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Abstract: The structure and functioning of coral reef coastal zones are currently coping 

with an increasing variety of threats, thereby altering the coastal spatial patterns at an 

accelerated pace. Understanding and predicting the evolution of these highly valuable 

coastal ecosystems require reliable and frequent mapping and monitoring of both inhabited 

terrestrial and marine areas at the individual tree and coral colony spatial scale. The very 

high spatial resolution (VHR) mapping that was recently spearheaded by WorldView-2 

(WV2) sensor with 2 m and 0.5 m multispectral (MS) and panchromatic (Pan) bands has 

the potential to address this burning issue. The objective of this study was to classify nine 

terrestrial and twelve marine patch classes with respect to spatial resolution enhancement 

and coast integrity using eight bands of the WV2 sensor on a coastal zone of Moorea 

Island, French Polynesia. The contribution of the novel WV2 spectral bands towards 

classification accuracy at 2 m and 0.5 m were tested using traditional and innovative  

Pan-sharpening techniques. The land and water classes were examined both separately and 

combinedly. All spectral combinations that were built only with the novel WV2 bands 

systematically increased the overall classification accuracy of the standard four band 

classification. The overall best contribution was attributed to the coastal-red edge-near 

infrared (NIR) 2 combination (Kappagain = 0.0287), which significantly increased the 

fleshy and encrusting algae (User’s Accuracygain = 18.18%) class. However, the addition of 
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the yellow-NIR2 combination dramatically impacted the hard coral/algae patches class 

(Producer’s Accuracyloss = −20.88%). Enhancement of the spatial resolution reduced the 

standard classification accuracy, depending on the Pan-sharpening technique. The 

proposed composite method (local maximum) provided better overall results than the 

commonly used sensor method (systematic). However, the sensor technique produced the 

highest contribution to the hard coral thicket (PAgain = 30.36%) class with the coastal-red  

edge-NIR2 combination. Partitioning the coast into its terrestrial and aquatic components 

lowered the overall standard classification accuracy, while strongly enhancing the hard 

coral bommie class with the coastal-NIR2 combination (UAgain = 40%) and the  

green-coastal Normalized Difference Ratio (UAgain = 11.06%). VHR spaceborne remote 

sensing has the potential to gain substantial innovative insights into the evolution of 

tropical coastal ecosystems from local to regional scales, to predict the influence of 

anthropogenic and climate changes and to help design optimized management and 

conservation frameworks. 

Keywords: coastal mapping; seamless; coral reefs; very high resolution; WorldView-2 

 

1. Introduction 

Spatial interfaces lying between land and marine areas are critical zones, which provide ecological 

functions crucial to human populations, such as disturbance regulation, water supply, nutrient cycling 

and waste treatment [1]. Coral reefs and mangroves, consisting of the tropical part of the transitional 

land-to-sea area, are assessed to be the most valuable ecosystems worldwide that ensure recreation and 

waste treatment services, respectively [2]. Ranked second after floodplains, coral reefs play a key role 

in disturbance regulation, almost equaling their own contribution related to recreation services [2]. 

Dynamical patterns of tropical reefscapes emerge from complex land/marine interactions warranting 

ecological stability or, conversely, forcing profound rework [3]. Anthropogenic pressures, originating 

from both land and sea areas, have increasingly affected coral reefs and weakened the positive fluxes 

(proto-cooperation and mutualism) between ecosystem units, thus shifting them to lower complex 

states. If the current disturbances, such as pollution and sedimentation, persist, 60% of the coral reefs 

will become degraded by 2050 [4]. Steps need to be taken to understand the spatial patterns of 

ecosystem units spanning the seamless coast, so that the upstream area is managed in a way beneficial 

to the downstream coral reefs [5,6]. 

The mapping of coastal zones has been considerably hampered by the two exclusive land- and 

marine-based definitions (e.g., coastline), hermetically evolving within their own technical languages, 

geographic references, scientific issues and institutional frames [7]. A recent research work struggled 

with this issue in highlighting the non-overlapping areas between topographic maps and hydrographic 

charts and reviewing preliminary solutions to reconcile vertical measurements along the land-to-sea 

continuum [8]. Differing viewpoints might also arise from the specificity of tools used to study either 

terrestrial or marine environments. Based on optical measurements, the dual-wavelength airborne Light 

Detection and Ranging (LIDaR) system allows for a harmonized coastal topography/bathymetry 
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mapping in collecting accurate elevation data from both the land and sea bottom [9]. This same tool has 

been recently harnessed to seamlessly map coastal cover in both two and three dimensions, despite the 

limited number of spectral information [10]. Even though LIDaR has the potential to aid terrestrial and 

marine scientists, as well as stakeholders involved in the topography/bathymetry, the spectral (between 

two or three) and spatial accuracies delivered (between five and two meters) do not meet the power of 

discrimination and very fine scale (near one meter), where ecological processes related to individual 

trees and coral colonies occur. Moreover, acquiring data from an aircraft is basically more costly than 

from space, given the long-term planning and the higher km
2
 effort [11]. In the context of coral reefs 

with clear waters (amenable to the transmission of the visible spectrum), optical passive remote 

sensing provided with very high resolution (VHR, i.e., 0–1 m) sensors is susceptible to surpass LIDAR 

performance regarding the study of the land-to-reef continuum.  

Despite the scientific partitioning mentioned previously, researchers have demonstrated satellite 

capabilities for finely (2.44 m) mapping the sea floor or land with the QuickBird-2 (QB2) sensor [12,13]. 

The QB2 sensor has only three visible and one near-infrared (NIR) bands in comparison to the five 

visible and three NIR bands of WorldView-2 (WV2) that are able to both penetrate into water and 

interact with land covers. The WV2 satellite sensor has more potential than QB2, as it has: (1) two 

additional visible bands (coastal and yellow), (2) two additional NIR bands, (3) an enhanced spatial 

resolution of 1.85 m × 1.85 m pixel size for multispectral (MS) band versus 2.44 m × 2.44 m pixel of 

QB2 and (4) an enhanced spatial resolution of 0.46 m × 0.46 m for the panchromatic (Pan) band versus 

0.61 m × 0.61 m pixel of QB2. This technological advancement might provide sufficiently relevant 

spectral data, so that a comprehensive coastal zone base survey can be carried out at the coastal  

macro-organism’s scale over large extents. 

In this paper, we examined whether the eight-band WV2 satellite is able to classify the tropical 

coastal zone from the volcanic ridge to the outer reef through an urbanized coastal fringe in a clear 

water environment. The specific goals were: (1) to demonstrate that the spectral signatures of nine 

terrestrial and twelve marine classes are discernible using the WV2 and support vector machine (SVM) 

algorithm, (2) to assess what effect the addition of WV2 novel bands and associated spectral indices 

have on the classification accuracy of a reliable coastal zone map, (3) to evaluate mapping the 

seamless coastal zone at a very high spatial resolution using Pan-sharpened WV2 imagery and (4) to 

analyze whether examining the coast integrity at various levels alters the classification accuracy. 

2. Methodology 

2.1. Study Site 

The study was carried out in a small coastal zone of Moorea Island (17°29'31"S, 149°50'08"W) in the 

society archipelago, French Polynesia (Figure 1). Tahiti’s sister island, Moorea, is a 1.2 million-year-old 

volcanic island ranging from a 1,207 m high top to a complex reefscape (lagoon and 12 passes) 

through freshwater streams and urbanized coastal fringe (≈17,000 inhabitants). Taking into account 

that more than half of Moorea’s coastal zone has been anthropized [14], the characterization of spatial 

patterns across the coastal zone is required for change analysis. Documenting the general assessment 

of the marine-land frontier, Moorea lacks ecological studies linking terrestrial with reef patches. 
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Figure 1. Location of the study area in (A) Moorea, society island archipelago, (B) French 

Polynesia and (C) the true color composite image (RGB:532) of the study area. 

 

From ridge to open ocean, the 2.7 km
2
 site was selected to depict, as comprehensively as possible, a 

representative tropical coast of a volcanic island. This encompassed Piedmont vegetated cover, 

traditional cultural systems, individual houses, a road network, a resort, coconut fields (Cocos 

nucifera), coralligenous beach, as well as fringing, barrier and outer reefs (Figure 1). Hinterland 

vegetation consisted of mesophilic communities, such as clumps of Casuarina and Leucaena, 

anthropogenic forests of Syzygium and Mangifera and facies of Miscanthus, Melinis, Psidium and 

Dodonea [15]. While dwellings were essentially identified by their roofs and surrounding grass, the 

main and secondary roads were made of tar and bare soil/reef, respectively. The resort infrastructure 

was essentially identifiable by pile bungalows over the backshore and nearshore, topped by palm roofs. 

The lagoon contained two main geomorphic structures separated by the resort hotel. The northernmost 

structure ranged from coralligenous sandy nearshore to barrier reef dominated by various coral species, 

such as Porites spp., Synarea rus, Montipora spp. massive colonies and Acropora pulchra branching. 

Southward was a typical lagoon transition: a well-developed fringing reef, a channel and a barrier reef. 

Both structures ended by the reef crest, outer reef and ocean. Depths ranged from 3 m in the middle of 

the north structure to 8 m in the southern channel. The study site barrier reef hosted numerous marine 

species, such as the emblematic mollusk, Tridacna maxima, the urchin, Diadema sp., or the shark, 

Carcharhinus melanopterus. These top predators are considered as the flagship species in coral reef 

ecosystems, since their presence attests to the stability of the trophic network. Given the healthy state 

of the lagoon, the northern part of it was targeted to be preserved and was promoted as the Nuarei 

Marine Protected Area in 2004. 
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2.2. In Situ Data 

Coupling the field investigation and image examination, 21 patch classes were selected for their 

representativeness and occurrence within the coast (Table 1). Although the fieldwork was carried out 

approximately one year after (from 1–15 February 2011) the date of imagery acquisition, the absence 

of: (i) seasonal rainfall during the austral summer 2010–2011, (ii) a high energy climatic event and  

(iii) a socio-ecological shift enabled the stability of the investigated patch classes during the  

imagery-fieldwork period to be assumed. 

