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Abstract

Motivated by the study of the time evolution of random dynamical systems arising in a

vast variety of domains — ranging from physics to ecology —, we establish conditions for the

occurrence of a non-trivial asymptotic behaviour for these systems in the absence of an ellipt-

icity condition. More precisely, we classify these systems according to their type and — in the

recurrent case — provide with sharp conditions quantifying the nature of recurrence by estab-

lishing which moments of passage times exist and which do not exist. The problem is tackled

by mapping the random dynamical systems into Markov chains on R with heavy-tailed in-

novation and then using powerful methods stemming from Lyapunov functions to map the

resulting Markov chains into positive semi-martingales.

Keywords: Markov chains, recurrence, heavy tails, moments of passage times, random dy-

namical systems.
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1 Introduction

1.1 Motivation and description of the model

Dynamical systems arise in several applied domains (economy, ecology,
etc.) as models of evolution. We study in this paper the combined ac-
tion of randomness and systematic deterministic bias that leads to a subtle
competition of two antagonistic effects.

Suppose that there exists a universal mapping f : R+ → R+ — veri-
fying certain conditions that will be precised later — and consider the
following random dynamical system Xn+1 = An+1Xn f (An+1Xn), where
(An)n≥1 are a sequence of independent and identically distributed R+-
valued random variables with law ν and Xn ∈ R+ for all n ≥ 0. Not
to complicate unnecessarily the model, we assume that ν has always a
density, with respect to either the Lebesgue measure on the non-negative
axis or the counting measure of some infinitely denumerable unbounded
subset of R+. We address the question about the asymptotic behaviour
of Xn, as n → ∞. The situtation limn→∞ Xn = 0 has a special signific-
ance since can be interpreted as the extinction of certain natural resources,
or the bankruptcy of certain financial assets, etc. The dual situation of
limn→∞ Xn = ∞ can also be interpreted as the proliferation of certain
species, or the creation of instabilities due to the formation of speculative
bubbles, etc. (see [2] for instance).

Since the previous Markov chain is multiplicative, it is natural to work
at logarithmic scale and consider the additive version of the dynamical
system ξn+1 = ξn + αn+1 + ψ(ξn + αn+1), with αn = ln An and ψ(z) =
ln f (ez), for z ∈ R. Therefore, the Markov chain becomes now an R-
valued one reading ξn+1 = ξn + αn+1 + ψ(ξn + αn+1). Obviously, ξn →
+∞ a.s. ⇔ Xn → +∞ a.s. and ξn → −∞ a.s. ⇔ Xn → 0 a.s.

An important class of non-uniformly elliptic random dynamical sys-
tems are those (Xn) that — when considered at logarithmic scale as above
— have ψ(t) = ±|t|γ, for 0 < γ < 1 and t ∈ R+. Now using the element-
ary inequalities (see [5, §19, p. 28], for instance) aγ − |b|γ ≤ (a + b)γ ≤
aγ + |b|γ, it turns out that the dynamical system reads ξn+1 = ξn + αn+1±
|ξn + αn+1|γ = ξn + αn+1 ± |ξn|γ +O(αγ

n+1). Now, for γ ∈]0, 1[, the term
O(αγ

n+1) in the above expression turns out to be subdominant.
For the aforementioned reasons, we study in this paper the Markov
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chains on X = R+ defined by one of the following recursions

ζn+1 = (ζn + αn+1 − ζ
γ
n)

+, or

ζn+1 = (ζn + αn+1 + ζ
γ
n)

+,

with γ ∈]0, 1[ and ζ0 = x a.s.; here z+ = max(0, z) and x ∈ X. The
sequence (αn)n≥1 are a family of independent R-valued random variables
having common distribution. This distribution can be supposed discrete
or continuous but will always be assumed having one- or two-sided heavy
tails. The heaviness of the tails is quantified by the order of the fractional
moments failing to exist.

1.2 Main results

In all statements below, we make the

Global assumption 1.1. The sequence (αn)n∈N are independent and identic-
ally distributed real random variables. The common law is denoted by µ
and is supposed to be µ � λ where λ is a reference measure on R; we
denote by m = dµ

dλ the corresponding density. Additionally, µ is supposed
to be heavy-tailed (preventing thus integrability of the random variables
αn).

Let (ζn)n∈N be a Markov chain on a measurable space (X,X ); de-
note, as usual, by Px the probability on the trajectory space conditioned
to ζ0 = x and, for A ∈ X , define τA = inf{n ≥ 1 : ζn ∈ A}. Our pa-
per is devoted in establishing conditions under which the time τA is finite
(a.s.) or infinite (with strictly positive probability) and in case it is a.s. finite
which of its moments exist. These results constitute the first step toward
establishing more general results on the Markov chain like recurrence or
transience, positive recurrence and existence of invariant probability, etc.
However, the latter need more detailed conditions on the communication
structure of states of the chain like φ-accessibility, φ-recurrence, maximal
irreducibility measures and so on (see [9, 8, 7] for instance). All those ques-
tions are important but introduce some technicalities that blur the picture
that we wish to reveal here, namely that questions on τA can be answered
with extreme parsimony on the hypotheses imposed on the Markov chain,
by using Lyapunov functions. As a matter of fact, the only communication
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property imposed on the Markov chain is mere accessibility whose defin-
ition is recalled here for the sake of completeness.

Definition 1.2. Let (Zn) be a Markov chain on (X,X ) with stochastic ker-
nel P and A ∈ X . Denote by P the probability on its trajectory space
induced by P and by Px the law of trajectories conditioned on {Z0 = x}.
We say that A is accessible from x 6∈ A, if Px(τA < ∞) > 0.

Theorem 1.3. Let (ζn+1) be the Markov chain defined by the recursion

ζn+1 = ζn − ζ
γ
n + αn+1, n ≥ 0,

where 0 < γ < 1 and the random variables (αn) have a common law µ supported
by R+, satisfying the condition µ([0, 1]) > 0 and whose density with respect
to the Lebesgue measure, for large y > 0, reads m(y) = 1R+(y)cyy−1−θ, with
θ ∈]0, 1[. Let a > 1 and denote by A := Aa = [0, a]. Then A is accessible from
any point x > a. Additionally, the following hold.

1. Assume that there exist constants 0 < b1 < b2 < ∞ such that b1 ≤ cy ≤
b2 for all y ∈ X.

(a) If θ > 1− γ then Px(τ < ∞) = 1. Additionally,

• if q < θ
1−γ then Ex(τ

q
A) < ∞, and

• if q ≥ θ
1−γ then Ex(τ

q
A) = ∞.

