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Abstract

Engineering and applied sciences use models of increasing complexity to simulate the behavior

of manufactured and physical systems. Propagation of uncertainties from the input to a response

quantity of interest through such models may become intractable in cases when a single simula-

tion is time demanding. Particularly challenging is the reliability analysis of systems represented

by computationally costly models, because of the large number of model evaluations that are

typically required to estimate small probabilities of failure. In this paper, we demonstrate the

potential of a newly emerged meta-modeling technique known as low-rank tensor approximations

to address this limitation. This technique is especially promising for high-dimensional problems

because: (i) the number of unknowns in the generic functional form of the meta-model grows only

linearly with the input dimension and (ii) such approximations can be constructed by relying on

a series of minimization problems of small size independent of the input dimension. In example

applications involving finite-element models pertinent to structural mechanics and heat conduc-

tion, low-rank tensor approximations built with polynomial bases are found to outperform the

popular sparse polynomial chaos expansions in the estimation of tail probabilities when small

experimental designs are used. It should be emphasized that contrary to methods particularly

targeted to reliability analysis, the meta-modeling approach also provides a full probabilistic de-

scription of the model response, which can be used to estimate any statistical measure of interest.

Keywords: uncertainty propagation – reliability analysis – meta-models – low-rank approx-

imations – polynomial chaos expansions
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1 INTRODUCTION

Analysis of the response of engineered and physical systems under uncertainties is of key impor-

tance in risk assessment and decision making in a wide range of fields. To this end, it is typical

to use a computer model to represent the behavior of a system and perform repeated simula-

tions to propagate uncertainties from the input to a response quantity of interest. However,

because of the growing complexity of the computer models used across engineering and sciences,

in many practical situations, a single simulation is time consuming, thus rendering uncertainty

propagation non-affordable. Such situations are often encountered in reliability analysis due to

the large number of model evaluations required to compute small failure probabilities. As a

result, meta-modeling techniques are gaining increasing popularity. The key idea thereof is to

substitute a computationally expensive model with a statistically equivalent one, so-called meta-

model, which can be easily evaluated. Using the meta-model, the analyst can perform statistical

analysis of a response quantity of interest at low cost.

Of interest herein is non-intrusive meta-modeling, in which the original model is treated

as a “black box”. Building a meta-model in an non-intrusive manner relies on the evaluation

of the original model at a set of points in the input space, called experimental design. The

efficiency of a meta-modeling technique depends on its ability to provide sufficiently accurate

representations of the exact model response over the entire input range by using relatively small

experimental designs. This can be particularly challenging in cases when determining the tails

of the response distribution with high accuracy is important, as in the estimation of small

exceedence probabilities required in reliability analysis.

In this paper, we demonstrate the potential of the newly-emerged approach called low-rank

tensor approximations to provide meta-models appropriate for reliability analysis. Although

different types of tensor decompositions may be used (see e.g. Kolda and Bader (2009); Hack-

busch (2012); Grasedyck et al. (2013)), we confine our attention to canonical tensor formats.

In this context, low-rank approximations express the model response as a sum of a small num-

ber or rank-one tensors, where a rank-one tensor is a product of univariate functions in each

of the input parameters. The idea of such decompositions originates in the work of Hitchcock

Hitchcock (1927) in the first half of the 20th century and has been employed within the last 50

years in a wide range of fields, including - but not limited to - psychometrics Carroll and Chang

(1970); Harshman (1970), chemometrics Appellof and Davidson (1981); Bro (1997), neuroscience

Mocks (1988); Andersen and Rayens (2004), fluid mechanics Felippa and Ohayon (1990); Ammar

et al. (2006), signal processing Sidiropoulos et al. (2000); De Lathauwer and Castaing (2007),

image analysis Shashua and Levin (2001); Furukawa et al. (2002) and data mining Acar et al.

(2006); Beylkin et al. (2009). This technique is now attracting an expanding interest from the

more recently established community of uncertainty quantification Nouy (2010); Khoromskij and
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Schwab (2011); Chevreuil et al. (2013,?); Doostan et al. (2013); Hadigol et al. (2014); Rai (2014);

Validi (2014); Konakli and Sudret (2015b).

The focus of the present study is on low-rank tensor approximations that are made of poly-

nomial functions due to the simplicity and versatility these offer. The considered meta-models

therefore constitute an alternative to the widely used polynomial chaos expansions. In the latter,

the number of unknown coefficients grows exponentially with the input dimension, requiring pro-

hibitively large experimental designs when high-dimensional models are considered. Conversely,

in low-rank tensor approximations, the number of unknown coefficients grows only linearly with

the input dimension, which makes the approach particularly promising for dealing with high di-

mensionality. Such approximations can be constructed through a series of minimization problems

of small size that is independent of the input dimension.