Table 1. Description of the 21 tropical coastal patch classes, comprising nine land classes 

showing anthropogenic features and 12 water classes. 

Coastal Zonation Patch Class Description 

Ridge Roof 
Metallic or vegetal covers of dwellings that can be white, 

red, green or brown colored 

 Pool Small body of clear water localized nearby dwellings 

 Grass Herbaceous communities frequently mowed 

Valley Mature vegetation 

Arborescent (≥5 m) natural and cultivated species 

represented by Casuarina, Syzygium and Mangifera clumps 

and Cocos nucifera plantation  

 Emergent vegetation 

Arbustive (≤5 m) natural and cultivated species represented 

by young tree stratum and facies of Miscanthus, Melinis, 

Psidium and Dodonea 

 Dry vegetation Arborescent and arbustive species dominated by Leucaena   

Coastal road network Tar 
Primary transport axis characterized by asphalt-covered 

curve lines 

 Bare soil 
Secondary transport axis covered by reef pebbles and  

bare soil  

Backshore Sand 
Supratidal coralligenous clastic sediment included in the 

0.06–2 mm range  

Foreshore Very shallow sand 
Intertidal coralligenous clastic sediment included in the 

0.06–2 mm range 

Nearshore Shallow sand 
Subtidal coralligenous clastic sediment included in the 

0.06–2 mm range 

 Sandy pavement 
Consolidated coralligenous debris consisting of the 

nearshore platform  

 
Hard coral/algae patches on 

sandy/muddy pavement 

Consolidated coralligenous debris sometimes showing 

scattered algae tufts and micro-atolls  

 Hard coral bommie 
Pseudo-spherical massive colony dominated by Porites 

spp., S. rus and Montipora spp.  

 Hard coral thicket Field of massive A. pulchra colony 

 Algae 
Tufts or carpets of macroalgae dominated by Turbinaria 

spp., Padinae spp. and Sargassum spp. 

 Hard coral bommie on pavement 
Sandy pavement over-mounted by patched massive  

coral colonies  

 Fleshy and encrusting algae  
Seaward boundary of the lagoon covered by encrusting and 

Turbinaria spp. algae 

 Foam White body of water constituted by air-seawater mix 

 Reef matrix 
Oceanic part of the reefs showing spurs-and-grooves  

reef forms  

Offshore Ocean Optical deep water 



Remote Sens. 2013, 5 3588 

 

For each patch class, the validation relied on 90 high-resolution color photographs (using a  

hand-held Panasonic DMC-TS2) covering a footprint of 0.5 m × 0.5 m, geolocated with a 0.5 m 

horizontal accuracy Trimble GPS Geo XH. While nine cover classes were investigated over land, 

encompassing vegetal patches and anthropogenic infrastructures, 12 classes were identified underwater 

spanning the lagoon patches and the offshore patch class devoid of benthos. 

The survey of land classes was divided into two parts with regard to the height of elements 

constituting the patch class. High-altitude classes, including roofs, mature vegetation, emergent 

vegetation and dry vegetation were monitored based on photographs for which the geometric plan was 

perpendicular to the ground. Low-altitude classes, such as grass, tar, bare soil and sand, were 

characterized by survey photographs taken over a 0.5 m × 0.5 m quadrat. Similarly, 11 of the 12 

lagoon patch classes were investigated using underwater photographs taken over a 0.5 m × 0.5 m 

quadrat, and their georeferencing was ensured by a weighted rope, serving to check whether the angle 

between the nadir (watercraft) and the rope was ≤10°. The pool and ocean classes were georeferenced 

at 90 locations each, since we were not able to take benthic photoquadrats. 

Characterized by in situ geolocations, 90 pixels per class were selected over the imagery. The 

dataset was divided in 60 calibration and 30 validation pixels per class for training and accuracy 

assessment, respectively. For the pool class, it was trained and validated by 50 and 25 pixels, 

respectively, due to the low occurrence in the scene. Ground locations were selected within 

homogeneous areas at the 1–10 m scale, so as to avoid the subtle uncertainties, due to georeferencing. 

The selection of pixels intended for the calibration and validation was randomly carried out to 

minimize a bias due to spatial autocorrelation. Provided with a 0.5 m accuracy, geolocations enabled 

the number of pixels to remain constant with respect to the spatial resolution, i.e., the MS 2 m × 2 m 

pixel size and the Pan-sharpened 0.5 m × 0.5 m images. 

2.3. Remotely-Sensed Data 

One WV2 image was acquired on 12 February 2010 at 20:15 h (GMT), two hours before high tide 

(+0.05 m), over Moorea island. The WV2 provides MS information (coastal, blue, green, yellow, red, 

red edge, NIR1, NIR2) at 1.85 m and Pan data at 0.46 m resolution. Currently, WV2 is the most 

relevant satellite sensor for mapping tropical coastal ecosystems at the macro-organism level. 

The water surface condition was assessed to get an indication of the effects of wave action and sun 

glint on image radiometry. Analyzing the density function of the pixel values composing the WV2 8th 

band (i.e., the band provided with the highest light absorption rate by water), we confidently assumed 

that the lagoon-related water surface did not require a sun glint procedure, owing to the absence of 

influential waves. The assessment of the water column condition was supported by the visual 

inspection of both the WV2 1st and 4th bands (i.e., the band susceptible to reveal absorption and 

reflection by chromophoric (or colored) dissolved organic matter (CDOM), respectively [16,17]. 

Insofar as the spatial patterns of the reflectance in both bands consistently match the benthic features 

accounting for the underwater light decay with wavelengths, we can hypothesize that the water column 

was a priori homogeneous over the lagoon part of the study area. 

The spatially-resampled 2 m × 2 m pixel MS and 0.5 m × 0.5 m pixel Pan datasets were not 

geocorrected through the standard products of the image provider (DigitalGlobe Inc.). The WV2 image 
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was geometrically corrected using 36 ground control points (GCP) that were measured with a 0.5 m 

horizontal accuracy Trimble GPS Geo XH (Figure A1 in Appendix). The GCPs were acquired over 

features both easily recognizable in and evenly spread across the image. While land GCPs included 

roof edge, pool edge and road line markings, water GCPs included clearly identifiable coral colonies 

and geomorphic features, such as reef flat edges. The combination of GCPs and the metadata file (.rpb) 

led to a root mean square error (RMSE) less than 0.5 m, corresponding to within one pixel accuracy 

for the MS WV2 pixel of 2.0 m × 2.0 m. A second order warping model was applied to correct the 

simple nonlinear distortions, and the nearest neighbor interpolations provided the resampling 

procedure, allowing pixel values to be preserved without smoothing.  

The WV2 image was calibrated to at-sensor radiance (in μW·cm
−2

·nm
−1

·sr
−1

) using the WV2 

metadata file (.imd). The at-sensor radiance of the MS dataset was then converted into at-surface 

radiance and, then, into at-surface reflectance by correcting for atmospheric and adjacent effects using 

the Environment for Visualizing Images (ENVI)-nested Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) module (see [18] for further details). Since the single Pan band cannot 

be converted into at-surface reflectance by FLAASH, the at-sensor radiance of both MS and Pan datasets 

were used to compute the very high resolution MS dataset using the Pan-sharpening procedure.  

Even though water column correction is strongly recommended to get better classification 

accuracy [19], it was not undertaken in this study, since we were not able to measure the 

benthic features with an in situ hyperspectral sensor necessary to efficiently solve the water column 

attenuation [20,21]. In this context, some authors recommended to avoid water column correction in 

shallow waters, especially when the water surface, water column clarity and homogeneity are 

favorable to distinct shallow benthic features [22,23]. Insofar as both the water surface and column 

were amenable to distinguishing the surveyed benthic features, we processed the water-leaving 

reflectance, but designed a classification scheme integrating the water depth (not the water clarity) into 

the benthic class designation for the sake of accuracy (i.e., very shallow sand, shallow sand and ocean 

classes). In our preliminary study, the classification accuracy of the water classes based on benthos-

leaving reflectance was outperformed by water-leaving reflectance. 

2.4. Pan-Sharpening Procedure 

Linked with a Pan image, the spatial resolution of MS imagery can be scaled up to the Pan using a 

pixel-level fusion technique, called the Pan-sharpening procedure. In the component substitution [24] 

method, four steps are required: (1) selecting the 2 m MS image to simulate a 2 m Pan image, 

(2) applying a Gram-Schmidt sharpening transformation on the simulated Pan image and MS imagery, 

(3) replacing the 0.5 m transformed simulated Pan image by the initial 0.5 m Pan image and 

(4) applying the inverse transform to all MS images in choosing a resampling method. While  

Pan-sharpening is commonly hypothesized to preserve the spectral information, a quality survey 

recently raised some questions about this assumption [25]. 

The simulation of the 2 m Pan image (Figure 2) indeed consists of a crucial step to reduce the 

spectral discrepancies between initial and Pan-sharpened images. According to our preliminary 

exploration, an inappropriate simulation can result in loss of spectral agreement or spatial 

enhancement, both leading to problematic misclassifications. We thereafter tested nine simulations  
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(cf. step 1 in the previous paragraph): in the first eight simulations (band), the 2 m Pan image directly 

corresponds to one of the eight 2 m MS bands, and in the ninth simulation (Sensor), the 2 m Pan image 

is a combination of the weighted 2 m MS images. The weight depends on the spectral response of both 

the Pan and MS datasets and on the optical transmittance of the Pan band. Based on comparisons 

between resampling methods (nearest neighbor, bilinear and cubic convolution), cubic polynomials 

were found to show the best spatial consistency (cf. step 4 in the previous paragraph). After the 0.5 m 

MS imagery was created from the eight band and the sensor simulations, the conversion of their  

at-sensor radiance into at-surface reflectance was performed. 