(b) If θ < 1− γ then Px(τA < ∞) < 1, and this implies transience.

2. Assume further that limy→∞ cy = c > 0 and θ = 1− γ.

(a) If cπ csc(πθ) < θ then Px(τA < ∞) = 1. Additionally, there exists
a unique δ0 ∈]0, θ[ such that

• if q < δ0
1−γ then Ex(τ

q
A) < ∞, and

• if q > δ0
1−γ then Ex(τ

q
A) = ∞.

(b) If cπ csc(πθ) > θ then Px(τA < ∞) < 1, and this implies transi-
ence.

Theorem 1.4. Let (ζn+1) be the Markov chain defined by the recursion

ζn+1 = (ζn + ζ
γ
n − αn+1)

+
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for n ≥ 0, where 0 < γ < 1 and the common law of the random variables
(αn) is supported by R+ and has density m with respect to the Lebesgue measure
verifying m(y) = 1R+(y)cyy−1−θ for large y > 0, with θ ∈]0, 1[ . Assume
further that limy→∞ cy = c > 0. Then the state 0 is accessible and

1. If θ < 1− γ then Ex(τ
q
0 ) < ∞, for all q > 0.

2. If θ = 1− γ then Px(τ0 < ∞) = 1. Additionally, there exists a unique
δ0 ∈]0, ∞[ such that

• If q < δ0
θ then Ex(τ

q
0 ) < ∞, and

• if q > δ0
θ then Ex(τ

q
0 ) = ∞.

3. If θ > 1− γ then Px(τ0 < ∞) < 1, and this implies transience.

Remark 1.5. If b1 ≤ cy ≤ b2 but cy 6→ c then the conclusions established
in the cases of strict inequalities θ < 1 − γ or θ > 1 − γ remain valid.
Nevertheless, we are unable to treat the critical case θ = 1− γ.

Remark 1.6. In both the above theorems, the boundedness or existence
of limit conditions on (cy) imply that the tails have power decay, i.e. there
exists C such that the tail estimate P(α > y) ≥ C

yθ holds. Nevertheless, the
control we impose is much sharper because we wish to treat the critical
case. If we are not interested in the critical case, the control on (cy) can
be considerably weakened by assuming only the tail estimate. Results
established with such weakened control on the tails are given in theorems
1.8 and 1.9 below.

Remark 1.7. Although, in both the above theorems, the existence and
uniqueness of δ0, occurring in the critical case θ = 1−γ, can be established
by general convexity arguments, the sharp determination of its value re-
quires the complete knowledge of the distribution function of (αn). Nev-
ertheless, if we define Kδ,θ = Γ(1−θ)Γ(θ−δ)

θΓ(1−δ)
, the value of δ0 in 1.3 can be ap-

proximated by the solution of the transcendental equation cKδ0,θ = 1. Sim-
ilarly, if we define1 by Lδ,θ = Γ(1+δ)Γ(−θ)

Γ(1−θ+δ)
, the value of δ0 in 1.4 can be ap-

proximated by the solution of the transcendental equation cLδ0,θ + δ0 = 0.

1It is recalled that the transcendental function Γ, defined by Γ(z) :=
∫ ∞

0 exp(−t)tz−1dt
for <z > 0, can be analytically continued on C \ {0,−1,−2,−3, . . .}; its analytic continu-
ation can be expressed by Γ(z) =

∫ ∞
0 [exp(−t)−∑n

m=0
(−t)m

m! ]tz−1dt for −(n + 1) < <z <
−n and n ∈N (see [3, §1.1 (9), p. 2] for instance).
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The faster the convergence cy → c, the better are these approximations; the
determination becomes exact when cy is constant (depending on θ). Not
to complicate the study in the sequel, we sketch the proofs (for the critical
cases) of the theorems 1.3 and 1.4 for cy is constant.

Theorem 1.8. Let (ζn) be the Markov chain defined by the recursive relation

ζn+1 = (ζn − ζ
γ
n + αn+1)

+, n ≥ 0, (1)

where 0 < γ < 1 and the random variables (αn) have common law with support
extending to both negative and positive parts of the real axis. Let a > 1 and
denote by A := Aa = [0, a]. Then A is accessible and the following statements
hold.

1. Suppose that there exist a positive constant C and a parameter θ ∈ ]0, 1[
such that P(α1 > y) ≤ Cy−θ. If θ > 1− γ, then ∀q < θ

1−γ , Ex(τ
q
A) <

∞.

2. Suppose that there exist a positive constants C, C′ and parameters θ, θ′ with
0 < θ < θ′ < 1 such that P(α1 > y) ≥ C′y−θ and P(α1 < −y) ≤ Cy−θ′

(the right tails are heavier than the left ones). If θ < 1− γ, then Px(τA <
∞) < 1, and this implies transience.

Theorem 1.9. Assume that the Markov chain (ζn) is defined by the recursive
relation

ζn+1 = (ζn + ζ
γ
n + αn+1)

+, n ≥ 0,

where 0 < γ < 1 and the random variables (αn) have common law with support
extending to both negative and positive parts of the real axis. Let a > 1 and
suppose that the set A := Aa = [0, a] is accessible.

1. Suppose there exist a positive constant C and a parameter θ with 0 < θ <
1, such that P(α1 < −y) ≤ Cy−θ. If θ > 1− γ, then Px(τA < ∞) < 1,
and this implies transience.

2. Suppose there exist positive constant C, C′ and parameters θ and θ′, with
0 < θ < θ′ < 1, such that P(α1 > y) ≤ C′y−θ′ and P(α1 < −y) ≥
Cy−θ. If θ < 1− γ then the state 0 is recurrent and ∀q < 1, Ex(τ

q
A) < ∞.

Remark 1.10. Some comments are due:
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1. The systematic drift term ζ
γ
n , although subdominant with respect to

ζn, is far from being trivial. As a matter of fact, this term is respons-
ible for the failure of uniform ellipticity when we consider the system
at exponential scale. In particular if the random innovation αn+1 is
integrable, then the asymptotic behaviour of the random dynamical
system is determined solely from the systematic drift term. Only
when the innovation has heavy tails, a competition between system-
atic drift and random perturbation can built-up leading to interest-
ing critical phenomena.

