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Abstract

Structural reliability analysis aims at computing the probability of failure of sys-

tems whose performance may be assessed by using complex computational models (e.g.

expensive-to-run finite element models). A direct use of Monte Carlo simulation is not

feasible in practice, unless a surrogate model (such as Kriging, a.k.a Gaussian process

modeling) is used. Such meta-models are often used in conjunction with adaptive experi-

mental designs (i.e. design enrichment strategies), which allows one to iteratively increase

the accuracy of the surrogate for the estimation of the failure probability while keeping

low the overall number of runs of the costly original model.

In this paper we develop a new structural reliability method based on the recently de-

veloped Polynomial-Chaos Kriging (PC-Kriging) approach coupled with an active learning

algorithm known as AK-MCS. We formulate the problem in such a way that the compu-

tation of both small probabilities of failure and extreme quantiles is unified. We discuss

different convergence criteria for both types of analyses, and show in particular that the

original AK-MCS stopping criterion may be over-conservative. We finally elaborate a

multi-point enrichment algorithm which allows us to add several points in each iteration,

thus fully exploiting high-performance computing architectures.

The proposed method is illustrated on three examples, namely a two-dimensional case

which allows us to underline the advantages of our approach compared to standard AK-

MCS. Then the quantiles of the 8-dimensional borehole function are estimated. Finally

the reliability of a truss structure (10 random variables) is addressed. In all case, accurate

results are obtained with about 100 runs of the original model.
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1 Introduction

Advanced computer simulations of complex physical systems (e.g. finite element models) are

common in modern engineering to assess and optimize their performance. At the same time,

awareness is growing on the concepts of structural reliability and robust design, hence making

the quantification and propagation of uncertainties a key issue (Sudret, 2007; De Rocquigny

et al., 2008).

Due to the high cost of repeatedly evaluating complex computational models, analyses with

classical sampling techniques such as Monte Carlo (MC) are often intractable. In this con-

text, meta-modeling techniques allow one to develop fast-to-evaluate surrogate models from

a limited collection of evaluations of the original computational model, which is called the

experimental design. Commonly used techniques include Kriging (Santner et al., 2003; Ras-

mussen and Williams, 2006), Polynomial Chaos Expansions (Ghanem and Spanos, 2003),

support vector machines (Gunn, 1998) and neural networks (Hurtado and Alvarez, 2001).

Two cases are generally distinguished in the context of rare event estimation, namely the

estimation of failure probabilities (so-called structural reliability analyses) and that of extreme

quantiles. Both quantities describe important statistics of the response of the computational

model. In the context of engineering and high reliability targets, failure probabilities are

generally low (in the order of 10−3 to 10−6) and the quantiles extreme (e.g. 99% quantile),

therefore structural reliability falls into the broad class of rare events estimation.

Rare events estimation has been in turn often related to the concept of experimental design

enrichment (a.k.a. adaptive experimental design). The core idea is to start calibrating a

meta-model with a limited set of computational runs and then to add new model evaluations

iteratively to increase the prediction accuracy of the rare event statistics of interest. Kriging

(a.k.a. Gaussian process modeling) has been introduced by Kaymaz (2005) and Schueremans

and Van Gemert (2005b) to the field of structural reliability. The use of adaptive experimental

design algorithms has been investigated by Bichon et al. (2008), Echard et al. (2011), and Ran-
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jan et al. (2012) who combine an adaptive Kriging meta-model with Monte Carlo simulation,

and Echard et al. (2013) and Cadini et al. (2014), who modify it for the case of importance

sampling. Under the name “stepwise uncertainty reduction” Arnaud et al. (2010), Bect et al.

(2012) and Jala (2013) discuss an adaptive Kriging approach in a Bayesian context. Bourinet

et al. (2011) use instead support vector machines in the context of subset simulations. Dani

et al. (2008) and Srinivas et al. (2012) use upper confidence bounds. Dai et al. (2014) discuss

the use of wavelet-density-based adaptive importance sampling. Finally, the use of adaptive

Kriging to build up a quasi-optimal importance sampling density (thus leading to unbiased

estimates of the failure probability) has been recently proposed in Dubourg et al. (2013) and

Dubourg and Sudret (2014).

In this paper we combine Polynomial-Chaos-Kriging (PC-Kriging) (Schöbi and Sudret, 2014;

Schöbi et al., 2015; Kersaudy et al., 2015) with design enrichment to solve reliability analysis

and extreme quantile problems. We focus on the best choice of additional samples in the

experimental design as well as on the option of adding multiple samples in each iteration of

the algorithm. Adding multiple samples in each iteration would allow one to take advantage

of distributed computing facilities.

This paper is organized as follows: after the introduction of a proper formalism for structural

reliability analysis, the principles of Polynomial-Chaos-Kriging (Schöbi et al., 2015) are given.

An existing adaptive experimental design algorithm is then presented and extended to PC-

Kriging and the concept of distributed computing. It is shown how the same algorithm

can be used to estimate both failure probabilities and extreme quantiles with only slight

modification. The application of the resulting framework is finally demonstrated on a low-

dimensional analytical function and on two realistic engineering applications.

2 Structural reliability analysis

2.1 Computational model

In this paper, a computational model M is defined as a mapping of the M -dimensional input

vector of parameters x to the one-dimensional output scalar y, i.e. M : x ∈ DX ⊂ RM → y =

M(x) ∈ R. The uncertainties in the input parameters are represented by a random vector X
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with joint probability density function (PDF) fX . The components of X = {X1, . . . , XM}
are assumed independent throughout this paper for the sake of simplicity. Moreover, when

the components are dependent, it is always possible to recast the problem in terms of indepen-

dent variables using the Nataf or Rosenblatt transform (Lemaire, 2009; Lebrun and Dutfoy,

2009a,b). The model response then becomes a random variable Y obtained by propagating

the input uncertainty in X through the computational model:

Y =M(X). (1)

It is further assumed that the computational modelM is a black-box, i.e. for each realization

x of the input random vector, only the corresponding response y = M(x) is accessible. In

other words we assume that the inner structure and mechanisms of the computational model

are not observable. This is typically the case for e.g. a finite element model in which, generally

speaking, the governing equations cannot be solved analytically.