Figure 2. Heuristic framework showing the composite and sensor Pan-sharpened 

multispectral (MS) datasets for identifying optimized Pan-sharpening methods with regard 

to the Pan simulation. 

 

Analysis of the true color displays of the Pan-sharpened at-sensor radiance and at-surface 

reflectance highlight the noticeable differences occurring over land and water. While the conversion 

into reflectance brought subtle contrast among terrestrial features, it greatly emphasized the coral 

colonies, either living in the fringing or the barrier reefs, strengthening the contrast between coral and 

sediment classes (Figure A1 in Appendix).  

2.5. A Multiscale Analysis 

Addressing multiple issues related to spectral contributions, spatial scale and ecological 

organization, a multiscale analysis was adopted.  

Spectral contributions of the new WV2 bands and derived indices were quantitatively assessed 

using the four band dataset as a reference. Mimicking the QB2 spectral capacities, the WV2 reference 

encompassed the blue (second), green (third), red (fifth) and NIR1 (seventh) bands. This approach 

allowed us to process images acquired with the same geometry and radiometry, thus analyzing only 

variability due to the four new bands: coastal (first), yellow (fourth), red edge (sixth) and NIR2 

(eighth). Once the performance (i.e., the classification accuracy) of the reference was established, the 
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normalized contributions (gains and losses) of single and combined spectral bands were computed in 

dividing the difference of the performance by the reference performance (centered reduced variables). 

Since four new bands were included in the WV2 dataset, 15 different series had to be examined  

(= 4 × one band + 6 × two band + 4 × three band + 1 × four band series, cf. Figure 3). In addition, 

contributions of spectral indices based on band ratios intended for highlighting vegetation and coral 

features were computed. The vegetation indices relied on three Normalized Difference Vegetation Indices 

(NDVI, [26]), based on red-red edge, red-NIR1 and red-NIR2 pairs, and six Atmospherically Resistant 

Vegetation Indices (ARVI, [27]), calling on coastal-red-red edge, blue-red-red edge, coastal-red-NIR1, 

blue-red-NIR1, coastal-red-NIR2 and blue-red-NIR2. The NDVI-related red and NIR bands, such as:  

       
     

     

 (1) 

with j equaling red, and k belonging to the NIR bands, namely red edge, NIR1 and NIR2. The ARVI 

integrated an additional band in lower wavelengths, as follows:  

    i   
          i      

          i      
 (2) 

with i corresponding to either coastal or blue bands, j equaling red and k belonging to the NIR bands, 

namely red edge, NIR1 and NIR2, and, lastly, γ referring to a weighting function that depends on the 

aerosol type and fixed at one, as recommended by Kaufman and Tanré [27], since no information 

about it was available.  

Figure 3. Study design aiming at assessing the contribution of the 15 spectral combinations, 

the nine vegetation indices and the six coral indices relative to the reference combination 

(IR:7, R:5, G:3, B:2) with respect to the ecological organization (land + water, land  

and water) and the spatial scale (2 m, composite 0.5 m and sensor 0.5 m). 

 
Nota bene (NB): 1 = Coastal, 2 = blue, 3 = green, 4 = yellow, 5 = red, 6 = red edge, 7 = NIR1, 8 = NIR2,  

NIR = near-infrared, NDVI = Normalized Difference Vegetation Index, ARVI: Atmosphere Resistant 

Vegetation Index, NDSI = Normalized Difference Scleractinian Index.  
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As for the coral investigation, six Normalized Difference Ratios (NDR) involving green-coastal, 

green-blue, green-red and yellow-coastal, yellow-blue and yellow-red pairwise combinations were 

selected based on their hard coral-related relevance [28]. 

The influence of the spatial scale on classification accuracy was examined by means of resolutions 

akin to the initially measured imagery and to the products of the Pan-sharpening techniques. While the 

2 m resolution was represented by the initial MS dataset, the 0.5 m resolution was related to the 

composite and sensor simulation MS outputs (cf. Figure 2).  

Following the Pan-sharpening framework, the coast integrity was investigated: either unified 

(land + water) or divided into two environments (land versus water). Opting for this approach was 

motivated by detection of the potential effect of training pixels belonging to another spectral context 

on the support vector machine (SVM)-derived classification accuracy, as suggested by [29]. In other 

words, the influence of the training stage of land class pixels on the classification accuracy of water 

classes and vice versa had to be evaluated. A masking procedure differentiated the terrestrial and water 

class pixels. Since water absorption increases with wavelengths, we chose the highest waveband, 

namely NIR2, to define the land-water boundary for empirically identifying the threshold value on 

the histogram. 

According to the three domains studied (spectral contributions, spatial scale and ecological 

organization), an array of 189 classifications were run and tested, summing the three spatial series of 

the 16 (1 reference + 15 spectral combinations) land + water datasets, the three spatial series of the 

25 (16 + 9 vegetation indices) land datasets and the three spatial series of the 22 (16 + 6 coral-related 

NDR) water datasets (Figure 3). 

2.6. Classification and Accuracy Assessment 

The classification step utilized the SVM as the supervised classifier, owing to its nonlinear-driven 

proficiency [30]. SVM projects pixels into a high-dimensional feature space and, then, fits a 

hyperplane, which maximizes the distance between the closest training vectors, or support vectors, and 

the hyperplane itself [31]. As its decision boundary is solely based on a few meaningful vectors, SVM 

does not need a large set of training pixels to be accurate [31]. Trained by the 60 calibration pixels per 

class (50 for the pool class), the 189 SVM-driven models were assessed using the 30 validation pixels 

per class (25 for the pool class). For each model, a confusion matrix was created, which revealed the 

number of pixels that were correctly classified in the output image based on comparison of the 

reference data set (30 pixel per class) and the pixel values of the same location in the mapped data set. 

Summarizing the confusion matrix, the  appa coefficient (κ), producer’s (PA) and user’s (UA) 

accuracies [32] were calculated to reliably compare the various classifications and, then, quantitatively 

assess the contributions of the spectral combinations across the spatial scale and organization level. 

While the κ measures an inter-rater agreement, producer’s accuracy (omission error) and user’s 

accuracy (commission error) determine the percentage of correct predictions for each patch class by 

focusing on the modeled and ground-truth data, respectively. For the sake of clarity, the positive 

contribution will hereafter be indicated by κgain, PAgain and UAgain, while the negative will be stated by 

κloss, PAloss and UAloss, respectively. Statistical tests, such as Z-statistic, traditionally applied to 

compare confusion matrices [32], were not conducted, due to the inconsistency of the test’s underlying 
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normal distribution with the discrete aspect of remotely-sensed data [32] and the very fine scale level 

of the analysis. However, we measured the significance (p < 0.01 two-tailed) of the contributions of 

the spectral combinations using the pairwise Mann-Whitney U test applied to the diagonal values of 

the confusion matrices (associated with the reference and to-be-tested datasets). Showing a great 

efficiency on non-normal distributions, such as the remotely-sensed data, the U test is a non-parametric 

test of the null hypothesis that two distributions are similar. 

3. Results and Discussion 

3.1. Increasing Classification Accuracy by Spectral Enhancement 

From the single band to the four band combination, the normalized contributions of the 15 

combinations, built only with novel WV2 bands (coastal, yellow, NIR1 and NIR2) systematically 

increased the  appa coefficient (κ) of the commonly used four band classification (Figure 4). The 

overall best single and combined contributions were attributed to the red edge band (κgain = 0.0247) 

and to the coastal-red edge-NIR2 combination (κgain = 0.0287) (cf. Figure A2 in Appendix for the 

classification map). Adding the red edge band enabled the spectral gap occurring between the red and 

NIR1 bands to be bridged, enhancing the discrimination among classes that show identifiable 

reflectance/absorbance within this spectral range. Note that the red edge penetration into water is 

expected to reach 0.7 m [33]. This assumption was confirmed by the best PA/UA results, indicating 

that: (1) the fleshy and encrusting algae received the highest contribution (UAgain = 18.18%) from all 

combinations, including either the red edge or the NIR2 bands, (2) the hard coral thicket was strongly 

enhanced by the coastal-red edge-NIR2 and four band combination (PAgain = 16.95%), (3) the tar was 

reinforced by all combinations, including either the red edge or the NIR2 bands (PAgain = 11.11%), and (4) 

the emergent vegetation benefited from the red edge and coastal-red edge combinations (UAgain = 10.59%) 

(Table 2). Regarding the emergent vegetation and the fleshy and encrusting algae (composed of 

Turbinaria spp. and encrusting algae), the importance of the integration of the red edge might be 

correlated with the detection of high reflectance inherent to chlorophyll organisms, also called the  

red-shift effect. Conversely, the red edge, sometimes called the far red, was demonstrated to 

correspond to the absorbance of photosystem I, while photosystem II was driven by the red 

wavelengths [34]. Stretching out the QB2 spectral windows, both coastal and NIR2 favored a better 

distinction among coastal classes. The contribution of coastal band to emergent vegetation and hard 

coral thicket might be related to the detection of the first peak of chlorophyll-a [28], hitherto 

undetectable for the traditional blue-bottomed sensor. Detecting beyond 1,000 nm (more than 150 nm 

over the QB2 upper boundary), NIR2, strongly absorbed by water, enabled the misclassifications 

occurring between land and water classes to be avoided. Of special relevance was the combined effect 

of the three and four band series, pointing out that a classification of hard coral thicket could be 

successful with a 400–1,000 nm spectrum range, despite the coarse spectral resolution (eight band 

average: 56 nm).  
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Figure 4. Bar plots of the overall normalized contributions of the 15 spectral combinations 

derived from the novel WV2 bands for the initial 2 m, the Pan-sharpened sensor 0.5 m, and 

the Pan-sharpened composite 0.5 m MS datasets. 