2. It is worth noting that the previous results establish not only recur-
rence or transience properties but a fine stratification of the the para-
meter space according to which moments of the passage time τA ex-
ist. For the cases where moments E(τq) < ∞, for q ≥ 1, exist (see
for instance theorem 1.4) the above results lead immediately to the
existence of an invariant probability.

2 Proofs

2.1 Results from the constructive theory of Markov chains

The Markov chains we consider evolve on the set X = R+. Our proofs rely
on the possibility of constructing measurable functions g : X→ R+ (with
some special properties regarding their asymptotic behaviour) that are su-
perharmonic with respect to the discrete Laplacian operator D = P − I;
consequently, the image of the Markov chain under g becomes a super-
martingale outside some specific sets. For the convenience of the reader,
we state here the principal theorems from the constructive theory, de-
veloped in [4] and in [1], rephrased and adapted to the needs and notation
of the present paper. We shall use repeatedly these theorems in the sequel.

In the sequel (Zn) denotes a Markov chain on X, having stochastic
kernel P. We denote by

Dom+(P) : { f : X→ R+ : f measurable s.t. ∀x ∈ X,
∫

X
P(x, dy) f (y) < ∞}.

We denote by D = P− I the Markov operator whose action Dom+(P) 3
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g 7→ Dg reads

Dg(x) =
∫

X
P(x, dy)g(y)− g(x) = E(g(Zn+1)− g(Zn)|Zn = x).

Notice that when g is P-superharmonic, then (g(Zn)) is a positive super-
martingale.

Let f : X→ R+ and a > 0. We denote by Sa( f ) = {x ∈ X : f (x) ≤ a},
the sublevel set of f . We say that the function tends to infinity, f → ∞, if
∀n ∈N, cardSn( f ) < ∞.

Theorem 2.1 (Fayolle, Malyshev, Menshikov [4, Theorems 2.2.1 and 2.2.2]).
Let (Zn) be a Markov chain on X with kernel P and for a ≥ 0, denote by
A := Aa = [0, a].

1. If there exist a pair ( f , x0), where x0 > 0 and f ∈ Dom+(P) such that
f → ∞, D f (x) ≤ 0 for all x ≥ x0, and A := Ax0 is accessible, then
Px0(τA < ∞) = 1.

2. If there exist a pair ( f , A), where A is a subset of X and f ∈ Dom+(P)
such that

(a) D f (x) ≤ 0 for x 6∈ A, and

(b) there exists y ∈ Ac : f (y) < infx∈A f (x),

then Px0(τA < ∞) < 1.

Theorem 2.2 (Aspandiiarov, Iasnogorodski, Menshikov [1, Theorems 1
and 2]). Let (Zn) be a Markov chain on X with kernel P and f ∈ Dom+(P)
such that f → ∞.

1. If there exist strictly positive constants a, p, c such that the set A := Sa( f )
is accessible, f p ∈ Dom+(P), and D f p(x) ≤ −c f p−2(x) on Ac, then
Ex(τ

q
A) < ∞ for all q < p/2.

2. It there exist g ∈ Dom+(P) and

(a) a constant b > 0 such that f ≤ bg,

(b) constants a, c1 > 0 such that Dg(x) ≥ −c1 on {g > a},
(c) constants c2 > 0 and r > 1 such that gr ∈ Dom+(P) and Dgr(x) ≤

c2gr−1(x) on {g > a},
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(d) a constant p > 0 such that f p ∈ Dom+(P) and D f p(x) ≥ 0 on
{ f > ab},

then Ex(τ
q
Sab( f )) = ∞ for all q > p.

Notation 2.3. For h : R+ → R+, ρ ∈ R, we write h(x) � xρ, if limx→∞ h(x)x−ρ =
1 and h(x) � xρ, if there exist a function h1 such that h(x) ≤ h1(x) and
h1(x) � xρ.

2.2 Proof of the theorems 1.3 and 1.4

The main theorems are stated under the condition that the reference meas-
ure λ is the Lebesgue measure on R (or on R+). To simplify notation, we
write λ(dy) = dy for Lebesgue measure. The case of µ having a dens-
ity with respect to the counting measure on Z requires a small technical
additional step as will be explained in the remark 2.11 below.

In the sequel, we shall use a Lyapunov function, g, depending on a
parameter δ 6= 0, reading

g(x) =
{

xδ, x ≥ 1
1, x < 1

(if δ < 0)

and
g(x) = xδ (if δ > 0).

in general the choice δ > 0 is made to prove recurrence and δ < 0 to prove
transience. The range of values of δ will be determined from the specific
context as explained below.

Lemma 2.4. Let (ζn) be the Markov chain of the theorem 1.3 and suppose that
x is very large. For arbitrary y0 ≥ 1 and δ < θ,

Dg(x) � (x− xγ)δ

[∫
[y0,∞[

((
1 +

y
x− xγ

)δ
− 1
)

m(y)dy− δ
xγ

x− xγ

]
.
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Proof. Assume everywhere in the sequel that x is very large. The para-
meter δ is allowed to be positive or negative.

Dg(x) =
∫

R+
[(x− xγ + y)δ − xδ]m(y)dy

= (x− xγ)δ
∫

R+

[(
1 +

y
x− xγ

)δ

−
(

1 +
xγ

x− xγ

)δ
]

m(y)dy

� (x− xγ)δ

[∫
R+

(
1 +

y
x− xγ

)δ

m(y)dy− 1− δ
xγ

x− xγ

]
.

For arbitrary y0 ∈ R+, the integral
∫

R+ in the previous formula can be
split into

∫
]0,y0[

+
∫
[y0,∞[. In the sequel we shall consider only the case

x � y0. If δ < 0 then the function y 7→ (1 + y
x−xγ )δ is decreasing, hence

supy∈]0,y0[
(1+ y

x−xγ )δ ≤ 1. On the contrary, when δ > 0, the corresponding
function is increasing and we have supy∈]0,y0[

(1 + y
x−xγ )δ ≤ (1 + y0

x−xγ )δ �
1 + δ

y0
x−xγ . In any situation,∫

]0,y0[

(
1 +

y
x− xγ

)δ
m(y)dy � µ(]0, y0[) + |δ|

y0

x− xγ
.

The remaining integral can be written as∫
[y0,∞[

(
1+

y
x− xγ

)δ
m(y)dy =

∫
[y0,∞[

[(
1 +

y
x− xγ

)δ
− 1
]

m(y)dy+µ([y0, ∞[).