2.2 Estimation of a failure probability

In structural reliability analysis, the failure probability Pf is defined as the probability that

a model response Y is smaller than a given threshold value y0:

Pf = P (Y ≤ y0) = P (M(X) ≤ y0) . (2)

The failure probability may be recast as the following integral:

Pf =

∫

Df
fX(x)dx s.t. Df = {x ∈ DX : M(x) ≤ y0}, (3)

where fX is the joint probability density function of the input vectorX and Df is the so-called

failure domain. Note that failure is defined as in Eq. (2) and (3) to ensure consistency with the

following sections. In other literature, failure is often defined as a probability of exceedence,

e.g. P (M(X) ≥ yadm) which is also cast as Pf = P (g(X) ≤ 0) where g(X) = yadm−M(X).

The integral in Eq. (3) has an implicit integration domain Df and cannot be solved ana-

lytically in the general case. A Monte Carlo estimation of the failure probability can be

formulated to circumvent this limitation. Assume a reasonably large sample of X denoted by
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S = {xi, ...,xn}. The failure probability can be estimated by:

P̂f =
nf
n

=
1

n

n∑

i=1

IM(xi)≤y0 , (4)

where nf is the number of failure samples xi ∈ Df , n = |S| is the total number of samples

and IM(x)≤y0 is an indicator function for failure such that I = 1 for M(x) ≤ y0 and I = 0

otherwise.

The accuracy of this estimate can be measured directly with the theoretical coefficient of

variation for Monte Carlo samplings:

CoV
[
P̂f

]
=

√√√√1− P̂f
n · P̂f

. (5)

The main limitation of pure Monte Carlo approaches, namely the loss of efficiency for small

failure probabilities, is apparent in Eq. (5). The required number of samples to obtain a target

coefficient of variation in Eq. (5) rapidly increases with decreasing failure probability. For

instance, to achieve a target coefficient of variation CoV
[
P̂f

]
= 0.1 given a failure probability

P̂f = 10−k, n ≈
(
P̂f · CoV

[
P̂f

]2)−1
= 10k+2 samples are needed.

Note that the indicator function I in Eq. (4) transforms the integration problem in Eq. (3) into

a classification problem: identifying the failure (M(x) ≤ y0) and safe (M(x) > y0) domains.

Generally, it is sufficient to approximate the boundary between those domains, the limit state

surface (M(x) = y0), to accurately estimate the associated failure probability.

2.3 Estimation of a quantile

Quantile estimation consists in determining a quantile qα so that the probability of M(X)

being smaller than qα equals a preset value α, i.e.:

P (M(X) ≤ qα) = α, (6)

where α = (0, 1). This constitutes an inverse problem compared to classical failure probability

estimation shown in Eq. (2).

The quantile estimation problem can also be solved by Monte Carlo simulation. Consider

again a reasonably large sample set S = {x1, ...,xn} and the corresponding response values
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y = {y1, ..., yn} = {M(x1), . . . ,M(xn)}. Assume the response values are ranked in ascending

order and denote them by y(1) ≤ y(2) ≤ . . . ≤ y(n). Then the estimator of the quantile qα

reads:

q̂α = ybnαc, (7)

where bnαc is the largest integer smaller than nα.

Analogously to failure probability estimation, the quantile estimation problem can also be

cast as a classification problem:

find q̂α s.t. α ≈ 1

n

n∑

i=1

IM(xi)≤q̂α . (8)

2.4 Limit state surface

Both the estimation of failure probabilities (Eq. (4)) and of quantiles (Eq. (8)) may be treated

as classification problems dividing the input domain into failure and safe regions. We therefore

introduce a limit state parameter a which determines whether a response y belongs to the

failure (y ≤ a) or to the safe domain (y > a). For the estimation of failure probabilities

a = y0, whereas for the estimation of quantiles a = q̂α. Due to those similarities we will

denote failure probability and quantiles generically as statistics of interest in the remaining

of this paper.

3 Meta-modeling

3.1 Kriging

When the computational model M is an expensive-to-evaluate function, Eq. (4) and Eq. (8)

may become intractable. The behavior of the computational model M can then be approxi-

mated by a meta-model, such as Kriging (a.k.a. Gaussian process modeling). Kriging inter-

prets the computational model as a realization of an underlying Gaussian process (Santner

et al., 2003):

M(x) ≈M(K)(x) = βT · f(x) + σ2Z(x, ω), (9)
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where βT · f(x) is the mean value of the Gaussian process (a.k.a. trend), σ2 is the process

variance, Z(x, ω) is a zero-mean, unit-variance stationary Gaussian process and ω ∈ Ω denotes

an elementary event in the probability space (Ω,F ,P). The Gaussian process is characterized

by an autocorrelation function R = R(|x− x′|;θ) and its hyper-parameters θ. In this paper,

we consider two types of Kriging models: ordinary Kriging and universal Kriging. Ordinary

Kriging assumes a constant trend (f(x) = 1) whereas universal Kriging assumes a trend

dependent on the input variables, e.g. f(x) = {1, x1, . . . , xM} for a linear trend.

Consider a set of N samples of the input vector X = {χ(1), . . . ,χ(N)}, called experimental de-

sign, and the corresponding response of the exact computational model Y =
{
Y(1) =M(χ(1))

. . . ,Y(N) =M(χ(N))
}

. The estimation of the Kriging parameters {β, σ2} is computed by

generalized least-squares solution (Santner et al., 2003):

β(θ) =
(
FTR−1F

)−1
F R−1Y, (10)

σ2(θ) =
1

N
(Y − Fβ)T R−1 (Y − Fβ) , (11)

where Rij = R(|χ(i) − χ(j)|;θ) is the correlation matrix of the experimental design points

and Fij = fj(χ
(i)) is the information matrix. In case the hyper-parameters θ are unknown,

their optimal values can be estimated through maximum likelihood estimation.

