to the DGM jig.

If P,, P are probability measures on the Borel sets of a metric space .S, we say that
P, converges weakly to P if [ fdP, — [, fdP for each f in the class Cy(S) of

bounded, continuous real functions f on S. In this case we write P, — P.
n—-+o0o

Our first result concerns the weak convergence of the measures p, .

Theorem 1. Weak convergence for the CW model

Let g be the unique point in [0, 1] which realizes the mazimum for pr(z) = log(cosh(fz))—
§x2. Let [y and [, be the dynamical Gibbs measures for blljiq and bll|_q) respec-
tively. Then

ﬁo Zf/B S 17
(7) Hn,B L 17 ~ .

Remark 1. Actually p, 3 converges towards % [ﬁ;g{g + ﬁz_ﬁgﬁ} for every B > 0 since

we shall see that for 3 < 1 we have &5 = 0, and it is clear that fif = iy = fio = p®N.
|

We refer to [§], sections IV.4 and V.9, for a discussion of the Curie-Weiss model
and historical references (see also [21], section 3.4). In Theorem IV.4.1 it is proved,
using large deviations, that the sequence of image probabilities QQ,, defined by

(8) Qn(A) :== ppp(m, € A)

converges to an atomic measure as n goes to +00. By using this theorem, Orey ([19],
Corollary 1.2) proved by a nice simple probabilistic argument the weak convergence
of p, 3 towards an explicit atomic measure. We were not aware of the work of Orey
when we proved our theorem [, We think it is still interesting because it makes the
link with dynamical Gibbs measures, and furthermore our proof is direct and does
not use large deviations.

We emphasize the equality

1
(9) M (W) 1= —Sn (L = Lj-y)(w)
which shows that m,, can be written as a Birkhoff mean of a continuous function.

A consequence of @D is that can be rewritten under the form

) =5 (@)
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where ¢ := 1 ;.;)—1|_;;. We are thus led to investigate about results similar to those
of Theorem (1| but for a more general Hamiltonian. From that point we discovered a
very strange result: to export the Curie-Weiss Model in Ergodic Theory, one should
focus on the invariant measures p which maximize

e 3(fow)

instead of measures which maximize h, + 3 / Y dy.

Theorem 2. Convergence for a more general Hamiltonian

Let 1) be a locally constant functiorﬂ on Y. Let H, be the Hamiltonian defined by

n (1

H,w) = -1 (Esn<w><w>)2.

Let pi, 3 be the PGM defined by @ with this new value for H,. Then, for each
6 >0,

(1) there are finitely many real numbers ty,...t;, and J depends on 5 such that
the DGM pig:; s associated to Bty are the unique measures which mazimize

hu—i-g (/wdu>2.

(2) As n goes to +00, p,pg converges weakly to a convex combination of the
conformal measures vg;,’s associated to [3t;i.

From this theorem it makes sense to define a new concept of pressure as

Py(B9) = max {hu 0 (/@Ddﬂ)z} |

and to study measures which realize this maximum. This quantity shall be referred
to as the quadratic pressure. Note that upper semi-continuity for entropy shows
that the maximum is well defined. The function 5 +— P5(S%) is obviously convex
(thus continuous). Theorem |1| shows that it can be piecewise analytic and that the
number of measures which realize the maximum may change with respect to (.

Remark 2. We emphasize that Theorem [1] is a particular case of Theorem [ with
Y = Iy — I|y. Note that for this particular case, the DGM is also the conformal
measure. W

k
2That is ¢ is of the form 1 = Z a;llc; where the C;’s are disjoint cylinders
§=0
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1.2.3. Some consequences of Theorem [J. Several questions arise from Theorem [2]
Actually, the main goal for Thermodynamic Formalism is to furnish a way to select
one (or finitely many) invariant ergodic measure via the variational principle (see
(1)). In terms of mathematics, it does not make neither more nor less sense to select

2
measures which maximize h, + / Y dyp instead of h, + g (/ Y du) )

Therefore, we are naturally led to redo the Thermodynamic Formalism for all known
2

Dynamical Systems but inquiring for measures p which maximize hu+§ < / Ydu

In particular, a natural question is to inquire whether Theorem [2| holds for any
sufficiently regular potential 1) and not only the locally constant ones. We point out
that our proof cannot be easily adapted to that more general case. Moreover, the
usual tool in Thermodynamic Formalism —that is the Transfer operator— does not
seem to be well adapted to this question.

For more geometric dynamical systems, one usually considers or studies the special
class of physical or/and SRB-measures. These measures are usually considered as the

most natural ones with the measures of maximal entropy. It is clear that measures
2

of maximal entropy also maximize h, + < / (0 du) for ¢» = 0. A natural question

is thus to know if SRB-measures can also be characterized as measures maximizing
2
hy, + < / wdu> :

1.2.4. The Curie-Weiss-Potts model. Probabilistic settings 2 and result. The Curie-
Weiss-Potts model will be for A = {#',... 07} with ¢ > 2. In that case we shall
write X, instead of X.