Replacing these expressions into the formula for Dg(x) yields

Dg(x) � (x− xγ)δ

[∫
[y0,∞[

((
1 +

y
x− xγ

)δ
− 1
)

m(y)dy− δ
xγ

x− xγ

]
,

because, for x sufficiently large, y0
x−xγ is negligible compared to xγ

x−xγ .

Remark 2.5. Note that since 0 < γ < 1, the asymptotic majorisation

Dg(x) � xδ

[∫
[y0,∞[

((
1 + y

x−xγ

)δ
− 1
)

m(y)dy− δ xγ

x−xγ

]
is equivalent to the

one established in lemma 2.4.
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Lemma 2.6. Let δ < θ < 1. Suppose further that there exist constants 0 <
b1 ≤ b2 < ∞ such that for all y ≥ y0, for some y0 > 0, we have b1 ≤ cy ≤ b2.
Then, the integral

I(x) :=
∫
[y0,∞[

((
1 +

y
x− xγ

)δ
− 1
)

m(y)dy,

asymptotically for large x, satisfies

δB1Kδ,θx−θ � I(x) � δB2Kδ,θx−θ,

where (B1, B2) = (b1, b2) if δ > 0, and (B1, B2) = (b2, b1) when δ < 0.

Proof. Write

I(x) :=
∫
[y0,∞[

((
1 +

y
x− xγ

)δ
− 1
)

m(y)dy =
∫
[y0,∞[

cy
(1 + y

x−xγ )δ − 1
y1+θ

dy.

Consider first δ > 0; in this case the integrand is positive, hence

b1 I1(x) ≤ I(x) ≤ b2 I1(x),

where I1(x) :=
∫
[y0,∞[

(1+ y
x−xγ )

δ−1
y1+θ dy. We estimate then, for fixed y0 and

large x (so, y0 is small compared to x) and performing the change of vari-
able u = y

x−xγ ,

I1(x) :=
∫
[y0,∞[

(1 + y
x−xγ )δ − 1
y1+θ

dy

= (x− xγ)−θ
∫ ∞

y0
x−xγ

(1 + u)δ − 1
u1+θ

du � x−θ
∫ ∞

0

(1 + u)δ − 1
u1+θ

du

Now for δ < θ < 1 (recall that θ > 0)∫ ∞

0

(1 + u)δ − 1
u1+θ

du = −1
θ

∫ u=∞

u=0
[(1 + u)δ − 1]d(u−θ)

=
[1

θ

(1 + u)δ − 1
uθ

]u=∞

u=0
+

δ

θ

∫ ∞

0

(1 + u)δ−1

uθ
du

= 0 +
δ

θ

Γ(1− θ)Γ(θ − δ)

Γ(1− δ)
= δKδ,θ.
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The claimed majorisation I1(x) � x−θδKδ,θ is obtained immediately. The
minoration is obtained similarly. If δ < 0, the integrand is negative, hence
the role of b1 and b2 must be interchanged.

Lemma 2.7. Let δ < θ < 1. Suppose further that cy → c. Then for all ε > 0,
there exists a y0 such that for x � y0 we have

I(x) :=
∫
[y0,∞[

(
(1 +

y
x− xγ

)δ − 1
)

m(y)dy = cδKδ,θ(x− xγ)−θ(1+ εO(1)).

Proof. Observe that I(x) = cI1(x) +
∫
[y0,∞[(cy − c)

(1+ y
x−xγ )

δ−1
y1+θ dy. Now,

since cy → c, it follows that for all ε > 0 one can choose y0 such that
for y ≥ y0, we have |cy − c| ≤ ε. We then immediately conclude that the
absolute value of the above integral is majorised by εI1(x).

Lemma 2.8. 1. Let θ ∈]0, 1[ and c > 0. If cπ csc(πθ) < θ then there exists
a unique δ0 := δ0(c, θ) ∈]0, θ[ such that cKδ0,θ − 1 = 0.

2. Let θ ∈]0, 1[, c > 0. Then for every fixed θ ∈]0, 1[, Lδ,θ +
1
θ < 0 for all

δ > 0 and there exists a unique δ0 := δ0(c, θ) ∈]0, ∞[ such that cLδ0,θ +
δ0 = 0.

Proof. For all δ ∈]−∞, θ[, the quantities Kδ,θ and Lδ,θ are well defined.

1. By standard results2 on Γ functions, K(0, θ) = 1
θ csc(πθ). For fixed

θ, the function Kδ,θ is strictly increasing and continuous in δ — as
follows from its integral representation —and limδ↑θ Kδ,θ = ∞, from
which follows the existence of δ0 ∈]0, θ[ verifying the claimed equal-
ity.

2. From [3, §1.2, formulæ (4) and (1)] follow immediately that L0,θ =

−1
θ < 0 and limδ→∞

Lδ,θ
Γ(−θ)δθ = 1. The strict monotonicity and con-

tinuity (in δ) of the function Lδ,θ follows from its integral represent-

ation: Lδ,θ +
1
θ =

∫ 1
0
((1−u)δ−1)

u1+θ du. Hence Lδ,θ � Γ(−θ)δθ for large δ.
Since the asymptotic behaviour of Lδ,θ is negative and sublinear in δ,
it follows that there exists a sufficiently large δ0 for which the claimed
equality holds. Additionally, the strict monotonicity of Lδ,θ com-
bined with the fact that L0,θ = −1

θ < 0 guarantees that Lδ,θ +
1
θ < 0

for all δ > 0.
2We used the identity Γ(z)Γ(1− z) = π csc(πz), (see [3, formula §1.2 (6)] for instance).

12



Lemma 2.9. Let f : R+ → R+ be a given function; define the dynamical system
(Xt)t∈N by X0 = x0 and recursively Xt+1 = f (Xt), for t ∈N. For a > 0 define
T[0,a](x0) = inf{t ≥ 1 : Xt ≤ a}.

1. If f (x) = x− xγ for some γ ∈]0, 1[ and x0 � 1, then T[0,a](x0) �
x1−γ

0
1−γ .

2. If f (x) = x − xγ + 1 for some γ ∈]0, 1[, a > 1, and x0 � a, then

T[0,a](x0) �
x1−γ

0
1−γ .