The prediction of the response value y of an arbitrary input sample point x is a Gaussian

random variable characterized by (Santner et al., 2003):

µ
Ŷ

(x) = f(x)Tβ + r(x)TR−1 (Y − Fβ) , (12)

σ2
Ŷ

(x) = σ2y


1− 〈f(x)Tr(x)T〉


 0 FT

F R



−1 
 f(x)

r(x)





 , (13)

where µ
Ŷ

(x) and σ2
Ŷ

(x) are the prediction mean value and variance, and ri(x) = R(|x −
χ(i)|;θ) is the correlation between the new sample x and the experimental design point

χ(i) ∈ X .
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3.2 PC-Kriging

3.2.1 Framework

Polynomial-Chaos-Kriging (PC-Kriging) consists of a universal Kriging model whose trend is

modeled by a set of orthogonal polynomials with respect to the input variables (Schöbi et al.,

2015):

M(x) ≈M(PCK)(x) =
∑

τ∈T
tτ ψτ (x) + σ2 Z(x, ω), (14)

where
∑
τ∈T

tτψτ (x) is a trend defined by a set of |T | multivariate orthonormal polynomials

ψτ (x) indexed by the multi-index τ = {τ1, . . . , τM} and tτ are the corresponding coefficients.

Due to the assumed independence of the input variables, the multivariate polynomials can be

composed by tensor product of univariate orthogonal polynomials:

ψτ (x) =
M∏

i=1

ψ(i)
τi (xi), (15)

where ψ
(i)
τi (xi) is a univariate polynomial of degree τi in the i-th variable. For each Xi the

orthonormality in coherency with the input distributions is given by:

〈ψ(i)
j , ψ

(i)
k 〉 =

∫

Di
ψ
(i)
j (x)ψ

(i)
k (x) fXi(x)dx = δjk, (16)

where ψ
(i)
j , ψ

(i)
k are two univariate polynomials in the i-th variable, Di is the support of the

distribution of Xi, fXi is the marginal probability density function, and δjk = 1 for j = k and

δjk = 0 otherwise. A summary of common univariate orthonormal polynomials can be found

in Xiu and Karniadakis (2002).

3.2.2 Optimal PC-Kriging

There are several ways to determine the most efficient set of polynomials T and combine it

with universal Kriging. Amongst them is the so-called Optimal-PC-Kriging (OPC-Kriging)

approach (Schöbi and Sudret, 2014; Schöbi et al., 2015), which is presented briefly in this

paper.

The information required for the algorithm comprises the input marginals, the autocorrelation

function R, an experimental design X and the corresponding response values Y. The best
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sparse set of multivariate polynomials (summarized in the index set T ) is obtained by least-

angle regression (LARS) (Efron et al., 2004; Blatman and Sudret, 2011). LARS results in a

ranked set of P polynomials. From this ordered set, P Kriging models are calibrated with an

increasing number of polynomials each. The first trend is the polynomial chosen first in the

LARS algorithm, while the trend of the P -th meta-model includes all P polynomials. The

various meta-models obtained (with a polynomial trend having 1, 2, . . . , P terms respectively)

are ranked according to their respective leave-one-out (LOO) cross-validation error and the

meta-model with the minimal LOO error is chosen as the OPC-Kriging meta-model.

3.2.3 Characteristics

PC-Kriging combines a global with a local approximation of the behavior of the computational

model. The global behavior is modeled by the PCE trend whereas the local behavior is

modeled by the Gaussian process. This allows one to meta-model a computational model

more accurately than PCE or other Kriging meta-models taken separately, see details in

Schöbi and Sudret (2014) and Schöbi et al. (2015).

3.3 Model accuracy

Universal Kriging-based meta-models generally approximate the behavior of the original

model M most accurately close to the points in the experimental design. These points,

however, are not always optimal for the estimation of the statistics of interest of Y . As an

example, in order to compute a small failure probability Pf = P (Y ≤ a) w.r.t. a given thresh-

old a, it is of interest to concentrate the experimental design in the region close to the limit

state surface (y ≈ a), which is usually unknown a-priori.

Consider the case of a given initial experimental design consisting of N0 samples. By adding

samples in a guided way, the accuracy of the estimation of the statistics of interest can

be enhanced more efficiently than adding samples randomly. This is the main idea behind

adaptive experimental design algorithms that are now presented.

9



4 Adaptive experimental design algorithm

4.1 Main algorithm

We adopt a slightly modified version of the Adaptive-Kriging-Monte-Carlo-Simulation (AK-

MCS) algorithm introduced in Echard et al. (2011) for enriching the experimental design. An

overview of the algorithm is shown in the flowchart in Figure 1. The white boxes mark the in-

formation required to start the algorithm, whereas the blue boxes represent the computational

tasks. The main steps can be summarized as follows:

1. An initial experimental design X is generated by Latin-hypercube sampling and the

corresponding exact response Y is computed.

2. A meta-model M̂ is calibrated based on {X ,Y}. In this paper, PC-Kriging meta-models

are used, whereas ordinary Kriging meta-models are used in Echard et al. (2011).

3. A large set of candidate samples S = {x1, ...,xn} is generated from X and the response

values are predicted by the meta-model M̂.

4. The limit state surface is estimated based on the current meta-model.

5. All candidate samples x ∈ S are ranked according to an enrichment criterion.

6. Then the selection step determines the sample(s) χ∗ to be added to the experimental

design of the meta-model, so that X ← {X ,χ∗}.

7. The corresponding response of the exact computational model is evaluated and added to

Y ← {Y,Y∗}. The iterative algorithm then goes back to step 2 where the meta-model

is now calibrated with the enriched experimental design.