The Curie-Weiss-Potts Hamiltonian is defined for a finite word w = wqg - - - w,_1 by
(10) Hy(w) ==Y Ty,
We define the vector L, (w) = (Lp1(w), -, Lng(w)) where
Lyw(w) = nz_i -
=0

is the number of digits of w which take the value 6%, so that we can write

n—1 a [n—1 2
Z ﬂwj:wi - Z ( 1wi:0k> = ||Ln((U)||2,

i,5=0 k=1 \i=0

where || - || stands for the euclidean norm on R?.
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We denote by P := p®N the product measure on %, where p is the uniform measure
on A ie p= % >4_, 0gr, and we define the probabilistic Gibbs measure y,, 5 on %,
by

e~ BHn(w) oam | Ln(@)II2

(11) pnlds) = () = B,

where Z, 5 is the normalization factor

1 ,
Znﬁ:q_n 3 el Ln(@)]?

W', |o'|=n

Now we can state the analog of Theorem [1]
Theorem 3. Weak convergence for the CWP model

For1 <k <gq, b € R, let if be the dynamical Gibbs measure for bllgry. Let

B, = %. For 0 < B < B, set sg = 0 and for B > [3. let sg be the largest

solution of the equation

efs —1

12 = —
( ) § eﬁs+q_1
Then,

(™" if 0 < B <PBe

1

w - /’l’ S Zf/B > /807

(13) fnp =2 q,; g

. A+qB e
with A = (1 — -£ Z oand B=(1-8) 7%,

a(g—1) q

Remark 3. Actually p, 3 converges towards % i ﬁgsﬁ for every B # B, since

sg =0 for B < B, and it is clear that fif = p®" for each 1 <k <gq. R

We refer to [L1] for a discussion of the Curie-Weiss-Potts model and historical ref-
erences. Orey ([19], Theorem 4.4) mentions the weak convergence of p, g towards
an explicit atomic measure, but he makes a mistake concerning the case 5 = ., as
pointed out in [11].

It is highly probable that a similar result to Theorem [2] holds for the Curie-Weiss-
Potts model. Note that as for Theorem [I] in the settings of Theorem [3] conformal
and Gibbs measures are equal.
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1.3. Plan of the paper. The paper is composed as follows.

In Section [2| we prove Theorem [1l In Section [3| we prove Theorem |3 Both proofs
are very similar and are based on the convergence of p, 5(C) where C is a cylinder
in 2.

Theorem [2] is proved in Section [} The proof is similar to the ones of Theorem
and 3] The main difference is that the auxiliary function is more delicate to control.
For that, we need to use the Transfer Operator.

2. PROOF OF THEOREM [1]

To prove the convergence of pi, 3 towards p, it is enough to show that for every
cylinder C,

(1) T j1,(C) = ().

First we justify that ¢; admits a unique maximum in [0, 1] and use this point to get
convergence for yi, g(C'), where C' is any cylinder. In the second subsection we show
that this limit is equal to the right convex combinations of DGM’s.

2.1. The auxiliary function ¢; and limit for y, 5. We recall that we set p(z) :=
log(cosh(Bx)) — 222

Lemma 2.1. Maxima for ¢;

The function ¢ attains its mazimum on R™ at a unique point £5 which is the unique
non-negative solution of the equation tanh(fzx) = x. If f <1, then &g = 0.

Proof. Note that ¢}(x) = B (tanh(fz) — z) and ¢%(z) = B(B — 1 — Btanh®(Bz)).
If 5 <1, ¢ is non-positive, thus ¢ decreases and ¢}(0) = 0 yields that ¢y is a
decreasing function. The maximum is then attained for {z = 0.

If 5 > 1, then ¢ is positive and then negative, which yields that ¢} is first an
increasing and then a decreasing function. Note that ¢7(0) = 0 and ¢}(1) < 0,
which shows that ¢ is positive on some interval |0, {z[ with 0 < s < 1 and negative
on |€5,+00]. Consequently, ¢; reaches its maximal value on R at the points £z
defined by

(15) tanh(B€5) = &. 0

Now we are ready to compute the limit of a fixed cylinder. Let w = wy...w,—1 be a
finite word of length p. We denote by S,(w) = Zf;ol w; the sum of the p digits of w.
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Lemma 2.2. Limit of the measure of a fixed cylinder
I
% Zfﬁ < 17

(16) nll_{glo ,un,ngg .. .wpfl]) =91
5 (F(&) + f(=&)) 5> 1,

where

(efv + e—ﬁy)p'

fly) =

Proof. For big n,
[w] = |_| [Wo - Wp1Qp . .. Q] = |_| [wal,

@, |aj=n—p

and
Z e—BHn(woa)

sl = D2 o)) = Sy

a, |al=n

For any word z = zgz122... and any n € N*, we denote by S, (z) = Z?:_Ol x; the

sum of the n first digits of x. Then
e PHn(wa) — e(\/gsn(wa» and S, (wa) = Sp(w) + Sp—p(a).
We use the equality

a? 1 /+OO —é-ﬁ-\/ﬁax d
v = — e x,
V2T J o

sometimes called the Hubbard-Stratonovich transformation ([16],[26]), to compute
the following.