 
NB: 1 = Coastal, 4 = yellow, 6 = red edge, 8 = NIR2; Black stars indicate a significant difference between the 

distribution of correctly classified values related to the reference and combinations to-be-tested  

(Mann-Whitney U test, p < 0.01). 

The most negative PA and UA contributions involved the yellow-NIR2 combination and were 

related to the hard coral/algae patches (losses: −20.88% and −18.38%, respectively) (Table 2). The 

misclassification associated with the yellow band might be the consequence of the subtle spatial 

heterogeneity of water composition occurring along the coast, due to terrestrial run-off. Matching the 

reflectance peak of surface waters containing CDOM [17], the yellow band might lead to 

misclassifications over the coastline-contiguous classes, such as the hard coral/algae patches. The 

overall accuracy supported this assessment, since the yellow band was the lowest contributor (0.0024), 

and its presence within the four band combination (coastal-yellow-red edge-NIR2) impaired the 

intuitively-expected best contribution. Following the advances tied to hyperspectral measurements, the 

WV2 yellow band coupled with in situ measurements should be further investigated regarding 

information from the water column, so that the inherent optical properties (IOP) could be better 

modelled across regional areas. 



Remote Sens. 2013, 5 3595 

 

Table 2. Class normalized contributions of the 15 spectral combinations derived from the novel WorldView-2 (WV2) bands computed for 

(above sub-table) the producer’s accuracy and (below sub-table) the user’s accuracy.  

 
Roof Pool Grass 

Mature 

Vegetation 

Emergent 

Vegetation 

Dry 

Vegetation 
Tar 

Bare 

Soil 
Sand 

Very Shallow 

Sand 

Shallow 

Sand 
Sandy Pavement 

Hard Coral/Algae Patches on 

Sandy/Muddy Pavement 

Hard Coral 

Bommie 
Hard Coral Thicket Algal 

Hard Coral Bommie 

on Pavement 

Fleshy and 

Encrusting Algae 
Foam Reef Matrix Ocean 

1 −0.01 0 0 0.01 0 0 0.01 0.07 0 0 0.01 0 −0.03 0.01 −0.08 0 0 0.05 0 0.04 0 

4 0 0.04 0 0.01 0 0.03 0.01 −0.01 0 0 0.02 0 −0.01 −0.03 0 0 0 0.09 0.01 −0.1 −0.01 

6 −0.01 0.04 0.08 0.04 0 0.02 0.11 −0.01 0 0 0.01 0 0 0.1 0.15 0 0 0.14 −0.01 −0.06 −0.01 

8 0.01 0 0 0.06 0 0.02 0.11 −0.01 0 0 0.01 0 0 0 −0.1 0 0 0.14 0 0.02 0 

1+4 0 0.02 0 0.01 0 0.03 0.01 0.06 0 0 0.01 0 −0.02 0 0.05 0 0 0.09 0.01 −0.04 0 

1+6 −0.01 0 0.08 0.03 0 0.02 0.11 0.05 0 0 0.02 0 −0.02 0.1 0.15 0 0 0.14 0 −0.05 0 

1+8 0.01 0.04 0 0.05 0 0.02 0.11 0.06 0 0 0.02 0 −0.01 0.01 −0.08 0 0 0.14 0 0.05 0 

4+6 −0.01 0.04 0.07 0.03 0.01 0.03 0.11 −0.01 0 0 0.01 0 −0.01 0.07 0.14 0 −0.01 0.14 0.01 −0.09 −0.01 

4+8 0 0.02 0.07 0.01 −0.01 0.03 0.11 −0.01 0 0 0.01 0 −0.21 0.09 0.14 0 −0.06 0.14 0 −0.04 0 

6+8 0 0.02 0.08 0.03 −0.01 0.02 0.11 −0.01 0 0 0.01 0 0 0.09 0.15 0 −0.01 0.14 0 −0.05 0 

1+4+6 −0.01 0.02 0.07 0.04 0.01 0.03 0.11 0.05 0 0 0.01 0.01 −0.02 0.07 0.15 0 0 0.14 0 −0.07 0 

1+4+8 0.01 0.04 0 0.03 0 0.03 0.11 0.05 0 0 0 0 −0.02 0 −0.02 0 0 0.14 0.01 −0.01 0 

1+6+8 0 0.02 0.08 0 0 0.02 0.11 0.03 0 0 0.01 0 0 0.12 0.17 0 0 0.14 0 −0.04 0 

4+6+8 0 0.02 0.07 0 −0.01 0.03 0.11 −0.01 0 0 0 0 −0.02 0.06 0.14 0 −0.01 0.14 0 −0.05 0 

1+4+6+8 0 0.02 0.07 0 0.01 0.03 0.11 0.03 0 0 0.01 0.01 −0.02 0.07 0.17 0 0 0.14 0 −0.06 0 

1 0.07 −0.02 0 0 0 0.03 0 −0.02 0 0 0 0.01 −0.03 0.03 −0.04 0 0 0.04 0 0.02 0 

4 0.01 0 0 0.01 0 0.05 0.03 0 0 0.01 0 0.02 −0.03 −0.11 −0.01 −0.01 0 0.05 0 −0.01 0 

6 0 −0.02 0.01 0.01 0.11 0.05 0.05 −0.01 0 0.01 0 0.01 −0.08 0.05 0.05 0 0 0.18 0 0.13 0 

8 0.01 −0.02 0 0.01 0.01 0.08 0.05 0 0.01 0 0 0.01 −0.06 −0.01 −0.05 0 0 0.18 −0.01 0.05 0 

1+4 0.06 0 0 0.01 0 0.04 0.04 −0.01 0 0.01 0 0.01 −0.03 −0.03 0.03 −0.01 0 0.05 0 0.01 0 

1+6 0.05 −0.02 0.01 0 0.11 0.04 0.05 −0.02 0 0 0 0.02 −0.05 0.06 0.04 −0.01 0 0.18 0 0.11 0 

1+8 0.06 −0.02 0 0.01 0.01 0.07 0.05 −0.01 0.01 0.01 0 0.03 −0.08 0.01 −0.01 0 0 0.18 0 0.06 0 

4+6 0.01 0 0.02 0.01 0.09 0.03 0.06 −0.01 0 0.01 0 0.01 −0.07 0 0.04 −0.01 0 0.18 0 0.09 0 

4+8 0 −0.02 0.01 0 0.05 0.06 0.05 −0.01 0.01 0.01 0 0.01 −0.18 0.06 0.02 −0.01 −0.11 0.18 0 0.11 0 

6+8 0 −0.02 0.01 −0.01 0.07 0.07 0.05 −0.01 0.01 0.01 0 0.01 −0.08 0.08 0.04 0 0 0.18 0 0.12 0 

1+4+6 0.05 −0.02 0.02 0.02 0.09 0.04 0.06 −0.02 0 0.01 0 0.01 −0.05 0.02 0.04 −0.01 0.01 0.18 0 0.09 0 

1+4+8 0.06 0 0 0.01 0.01 0.05 0.05 −0.01 0.01 0.01 0 0.01 −0.07 −0.06 0 −0.01 0 0.18 0 0.08 0 

1+6+8 0.04 −0.02 0.01 0 0.07 0.05 0.05 −0.02 0.01 0.01 0 0.01 −0.06 0.09 0.06 −0.01 0 0.18 0 0.13 0 

4+6+8 0 −0.02 0.01 0 0.05 0.05 0.05 −0.01 0.01 0.01 0 0 −0.08 0.04 0.04 −0.01 0 0.18 0 0.1 0 

1+4+6+8 0.04 −0.02 0.02 0.01 0.06 0.05 0.05 −0.02 0.01 0.01 0 0.01 −0.07 0.03 0.04 −0.01 0.01 0.18 0 0.13 0 

NB: the normalized contributions are color-coded according to a blue-red gradient (dark blue and red represent the most detrimental and beneficial contributions, respectively). 
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3.2. Patterning Classification Accuracy with Spatial Enhancement 

The influence of the simulation method (cf. step 1 of the Pan-sharpening procedure, Section 2.4, 

and Figure 2) on the spectral properties of at-surface reflectance was assessed by computing the 

absolute average difference of the training pixels per band issued from the initial (2 m) and nine  

Pan-sharpened MS imageries (Figure 5). The difference was first computed based on the seamless 

study area, spanning the 21 ground-truth regions of interest, keeping the integrity of the reefscape 

irrespective of the coastline boundary (Figure 5A). Splitting the study area into nine land and 12 water 

areas, two differences were calculated in order to account for the land- and water-related specificity of 

spectral responses (Figure 5B,C). Overall, the sensor simulation displayed the lowest differences, 

irrespective of the level of the coast integrity, outperforming most of the eight band simulations. 

However, the sensor simulation was locally (at the wavelength scale) surpassed by some band 

simulations (e.g., red edge-based band simulation at 545 nm and coastal-based band simulation at  

725 nm in the land + water analysis). Some spectral patterns related to band simulations emerged from 

the seamless and splitting analyses. While the NIR-based band simulations minimized the differences 

in the visible spectrum, the visible-based band simulations minimized the difference in the NIR 

spectrum. Conversely, the NIR- and visible-based band simulations maximized the differences in the 

NIR and visible spectral ranges, respectively (Figure 5). 

Figure 5. Segment plots of the absolute average difference of the reflectance values (per 

band) of the training pixels stemming from (1) the 2 m initial dataset and (2) eight  

band-based and one sensor-based 0.5 m Pan-sharpened datasets (i.e., nine various series) as 

a function of the coast integrity: (A) land + water; (B) only land; and (C) only water. 
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Based on observations of the eight band simulations (excluding the sensor simulation, cf. Figure 5), 

a Pan-sharpened composite MS imagery was built from the band-based simulation displaying the 

smallest difference for each spectral band (Table 3). The resulting Pan-sharpened composite dataset 

thereafter provided a very high spatial resolution dataset, whilst minimizing the spectral deviation from 

the initially collected pixel values. 