8. The iterations are terminated through a convergence measure (stopping criterion) with

respect to the statistics of interest in order to stop the design enrichment algorithm

reliably.
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Input distributions

Xi, i = 1, . . . ,M

Initial experimen-

tal design X and

Y =
{
Y(i) =M(χ(i))

}

Experimental design

input vector X and

corresponding output Y

MC population

S = {x1, . . . ,xn}

Calibrate the

meta-model M̂
Compute the meta-model

response of x ∈ S

Probability of misclassi-

fication Pm(x), x ∈ S
Limit state parameter a

Best next candidate

χ∗ = arg max
x∈S

Pm(x)

Stopping

criterion

Add χ∗ to X and

compute Y∗ = M(χ∗)

End of the algorithm

no

yes

Figure 1: Flowchart of the adaptive algorithm for rare event estimation

4.2 Initial experimental design

In order to have a well-behaved initial experimental design, a space-filling sampling method

is required. In this paper the Latin-hypercube sampling algorithm is used. In particular, the

unit hyper-cube [0, 1]M is sampled and the samples are mapped to the variable space by the

inverse cumulative distribution function of the marginals. Other sampling strategies include

quasi-random sequences, such as Sobol’ sequences.
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4.3 Candidate selection

4.3.1 Single sample selection

A learning function (LF) estimates the expected value of information gained with respect to

the statistics of interest when point x is added to the experimental design X of the meta-

model. A variety of learning functions has been proposed in the literature including the

Expected Feasibility Function (EFF) (Bichon et al., 2008), the Expected Improvement (EI)

functions (Jones et al., 1998; Ginsbourger et al., 2013), the Gaussian process upper confidence

bounds (GP-UCB) (Srinivas et al., 2012) and the U -function (Echard et al., 2011). In the

following, we discuss the U -function more in depth.

The U -function is based on the concept of misclassification and the very nature of the Gaussian

process meta-model. To each sample point x ∈ S corresponds a non-zero probability that the

prediction mean µ
Ŷ

(x) > a (safe domain) whereas the true value satisfies M(x) ≤ a (failure

domain) or vice versa. Due to the fact that the prediction in PC-Kriging is a Gaussian

random variable described by the first two moments {µ
Ŷ

(x), σ
Ŷ

(x)}, the probability of

misclassification Pm can be written as (Bect et al., 2012):

Pm(x) = min

[
Φ

(
µ
Ŷ

(x)− a
σ
Ŷ

(x)

)
,Φ

(
a− µ

Ŷ
(x)

σ
Ŷ

(x)

)]
≡ Φ

(
−|µŶ (x)− a|

σ
Ŷ

(x)

)
. (17)

The probability of misclassification is maximized when the fraction tends to zero, i.e. −|µ
Ŷ

(x)−
a|/σ

Ŷ
(x) ∼ 0→ Pm(x) = 0.5, and is small when either the prediction mean is far away from

the limit state parameter a and/or the prediction variance is small. Note that the probability

measure used to define misclassification is the one associated to the Gaussian nature of the

predictor N (µ
Ŷ

(x), σ
Ŷ

(x)) in each point x. It shall not be confused with the probability P (·)
in Eq. (2) which corresponds to the input random vector X.

In this formalism, the U -function is defined as the “reliability index” attached to the proba-

bility of misclassification (Echard et al., 2011):

U(x) =
|µ
Ŷ

(x)− a|
σ
Ŷ

(x)
. (18)

The optimal sample to enrich the experimental design is the one minimizing the U -function

among x ∈ S, thus maximizing the probability of misclassification:

x∗ = arg min
x∈S

U(x) ≡ arg max
x∈S

Pm(x). (19)
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Due to this similarity, both the probability of misclassification and the U -function can be

used as learning functions.

4.3.2 Multiple sample selection

In cases where parallel computing is available, it can be beneficial to add multiple points at

the same time even to speed up the overall computation even if the procedure may be slightly

suboptimal. Assuming that K samples can be determined at the beginning of each iteration,

the corresponding model responses could be computed simultaneously on K independent

CPUs.

There are several ways to sample multiple points from the set of candidates S. Generally

speaking though, attractive candidates are found close to the limit state surface. Thus we

define a lower and upper boundary of the limit state surface defined by µ
Ŷ

(x) = a which takes

into account the prediction uncertainty in the Kriging model. The lower boundary reads:

µ
Ŷ

(x)− k · σ
Ŷ

(x) = a, (20)

and the upper boundary:

µ
Ŷ

(x) + k · σ
Ŷ

(x) = a, (21)

where k sets the confidence level typically equal to 1.96 = Φ−1(97.5%). In other words, e.g.,

the lower boundary estimates the limit state surface assuming that the real value of every

sample x ∈X is µ
Ŷ

(x)− k · σ
Ŷ

(x) instead of the mean value µ
Ŷ

(x).

Analogously, we define the “mean” failure domain in terms of the prediction mean value:

D0
f

def
=
{
x ∈ DX : µ

Ŷ
(x) ≤ a

}
, (22)

and the corresponding lower and upper bounds to the failure domain:

D−f
def
=
{
x ∈ DX : µ

Ŷ
(x) + k · σ

Ŷ
(x) ≤ a

}
, (23)

D+
f

def
=
{
x ∈ DX : µ

Ŷ
(x)− k · σ

Ŷ
(x) ≤ a

}
, (24)

so that D−f ⊂ D0
f ⊂ D+

f . The lower and upper bounds can be interpreted as the least and

most conservative estimate of the failure domain, respectively.
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The limit state margin Mf is defined as the intersection between the lower and the upper

boundaries of the failure domain (Dubourg, 2011):

Mf
def
= D+

f ∩ D−f . (25)

The limit state margin is a natural region where to focus for candidate samples for the design

enrichment. Considering a large set of samples of the input vector S = {x1, . . . ,xn}, we

define the following sets corresponding to the domains in Eq. (22)-(25):

S0f
def
=
{
x ∈ S : µ

Ŷ
(x) ≤ a

}
, (26)

S+f
def
=
{
x ∈ S : µ

Ŷ
(x)− k · σ

Ŷ
(x) ≤ a

}
, (27)

S−f
def
=
{
x ∈ S : µ

Ŷ
(x) + k · σ

Ŷ
(x) ≤ a

}
, (28)

SM def
= S+f ∩ S−f , (29)

where S−f ⊂ S0f ⊂ S+f . These sets are the discrete corresponding counterparts to the domains

defined in Eq. (22)-(25). The margin set SM contains points of interest for enriching the

experimental design since they lie close to the true limit state surface. Virtually any point in

SM could be added to X and a simple approach would be to sample the K different points

randomly. However a better coverage of Mf can be obtained using clustering techniques.