I E
D R =Y Viasn(wa) g
e e 2 e X
vV 2 /;oo
a, |al=n—p “
1 [T
_ e
vV 2 /—oo
+oo

_ V n/B e—n@—&—ﬂysp(w) Z eﬁysnfp(a) dy

vV 2T —00

VRS 7 VTS gy

[0

where we made the change of variable Sy := \/EI Now we notice that the sum
n

Do, Joj=n—p ePvSn—r(2) i5 equal to 2" PE (e PO Xi) where the X;’s are independent

identically distributed with law P(X; = —1) = P(X; = 1) = 3, and we deduce that

Z eﬁysn—p(a) — (653/ + efﬂy)n*p — 2” COSh(ﬁy)n )
(ePy + e=By)p

«, ‘CX':TL—])
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Eventually we obtain

(17) Z o BHn(wa) _ ? V27T e ‘Pl(y)f(y> dy.
a, la|l=n—p >
Similarly, p = 0 yields

- (&

n +o0
S @ 2'vnp nor ) gy,
V2T s

a, |aj=n

therefore we obtain that

[T ener® f(y) dy

(18) pmalle]) = =0

We recall that the Laplace method shows that if ¢/, vanishes on a single point £ in
the interior of the interval I and if ¢7(§) < 0 and f(&) # 0, then

V2T _
ner(y) dy ~p oo npr (&) 12
(19) / e v)dy aor e

We remind that u, ~,_ 40 v, means u, = v,(1+ e(n)) with lim, ., e(n) = 0.

If 5 < 1: we may consider / = R and { = &g = 0. We thus get ¢/(0)) = (5 — 1),
f(0) = &, and

2p)

pnlfo]) ~ncoe B = L

If 5 = 1: in this case ¢(0)) = 0 but the Laplace method still works if we consider

the least integer k£ such that gpgk)(()) # 0. We do not need to calculate it because we
have as in the preceding case that

1
ner(y) ~ il ner(y)
/Re FW)dy ~nosoo 55 | €y,

1
ﬁ.
If 8 > 1: we may consider two intervals R_ and R and § = ££g. Then we get

therefore we still have i, g([w]) ~n—s+o00

+oo T
/ VI e (f(Es) + f(=Ep)) ™12,

d - -
o0 788l

which yields

f(&s) + f(=&p) 0

s ([6]) o e TS
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2.2. Identification of the limit as a convex combination of DGM’s. First,
we point out that Lemma [2.2] yields lim g, 5 = fip if 8 < 1. We thus have to deal
n——+00

with the case 5 > 1.

Let us first compute the dynamical Gibbs measures i and 7, . We denote by
Ly (W) := 3771 1, -1 the number of digits of w which take the value 1, and similarly
Ly (w) := 3P~ 1,,— 1 is the number of digits which take the value —1.

Lemma 2.3. Computation for /"

L B ebLp,+(w) o B oLy~ (W)
(20) i) = Gy ond B (D) = Gy

Proof. The function bl depends only on the zero coordinate. It is shown for
instance in Example 4.2.2 of [I7] that in this case the supremum in (1)) is attained
for the product measure P, := p&", where p € [0,1], p, = pd1 + (1 — p)d_y, and p
satisfies
—plogp — (1 —p)log(l —p) +bp = s (—qlogq — (1 —q)log(l —q) + bq).
q€l0,1

b

~ ebLPHr(w)
oy ([w]) = m-

Exchanging the roles of +1 and —1 gives the equality

ebL:D,— (w)

i () = G 0

It is easy to show that p = and then

We recall that S,(w) = 30" wy = Ly (W) — L, (W) = 2L, 4 (W) —p =p—2L, _(w).
Then
6556510(00)
(&) = (eP€s + e—P€s)p
eP€s(2Lp,+(w)—p)
(6556 + e—Bs )P
e26€sLp.+ (W)

(62655 + ]_)p ’

288 Lp,— (w)
Similarly we have f(—£3) = (66265"—“‘1)’7 and replacing these values in (16 we get
. I —
nl_lgloo fin,p([w]) = 5(#%&([“]) + ﬂzﬁgﬁ([w]))a

and the theorem is proved.
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3. PROOF OF THEOREM [

The proof follows the same lines as the proof of Theorem [I} In the first step we use
an auxiliary function ¢p. Note that the function was already studied by Ellis and
Wang in [I1]. Then we deduce that f, g(C) converge for any cylinder C. In the
second step we identify the limit as the relevant convex combination of dynamical
measures.

3.1. Auxiliary function ¢p and convergence for p, g. We shall need the func-
tion ¢p defined on R? by

5 2 : Bz
(21) prle) = —glel 1o

This function attains its maximum on RY since ¢p(z) < —c||z]|* as ||| tends to oco.
We recall Theorem 2.1 of [11], which describes precisely the global maximum points
of @p.