The paper is organized as follows: In Section 2, we describe the mathematical setup of non-

intrusive meta-modeling and review basic concepts of reliability analysis with meta-models. In

Section 3, we present the formulation of canonical low-rank approximations with polynomial

bases and detail an algorithm for their construction; in the same section, we present, in a com-

parative way, the polynomial chaos expansions approach. In Section 4, we confront canonical

low-rank approximations to state-of-art polynomial chaos expansions in the estimation of re-

sponse probability density functions and of failure probabilities in reliability analysis. The paper

concludes with a summary of the main findings and respective outlooks.

2 META-MODELS FOR UNCERTAINTY PROPAGATION

AND RELIABILITY ANALYSIS

2.1 Non-intrusive meta-modeling and error estimation

We consider a computational modelM that represents the behavior of a physical or engineering

system of interest. We denote by X = {X1, . . . , XM} the M -dimensional input vector of M
and by Y = {Y1, . . . , YN} the N -dimensional response vector. To account for the uncertainty in

the input and the resulting uncertainty in the response, the elements of X and Y are described

by random variables. For the sake of simplicity, the case of a scalar model response (N = 1) is

considered hereafter. Therefore, M is considered as the mapping:

X ∈ DX ⊂ RM 7−→ Y =M(X) ∈ R, (1)

where DX denotes the support of X. Note that the case of a vector model response can be

addressed by separately treating each element of Y as in the case of a scalar response.

In general, the map in Eq. (1) is not known in a closed analytical form and may represent a
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computationally intensive process. A meta-model M̂ is an analytical function that mimics the

behavior ofM; in other words, M̂(X) possesses similar statistical properties withM(X), while

maintaining an easy-to-evaluate form. Replacing a complex computational model with a meta-

model allows efficient uncertainty propagation from the random input to a response quantity of

interest in cases when this is practically infeasible by using the original model due to the high

computational cost.

In non-intrusive meta-modeling, which is of interest herein, the original computational model

is treated as a “black box”. Thus, in order to develop a meta-model in a non-intrusive manner,

one only needs a set of N realizations of the input vector E = {χ(1), . . . ,χ(N)}, called experimen-

tal design (ED), and the corresponding set of model responses Y = {M(χ(1)), . . . ,M(χ(N))}.
We underline that non-intrusive approaches do not require any further knowledge of the original

model, which is used therein without any modification.

To define measures of accuracy of the meta-model response Ŷ = M̂(X), we first introduce

the discrete L2 semi-norm:

‖ a ‖X=

(
1

n

n∑

i=1

a2(xi)

)1/2

, (2)

where a represents a function: x ∈ DX 7−→ a(x) ∈ R and X = {x1, . . . ,xn} ⊂ DX denotes

a set of n realizations of X. A good measure of accuracy of the meta-model response is the

generalization error ErrG, which is defined as the mean-square error of the difference (Y − Ŷ )

and can be estimated by:

ÊrrG =
∥∥∥M−M̂

∥∥∥
2

Xval

, (3)

where Xval = {x1, . . . ,xnval
} is a sufficiently large set of realizations of X, called validation set.

The estimate of the relative generalization error êrrG, is obtained by normalizing ÊrrG with the

empirical variance of Yval = {M(x1), . . . ,M(xnval
)}, which denotes the set of model responses

at the validation set. Unfortunately, a validation set is not available in typical meta-modeling ap-

plications, where a large number of model evaluations is not affordable. An alternative estimate

that relies solely on the ED is the empirical error ÊrrE , which is given by:

ÊrrE =
∥∥∥M−M̂

∥∥∥
2

E
. (4)

In the above equation, the subscript E emphasizes that the semi-norm is evaluated at the points

of the ED. The relative empirical error êrrE , is obtained by normalizing ÊrrE with the empirical

variance of Y = {M(χ(1)), . . . ,M(χ(N))}, which denotes the set of model responses at the ED.

Although the empirical error reuses the points of the ED, it has the strong drawback that it tends

to underestimate the actual generalization error, which might be severe in cases of overfitting.

By using the information contained in the ED only, one can obtain fair approximations of the
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generalization error by means of cross-validation (CV) techniques (see e.g. Viana et al. (2009);

Arlot and Celisse (2010)). In brief, the basic idea of k-fold CV is to randomly partition the ED

into k sets of approximately equal size, build the meta-model by relying on all but one of the

partitions, and use the excluded set to evaluate the generalization error. By alternating through

the k sets, one obtains k meta-models of which the average generalization error serves as the

error estimate of the meta-model built with the full ED.