To account for the relative importance of the samples in SM, a weighted K-means clustering

algorithm is used (Zaki and Meira, 2014). In this algorithm samples with high information

value according to the learning function have larger weights, whereas samples with low infor-

mation value have low weights. The weights are set equal to the probability of misclassification

(see Eq. (17)) of each sample x ∈ SM. By definition of the probability of misclassification,

the weights are bounded on [0, 0.5]. The additional K samples χ(i) are then determined as

the samples x ∈ SM closest to the nuclei of each ith cluster.

To showcase the process of selecting additional samples, we consider the following function

with two-dimensional input vector:

y =M(x) = 20− (x1 − x2)2 − 8 · (x1 + x2 − 4)3, (30)

where the input variables have uniform distributions Xi ∼ U(−5, 5), i = 1, 2. As an example

we compute the failure probability of the function associated with the criterion {M(x) ≤ 0},
i.e. a = 0.
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The function is meta-modeled with an ordinary Kriging model. Figure 2(a) displays the ini-

tial experimental design (“◦” for failure samples and “+” for safe samples), the exact failure

domain (thin line) and the failure region estimated from the prediction mean values µ
Ŷ

(x)

(thick black line). Figures 2(b)-2(d) show the lower and upper bounds of the failure do-

main and the domain of the limit state margin, respectively. Finally, Figure 2(e) shows the

probability of misclassification in the limit state margin and Figure 2(f) shows the selected

candidates. The gray area in Figure 2(f) represents the samples in the limit state margin,

the large black diamond represents the optimal sample (with highest probability of misclas-

sification) and the hollow black diamonds represent the K = 5 samples obtained by weighted

K-means clustering.

It can be observed that the K = 5 samples in Figure 2(f) cover the domain of the limit state

margin well and are close to the limit state surface determined by the prediction mean value.

This leads to an efficient selection of additional samples for enriching the experimental design.

Interestingly, however, the optimal sample in terms of the probability of misclassification is

not part of the K = 5 sample set. This implies that each of the K = 5 samples is suboptimal

in terms of the probability of misclassification.

The optimal sample (filled diamond marker in Figure 2(f)) depends highly on the sampling

of the limit state margin. In principle any sample with µ
Ŷ

(x) = 0 could be optimal in terms

of the probability of misclassification. This implies that the choice of a single sample with

respect to the maximal probability of misclassification is non-unique in theory. However it is

unique and well-defined in the discrete optimization problem Eq. (19).

4.4 Stopping criterion

In Echard et al. (2011), the convergence measure (a.k.a. stopping criterion) is based on the

accuracy of the meta-model around the limit state surface rather than on the estimation of

the statistics of interest. Thus, we propose two stopping criteria for the estimation of failure

probabilities and quantiles designed to maximize the accuracy of the statistics of interest while

minimizing computational costs.

The stability of the estimate of the statistics of interest can be measured by the size of the

limit state margin Mf and consequently by the associated values of the upper and lower
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Figure 2: Design enrichment when adding K = 5 samples – definition of failure domains and

illustration of the candidate selection algorithm.

boundaries of the limit state surface. When the boundaries are close to each other (i.e. a

small limit state margin), then the estimate of the statistics of interest is accurate. Therefore

we define the stopping criterion for estimating failure probabilities as:

P̂+
f − P̂−f
P̂ 0
f

≤ ε
P̂f
, (31)

for two consecutive iteration steps where ε
P̂f

= 5% is used in applications. The upper and

lower bound failure probabilities are defined as:

P̂±f
def
= P

(
µ
Ŷ

(X)∓ k σ
Ŷ

(X) ≤ a
)

(32)

and:

P̂ 0
f

def
= P

(
µ
Ŷ

(X) ≤ a
)
. (33)

16



The stopping criterion defined in Eq. (31) can be adapted to the context of quantile estimation

as follows:
q̂+α − q̂−α

Σ̂Y

≤ εq̂α , (34)

for two consecutive iteration steps where εq̂α = 5% practical applications. The quantiles q̂±α are

computed from a large Monte Carlo sampling of the bounds µ
Ŷ

(x)±k σ
Ŷ

(x), where Σ̂Y is the

empirical standard deviation of the sample Yval =
{
µ
Ŷ

(xi), i = 1, . . . , n
}

. The normalization

in Eq. (34) makes use of the standard deviation Σ̂Y rather than by q̂0α in analogy with Eq. (31).

Indeed, unlike P̂ 0
f in Eq. (31), q̂0α can be any real number in R, which makes it inappropriate

for normalization.

5 Applications

5.1 Four-branch function

5.1.1 Problem statement

The four-branch function is a common benchmark in structural reliability analysis that de-

scribes the failure of a series system with four distinct component limit states. Its mathemat-

ical formulation reads (Waarts, 2000; Schueremans and Van Gemert, 2005a,b):

f1(x) = min





3 + 0.1 (x1 − x2)2 − x1+x2√
2

3 + 0.1 (x1 − x2)2 + x1+x2√
2

(x1 − x2) + 6√
2

(x2 − x1) + 6√
2





(35)

where the input variables are modeled by two independent Gaussian random variablesXi = N (0, 1).

The failure event is defined as f1(x) ≤ 0, i.e. the failure probability is Pf = P (f1(X) ≤ 0).

5.1.2 Failure probability estimation

Setting The adaptive experimental design algorithm is initiated with N0 = 12 Latin-

hypercube samples (LHS) and a candidate Monte Carlo population S of n = 106 samples.

The performances of PC-Kriging (PCK) are compared to those of ordinary Kriging (OK).
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The trend in PC-Kriging consists of Hermite polynomials of maximal degree of eight and a

Gaussian autocorrelation function is chosen for the Gaussian process. Both meta-modeling

techniques are calibrated using the Matlab-based toolbox UQLab (Marelli and Sudret, 2014).

The adaptive experimental design algorithm is tested in both single and multiple (K = 6)

samples mode.

Visualization Figure 3 and 4 visualize several iterations of the algorithm for OK and

PCK, respectively, for single sample enrichment. The gray dots represent the candidate MC

population S. The empty squares mark the initial experimental design, whereas the blue

filled circles mark the additional samples. The solid black line represents the exact limit state

surface.