Theorem 4. (Ellis Wang [11])
Let 3. = %. For0 < f < B. set sg =0 and for § > B, let sg be the largest
solution of the equation

efs —1
22 - -
(22) ° el +q—1

The function B — sg is strictly increasing on the interval [B., 400, s(B.) = Z%f,
and limg_,o, 53 = 1.

Denote by ¢ the function from [0, 1] into RY defined by

1+(g—1)s 1—s 1—s
¢<S) = < ( ) ) )Ty ) ;
q q q
the last (¢ — 1) components all equal %. Let Kz denote the set of global maximum
points of the symmetric function ¢p. Define 1° = ¢(0) = G, e ,%). For g > f,,

define v'(B) = ¢(s5) and let v'(B), i = 2,--- ,q denote the points in R? obtained by
interchanging the first and ith coordinates of v'(B3). Then

{"} for 0 < 3 < B,
Kg=q {v'(8),7*(8), - ,v(8)} for B> P,
{201 (Be), v (Be), - - v 1(Be)} for B = p..
For B > B. the points in Kz are all distinct.

We fix a finite word w = wy - - - w,_1 of length p and we compute the limit of j,, 5([w]).
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Lemma 3.1.

| )
_p Zfﬁ < ﬁm
q
1 1 d

. - ﬁSBLp,k(w) y B /8
o e % > 3}
Jim ) = 3 4T = 2 f

A B q BCSBCLp,k(“J)
qP (eﬁ5ﬂ+q71)1) Zk:l € Zfﬁ _ /B

\ A+qB “

Proof. The proof is very much the same as the proof of Lemma 2.2 but the Hamil-
tonian has changed and we are in dimension ¢ instead of dimension one. We want
to evaluate the limit of

Z €2n|‘Ln(WOZ)H2

pmalle) = 30 pnalfwal) = S

@, |al=n

@, |a|=n—p

With the help of the identity

(23) it = s [ e (=3Il + V) )

™

and noticing that L, (wa) = L,(w) + Ly—p(a), we write

1 1 B
S \Lp(wa)|?  _ / =5yl \/j<y,Ln(wa)) d
e2n = e 2 eVn Y
Z (2m)4/2 Jpq za:

a, |al=n—p
- (27r1)q/2/ e H /St Ze n @) dy,
Ra

It is easily seen that

q n—p
Z e\/g(ylnfp(a)) — (Ze fiyk) 7
k=1

a,|al=n—p

therefore we get

$ el

@, |aj=n—p

ﬁ /Rq exp (‘%”?/HQ + \/E@, Ly(w)) + (n —p)log (Z 6\/3%)) d

Now we make the change of variable Sz = \/gy, and we obtain

B 2 nﬁ a/2
24 % || L (wa) [ _ / ner() £(2) g
(24) 2, S I O

Q, |a|:n_p
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where ¢p was defined in and f is defined on RY by

(25) f(z) =exp (5(2 L,(w)) —plog (Z eﬁz’“>> )

Similarly, p = 0 yields

q/2
S ehlb@l (”5) / o) g
2m R

a, |aj=n

hence
Za |o¢\:n— egnlan(wa)‘P f en(pp dZ

Za |Oé|7 62n||L7L(a)”2 fR 6”""13 z dz .
We denote by Dgp(z), respectively H(z), the gradient, respectively the Hessian
matrix, of pp at z. It is proved in Proposition 2.2 of [I1] that the Hessian matrix of
wp is negative definite at each global maximum point of pp. Now if Dyp vanishes at
a single point zy in an open set O of RY, if H(zy) is negative definite and if f(zo) # 0,
then we know by Laplace’s method that

27)4/2 nep(20)
/empp(z)f(z> dz ~r oo ( 7T) f(ZO)e .
0 nd/2y/|det H(zo)|

pinp([w]) =

If 0 < 8 < B. : according to Theorem [d] pp attains its maximum at the unique
point ¥ so applying Laplace’s method yields
o) _ 1
n Wl) “psoo —7 = -

(1) ~noe T2 =
If 3 > . : Theorem [ states that ¢p attains its maximum at exactly ¢ points
vi(B),i=1,---,q, where v(f), i = 2,--- ,q is obtained by interchanging the first
and ith coordinates of 1/1(5). Due to the symmetry of the function ¢p it is clear
that det H(v') = det H(v?'), i = 2,-++,q. Considering a family of disjoint open sets
(Oi)1<i<q such that O; contains v/* and R? = U!_,0;UN, where N is a set of measure
zero, Laplace’s method yields

Recall that

£ B Ly(w))
Ji) —
( h—1 eﬁyk)

with .

— % if k4,

v q
A
1 -1
+ (g ) itk=1



16 RENAUD LEPLAIDEUR AND FREDERIQUE WATBLED

As Y1 L,i(w) = p it is easily seen that

i 1—s
(26) P Lp(W)) — exp (M 4 ﬁsﬁLM(w)) )
As V' is a critical point of pp and %(2) = #ﬁjﬁzk — Bz;, we know that
a R % B(1-s5)
iei q 8
( ) ; VJZ- 1 - 85 !