Proof. 1. The derivative of the function f satisfies 0 < f ′(x) < 1 for
all x > 1. Therefore, successive iterates f ◦n(x0) eventually reach the
interval [0, 1] for all x0 > 1 in a finite number of steps T[0,1](x0). To
estimate this number, start by approximating, for Xt = x and 1 <
x < x0, the difference Xt+1 − Xt = ∆Xt = −Xγ

t by the differential
dXt = −Xγ

t dt. Then

T[0,a](x0) =
∫ T[0,a](x0)

0
dt = −

∫ a

x0

X−γ
t dXt =

1
1− γ

(x1−γ
0 − a1−γ) �

x1−γ
0

1− γ
.

2. Using the same arguments, and denoting by F the hypergeometric
function, we estimate (see [3] for instance);

T[0,a](x0) =
∫ a

x0

dXt

1− Xγ
= x0F(1,

1
γ

, 1+
1
γ

, xγ
0 )− aF(1,

1
γ

, 1+
1
γ

, aγ) � 1
1− γ

x1−γ
0 .

Proof of the theorem 1.3: First we need to prove accessibility of A = [0, a],
with a > 1 from any point x > a. Denote by r := µ([0, 1]) > 0. Since the
dynamical system evolving according to the iteration of the function f (x) =
x − xγ + 1 reaches A in finite time TA(x), as proven in lemma 2.9, the
Markov chain can reach A in time τA verifying Px(τA ≤ TA + 1) ≥ CrTA(x) >
0, for all x � a.

We substitute the estimates obtained in lemmata 2.6 and 2.7 into the
expression for Dg obtained in lemma 2.4.

1. Assume that b1 ≤ cy ≤ b2.

13



(a) Choose 0 < δ < θ. Then

Dg(x) = (x− xγ)δ

[
−δ

xγ

x− xγ
+ b2δKδ,θ(x− xγ)−θ +O(x−1)

]
= −δxδ+γ−1 + δb2Kδ,θxδ−θ +O(xδ−θ−1).

If θ > 1− γ, the dominant term reads −δxδ+γ−1 which is neg-
ative. Hence, (g(ζn)) is a supermartingale tending to infinity if
ζn → ∞. We conclude then by theorem 2.1.

• To prove finiteness of moments up to θ/(1− γ), consider p
such that 0 < pδ < θ. Then

Dgp(x) �−δpxδp+γ−1 = −δpg(x)p− 1−γ
δ ≤ −Cg(x)p−2,

provided that 1
δ < 2

1−γ . The latter, combined with the in-
equality pδ < θ, establishes the majorisation by−Cg(x)p−2.
This allows to conclude by theorem 2.2.
• To prove the non existence of moments for q ≥ θ/(1− γ),

denote by f (x) = x − xγ. Define Z0 = x and recursively
Zn+1 = f (Zn) as in lemma 2.9; similarly the Markov chain
can be rewritten ζ0 = x and recursively ζn+1 = f (ζn +
αn+1) as long as ζn > 1.
Now remark that Z1 = f (x) < f (x + α1) = ζ1; a simple re-
cursion shows that Zn+1 = f ◦n(x + α1) < ζn+1. Obviously
T[0,1](x + α1, 0) < τ0. Hence τ0 > C(x + α1)

1−γ > C(α1)
1−γ

by lemma 2.9 and subsequently Ex(τ
q
0 )� CE(α1)

q(1−γ) = ∞
whenever q(1− γ) ≥ θ.

(b) Choose now δ < 0. Using the same arguments as above, we see
that the dominant term is δb1Kδ,θxδ−θ which is again negative.
Hence (g(ζn)) is a bounded supermartingale. We conclude by
using theorem 2.1.

2. Assume now that θ = 1 − γ and cy → c > 0. In this situation,
for every ε > 0 we can choose y0 such that for y ≥ y0, we have
asymptotically, for x � y0 and every δ 6= 0,

Dg(x) = δxδ+γ−1
(

cKδ,θ − 1 +O(x−1) + εO(1)
)

.
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Therefore, the dominant term is δ(cKδ,θ − 1)xδ+γ−1. The sign of δ
will thus be multiplied by the sign of the difference cKδ,θ − 1.

(a) If cπ csc(πθ) < θ, by lemma 2.8, we can chose δ ∈]0, δ0[, so
that that Dg(x) ≤ 0 while g tends to infinity. We conclude by
theorem 2.1.
• To prove finiteness of moments of the time τA, for the δ

chosen to establish recurrence, we can further choose p > 1
so that pδ < δ0. Then

Dgp(x) �−pδxpδ+γ−1 = −pδg(x)p− 1−γ
δ ≤ −Cg(x)p−2

whenever 1−γ
δ > 2 or 1

δ ≤
2

1−γ . Combining with the condi-

tion pδ < δ0 we get p < 2δ0
1−γ and we conclude by theorem

2.2 that all moments up to δ0
1−γ are finite.

• To prove non-existence of moments for q > δ0
1−γ , for any

δ ∈]0, δ0[, we check immediately Dg(x) ≥ −ε. Now, choose
r > 1 such that rδ > δ0 and determine under which circum-
stances Dgr(x) ≤ Cg(x)r−1. Computing explicitly, we get

Dgr(x) � rδ(cKrδ,θ − 1)xrδ+γ−1 ≤ Cg(x)r− 1−γ
δ ≤ Cg(x)r−1

whenever 1−γ
δ > 1 or equivalently 1

δ > 1
1−γ . But the latter

inequalities are always verified for 0 < δ < δ0. Similarly,
for any p such that pδ > δ0, i.e. for p > δ0

δ > δ0
1−γ , we get

Dgp(x) ≥ 0. We conclude, by theorem 2.2, that all moments
q > δ0

1−γ of τA fail to exist.

(b) If δ < 0 and cπ csc(πθ) > θ, then (g(ζn)) is a bounded super-
martingale. We conclude by theorem 2.1.

�

Lemma 2.10. Let (ζn) be the Markov chain of the theorem 1.4 and assume that
x is very large. For the Lyapunov function g with δ < θ < 1, we have

Dg(x) = (x + xγ)δ
∫ x+xγ

0

[(
1− y

x + xγ

)δ

− 1

]
µ(dy)

+
(
(x + xγ)δ − xδ

)
µ([0, x + xγ])− xδµ([x + xγ, ∞[).
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Proof. Write simply

Dg(x) =
∫

R+

(
(x + xγ − y)+

)δ
µ(dy)− xδ

= (x + xγ)δ
∫ x+xγ

0

(
1− y

x + xγ

)δ

µ(dy)− xδ

= (x + xγ)δ
∫ x+xγ

0

[(
1− y

x + xγ

)δ

− 1

]
µ(dy)

+(x + xγ)δµ([0, x + xγ])− xδ.