Both variants discover the four distinct failure modes in the computational model within the

first 50 iterations. The main difference lies in the limit state exploration pattern. When using

ordinary Kriging in Figure 3, the distinct failure mechanisms are explored one-by-one. As

soon as a failure mechanism is characterized, the adaptive sampling algorithm moves to the

next. At iteration 50 all four failure mechanisms are discovered. In the case of PC-Kriging,

all four failure mechanisms are already discovered after 10 iterations (Figure 4(a)). Thus,

PC-Kriging converges on average faster to an accurate estimate of the failure probability as

compared to ordinary Kriging. This is to be expected due to the more accurate global trend

in PC-Kriging. Figure 5 illustrates the convergence of the estimate of the failure probability

by showing P̂±f (k = 2) and P̂ 0
f . Further, the final iteration is marked where the iterative

algorithm is stopped due to the stopping criterion in Eq. (31). Figure 5 confirms the faster

convergence of the PC-Kriging meta-models. Note that for the Kriging meta-model, Figure 5

shows four plateaus in P̂ 0
f which correspond to the exploration of the four branches of the

limit state function.

In order to test the statistical significance of the convergence, the analysis is replicated 50

times with different initial experimental designs. Figure 6 illustrates the convergence of the

failure probability estimates P̂ 0
f based on ordinary Kriging and PC-Kriging up to iteration

100, respectively. The solid line represents the mean value of 50 independent replications of

the same analysis with different initial Latin-hypercube experimental designs. The dashed
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(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 3: Four-branch function – iterations of the adaptive experimental design algorithm

with ordinary Kriging meta-models.

lines represent the 5% and 95% quantiles of the 50 independent replications, i.e. the 90%

confidence interval (CI). The results show that PC-Kriging converges faster than ordinary

Kriging. Note that the variation in P̂f after convergence (iterations ≥ 80) originates from the

finite size of S and the corresponding variance in Monte Carlo simulations (see also Eq. (5)).

Parametric study In this paragraph we discuss the candidate selection algorithm and the

choice of stopping criterion. The candidate selection algorithm compares the selection of the
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(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 4: Four-branch function – iterations of the adaptive experimental design algorithm

with PC-Kriging meta-models.

single optimal candidate to the selection of multiple candidates through weighted K-means

clustering. In terms of stopping criterion we compare Eq. (31) (k = 2) to the existing stopping

criterion defined in Echard et al. (2011):

min[U(x)] ≥ 2 ∀x ∈ S, (36)

which indicates that the probability of misclassification must be smaller than Φ(−2) ≈ 2 %

for all candidate samples in order to stop the iterations.
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(b) PC-Kriging

Figure 5: Four-branch function – convergence curves of the adaptive experimental design

algorithm for the single run in Figure 3 and 4

The full failure probability analysis is replicated 50 times with different initial LHS exper-

imental design in order to assess the statistical significance (e.g. standard deviation of the

resulting P̂f ). The analysis is focused on the total number of computational model evalu-

ations and on the accuracy of the estimate of the failure probability. The total number of

computational model runs is Ntot = N0 + N1, where N1 is the number of samples added by

the adaptive algorithm.

Table 1 summarizes the results for the four-branch function. The results of the adaptive

experimental design algorithm are presented for both stopping criteria (Eq. (31) and Eq. (36))

and meta-models (ordinary Kriging and PC-Kriging). The reference value for the failure

probability is computed by Monte Carlo simulation with 108 samples.

Considering the cases of adding a single candidate, all configurations estimate accurately

21



0 20 40 60 80 100
0

1

2

3

4

5
x 10

−3

iterations

P
f

 

 

Mean value
95% CI (replications)

(a) Ordinary Kriging

0 20 40 60 80 100
0

1

2

3

4

5
x 10

−3

iterations

P
f

 

 

Mean value
95% CI (replications)

(b) PC-Kriging

Figure 6: Four-branch function – convergence curves of the adaptive experimental design

algorithms (statistics of 50 replications of the analysis with different initial Latin-hypercube

experimental design).

the failure probability. The coefficient of variation of the estimate of the failure probability

CoV
[
P̂f

]
is comparable with the theoretical coefficient of variation of a Monte Carlo sampling

(see Eq. (5)) with nMC = 106 samples, i.e. CoV
[
P̂f = 4.46 · 10−3, nMC = 106

]
≈ 1.5 %.

The results in Table 1 show that the stopping criterion in Eq. (31) leads to accurate results

despite the smaller number of computational model runs Ntot when compared to the stopping

criterion in Eq. (36). This indicates that Eq. (31) is more suitable to the estimation of failure

probabilities than Eq. (36). It is interesting though that PC-Kriging converges faster than

ordinary Kriging with the stopping criterion in Eq. (31), as opposed to the one in Eq. (36). The
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Table 1: Four-branch function – results using different meta-models, candidate selection al-

gorithms and stopping criteria. Coefficients of variation CoV are computed based on the 50

replications of the analysis with different initial experimental designs.

Method Enrich. Stop. crit. E
[
P̂f

]
CoV

[
P̂f

]
E [Ntot] CoV [N1]

MC 4.460 · 10−3 0.15 % 108 -

OK single Eq. (36) 4.464 · 10−3 1.4 % 12 + 96.4 = 108.4 6.7 %

PCK single Eq. (36) 4.471 · 10−3 1.4 % 12 + 115.8 = 127.8 24.5 %

OK (∗) single Eq. (36) 4.416 · 10−3 - 126 -

OK single Eq. (31) 4.440 · 10−3 1.6 % 12 + 66.3 = 78.3 11.0 %

PCK single Eq. (31) 4.457 · 10−3 1.5 % 12 + 61.2 = 73.2 28.5 %

PCK K = 6 Eq. (31) 4.458 · 10−3 1.5 % 12 + 14.4 · 6 = 98.4 8.9 %

(∗) single run results from Echard et al. (2011)

explanation lies in the fact that the stopping criterion in Eq. (31) measures the convergence of

the statistics of interest whereas Eq. (36) assesses the overall accuracy of the approximation

of the Kriging surrogate.