Putting together (26)) and we obtain

p
f(]/l) _ (1 — S,B) eﬂs/ng,i(w)’
q

which can also be written

(28) [ —

(5 +q—1p

6685 Ly, (w)

since sg is solution of the equation . Therefore

1 1 d
~ _ E BSBLP,Z‘(W)'
/’l’nyﬂ([w]) n—00 q (6’35’8 + q— 1)p — €

If 3 = 3. : the function ¢p admits exactly ¢+ 1 maximun points v(3),7=0,--- ,q
but det H(v°) # det H(v'), therefore Laplace’s method yields

ot M) |2 (1) + [det B2 L, £ ()
Aot M)+ q [det H() 72

(29> Mmﬁ([w]) ~n—oo

In the proof of Proposition 2.2 of [I1] it is proved that H(1°) has a simple eigenvalue
at § and an eigenvalue of multiplicity (¢—1) at 8g~1(¢— 3) whereas H(v') has simple
eigenvalues at 5 and 3 — 3%qab and an eigenvalue of multiplicity (¢ — 2) at 8 — 320,
where a = ¢"'(1 4 (¢ — 1)s3) and b = ¢~ (1 — s3). Recalling that s(3.) = =2 we

—1
deduce that !
[det H(v")| = B(1 — ¢~ 8.)",
_ B \"7
det H (v :Bgl—qlﬁc (1—— .
et ()| = 5 (-
Reporting in and recalling we get the result. U

3.2. Identification of the limit. We can already deduce from Lemma that
Hn,B nﬁoo ;ZZO if /8 < 60-



EASY ISING OR CURIE-WEISS MODEL EXPLAINED TO ERGODICISTS 17

Lemma 3.2. Computation for i}
Fork=1,...,q,

— B ebLp,k(w)
(30) iy ([w]) = CEY S

Proof. The function b1l jgx; depends only on the zero coordinate, therefore the supre-
mum in (1)) is attained for the product measure (m*)®N, where the probability vector

(mk)1<j<q on A maximizes the quantity

q
—> “pjlogp; + bps

J=1

k

over all the probability vectors (p;)1<j<, on A, and is given by mf = #, m; =

ﬁ if j # k (see for instance Example 4.2.2 of [I7]). The result is then clear. [

The limit in (13]) is now a direct consequence of the lemmas and .

4. PROOF OF THEOREM

We consider a function ¢ of the form
Y= Z a;le,,

where the sum is finite, the C;’s are disjoint cylinders, and the a;’s are real numbers
which are not all equal to zero. We can always assume that all the cylinders have
the same length, say q.

In the following we assume that we have chosen an order on g-cylinders and we
consider the vector a := (ay,...,aq).

4.1. Convergence of i, 5. Let w = wy...w,_1 be a finite word of length p. To fix
the ideas, we assume that p is bigger than ¢q. Note that if the convergence holds for
any cylinder with length larger than ¢ then it holds for any cylinder.

For n very big and = € X5, S,,(¢)(z) involves digits xo, ..., Tpq—2. Then, we get

s = 3 (o @0 i)

o, |a[=n—p+q—1
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For simplicity we write S, (wa) for S, (v)(wa) (which is well defined if |a| > n—p+
g — 1). Again, using the Hubbard-Stratonovich transformation we get

1 too 2
D R Y I Ml
T 00

@, |al=n—p+q-1 - o
+00
= /B_TL / ein§22 Z eﬂzsn(wa) dZ,
Vor J_ o =
where we have made the change of variable gz = éx
n

We point out the equality
(32) S0(w0) = Sy (@) + 1 (077 (wa) + Syla).

This equality means that the first p + 1 — ¢ terms in the Birkhoff sum S,,(wa) only
involve the w;’s, then come g — 1 terms which involve the tail of w and the head of
a, and then comes the tail of the sum which only depends on «.

Let us define the operator L¢, depending on a real or complex parameter £, by
Le(T)(z) = VEIT (1) + YD (1),

Here z is a point in 5, T is a continuous function on s, and we remind that iz,
with 7 = #£1, is the infinite word izgz 22 . ... L¢ is the transfer operatmﬂ associated
to the potential £.90. We notice that for any m € N*,

LT (z) = Z eSSmO T (ag).

a, lajl=m

Now, we write « = o/, with |o/| = n—p and |o”’| = ¢ — 1. Using the equality
it is easy to check that

(33) Zeﬁzsn(wa) — e,BZSp_q+1(UJ) Z £ ( BzSq—1( o-PJfl 9w )))(Oé//x)

o’ ‘Cl{/" =q— 1

We point out that the x on the right hand side of this equality is just there to make
sense but the expression actually does not depend on z because || = g — 1.