Proof of the theorem 1.4: First we need to establish accessibility of the state
0. But this is obvious since from any x > 0 the P(α1 > x + xγ) > 0.

We only sketch the proof since it uses the same arguments as the proof
of the theorem 1.3. It is enough to consider the case cy = c since the case
cy → c will give rise to an additional corrective term that will be negli-
gible. With this proviso, the integral appearing in the right hand side of
the expression for Dg(x) in the previous lemma 2.10 reads∫ x+xγ

0

[(
1− y

x + xγ

)δ

− 1

]
µ(dy) = c(x + xγ)−θ

∫ 1

0

(
(1− u)δ − 1

)
u1+θ

du

= c(x + xγ)−θ(Lδ,θ +
1
θ
),

where Lδ,θ is defined in lemma 2.8.. It is further worth noting that Lδ,θ ≤ 0,
for all δ ∈ R+. Therefore,

1. If θ < 1− γ, then the dominant terms in the expression of Dg are
those with xδ−θ, hence, choosing δ > 0, we get Dg(x) ≤ cxδ−θ Lδ,θ.
Since the value of Dg(x) is always negative i.e. the process (g(ζn)) is
a supermartingale tending to infinity. We conclude by theorem 2.1.

To establish the existence of all moments, it is enough to check that

Dgp(x) � cxpδ−θ Lpδ,θ �−Cg(x)p− θ
δ ≤ −Cg(x)p−2

whenever δ > θ/2. But since Lδ,θ is defined and negative for all pos-
itive δ, we conclude that all positive moments of τ0 exist by theorem
2.2.
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2. When θ = 1− γ, then all terms are of the same order and Dg(x) �
xδ−θ(cLδ,θ + δ). From lemma 2.8, for fixed θ and c > 0, there exists
δ0 > 0 such that cLδ0,θ + δ0 = 0. We conclude then that asymptotic-
ally, for large x,

Dg(x) � xδ−θ(cLδ,θ − 1),

the sign of the discrete Laplacian is negative (positive) depending on
the value of δ being smaller (larger) than δ0.

Choose δ > 0 and p such that pδ < δ0. Then Dgp(x) �−Cg(x)p− θ
δ ≤

−Cg(x)p−2 whenever 1
δ < 2

θ and, consequently, p < 2δ0
θ . Then we

conclude by theorem 2.2 that Ex(τ
q
0 ) < ∞ for all q < δ0

θ as claimed.

To show that moments higher than δ0
θ fail to exist, choose δ < δ0.

It is then evident that Dg(x) � −Cxδ−θ ≥ −ε, for some ε > 0.
There exists then r > 1 such that rδ > δ0; estimating then Dgr(x) �
Cg(x)r− θ

δ we conclude immediately that 0 ≤ Dgr(x) ≤ Cg(x)r−1

whenever θ
δ > 1. We conclude then by theorem 2.2 that for all q > δ0

θ ,
we have Ex(τ

q
0 ) = ∞.

3. If θ > 1 − γ, the dominant term is δxδ−γ+1µ([0, x + xγ]) that can
be made negative by choosing δ < 0 and x sufficiently large. We
conclude by theorem 2.1.

�

Remark 2.11. In this subsection, we assumed that the law µ of the ran-
dom variables (αn) is absolutely continuous with respect to the Lebesgue
measure on R+. If instead the law is absolutely continuous with respect
to the counting measure on the positive integers, the integrals in the ex-
pression of Dg become sums. Now, the sums over the positive integers
can be replaced by integrals. It turns out that the error committed in such
a replacement is always a subleading term in the expression of Dg, leaving
the conclusion unaffected.

Remark 2.12. The two previous theorems have been established by as-
suming that the random variables (αn) are always positive and act in the
opposite direction of the systematic drift xγ. By examining the proofs of
the theorems however, it is evident that nothing will change if the random
variables are both sided, even with both sided heavy tails, provided that
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the heaviest tail is the one acting in the opposite direction of the systematic
drift xγ.

2.3 Proof of the theorems 1.8 and 1.9

Here the control is only through the tail decay and consequently, the es-
timates are considerably more involved. The subsection relies on methods
developed in [6] to deal with heavy tails when only tail control is available.

Lemma 2.13. Let Z be a positive random variable, φ : R+ → R+ an increasing
function, and 0 ≤ a < b ≤ ∞. Then

E(φ(Z)1[a,b[(Z)) =
∫
[φ(a),φ(b)[

P(Z > φ−1(t))dt−φ(b)P(Z ≥ b)+φ(a)P(Z ≥ a).

Proof. Denote by ν the law of Z. Then∫
[a,b[

P(Z > t)dt =
∫
[a,b[

E(1]t,∞[(Z))dt

=
∫

R+×R+
1]t,∞[(z)1[a,b[(t) dt ν(dz)

=
∫

R+×R+
1[a,z∧(b−)](t) dt ν(dz)

=
∫
[a,∞[

[z ∧ (b−)− a]ν(dz)

= E
(

Z1[a,b[(Z)
)
+ bP(Z ≥ b)− aP(Z ≥ a).

On denoting Y = φ(Z), we conclude by remarking that

E
(

φ(Z)1[a,b[(Z)
)
= E

(
Y1[φ(a),φ(b)[(Y)

)
.

Remark 2.14. When b = ∞ in the above formula and the random variable
Z is almost surely finite, then the term bP(Z ≥ b) reads ∞ P(Z = ∞) = 0;
otherwise the value is ∞ and the random variable Z cannot be then almost
surely finite.
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In the sequel, we shall partition the real axis into R = t4
i=1Ai with

A1 =]−∞,−xβ[, A2 = [−xβ, 0[, A3 = [0, xβ[, A4 = [xβ, ∞[,

with some parameter β (verifying 0 < γ < β < 1) that will be specified
later. On denoting, for every choice of the Lyapunov function g, by di =
E(g(ζn+1)1Ai(αn+1)|ζn = x), the above partition induces a decomposition
of the conditional increment as

Dg(x) =
4

∑
i=1

(di − g(x)µ(Ai)).

Proof of the theorem 1.9.

1. Let β ∈]γ, 1[ and δ > 0 and define

g(x) =
{

x−δ, x ≥ 1,
1, x < 1.

The parameter δ (together with β) will be chosen later; we get then

di =
∫

Ai

g((x + xγ + y)+)µ(dy).