For the case of PCK and the stopping criterion in Eq. (31), Table 1 includes also the results

obtained by adding K = 6 candidates at each iteration. The comparison of the total number

of computational model runs Ntot to the case of adding a single point in each iteration shows

that the addition of multiple points at each iteration requires a larger Ntot: indeed in the

case of single point enrichment, the total number of model runs is Ntot = 73, whereas adding

K = 6 points in each step leads to Ntot = 98. Considering however that the runs of the

computational model can be performed in parallel (K = 6 on six independent CPUs), the

total time for the K-point enrichment algorithm is approximately four times smaller.

5.1.3 Quantile estimation

Consider now the quantile estimation problem related to the four-branch function. The quan-

tiles are estimated for α = {0.01, 0.001, 0.0001}. PC-Kriging is used, a single sample is added

at each iteration out of a candidate Monte Carlo population of n = 106 samples and the

algorithm is stopped with the stopping criterion in Eq. (34).
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Table 2 summarizes the results and compares the estimate of the quantiles q̂α with a reference

solution from a Monte Carlo simulation (nMC = 108). The three α values are accurately

estimated with the adaptive algorithm despite the small initial experimental design of N0 = 12

samples. The coefficient of variation of the results increases with decreasing α due to the

decreasing size of the failure domain.

It is interesting to notice that the smaller the α value is, the fewer samples are required to

estimate the quantile. This phenomenon can be explained by considering the failure domain

defined by Eq. (35). For small values of α, indeed the failure domain is also small. Hence to

meta-model the limit state surface, a smaller number of experimental design points is required.

Table 2: Four-branch function – quantile estimation results. MC is based nMC = 108 samples.

Coefficients of variation CoV are computed based on 50 replications of the analysis with

different initial experimental designs.

α MC E [q̂α] CoV [q̂α] E [Ntot] CoV [N1]

0.01 0.303 0.305 1.4 % 12 + 62.4 = 74.4 21.0 %

0.001 −0.528 −0.531 2.1 % 12 + 57.7 = 69.7 23.3 %

0.0001 −1.299 −1.292 2.4 % 12 + 47.9 = 59.9 13.6 %

5.2 Borehole model

5.2.1 Definition

The first realistic engineering problem considered is the so-called borehole-function, which

describes the water flow through a borehole. This benchmark function has been discussed

in papers such as Harper and Gupta (1983), Morris et al. (1993), An and Owen (2001),

Kersaudy et al. (2015). It is a fast-to-evaluate function (Harper and Gupta, 1983) depending

on an eight-dimensional input vector x = [rw, r, Tu, Hu, Tl, Hl, L,Kw]T:

v(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

) , (37)

where v(x) is the fluid water flow measured in m3/year, rw is the radius of the borehole, r the

radius of influence, Tu the transmissivity of the upper aquifer, Hu the potentiometric head of
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the upper aquifer, Tl the transmissivity of the lower aquifer, Hl the potentiometric head of

the lower aquifer, L the length of the borehole and Kw the hydraulic conductivity of the soil.

The uncertainties in the input vector are modeled as independent random variables whose

properties are summarized in Table 3. For the lognormal distribution, the parameters are the

mean and standard deviation of the natural logarithm of the variable. For the other variables,

they describe the range of uniform distributions.

Table 3: Borehole model – definition of the probabilistic model of the input variables. For the

uniform distributions the parameters denote the range, whereas for the lognormal distribution,

the parameters denote the mean and standard deviation of the natural logarithm of the

variable.

Variable Distribution Parameters

rw [m] Uniform [0.05, 0.15]

r [m] Lognormal [7.71, 1.0056]

Tu [m2/year] Uniform [63070, 115600]

Hu [m] Uniform [990, 1110]

Tl [m2/year] Uniform [63.1, 116]

Hl [m] Uniform [700, 820]

L [m] Uniform [1120, 1680]

Kw [m/year] Uniform [9855, 12045]

5.2.2 Quantile estimation

The statistics of interest are the quantiles of the water flow v(x) corresponding to α = {0.99, 0.999, 0.9999}.
An initial experimental design of N0 = 12 Latin-hypercube samples in used. The number of

samples in the candidate Monte Carlo population is set to n = 106 and the remaining settings

are the same as in the four-branch function.

The results of the adaptive algorithm and the reference values are reported in Table 4 for

the various values of α, the meta-modeling method (PCK and OK) and enrichment strategies

(single or multiple) used.

The prediction of the quantiles is accurate for both meta-modeling techniques (OK and PCK)
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Table 4: Borehole model – results of quantile estimation based on a single run of the adaptive

experimental design algorithm with stopping criterion defined in Eq. (34).

α Method Enrichment q̂α Ntot

0.99 MC - 157.5 m3/year 106

OK single 157.3 m3/year 12 + 199 = 211

PCK single 157.4 m3/year 12 + 34 = 46

OK K = 6 157.5 m3/year 12 + 41 · 6 = 258

PCK K = 6 157.7 m3/year 12 + 10 · 6 = 72

0.999 MC - 197.8 m3/year 106

OK single 197.8 m3/year 12 + 137 = 149

PCK single 198.2 m3/year 12 + 30 = 42

OK K = 6 198.0 m3/year 12 + 32 · 6 = 204

PCK K = 6 198.2 m3/year 12 + 4 · 6 = 32

0.9999 MC - 235.0 m3/year 106

OK single 235.2 m3/year 12 + 143 = 155

PCK single 235.2 m3/year 12 + 26 = 38

OK K = 6 235.3 m3/year 12 + 33 · 6 = 210

PCK K = 6 235.3 m3/year 12 + 10 · 6 = 72

compared to the Monte Carlo (nMC = 106) solution when adding a single sample and multiple

samples to the experimental design in each iteration. There is, however, a noticeable difference

in the total number of evaluations of the computational model. Ordinary Kriging (OK)

requires more model evaluations than PC-Kriging (PCK) for all values of α. The addition of

K = 6 samples at a time induces slightly more model evaluations Ntot but at the same time

reduces the total computational time due to the parallel evaluation of K = 6 samples.
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5.3 Two-dimensional truss structure

5.3.1 Definition

For the purpose of illustrating a realistic structural engineering application, a two-dimensional

truss structure is analyzed. This specific truss example structure has been presented and

discussed previously in Lee and Kwak (2006), Sudret et al. (2007), Blatman and Sudret

(2008) and Blatman and Sudret (2010).