It is known (see [3]) that L. acts on continuous and Hoélder continuous functions.
Moreover on the space of Holder continuous functions it is quasi-compact: its spec-
tral radius, say A\(£), is a simple dominating eigenvalue associated to a positive eigen-
function, say H¢. The adjoint operator acts on measures and it admits a unique
eigenmeasure associated to the spectral radius, say v¢. Moreover [ Hedve = 1 and
for every continuous function T,

lim max |A() "L (T) (x) — < / Tdug) He()| =

n—+o00 r€Xo

3also called the Ruelle Perron Frobenius operator.
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Remark 4. The measure vg is exactly the conformal measure associated to . B

We refer the reader to [I5] for properties of quasi-compact operators ,in particular
regularity of the maximal eigenvalue and the eigenvectors with respect to &.

Furthermore, L acts on functions constant on (¢—1)-cylinders because v is constant
on ¢-cylinders. In that case we can give a simple characterization for A(§). First, we
order the (¢ — 1)-cylinders, say Kj, ..., K1, and the g-cylinders, say C1, ..., Caa.
Let z = (21,...,2) be a vector in R?". We consider the 2971 x 277! matrix M(z)
whose entries are defined as follows: From the (¢ — 1)-cylinder K; = [wj, ... w)_,]
we can construct two new (¢ — 1)-cylinders

Wi, ..., wi_y,+1] and [wi, Wiy, 1],
corresponding respectlvely to say Kj, ;) and Kj,(;). We can also define two g-cylinders
Cri(i) = [Wh, - - -, wi o, +1] and Ci,) [wo, . ;_2, —1]. Then we set

0ifj ¢ {Ji(i)vjé(i)};
M(z);; = { €0 if j = j1(i),
0 if § = jold).
A simple computation shows that

Eg(ﬂKi) — eéakl(i)ﬂKjl(i) + eEakg(i)]lKjw)'

Let us call E,_; the vector space of functions constant on (¢ — 1)-cylinders. The set
{lg,;1 < i < 277'} is a basis of F,_1, which can be identified with the canonical
basis (€;)1<i<20-1 of R*. With this identification we get that the restriction of
L¢ to E,q is a linear operator whose matrix is exactly the transpose ‘M (£.a) of
M (&.a). Therefore, A(€) is the dominating eigenvalue for M(£.a). We emphasize
that this matrix is aperiodic and then the Perron Frobenius theorem on matrices
holds. Furthermore, H is a left eigenvector for M (£.a) associated to A(€).

(eP 14 (wr))

Let us denote by T the function z — €%
Eq—l; and

. This function T¢ belongs to
I Telloe < ela= g4,
where A := max{]|a;|;1 < ¢ < 27}. The spectral properties of L¢ then yield that

Le0(Te) () (g-1)lelA
A@%p‘/ﬂw“&mguiam%f o

where £() is continuous and positive (in §) and C(&) does only depend on &.

(34)

Lemma 4.1. Let pog be defined be pos(t) = —§t2 + log A(Bt). Then, for each 3,
wos attains its mazximum on R at finitely many points.

Proof. Recall that A = max|a;|. We do the case t > 0, the case t < 0 being the
same with —A instead of A.
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Inequalities between eigenvalues of matrices and coefficients yield
A(Bt) < 247

This shows that for t > 0, pos(t) < —§t2 + AfBt +log 2, and this upper bound goes
to —oo if ¢ goes to +00. On the other hand, pog(0) = log2. Therefore, pog reaches
its maximum on R* only on some compact set [0, x(5)].

Furthermore, any ¢t which realizes the maximum must be a critical point of the
derivative. Note that £ — A(§) admits an analytic continuation in a complex neigh-
borhood of R which prohibits to get infinitely many zeros of ¢f,¢ on the segment

[0, x(8)]. O

Proposition 4.2. Let 8 be fized. Let (t;)1<i<s be the finitely many real numbers
where wog reaches its maximunﬁ Then, there exist finitely many positive b;, 1 <
i < J such that Y7 b; =1 and such that ju, 5([w]) converges to

Zbiljﬁti([w])'

Proof. From the definition of p, g we know that

B g2
Za la|=n—p+q—1 e2n 57 (wa)

B
2o flentg-1 €350

Mnﬂ([w]) =

Using and we get
0© _nB, 2Sp_g+1(w) pn—
Doyt J o e St LT ) (a) 2
- +oo _pbB.2 Ap ’
Z|a\:q—1 f—oo e 2 QEBZ(]U(Q) dz

We can rewrite the numerator as a sum of ¢ terms of the form

(35) pnp([w])

" (Bz) o825, (w)—plog A(Bz) Eg_p
npos(Bz z29p—g+1(w)—plog z z
/_OO e eP#5r—a O (T3.) () dz,

and the denominator as a sum of ¢ terms of the form

/+oo nvos(62) L5 (1)(a) d
- e NB2) a)dz.

We want to use the Laplace method for these terms. Lemma shows that the
exponential term (in n) has only finitely many maximum. But we are not yet done
and the problem comes from the last term in the integral which depends on n.
Inequality shows that this term converge as n goes to +o0o but the speed of
convergence depends on z and z may goes to Fo00.