Table 3. Composition of the Pan-sharpened composite MS imagery with respect to coast 

integrity. Each selected Pan-sharpened band corresponds to the band of the eight  

band-based Pan-sharpening methods, minimizing the difference with initial data values for 

each spectral band. 

 Coastal Blue Green Yellow Red Red Edge NIR1 NIR2 

Land + Water Red edge Red edge Red edge NIR2 NIR2 Coastal Green Green 

Land Red edge Red edge NIR2 NIR2 Red edge Blue Green Green 

Water Red edge Red edge Red edge NIR2 red Coastal Green Green 

The effect of the enhancement of spatial scale on overall classification was examined as a function 

of the two simulation techniques employed in the Pan-sharpening procedure. The refinement of the 

spatial scale tended to slightly diminish the overall consistency between trained and validated pixels 

attendant with the measured 2 m standard four band dataset (Figure 4). Nevertheless, the proposed 

composite Pan-sharpening technique (κloss = −0.0255) was less impacted by the traditional sensor 

technique (κloss = −0.0347). The sensor modality showed the same categorical boundaries as those of 

the overall 2 m performance, i.e., highest and lowest contributions driven by the coastal-red  

edge-NIR2 (κgain = 0.037) and the yellow series, which was negative (κloss = −0.004). The composite 

modality was delimited by the coastal and four band series (κgain = 0.0023 and 0.0378, respectively). A 

pattern emerged from this latter modality, clearly separating the lowest contributions with no red edge 

and the highest contributions, including the red edge band. 

According to previous results, we could hypothesize that the gap bridging, provided by the red edge 

integration into WV2 bands, was better exploited by the composite than the sensor simulation. On the 

other hand, the spectral deviation of the red edge signatures between the 2 m and the composite 0.5 m 

datasets was minimized by the coastal band, outperforming the 0.5 m sensor-driven deviation 

(Table 3). This result pointed out the existing complementarities of the red edge and the coastal 

information, which substantially improved the signals traditionally carried by the NIR-green couple 

(Table 3). Our composite simulation might also confer better results, because of accounting for the 

coastal band (400–450 nm), which was excluded from the sensor simulation (the WV2 Pan band 

spectrally starting at 450 nm). When dealing with Pan-sharpened-driven overall classification, we 

strongly advocate to use this proposed simulation technique in order to differentiate better among land 

and water classes with the integrated quasi-continuous optical spectrum. 

The component substitution method, employed in this study, was based on a spectral combination 

of eight bands, without any spatial filtering of the Pan band. Advances in Pan-sharpening have been 

considerably motivated by the use of the multiresolution analysis. The principle is to decompose the 

imagery at various spatial resolutions, so that the details of the Pan image can be injected into the 
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original MS dataset. The most successful decomposition functions are the generalized Laplacian 

pyramid and redundant shift-invariant wavelet and contourlet filtering of the Pan band [35]. 

The fusion products derived from the sensor and composite techniques were empirically assessed as 

spectral difference with the original dataset. Some protocols exist for evaluating the quality of fused 

images, such as the Khan’s protocol, which integrates the properties of other protocols in order to 

define spectral and spatial quality indices at full scale [35]. In the near future, the composite technique 

will be assessed with those recent progresses in quality measures in order to compare its efficiency 

with other techniques. 

At the patch level, scaling up the spatial resolution led to an overall rise of spectral contributions 

(Tables 4 and 5). The sensor technique (Table 4) displayed the highest contributions in both land and 

water classes, namely the hard coral thicket (PAgain = 30.36% with coastal-red edge-NIR2), tar 

(UAgain = 18.94% with NIR2, coastal-NIR2, coastal-yellow-NIR2 and coastal-red edge-NIR2 series), 

hard coral bommie (UAgain = 17.81% with the four band combination) and emergent vegetation  

(PAgain = 16.67% with red edge and red edge-NIR2). The lowest contribution was attributed to the 

composite modality, involving the yellow band, which contributed in decreasing the UA hard coral 

thicket by −9.29%. However, the sensor simulation (Table 5) produced the three remaining lowest 

contributions, namely emergent vegetation (UAloss = −8.73% with the yellow-NIR2 combination), reef 

matrix (PAloss = −7.89% with yellow-red edge and yellow-red edge-NIR2 associations) and mature 

vegetation (PAloss = −7.04% with coastal-yellow and coastal-yellow-NIR2 combinations). While the 

average maximum PA and UA increased with spatial refinement, the range computed between average 

maximum and minimum PA and UA increased and decreased for land and water classes, respectively 

(Table 6). Those findings underlined two gradients of the accuracy stability: one for land classes 

ranging from high to low resolution; the other one for water classes ranging from low to high 

resolution. Following the pattern deciphered in the 2 m results, the red edge, associated or not with 

NIR2, was of profit for the emergent vegetation and considerably beneficial when combined with 

coastal, NIR2 and even yellow for both hard coral classes (Tables 4 and 5). These results could be 

explained by the same arguments mentioned in Section 3.1, namely spectral continuity, offered by the 

gap fulfilled by the red edge, detecting the reflectance/absorbance of chlorophylls, and yellow, as well 

as the spectral extension of the gamut with coastal and NIR2, sensing the first peak of chlorophyll-a 

and water, respectively. However, singly considered, the yellow band created discrepancies over hard 

coral thicket (UAloss = −9.29%), as well as hard coral/algae patches (UAloss = −6.72%). The  

yellow-driven counter performance might be due to the suspended sediment in the water column, since 

hard coral/algae patches attested to it (cf. explanation in Section 3.1), but also to the method itself, 

since the spectral difference between the 2 m and composite 0.5 m was the highest (Table 3). When 

dealing with Pan-sharpened images at the patch level, it is recommended to adopt the sensor approach 

to improve the classification accuracies of both land and water classes. 
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Table 4. Class normalized contributions of the 15 spectral combinations derived from the novel WV2 bands as a function of the sensor  

Pan-sharpening technique computed for (above sub-table) the producer’s accuracy and (below sub-table) the user’s accuracy.  

 
Roof Pool Grass 

Mature 

Vegetation 

Emergent 

Vegetation 

Dry 

Vegetation 
Tar Bare Soil Sand 

Very Shallow 

Sand 

Shallow 

Sand 

Sandy 

Pavement 

Hard Coral/Algae Patches 

on Sandy/Muddy Pavement 

Hard Coral 

Bommie 

Hard Coral 

Thicket 
Algal 

Hard Coral Bommie 

on Pavement 

Fleshy and 

Encrusting Algae 
Foam 

Reef 

Matrix 
Ocean 

1 −0.01 0.02 0.1 0 0.06 0 0 0.1 0 0 0 0 0.01 0.03 0.14 0 −0.02 0 0 0.03 0.02 

4 0 −0.02 −0.04 −0.03 0 0 0 0.01 0 0 0 0 0 −0.02 −0.02 0 −0.01 0.05 0 −0.05 0.01 

6 −0.02 −0.02 0.13 −0.03 0.17 0 0.05 0.01 0 0 0 0 0 0.06 0.13 0 −0.03 0.25 0 −0.05 0.01 

8 0.02 −0.02 −0.02 0.01 0.02 0 0.07 0 −0.01 0.01 0 0 0.01 −0.02 0.2 0 −0.02 0.25 0 0.03 0 

1+4 0.01 0.02 0.05 −0.07 0.03 0 0 0.09 0 0 0 0 0.01 0.05 0.05 0 −0.02 0.05 0 −0.04 0.01 

1+6 −0.02 0.02 0.15 −0.04 0.08 0 0.05 0.1 0 0 0 0 −0.01 0.05 0.21 0 −0.03 0.25 0 −0.01 0.01 

1+8 0 0.02 0.05 0 0.05 0 0.07 0.07 0 0.01 0 0 −0.01 0 0.23 0 −0.03 0.25 0 0.01 0.02 

4+6 −0.02 0 0.13 −0.04 0.14 0 0.05 0.01 0 0 0 0 0 0.05 0.13 0 −0.03 0.25 0 −0.08 0.01 

4+8 0.02 0 −0.06 −0.06 0 0 0.05 0 0 0.01 0 0 0.01 −0.02 0.07 0 −0.03 0.25 0 −0.04 0.01 

6+8 0 −0.02 0.13 0 0.17 0 0.05 0.01 −0.01 0.01 0 0 −0.01 0.09 0.18 0 −0.03 0.25 0 −0.04 0.01 

1+4+6 −0.01 0.02 0.13 −0.04 0.09 0 0.05 0.1 0 0 0 0 −0.02 0.05 0.23 0 −0.03 0.25 0 −0.05 0.01 

1+4+8 0.01 0 0.02 −0.07 0.03 0 0.07 0.06 −0.01 0.01 0 0 0.01 0.03 0.18 0 −0.03 0.25 0 −0.01 0.01 

1+6+8 0 0.02 0.12 −0.04 0.11 0 0.07 0.09 −0.01 0.01 0 0 −0.02 0.08 0.3 0 −0.03 0.25 0 −0.05 0.01 

4+6+8 −0.01 0 0.13 −0.06 0.14 0 0.05 0.01 −0.01 0.01 0 0 0 0.08 0.16 0 −0.03 0.25 0 −0.08 0.01 

1+4+6+8 0 0 0.16 −0.04 0.11 0 0.05 0.05 0 0.01 0 0 −0.02 0.06 0.29 0.01 −0.03 0.25 0 −0.07 0.01 

1 0.07 0 0.06 0.01 0.11 0 0.01 −0.02 0 0 0.01 −0.01 −0.04 0.05 0.12 0 −0.02 0 0 0.1 0 

4 −0.01 0 0.01 −0.02 −0.05 −0.01 0.03 0 0.01 0.01 −0.01 0 −0.04 0.01 −0.02 0.01 0 0.02 0 −0.04 0 

6 −0.01 0 0.11 0.02 0.14 0 0.18 −0.01 0 0 0 0 −0.01 0.14 0.03 −0.01 0.02 0.09 0 −0.04 0 