For x sufficiently large we have

d1 ≤ µ(A1),

d2 = x−δ
∫

A2

(
1 +

xγ + y
x

)−δ

µ(dy)

� x−δ(1− δxγ−1)µ(A2)− δx−δ−1
∫

A2

yµ(dy)

� x−δµ(A2)− δx−δ+γ−1µ(A2) + δx−δ−1
∫

A2

|y|µ(dy),

d3 � x−δµ(A3)− δx−δ+γ−1µ(A3)− δx−δ−1
∫

A3

yµ(dy),

d4 � (x + xγ + xβ)−δµ(A4)

� x−δµ(A4)− δx−δ+γ−1µ(A4)− δx−δ+β−1µ(A4).

Replacing into the expression for Dg, we get
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Dg(x) � µ(A1) + δx−δ−1
∫

A2

|y|µ(dy)

− δx−δ+γ−1[µ(A2) + µ(A3) + µ(A4)]− δx−δ−1
∫

A3

yµ(dy).

Note that in the previous inequality, the terms on the first line are
positive, while the terms appearing in the second line are negative.
In order that Dg be negative, we need to show that the positive terms
are subdominant in the expression of Dg(x) for sufficiently large x.
Now, µ(A1) = P(α1 < −xβ) ≤ Cx−βθ, while, by lemma 2.13,

∫
A2

|y|µ(dy) = E(α−1 1]0,xβ](α
−
1 ) ≤

∫ xβ

0
P(α−1 > t)dt− xβP(α−1 > xβ) ≤ xβ−Cxβ(1−θ) � xβ.

Combining, we see that we get a supermartingale if we satisfy sim-
ultaneously the inequalities

−θβ < γ− δ− 1 and − δ− 1 + β < γ− δ− 1

that — for θ > 1 − γ — have a solution for β ∈]1−γ
θ , 1[ and δ ∈

]0, βθ − (1− γ)[. We conclude by theorem 2.2.

2. Let β > 0, δ ∈]0, θ[, and g(x) = xδ. The possible values of the para-
meters β and δ will be further delimited later. We proceed now with
the partition R = t4

i=1Ai, where A1 =] −∞,−xβ[, A2 = [−xβ, 0[,
A3 = [0, xβ[, and A4 = [xβ, ∞[; we introduce also the sets A0 =
[−x− xγ,−xβ[⊂ A1 and B = A1 \ A0 =]−∞,−x− xγ[. Using sim-
ilar arguments as in the first part of the theorem we estimate

d1 =
∫

A1

(
(x + xγ + y)+

)δ
µ(dy) =

∫
A0

(x + xγ + y)δµ(dy)

≤ (x + xγ − xβ)δµ(A0) � xδµ(A0) + δxδ+γ−1µ(A0)− δxδ+β−1µ(A0),

leading further to the estimate

d1 − xδµ(A1) �−xδµ(B) + δxδ+γ−1µ(A0)− δxδ+β−1µ(A0).
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The estimates of the other terms are obtained using the similar argu-
ments:

d2 − xδµ(A2) � −δxδ−1E (|α1|1A2(α1)) + δxδ−1+γµ(A2) ≤ δxδ−1+γµ(A2),

d3 − xδµ(A3) � δxδ−1E
(
α11A3(α1)

)
+ δxδ−1+γµ(A3),

d4 − xδµ(A4) � E
(

αδ
11A4(α)

)
+ xγδµ(A4) ≤ E

(
αδ

11A4(α)
)
+ C′xγδ−βθ′ ,

where, we have used [5, §2.10, p. 28] to establish the inequality (a +
b + c)δ ≤ aδ + bδ + cδ that has been used to obtain the estimate for
d4. Using lemma 2.13, we get

E
(
α11A3(α1)

)
= E

(
α+1 1[0,xβ](α

+
1 )
)
=

(∫ xβ

0
P(α+1 > t)dt− xβP(α+1 > xβ)

)
≤ C′xβ(1− µ(A4)),

E
(

αδ
11A4(α1)

)
= E

(
(α+1 )

δ1[xβ,∞](α
+
1 )
)
=
∫ ∞

xβδ
P(α+ > t1/δ)dt + xβδP(α+ > xβ)

≤ C′
∫ ∞

xβδ
t−θ′/δdt + C′xβ(δ−θ′) � Kxβ(δ−θ′),

where K = C′ θ′
θ′−δ . (Mind that δ < θ < θ′). Using the fact that

µ(B) � Cx−θ and µ(A4) ≤ C′x−βθ′ and grouping the terms together,
we get

Dg(x) �−Cxδ−θ + δxδ−1+γ + δxδ−1+β + C′xγδ−βθ′ + Kxβ(δ−θ′).

This conditional increment will be negative for sufficiently large x,
provided that the following inequalities

δ− θ > δ− 1 + γ⇔ θ < 1− γ

δ− θ > δ− 1 + β⇔ β < 1− θ

δ− θ > γδ− βθ′ ⇔ θ − βθ′

1− γ
< δ

δ− θ > β(δ− θ′)⇔ θ − βθ′

1− β
< δ

have a non-empty set of solutions. Now, the first inequality is auto-
matically verified by the hypothesis of the theorem. Recalling that
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δ < θ, the inequalities θ−βθ′

1−γ < δ < θ have a non-empty set of solu-
tions for δ provided that β ∈ I :=]γ θ

θ′ , 1− θ[; but I 6= ∅, hence such

δ’s exist. Finally, the inequalities θ−βθ′

1−β < δ < θ have automatically
a non-empty set of solutions since θ′ > θ. Therefore, ∀β ∈ J :=
]γ θ

θ′ , 1− θ[, we can choose δ ∈]b, θ[ — where b := max( θ−βθ′

1−γ , θ−βθ′

1−β )

so that Dg(x) �−Cxδ−θ.

To establish the existence of moments, choose p > 0 such that gp ∈
Dom+(P), i.e. δp < θ. From the previous statements, we can choose
β ∈ J for b to be arbitrarily close to 0. Now Dgp(x) �−Cxδp−θ ≤
−Cg(x)p−2 provided that p− θ

δ > p− 2 or equivalently 1
δ < 2

θ . From
the condition pδ < θ we get p < 2 hence, by theorem 2.2, Ex(τ

q
A) <

∞ for all q < 1.