We emphasize that the ¢;’s depend on 8 but we drop the index 5 to get lighter notations.
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To deal with this fact, we recall that A is max|a;| and we notice that for every
continuous 7',

[1£5:(T)loo < 2¢H|T| o,

therefore
1£5(T.) |0 < 2677714,

and
‘efn§z2 e/BZSp—q-&-l(W)ﬁg_P(Tﬁz) ()] < en(f§z2+ﬁ\z|A(p+l)+log 2)
- S

As —gzz +z|(BA(p+1)+1) +1og 2 goes to —oo as |z| goes to +00, we can deduce
that there exists k() > 0 such that for every n > 2,

(36) /| (IB) 6_n§22eﬁzsp*4+l((k))£gz_p(TBz)(a) dZ S e—nﬁ(ﬁ)‘
z 2“

We choose k() big enough so that all the points ¢;, 1 < j < J, where ¢og reaches
its maximum, are in the interior of the interval [—x(3), x(5)]. Then we can write
the integral over the segment [—x(/3), x(0)] as a finite sum of integrals over segments
laj, b;] where each segment [a;, b;] contains exactly one of the points ¢;, 1 < j < J.
We state the following lemma, which is an immediate adaptation of the Laplace
method.

Lemma 4.3. Let ¢ : [a,b] — R a function of class C?, with ¢’ vanishing on a single
point ¢ in la,b] and ¢"(c) < 0. Let (fu)n>1, [ some continuous functions from [a, b]
to R such that f, converges to f uniformly on |a,b], and f(c) # 0. Then as n — oo

™
2|¢"(c)]

b
/ @ f () da ~ e f(e)n /2.
We apply this lemma on every [a;, b;] to the functions f,, defined by
(w) ( Eg—p
— BzSp—gqt1(w)—plog A(B2) z T
fule) = S (e

Thanks to the functions f,, converge uniformly on [a;, ;] to f defined by

e,@zS,ﬁlfq(w) » oPt1=q(wg H «
f(z)—A(— 62)1”/65 Saa (@) dyg () Hp. ()
1 z wx (0%
A(Bz)P P! )d’/ﬁz(x) .ng( )

—_ @

- 5575 [ 1)@ () (o)
= Hp(0)vsn(le)).
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Putting together and the result of Lemma applied to every [a;, b;] we obtain
that the numerator of j,s([w]) in (35]) is equivalent to

J
T " _ -
2 D\ gt Has @ (el
lal=q—1 j=1

Similarly, the denominator of j,5([w]) in is equivalent to

J
T . _
2 2\ qye T e
lal=g—1 =1 Pos\lj

We then get that p,s([w]) is equivalent to

Hg, ()
POHD DN =
R )
Hg ()
J Bt;
Zj:l ZIozlzq—l T N

$os (tj) |

(W)

Let us set
H/Bti (Oé)
Zav‘O":q_l Vi

Pos ()]
H/D’tj (a>

005 ()]

bi :
Zj,oc,|0¢|=q—l

Then the b;’s are positive, they satisfy ) . b; = 1, and p, g([w]) converges to

> b (1))

4.2. End of the Proof of Theorem [2]

4.2.1. Some properties for Pressure function. We recall here some properties for the
pressure function. If g is Hélder continuous on Yo then ¢t +— P(tg) is convex thus
continuous. The Ruelle theorem also yields

0 -
(37> ap(tg%:to = /gdﬂtov

where [, is the DGM for tyg.

24

We recall also that for g = ¢ = Zaillci, P(Bty) = log A\(Bt), where A(St) is the
i=1

spectral radius for the matrix M (/ta).
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4.2.2. Mazimizing the quadratic pressure. There are 2¢ g-cylinders in Y,. If 1 and
v are invariant measures, then

prv <= p(jwo...wy-1]) = v(wo...ws—1]) for every ¢-cylinder.

defines an equivalence relation over the set of invariant probabilities. If y ~ v then
/ vdp = / 1 dv holds because v is constant on ¢-cylinders.

2
Note that A, + g ( / Y du) is maximal among elements of the same class for ~ if

and only if , is maximal.

Because we are considering probability measures, it is sufficient to know pu(C;) for
all © < 27 to know all of the measure p. If y;, ¢ = 1,...27 — 1 are non-negative real
numbers such that ) y; < 1, then we denote by =, the class of measures such that
w(Cy) = y; for all i < 29.

Now, we state a lemma that is an adapted version of results from [2] (th. 7, 8) and
[12] (th 4.8). These papers focus on multifractal analysis and they have different
ways to state the result we need here. It is not clear to us if their statements can
be directly applied in our case.