8 0 0 −0.01 0.02 −0.03 0.02 0.19 0.01 0.02 0 0 0 −0.01 0.09 0.08 0 0.01 0.09 0 0.04 0 

1+4 0.06 0 0.05 −0.03 0 0 0.05 −0.01 0.01 0.02 0 −0.01 −0.06 0.05 0.04 0.01 −0.02 0 0 0.06 0 

1+6 0.07 0 0.1 −0.04 0.12 0.01 0.18 −0.02 0 0 0.01 0 −0.04 0.13 0.09 −0.01 0.01 0.09 0 0.05 0 

1+8 0.07 0 0.04 0 0.05 0.02 0.19 −0.02 0.01 0 0.01 0 −0.05 0.1 0.1 −0.01 0.01 0.09 0 0.09 0 

4+6 −0.01 0 0.11 0 0.12 0 0.18 −0.01 0 0.01 0 0 −0.06 0.13 0.04 0.01 0.01 0.09 0 −0.05 0 

4+8 0 0 −0.03 0.01 −0.09 0 0.19 0 0.02 0.01 0 0 −0.04 0.02 0.02 0.01 0.01 0.09 0 −0.01 0 

6+8 −0.01 0 0.11 0.04 0.14 0 0.19 −0.01 0.02 0 0 0 0 0.13 0.11 −0.01 0.01 0.09 0 −0.04 0 

1+4+6 0.06 0 0.11 −0.03 0.11 0 0.18 −0.02 0.01 0.01 0.01 0 −0.07 0.13 0.07 0.01 −0.01 0.09 0 0.07 0 

1+4+8 0.05 0 0.03 −0.03 −0.02 0.01 0.19 −0.01 0.01 0 0.01 0 −0.05 0.08 0.08 0.01 −0.01 0.09 0 0.1 0 

1+6+8 0.05 0 0.1 −0.01 0.11 0.01 0.19 −0.02 0.01 0.01 0.01 0 −0.02 0.17 0.11 −0.01 0 0.09 0 0.05 0 

4+6+8 −0.01 0 0.11 0.01 0.11 −0.01 0.19 −0.02 0.01 0.01 0 0 −0.03 0.15 0.06 0.01 0.01 0.09 0 −0.05 0 

1+4+6+8 0.04 0 0.11 −0.02 0.14 0 0.19 −0.02 0.01 0 0.01 0 −0.04 0.18 0.08 0.01 −0.01 0.09 0 0.05 0 

NB: the normalized contributions are color-coded according to a blue-red gradient (dark blue and red represent the most detrimental and beneficial contributions, respectively). 
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Table 5. Class normalized contributions of the 15 spectral combinations derived from the novel WV2 bands as a function of the composite 

Pan-sharpening technique computed for (above sub-table) the producer’s accuracy and (below sub-table) the user’s accuracy. 

 Roof Pool Grass Mature 

Vegetation 
Emergent 

Vegetation 
Dry 

Vegetation Tar Bare 

Soil Sand Very shallow 

Sand 
Shallow 

Sand 
Sandy 

Pavement 
Hard Coral/Algae Patches on 

Sandy/Muddy Pavement Hard Coral Bommie Hard Coral 

Thicket Algal Hard Coral Bommie 

on Pavement 
Fleshy and Encrusting 

Algae Foam Reef 

Matrix Ocean 
1 0.01 0 0.02 0 0 0 0 0.04 0 0 0 0 −0.03 0.01 −0.07 0 0 0 0.01 0.03 0.01 
4 0 −0.02 0.05 0.01 −0.01 0.01 0.07 0 0 0.01 0 0.01 0.05 −0.04 −0.01 0 0.01 0.13 0 0.1 −0.01 
6 0.01 0 0.13 0 0.01 0.01 0.1 0.01 0 0.01 0 0 0.02 0.07 0.03 0 −0.03 0.15 0 0.08 −0.01 
8 −0.01 −0.02 0.02 0 0 0.01 0.1 0 0 0.01 0 0.01 0.02 0 0 0 −0.01 0.15 0 0.06 0 

1+4 −0.01 −0.02 0.05 0.02 −0.04 0.01 0.06 0.02 0 0.01 0 0.01 0.05 −0.03 0.01 0 −0.02 0.11 0.01 0.1 0.01 
1+6 0 0 0.13 0.02 0.01 0.01 0.09 0.04 0 0 0 0 0.02 0.07 0.04 0 −0.03 0.15 0.01 0.04 0.01 
1+8 0.01 0 0.01 0 0 0.01 0.1 0.02 0 0.01 0 0 0.02 0.01 −0.03 0 −0.01 0.15 0.01 0.04 0.01 
4+6 0 0 0.13 0.02 0 0.01 0.08 0.01 0 0.01 0 0 0.05 0.07 0 0 −0.02 0.15 0 0.15 −0.01 
4+8 −0.01 −0.02 0.05 0.04 −0.04 0.01 0.1 0 0 0.01 0 0 0.05 0.01 −0.01 0 −0.02 0.15 0.01 0.13 −0.01 
6+8 0.01 0.02 0.12 0.01 0.03 0.01 0.1 0.01 0 0.01 0 0 0.02 0.07 0.07 0 −0.03 0.15 0.01 0.1 −0.01 

1+4+6 0 0.02 0.14 0.02 0 0.01 0.08 0.02 0 0.01 0 0.01 0.05 0.07 0 0 −0.03 0.15 0.01 0.14 0.01 
1+4+8 0 0 0.05 0.04 −0.01 0.01 0.11 0.02 0 0.01 0 0.01 0.05 −0.01 −0.01 0 0 0.15 0.01 0.13 0.01 
1+6+8 0.01 −0.02 0.13 0.01 0.03 0.01 0.1 0.02 0 0.01 0 0 0.02 0.07 0.08 0 −0.03 0.15 0.01 0.06 0.01 
4+6+8 0.01 0.02 0.13 0.02 0.01 0.01 0.1 0.01 0 0.01 0 0 0.05 0.07 0.03 0 −0.02 0.15 0.01 0.14 −0.01 

1+4+6+8 0.01 0 0.14 0.02 0.01 0.01 0.11 0.02 0 0.01 0 0.01 0.05 0.07 0.04 0 −0.03 0.15 0.01 0.14 0.01 
 

                     

1 0.04 0 0 0 0.02 0 0 −0.02 0.02 0 0 0 −0.01 −0.04 0.03 0 0.01 −0.01 0.01 −0.05 0 
4 −0.02 0 0 0 0.06 −0.04 0.13 0 0 0 0.01 −0.01 0.12 −0.04 −0.09 0.02 0 0.11 0.01 0.14 0 
6 0 0 0.02 0.01 0.15 −0.05 0.15 0.02 0.02 0 0 0 0.02 0 0.01 0.02 −0.01 0.11 0.01 0.11 0 
8 −0.01 0 0 0 0.02 −0.02 0.14 −0.01 0.02 0 0.01 0 0.07 −0.05 0.03 −0.02 0 0.11 0 0.03 0 

1+4 0.02 0 −0.02 0 0.05 −0.03 0.12 −0.02 0 0 0.01 −0.01 0.08 −0.04 −0.06 0.02 −0.01 0.11 0.01 0.15 0 
1+6 0.04 0 0.02 0.01 0.15 −0.03 0.14 0 0.02 0 0 0 −0.02 0.01 0.05 0 0 0.11 0.01 0.09 0 
1+8 0.02 0 0 0 0.01 −0.02 0.14 0 0.02 0 0 0.01 0.05 −0.05 0.05 −0.02 0.01 0.11 0.01 0.01 0 
4+6 0 0 0.02 0 0.16 −0.04 0.15 0.02 0.01 −0.01 0.01 −0.01 0.09 −0.03 0.01 0.02 0 0.11 0.01 0.12 0 
4+8 −0.01 0 −0.02 0.01 0.05 −0.02 0.15 0 0.01 −0.01 0.01 −0.01 0.15 −0.04 −0.03 0.02 −0.01 0.11 0.01 0.07 0 
6+8 0.02 0 0.01 0.02 0.12 −0.02 0.14 0.01 0.02 0 0 0 0.07 0.01 0.05 0.01 −0.01 0.11 0.01 0.07 0 

1+4+6 0.04 0 0.02 0 0.16 −0.03 0.15 0.01 0.01 0 0.01 −0.01 0.08 −0.01 0 0.02 0 0.11 0.01 0.11 0 
1+4+8 0.02 0 0 0.01 0.06 −0.02 0.15 0.01 0.01 0 0.01 0 0.17 −0.06 −0.02 0.02 0 0.11 0.01 0.08 0 
1+6+8 0.02 0 0.02 0.02 0.14 −0.02 0.14 0 0.02 0 0 0 0.03 0.04 0.06 0 0 0.11 0.01 0.08 0 
4+6+8 0.02 0 0.02 0.01 0.16 −0.04 0.15 0.01 0.02 −0.01 0.01 0 0.14 0.01 0.01 0.02 −0.01 0.11 0.01 0.08 0 

1+4+6+8 0.03 0 0.02 0.01 0.16 −0.03 0.15 0.01 0.02 0 0.01 −0.01 0.13 0.04 0.01 0.02 0 0.11 0.01 0.09 0 
NB: the normalized contributions are color-coded according to a blue-red gradient (dark blue and red represent the most detrimental and beneficial contributions, respectively). 
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Table 6. Range and maximum of the average contribution producer’s and user’s accuracies 

for land and water classes as a function of spatial resolution and coast integrity. 

PA, producer’s accuracy; UA, user’s accuracy. 