�
Proof of the theorem 1.8. Accessibility of A follows using the same argu-
ments as those used in the proof of theorem 1.4. We use again the parti-
tion R = t4

i=1Ai, with A1 =]−∞,−xβ[, A2 = [−xβ, 0[, A3 = [0, xβ[, and
A4 =]xβ, ∞[, with provisional choice of the parameter β ∈]0, 1[; its domain
of variation will be further delimited later. For appropriately chosen g, we
decompose the conditional drift Dg(x) = ∑4

i=1(di − g(x))µ(Ai), where
di =

∫
Ai

g((x− xγ + y)+)µ(dy).

1. Let g(x) = xδ, with δ ∈]0, θ[ (the domain of δ will be further delim-
ited later). We get

d1 ≤ (x− xγ − xβ)δµ(A1) � xδµ(A1)− δxδ−1+γµ(A1)− δxδ−1+βµ(A1),

di � xδµ(Ai)− δxδ−1+γµ(Ai) + δxδ−1
∫

Ai

yµ(dy), for i = 2, 3,

d4 ≤ (x− xγ)δ +
∫

A4

yδµ(dy)

� xδµ(A4)− δxδ−1+γµ(A4) +

[∫ ∞

xβδ
P(α+1 > t1/δ)dt + xβδP(α+1 > xβ)

]
≤ xδµ(A4)− δxδ−1+γµ(A4) + Kxβδ−βθ, where K = C(1 +

δ

θ − δ
).
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Now∫
A2

yµ(dy) ≤ 0∫
A3

yµ(dy) =
∫ xβ

0
P(α+1 > t)dt− xβµ(A4) ≤ xβ(1− µ(A4)),

so that, grouping all terms together, we get

Dg(x) �−δxδ−1+γ + Cδxδ−1+β + Kxβδ−βθ.

This conditional increment will lead to a supermartingale tending to
infinity whenever the system of inequalities

δ− 1 + γ > δ− 1 + β⇔ β < γ, and

δ− 1 + γ > βδ− βθ ⇔ δ >
1− γ− βθ

1− θ

have a non-empty set of solutions. Recalling that δ < θ, the second
inequality defines a non-empty domain for δ provided that 1−γ−βθ

1−θ <
θ ⇔ θ > 1− γ which is satisfied by hypothesis. Hence, picking any
β ∈]0, γ[ and δ ∈ J :=]1−γ−βθ

1−θ , θ[ guarantees that Dg(x) �−δxγ−1−δ

and shows that (g(ζn))n is a positive supermartingale, while g→ ∞.
We conclude from theorem 2.1 that the chain is recurrent.

To establish the existence of moments, pick again any β ∈]0, γ[ and
δ, p > 0 such that δp ∈ J. Then, by the previous results,

Dgδp(x) �−δpxγ−1+δp = −δpg(x)p− 1−γ
δ ≤ −δpg(x)p−2

whenever 1
δ < 2

1−γ . We conclude by the theorem 2.2 that the mo-
ments Ex(τ

q
A) < ∞, ∀q < θ

1−γ . Since θ > 1− γ, this result establishes
in particular that the passage time is integrable.

2. Let now g(x) = x−δ1[1,∞[(x) + 1[0,1[(x), with δ > 0 and choose
β ∈]0, 1[ (the domains of δ and θ will be further delimited later).
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Estimate then

d1 ≤ µ(A1),

d2 =
∫

A2

(x− xγ + y)−δµ(dy) � x−δµ(A2) + δx−δ−1+γµ(A2) + δxδ−1
∫

A2

|y|µ(dy),

d3 =
∫

A3

(x− xγ + y)−δµ(dy) � x−δµ(A3) + δx−δ−1+γµ(A3)− δx−δ−1
∫

A3

yµ(dy),

d4 ≤ (x− xγ + xβ)−δµ(A4) � x−δµ(A4) + δx−δ−1+γµ(A4)− δx−δ−1+βµ(A4).

The integrals appearing in the above majorisations can be further
estimated — using lemma 2.13 — as

∫
A2

|y|µ(dy) =
∫ xβ

0
P(α−1 > t)dt + xβP(α−1 > xβ) ≤ xβ(1 + µ(A1))∫

A3

yµ(dy) =
∫ xβ

0
P(α+1 > t)dt + xβP(α+1 > xβ) ≥ xβ(1 + µ(A4)).

Grouping all terms together, we obtain

Dg(x) ≤ C′x−βθ′ + δx−δ−1+γ +C′δx−δ−1+β(1−θ′)− 2Cδx−δ−1+β(1−θ).

Only the last term in the above expression is negative. For the im-
age of (ζn) through g to be a supermartingale, we must choose the
parameters β and δ so that Dg(x) ≤ 0 for x large enough. The set of
solutions to the following inequalities

−δ− 1 + β(1− θ) > −δ− 1 + β(1− θ′)⇔ θ < θ′,

−δ− 1 + β(1− θ) > −δ− 1 + γ⇔ β >
γ

1− θ
,

−δ− 1 + β(1− θ) > −βθ′ ⇔ δ < β(1− (θ′ − θ))− 1

have a non-empty set of solutions. In fact, the first inequality is sat-
isfied by hypothesis; the second imposes reducing the initial domain
of β to β > γ

1−θ . Since δ must be strictly positive, the last inequal-
ity defines a non-empty domain for δ provided that β > 1

1−(θ′−θ)
.
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Hence, picking any β ∈]b, 1[ with b = max{γ/(1− θ), 1/[1− (θ′ −
θ)]} and any δ ∈]0, β(1 + θ − θ′) − 1[ guarantees that (g(ζn)n is a
bounded positive supermartingale. We conclude from theorem 2.1.

�

3 Conclusion and open problems

We have examined the asymptotic behaviour of the chains (ζn) evolving
on R+. The cases we reported in this paper demonstrate an interesting
phenomenon of antagonism between the heaviness of the tail (quanti-
fied by θ) of the innovation part of the Markov chain and the strength of
the systematic drift (quantified by γ). It is precisely this antagonism that
makes the model non trivial; if instead of heavy-tailed random variables,
integrable ones are used, then the systematic drift totally determines the
asymptotic behaviour of (ζn).

Note also that the study of the chain (ζn) is sufficient for determining
whether the limiting behaviour of the original random dynamical system
(Xn) is towards 0 or ∞. Nevertheless, the Markov chain obtained by look-
ing at the (Xn) on logarithmic scales is not (ζn) (evolving on R+) but (ξn)
(evolving on R). Interesting problems concern random dynamical systems
in higher dimension driven by non-integrable random matrices.
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