Lemma 4.4. Let 'y be such that =y is non-empty. Then
max {h , W ER < inf {P < ZZ]l > — Zi Z}
X{ H lLL y} - ZER2Q71, Z#O Z CZ Z y

Proof. Note the immediate equality:

inf {P(t Z zile,) — tz zz-y,-} = zeRZ‘;I—lf, 20 {73' (Z Zi]lci> - Z Zzyz}

teR4, zeS27-2

For our proof, we prefer to use the left hand side characterization. Let us pick
z € S?"72. First we assume that Zziyi = max/Zzi]lcid,u, where the maxi-

mum is taken among all invariant measures. Then, it is well known (see [I]) that
t— P(td zille,) —t> zy; is a convex decreasing function which converges to the
residual entropy:

tEerOOP(tZziIlCi) — tz 2Y; = max {hu, /Zziﬂci is maximal} .

Clearly the residual entropy is bigger than max {h,, u €~y }.

Let us now assume that the class ~y is not included into the set of maximizing
measures for > z;llo,. Then tEerooP(tZ zille,) —t Z 2;y; = 400 and the convex

function admits a unique minimum on R, .
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If this minimum is reached at ¢ = 0, then its value is A+ = log 2 which is bigger than
any metric entropy.

The last case holds if the minimum is reached at a critical point, say ty. Note that
if 1, is the equilibrium state for ¢y > z;1,, then

0
ap(tzziﬂ&)\t:to = /Zzi]lcidyto.

The fact that ¢, is a critical point yields

/Z zille,dvy, = Z Zili,

and then for any p in ~y, we get

hy 1o Zzzyz = hu+t0/zzi]10id,u < hy,, +t0/zzi]10id7/to = P(tozziﬂ()i);

which concludes the proof. O

Let y be such that ~y is non-empty. Note that for every pu €=y, / Wdpy is the

constant age + Y (a; — agq)y;. For simplicity we denote this quantity by (¢]y).
Upper semi-continuity for the entropy yields the existence of measures j1 €=, such
that

h, = max{h,,v €~y }.
Then we set hy = hy,.

Lemma 4.5. For everyy such that =~y is non-empty, sett = (|y). Then,

hy + §t2 S (,Oos(t).

Proof. Let pi; be the DGM associated to the potential St > (a; — a2q)1¢,. Note the
following equality

St Z(ai — ag) e, = Bty — Ptaga.
Set
z:= (21,...,20_1), with z; := St(a; — ag).
The properties of the Pressure function (see Subsubsec. yield that the pressure
for 5t Z(ai — agq) ¢, is equal to

P(Bt) — Btage = log A(5t) — Ptasg.
On the other hand Lemma 4.4 yields

(38) hy <P(Y_zille) = )z
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We immediately get the following sequence of inequalities:

5 g
hy + §t2 < log A(Bt) — Btas. — BtZ(a@- — a)y; + §f2
5
< logA(H) + 21— pi{uly)
< log A(Bt) + §t2 — Bt* = pos(t),
where the last inequality uses t = (V|y). O

Lemma 4.6. If t is a critical point for pos, we consider the DGM [, associated
to tpy. We also set y; = fiepy(Cy) for 1 <i <27 and

V= (Y1, . Yoa_1).

Then, t = / Y dfupy and hy + gﬂ = pos(t).

Proof. The DGM i3, has pressure log A(ft). Moreover Equality yields

N(pt) ~
D —/wdﬂb’w-

As t is a critical point for ppg we have

N (B
pt = 5-W7

and then ¢t = / Y dfipy holds. We deduce that

P(Bt) — Bwly) = log A(Bt) — Bt* = pos(t) — gta,
Now by definition of the DGM we know that
P(Bty) — Bt(W]y) = hji,s,

which is smaller than hy by definition of this last term, therefore

vos(t) < hy + §t2.

The reverse inequality holds true thanks to Lemma [4.5] which finishes the proof. [

We can now finish the proof of Theorem [2 We have seen that the PGM pg,
converges to y ; bjvgt,, where the ¢;’s are the maxima for pos.

For these t;’s, Lemmas and show that
2
h,, + g (/@Dd#) < wos(t;),

with equality if p is one of the DGM’s, figt, -
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It remains to prove that the DGM’s are the only maximizers of the quadratic pres-
sure. We define a new functional

ér(t) := max {hu + §t2, /@de = t} .
This function is defined on some interval M(v). If p is a measure, Lemma [£.5) shows
for / vdp =:1
Py + th < @os(t).
This yields that for all ¢ € M(1)),
(39) ¢r(t) < pos(t).

Therefore, Lemma [4.6| shows that the maxima for ¢, are the maxima for ppg. If a
measure ;4 maximizes the quadratic pressure, then we have

%@@:hﬁé(/¢mf

and setting ¢ := / ¥ dp we must have ¢, (t) = max pog(t) which yields that ¢ is one

/wmzwz/wm%w
and then

2 2
Pa(BY) = hy + g </¢d#> = ©0s(t;) = hiig, ., + g </¢dﬁﬁtm>

hence h, = hﬁﬁtj " Therefore

of the t;’s. Now we have

g B -
h# + E '(ﬁ d,U, = hﬁﬁtﬂ) + 5 w d/JJgtjq/,
and p must be the DGM fig; . This finishes the proof of Theorem .
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