 Land Water 

 PA UA PA UA 

 Range Maximum Range Maximum Range Maximum Range maximum 

Original 2 m 4.94 4.68 4.22 3.98 8.24 4.32 7.75 4.05 

Sensor 0.5 m 8.13 6.07 8.37 6.3 7.32 6 6.04 4.6 

Composite 0.5 m 5.03 4.39 5.64 4.4 5.95 4.6 7.23 4.9 

Split 2 m 3.55 2.84 3.75 3.06 5.28 5.26 5.89 5.39 

3.3. Classification Accuracy According to the Coast Integrity 

The splitting of the original 2 m coast into its land and water bodies differentially altered their 

respective overall classification accuracy (Figure 6). While the kappa coefficient related to land barely 

reduced to 0.8894 (κloss = −0.0023), for water, it decreased to 0.8182 (κloss = −0.0735). Considering 

only the land, the lowest spectral contribution was attributed to the yellow band (κgain = 0.0029), and 

the most gaining series involved coastal-red edge-NIR2 and a four band combination (κgain = 0.0223). 

Concerning vegetation indices, all ARVI and red-NIR1 NDVI brought negative contributions, while  

red-red edge NDVI and red-NIR2 NDVI supported slight contributions (topping at 0.0045 for the latter 

index). As for water partition, the yellow band brought the least important contribution (κgain = 0.0022), 

and the prime combination was based on the coastal-red edge-NIR2 association (κgain = 0.0422). All 

hard coral-related NDR furnished valuable information, increasing by 0.0011 (green-red, yellow-blue, 

yellow-red), 0.0022 (green-coastal, yellow-coastal) and 0.012 (green-blue). Regarding the land classes, 

the yellow band might be the least important contributor, since its spectral sensitivity does not 

correspond to any primary reflectance peaks of the vegetation pigments (cf. [36]). Although the yellow 

band provided the smallest contribution to both realms, it seemed that it was more prejudicial to the 

water class, given the best contribution was deprived of the yellow band. Once again, the spectral 

matching of the reflectance peak of CDOM-borne waters and the yellow band might entail 

inconsistencies over water classes somewhat masked by suspended matter in the water column. 

Arguing in favour of the increased power of discrimination with the quasi-continuity of the spectrum, 

the three and four band combination furnished the best results. The contribution of the land band ratios 

might be associated with the well-recognized spectral behaviour of the chlorophyll vegetation: strong 

absorption and reflection in the red and NIR wavelengths, respectively. Even if the traditional red 

wavelengths got involved in both ratios, the two related NIR wavelengths belonged to the novel WV2 

spectral capabilities, the red edge band, bridging the traditional QB2 red and NIR1 bands, and the 

NIR2 band, considerably stretching out the NIR1 band to longer wavelengths. These findings 

unequivocally underscored the better proficiency of red edge and NIR2 bands for detecting vegetation 

reflectance compared to the commonly used NIR1 band, as found by [37]. Even though ARVI was 

better recognized to reduce the atmosphere effects than the NDVI index [38], it only worsened the 

classification accuracy of land classes. However, this counter-performance might be attributed to the 

fixing of the γ value at one. Provided with a γ value equalling 0.7, the ARVI index, applied to 
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atmospherically uncorrected data, was demonstrated to be most capable of decreasing the atmospheric 

influence [38]. We therefore suggest that various γ values should be tested in further vegetated land 

classifications. 

Figure 6. Bar plots of the land/water split overall normalized contributions of the 15 

spectral combinations derived from new WV2 bands associated with (A) the nine 

vegetation indices for land classes and (B) the six coral indices for water classes. 

 
NB: 1 = Coastal, 2 = blue, 3 = green, 4 = yellow, 5 = red, 6 = red edge, 7 = NIR1, 8 = NIR2; Black stars 

indicate a significant difference between the distribution of correctly classified values related to the reference 

and to-be-tested combinations (Mann-Whitney U test, p < 0.01). 

At the patch scale, the integrative approach of the coast turned out to be more prejudicial to land 

patch classes and more profitable to water patch classes, regardless of the PA and UA (Table 6). When 

singly considered, the land patch classes only benefited from the best contributions of 9.72% for UA 

emergent vegetation (with red edge band), of 8.89% for PA grass (with red edge, coastal-red edge, red 

edge-NIR2 and coastal-red edge-NIR2 combinations) and showed the least efficient contributions of 

−2.3% for PA bare soil (with yellow-NIR2, red edge-NIR2 and yellow-red edge-NIR2) and of −2.36% 

for UA roof (with yellow-NIR2) (Table 7). While the best contributions stemming from vegetation 

indices reached 3.85% for PA emergent vegetation (with red-NIR2 NDVI), the worst contribution was 

attributed to this same index with PA bare soil (i.e., PAloss = −2.3%). The grass and emergent 

vegetation classification accuracies were successively improved by the red edge band and red-NIR2 

NDVI. As previously mentioned, the value of the red edge band might be strongly associated with the 

detection of reflectance/absorbance peaks of chlorophylls-a and -b and the utilization of NIR2, 

contiguous to the short-wavelength IR (SWIR). The resulting NDVI might optimize the detection of 

chlorophyll reflectance in avoiding the detection in the very NIR of vegetation absorbance attendant 

with its phenology and/or vigor [39]. 
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Table 7. Land/water split class normalized contributions of the 15 spectral combinations derived from the novel WV2 bands associated with 

(above sub-table) the nine vegetation indices for the land classes and (below sub-table) the six coral indices for the water classes, computed 

for the producer’s and the user’s accuracies. 

 
Roof Pool Grass 

Mature 

Vegetation 

Emergent 

Vegetation 

Dry 

Vegetation 
Tar 

Bare 

Soil 
Sand Roof Pool Grass 

Mature 

Vegetation 

Emergent 

Vegetation 

Dry 

Vegetation 
Tar 

Bare 

Soil 
Sand 

1 −0.01 0 0 0 0 0 0.01 0.07 0 0.06 0 0 0 −0.01 0.01 0 −0.01 0 

4 0.01 −0.02 0 0.01 0.01 0 0.01 −0.01 0 −0.02 0 0.01 0 0 0.01 0.01 0.01 0 

6 −0.01 −0.02 0.09 0.01 0.03 0 0.01 −0.01 0 −0.02 0 0.03 0 0.1 0.01 0 0 0 

8 0.01 −0.02 0 0.05 0 0 0.01 −0.01 0 −0.02 0 0 0.01 0 0.05 −0.01 0.01 0.01 

1+4 0 −0.02 0 0 0.01 0 0.01 0.06 0 0.05 0 0.01 0 −0.01 0.01 0 0 0 

1+6 −0.01 −0.02 0.09 0.01 0.01 −0.01 0.01 0.06 0 0.04 0 0.02 −0.01 0.1 0.01 0 −0.01 0 

1+8 0 0 0 0.04 0 −0.01 0.01 0.07 0 0.07 0 0 −0.01 −0.01 0.03 0 −0.01 0.01 

4+6 −0.01 0 0.08 0.01 0.03 0 0.01 −0.01 0 −0.01 0 0.03 0 0.08 0.01 0 0 0 

4+8 0.01 −0.02 0 0.03 0.01 0 0.01 −0.02 0 −0.02 0 0.01 0 −0.01 0.03 0 0.01 0.01 

6+8 0 0 0.09 0.04 0.03 −0.01 0.01 −0.02 0 −0.02 0 0.03 −0.01 0.08 0.04 −0.01 0 0.01 

1+4+6 −0.01 −0.02 0.08 0 0.03 0 0.01 0.06 0 0.04 0 0.03 0 0.07 0.01 0 −0.01 0 

1+4+8 0.01 −0.02 0 0.04 0.01 0 0.01 0.06 0 0.05 0 0.01 0 −0.01 0.04 0 0 0.01 

1+6+8 0 −0.02 0.09 0.04 0.01 −0.02 0.01 0.06 0 0.05 0 0.02 −0.02 0.08 0.04 −0.01 −0.01 0.01 

4+6+8 0 0 0.08 0.04 0.01 −0.01 0.01 −0.02 0 −0.02 0 0.02 −0.01 0.07 0.03 0 0 0.01 

1+4+6+8 0 −0.02 0.08 0.03 0.01 0 0.01 0.06 0 0.05 0 0.02 0 0.07 0.03 0 −0.01 0.01 

ARVI651 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

ARVI652 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

ARVI751 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

ARVI752 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

ARVI851 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

ARVI852 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

NDVI65 0.01 0 −0.01 0.01 0.04 −0.02 0 0 0 0 0 0.02 −0.01 0.01 0 0.01 0 0 

NDVI75 0 0 −0.01 0.01 0.03 −0.02 0 −0.01 0 −0.01 0 0.01 −0.01 0 0 0 0 0 

NDVI85 0.01 0 0 0.01 0.04 0 0 −0.02 0 −0.02 0 0.02 0.01 0.02 0 0.01 0 0 
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Table 7. Cont. 