Consider the simply supported two-dimensional truss structure sketched in Figure 7 consisting

of 23 bars and 13 nodes. The geometry is known deterministically whereas the material

properties and the loadings are modeled stochastically. Ten stochastic input variables form

the input vector X:

X = [E1, E2, A1, A2, P1, P2, P3, P4, P5, P6]
T, (38)

where E1, E2 are the Young’s moduli of the linear elastic material, A1, A2 are the cross-sections

of the bars and P1, . . . , P6 are the vertical loads acting on the nodes of the upper part of the

structure. The horizontal bars have the properties {E1, A1} whereas the diagonal bars have

the properties {E2, A2}. The input variables are modeled by the probability distributions

summarized in Table 5. It is assumed that the input variables are statistically independent.

A finite element model of the structure is used to calculate the mid-span deflection, denoted

by u(x), as a function of the ten variables in the input vector x, which is defined as positive

in the direction indicated in Figure 7.

6 x 4m

 2
m

P1 P2 P3 P4 P5 P6
A1, E1

A2, E2

u

Figure 7: Truss structure – sketch of the geometry, material parameters {Ai, Ei} and loads

Pi.
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Table 5: Truss structure – definition of the probabilistic model of the input variables

Variable Distribution Mean Standard deviation

E1, E2 [Pa] Lognormal 2.1 · 1011 2.1 · 1010

A1 [m2] Lognormal 2.0 · 10−3 2 · 10−4

A2 [m2] Lognormal 1.0 · 10−3 1 · 10−4

P1, . . . , P6 [N] Gumbel 5.0 · 104 7.5 · 103

5.3.2 Failure probability estimation

The failure probability is defined as the probability that the mid-span deflection u is larger

than an admissible value uadm, i.e. Pf = P (uadm − u(X) ≤ 0).

The adaptive experimental design algorithm is started with an initial experimental design of

N0 = 12 Latin-hypercube samples and the candidate Monte Carlo population S has a size of

n = 106 samples. A single sample or K = 6 samples are added to the experimental design at

each iteration.

Table 6 summarizes the results of the failure probability estimation. The results are compared

to a reference plain Monte Carlo simulation with nMC = 106 samples and to the first order

reliability method (FORM) in terms of failure probability and Hasofer-Lind reliability index

(Zhang and Der Kiureghian, 1995). For comparison purposes the generalized reliability index

β̂ = Φ−1(P̂f ) is also given for the various sampling-based approaches.

The values of P̂f shown in Table 6 are consistent with the reference for all the adaptive

experimental design configurations. The number of runs of the computational model, however,

differ considerably. For the cases of uadm = 10 cm and 12 cm the number of exact model runs

are similar for both ordinary Kriging (OK) and PC-Kriging (PCK). In the case of uadm =

0.14 cm, PCK requires significantly fewer runs than OK, for both single and multiple sample

selection modes. Similarly to the borehole example, multiple sample selection results in more

computational model runs, but overall lower computational times (up to 5-times smaller) due

to high performance computing.

The well-established FORM gives an estimate worse than the adaptive experimental design

algorithm despite the higher cost. It is thus preferable in this application to conduct an
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Table 6: Truss structure – results of the failure probability estimate based on a single run

of the adaptive experimental design algorithm for different meta-modelling techniques and

enrichment modes.

uadm Method Enrichment P̂f (CoV [Pf ]) β̂ Ntot

10 cm MC - 4.29 · 10−2 (0.5 %) 1.72 106

FORM - 2.81 · 10−2 1.91 251

OK single 4.32 · 10−2 1.71 12 + 135 = 147

PCK single 4.32 · 10−2 1.71 12 + 158 = 170

OK K = 6 4.31 · 10−2 1.72 12 + 26 · 6 = 168

PCK K = 6 4.32 · 10−2 1.71 12 + 31 · 6 = 198

12 cm MC - 1.55 · 10−3 (2.5 %) 2.96 106

FORM - 7.57 · 10−4 3.17 236

OK single 1.53 · 10−3 2.96 12 + 164 = 176

PCK single 1.52 · 10−3 2.96 12 + 157 = 169

OK K = 6 1.53 · 10−3 2.96 12 + 27 · 6 = 174

PCK K = 6 1.53 · 10−3 2.96 12 + 25 · 6 = 162

14 cm MC - 3.6 · 10−5 (16.7 %) 3.97 106

FORM - 1.29 · 10−5 4.21 231

OK single 3.7 · 10−5 3.96 12 + 110 = 122

PCK single 3.7 · 10−5 3.96 12 + 63 = 75

OK K = 6 3.4 · 10−5 3.99 12 + 27 · 6 = 174

PCK K = 6 3.2 · 10−5 4.00 12 + 11 · 6 = 78

adaptive experimental design search rather than using FORM algorithm.

6 Conclusions

In this paper, a unified framework for the estimation of both failure probabilities and quantiles

is introduced in the context of rare event estimation. The combination of PC-Kriging and

design enrichment (adaptive experimental design) based on the probability of misclassification

increases the accuracy in the estimation of the statistics of interest.
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An efficient strategy to add multiple samples at each iteration of the adaptive experimental

design algorithm is introduced to enable the use of available high-performance computing

resources.

The adaptive experimental design algorithm is also equipped with a new stopping criterion

which monitors the convergence of the statistics of interest better than existing stopping

criteria. This results in further reduction of the computational resources needed.

The performance of the proposed algorithm is assessed and illustrated through a benchmark

analytical function, which shows the algorithm’s capabilities in a variety of settings. The re-

sults show that the proposed strategy provides an efficient way to estimate failure probabilities

as well as quantiles. Two engineering applications (the water flow through a borehole and the

deflection of a truss structure modeled by finite elements) confirm the strengths of the adap-

tive experimental design algorithm in the context of realistic high-dimensional engineering

problem settings, and thus its significance for the engineering practice.
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