Coherent and incoherent seeding of dissipative modulation instability in a nonlinear fiber ring cavity
Résumé
We investigate the coherent or incoherent seeding of dissipative modulation instability (MI) in a nonlinear fiber ring cavity. By varying wavelength and degree of coherence of the seed signal across the MI gain band, we observe a strong sensitivity of the resulting MI sidebands in terms of bandwidth and amplification. Both spectral and temporal characterizations are performed to reveal intensity coherence properties (over a single round-trip) of the generated temporal patterns. Experimental observations are well confirmed by numerical simulations. Our results provide new insights into the control of dissipative MI through a specific seeding in optical resonators with a moderate free-spectral range. In particular, a large tunability of the subsequent Kerr comb spacing is achieved by means of the early transient stage of seeded MI growth.