 

Very 

Shallow 

Sand 

Shallow 

Sand 

Sandy 

Pavement 

Hard Coral/Algae 

Patches on 

Sandy/Muddy Pavement 

Hard 

Coral 

Bommie 

Hard 

Coral 

Thicket 

Algal 

Hard coral 

Bommie on 

Pavement 

Fleshy and 

Encrusting 

Algae 

Foam 
Reef 

Matrix 
Ocean 

Very 

Shallow 

Sand 

Shallow 

Sand 

Sandy 

Pavement 

Hard Coral/Algae 

Patches on 

Sandy/Muddy Pavement 

Hard 

Coral 

Bommie 

Hard 

Coral 

Thicket 

Algal 

Hard Coral 

Bommie on 

Pavement 

Fleshy and 

Encrusting 

Algae 

Foam 
Reef 

Matrix 
Ocean 

1 0 0 0.01 0 0.03 0.03 0 0 0 0 0 0.01 0 0 0 0 0.04 0.02 0 0.01 0 0 0.01 0 

4 0 0.01 0.01 0 0.02 0.01 0 0 0 0 −0.01 −0.01 0 0 0.01 −0.01 0 0 0 0.03 0 0 0 0 

6 0 0.01 0.01 0 0.22 0.09 0 0 0 0 0.04 0.01 0 0 0.01 0.01 0.18 0.12 0 0.01 0 0 0.05 −0.01 

8 0 0 0 0.01 0.17 0.09 0 0 0 0 0.14 0.02 0 0 0 −0.04 0.38 0.08 0 0.02 0 0 0.04 0 

1+4 0 0 0 0 0.02 0.01 0 0 0 0 0.01 0.02 0 0 0 −0.01 0.04 0.04 0 0 0 0 −0.01 0 

1+6 0 0.01 0 0 0.25 0.09 0 0 0 0 0.04 0.02 0 0 0.01 0.01 0.2 0.13 0 0 0 0 0.05 0 

1+8 0 0 −0.01 0 0.17 0.12 0 0 0 0 0.16 0.02 0 0 0 −0.01 0.4 0.09 0 0 0 0 0.05 −0.01 

4+6 0 0 0.01 0 0.22 0.09 0 0 0 0 0.02 0.01 0 0 0 0 0.18 0.09 0 0.03 0 0 0.05 0 

4+8 0 0 0.01 0 0.15 0.06 0 0 0 0 0.14 0.02 0 0 0 −0.03 0.4 0.05 0 0.03 0 0 0 0 

6+8 0 0 0.01 0 0.3 0.03 0 0 0 0 0.13 0.02 0 0 0 −0.02 0.37 0.12 0 0.03 0 0 0 0 

1+4+6 0 0 0 0 0.23 0.09 0 0 0 0 0.04 0.02 0 0 0 0 0.2 0.12 0 0.01 0 0 0.05 0 

1+4+8 0 0 0 0 0.15 0.09 0 0 0 0 0.14 0.02 0 0 0 −0.04 0.4 0.07 0 0.02 0 0 0.02 0 

1+6+8 0 0 0.01 0 0.3 0.06 0 0 0 0 0.14 0.02 0 0 0 −0.02 0.37 0.15 0 0.02 0 0 0.03 0 

4+6+8 0 0 0.01 0 0.28 0.03 0 0 0 0 0.13 0.02 0 0 0 −0.03 0.37 0.12 0 0.03 0 0 0 0 

1+4+6+8 0 0 0.01 0 0.27 0.05 0 0 0 0 0.14 0.02 0 0 0 −0.03 0.37 0.12 0 0.03 0 0 0.02 0 

NDR32 0 0.01 0 0.01 0.02 0.03 0 0 0 0 −0.04 0 0 0 0.01 0.01 0 0.01 0 0 0 0 0.01 0 

NDR31 0 0.01 0.01 0.01 −0.02 0.01 0 0 0 0 0.08 0.01 0 0 0.01 0.02 0.11 0.02 0 −0.01 0 0 −0.02 0 

NDR35 0 0.01 0 0.01 0.02 0.03 0 0 0 0 −0.05 0 0 0 0.01 0.01 −0.01 0.01 0 0 0 0 0.01 0 

NDR42 0 0.01 0 0.01 0.05 0.01 0 0 0 0 −0.05 0 0 0 0.01 0.02 −0.01 0.01 0 0 0 0 0.01 0 

NDR41 0 0.01 0 0.01 0.02 0.01 0 0 0 0 −0.04 0 0 0 0.01 0.01 −0.01 0 0 0 0 0 0.01 0 

NDR45 0 0.01 0 0.01 0.02 0.03 0 0 0 0 −0.05 0 0 0 0.01 0.01 −0.01 0.01 0 0 0 0 0.01 0 

NB: The normalized contributions are color-coded according to a blue-red gradient (dark blue and red represent the most detrimental and beneficial 

contributions, respectively). 
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On the other hand, singly considered, the water patch classes received a considerably prime 

contribution of 40% for PA hard coral bommie (with the coastal-NIR2 combination), 30% for UA hard 

coral bommie (with red edge-NIR2 and coastal-red edge combinations) and the poorest contributions 

of only −3.85% for UA hard coral/algae patches (coastal-yellow-NIR2) and of −1.18% for PA reef 

matrix (with the yellow band) (Table 7). Linked with the coastal, red edge and NIR2 bands, the strong 

enhancement of hard coral bommie might be explained by the detection of the first peak of 

chlorophyll-a, red-shift effect and, lastly, SWIR or the refinement of the land-water discrimination. 

The UA hard coral bommie benefited from green-coastal hard coral-related index (UAgain = 11.06%), 

while the PA reef matrix was lowered (PAgain = 4.71%) with the green-red, yellow-blue and yellow-red 

hard coral indices. The green-coastal NDR result firmly concurred with the finding of [28], 

demonstrating that it was likely to be a robust proxy for detecting coral pigments. Since this band ratio 

is required to be sensitive to pigments showing a high reflectance in the coastal band and a low 

reflectance in green coastal, the peridinin might turn out to be a good candidate. The difference 

existing between average maximum and minimum PA and UA was obviously lower for both land and 

water classes when the coast was examined according to a dichotomous approach (Table 6). This result 

indicated a higher stability in accuracies of the cut-off than the integrative scene, which might be due 

to the spectral and contextual specificity of the terrestrial and aquatic classes. 

The increased contributions of the spectral combinations could be the consequence of the dramatic 

diminution of the overall classification accuracy. It is noteworthy that the overall classification 

accuracy of the integrated scene was greater than that of the fragmented coast. This result might reveal 

the “emergent properties that arose from spatial coupling of spectrally-derived local ecosystems” [40]. 

This citation, referred to as the concept of meta-ecosystem, could be defined as a “set of ecosystems 

connected by spatial flows of energy, materials and organisms across ecosystem boundaries” [40]. The 

bespoke coast-ecosystem could adequately match such a concept that will target ecological issues, 

commonly restrained to land and marine realms exclusively, in considering tropical watershed and 

nearshore ecosystems as spatially interconnected nodes of ecological processes across different spatial 

scales. Fluxes of materials and organisms occurring at the watershed/nearshore interface could, 

thereby, be looked at using a powerful theoretical framework. Monitoring the spatial assemblage of 

vegetation productivity and diversity (using red edge-NIR2 NDVI) with sedimentation (using yellow 

band) will not only enable the bilateral relationships to be quantitatively assessed, but also provide the 

potential to study the reciprocal influences that the hard coral/algae patches and the emergent/mature 

vegetation exert on each other’s functioning (coastal protection and sedimentation, respectively). 

Merging the coast-ecosystem concept with the WV2-based spatial patterning will furnish a timely 

method to analyze the structure and dynamics of coral-related meta-ecosystems at various scales and 

model the influence of watershed management on reef maintenance of the ecological services. 

4. Conclusions 

The tropical coastal zone ranging from the vegetated volcanic ridge to the outer reef through 

urbanized coastal fringe (nine terrestrial + 12 marine classes) has been successfully classified using the 

standard four band combination (blue: 2, green: 3, red: 5, NIR1: 7) and the support vector machine 

algorithm (kappa = 0.8917). Built only with the novel WorldView-2 bands (coastal: 1, yellow: 4, 
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red edge: 6, NIR2: 8), the 15 combinations systematically increased the overall classification accuracy 

of the standard classification. The overall best single and combined contributions were attributed to the 

red edge band (κgain = 0.0247) and coastal-red edge-NIR2 combination (κgain = 0.0287), providing a 

significant increase of tar (Producer’s Accuracygain = 11.11%) and fleshy and encrusting algae (User’s 

Accuracygain = 18.18%) classes, respectively. On the other hand, while the addition of the yellow-NIR2 

combination to the standard four bands brought an overall positive contribution, it dramatically 

impacted the hard coral/algae patches class (PAloss = −20.88%). 

Enhancement of spatial resolution declined the standard classification accuracy, depending on the 

Pan-sharpening technique at stake. Our proposed composite method, selecting the WorldView-2 band 

minimizing the difference with initial data values per band (κ = 0.8662), provided better overall results 

than the commonly used sensor method, based on the spectral sensitivity of the inherent bands  

(κ = 0.857). However, the sensor technique produced the highest contributions with coastal-red  

edge-NIR2 combination akin to the tar (UAgain = 18.94%) and hard coral thicket (PAgain = 30.36%) 

classes. Partitioning the coast into its terrestrial (κ = 0.8894) and aquatic (κ = 0.8182) components 

lowered the standard classification accuracy. While the land-related emergent vegetation class mostly 

benefited from the red edge band (UAgain = 9.72%) and red-NIR2 NDVI (PAgain = 3.85%), the  

water-related hard coral bommie class was highly enhanced by the coastal-NIR2 combination  

(UAgain = 40%) and green-coastal NDR (UAgain = 11.06%). 

The contributions of the added WorldView-2 bands to patch classification accuracy were inversely 

correlated with the overall classification accuracy. We discussed the spectral, methodological and 

ecological properties that have the potential to explain those novel findings. By enhancing the spectral 

discrimination at the individual massive plant and coral level (0.5–2 m), VHR spaceborne remote 

sensing is able to provide innovative insights into the evolution of tropical coastal ecosystems from 

local to regional scales, to predict the influence of anthropogenic and climate changes and to help 

design optimized management and conservation frameworks. 
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Appendix 

Figure A1. Comparisons of true color composite images (RGB: 532) of the (A) 

atmospherically-uncorrected (i.e., at-sensor radiance) and the (B) atmospherically-corrected 

(i.e., at-surface radiance) scenes. 

 
NB: Yellow and red stars symbolize land and water patch class sites (90 stations each except for Pool class, 

which has 75), respectively. Blue stars represent locations of the 36 ground control points. Black-contoured 

white arrows show the sites of the two zoom-ins. 
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Figure A2. Support Vector Machine-driven classification of 21 coastal patch classes 

derived from the standard spectral dataset (blue, green, red, and NIR1) enhanced by the 

three band combination (Coastal-red edge-NIR2): κ = 0.9173 (+0.0256). 
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