2.2 Reliability analysis

Reliability analysis aims at computing the probability that the system under consideration fails

to satisfy prescribed criteria. A failure criterion is mathematically represented by the so-called

limit-state function g(Z); in a general case, Z = {X,M(X),X ′} may depend on the input

parameters of the model describing the system, response quantities obtained from the model

and additional random parameters gathered in X ′. Conventionally, the limit-state function is

formulated so that failure corresponds to g(z) ≤ 0; the set of points that satisfy this condition

comprise the failure domain Df with respect to g, i.e. Df = {z : g(z) ≤ 0}. The associated

probability of failure is therefore given by:

Pf =

∫

Df

fZ(z)dz, (5)

where fZ denotes the probability density function (PDF) ofZ. Note that in a general case, failure

of a system may be defined in terms of multiple limit-state functions representing different failure

criteria.

A universal method for computing the integral in Eq. (5) is Monte Carlo simulation (MCS).

The MCS approach involves generating a sufficiently large sample of realizations of Z, say

{z1, . . . ,zn}, and then, estimating Pf as the empirical mean:

P̂f,MCS =
1

n

n∑

k=1

IDf
(zk), (6)

where IDf
denotes the indicator function of the failure domain. Obviously, the MCS-based esti-

mator in Eq. (6) is unbiased, which means E
[
P̂f,MCS

]
= Pf . Typically, of interest in reliability

analysis are failure events with small probabilities of occurrence, i.e. Pf << 1, leading to the

following approximation of the coefficient of variation (CoV) of P̂f,MCS:

δP̂f,MCS
≈ 1/

√
nPf . (7)

Eq. (7) indicates that estimation of a failure probability with magnitude of the order of 10−k

with CoV < 10% requires that a number of samples larger than 10k+2 is used. Clearly, MCS
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is impractical for computing small failure probabilities in cases when a single evaluation of the

model response is computationally costly. This limitation is overcome when the original modelM
is substituted by a meta-model M̂. Accordingly, the actual failure domain Df is approximated

by D̂f = {z : ĝ(z) ≤ 0}, where ĝ(Z) = g(X, M̂(X),X ′). Once the meta-model is available,

evaluation of P̂f,MCS in Eq. (6) by using large Monte Carlo samples becomes essentially costless.

Various techniques have been devised with the purpose of computing efficiently the small

failure probabilities that are of interest in reliability analysis; a thorough review listing the

advantages and drawbacks of different methods can be found in Morio et al. (2014). We herein

briefly describe three widely-used methods, which are considered in the application section of

the present study:

• First-order reliability method (FORM) Hasofer and Lind (1974); Rackwitz and Fiessler

(1978): FORM relies on determining the design point P ∗, i.e. the point of the failure

domain that is closest to the origin in the standard normal space. The failure domain

is then approximated by the half space defined as the hyperplane that is tangent to the

limit-state surface {z : g(z) = 0} at P ∗, leading to the first-order approximation of Pf .

• Second-order reliability method (SORM) Breitung (1989); Der Kiureghian and de Stefano

(1991): SORM provides a correction to the FORM solution by approximating the limit-

state surface at the design point by a second-order surface.

• Importance sampling (IS) Melchers (1989); Au and Beck (2003): The basic idea in IS is to

recast the definition of Pf in Eq. (5) by means of an auxiliary PDF that is more efficient

in generating samples within the failure domain; appropriate weights are introduced in the

computation of the integral in order to account for the change in the PDF.

We emphasize that the aforementioned methods are particularly targeted to reliability analysis;

on the other hand, meta-modeling comprises a more general tool for uncertainty propagation,

which may be used to conduct any type of statistical analysis of the model response, e.g. PDF

estimation, evaluation of statistical moments and confidence intervals, analysis of variance, and

so forth (see e.g. Xiu and Karniadakis (2003); Acharjee and Zabaras (2006); Sudret (2007);

Najm et al. (2009); Jones et al. (2013); Deman et al. (2016) among a vast literature). However,

in cases when the analyst is only interested in the computation of failure probabilities, any

reliability-analysis technique can be used in conjunction with an appropriate meta-model (see

e.g. Li et al. (2012); Balesdent et al. (2013); Dubourg et al. (2013)). It is underlined that the

accuracy of reliability analysis based on a meta-model approximation relies on the ability of the

latter to accurately represent the response of the original model at the tails of its distribution.
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3 LOW-RANK TENSOR APPROXIMATIONS

3.1 Formulation using polynomial bases

We consider the map in Eq. (1) assuming that the components of X are independent, with the

marginal PDF of Xi denoted by fXi
for {i = 1, . . . ,M}. LetMLRA denote a meta-model ofM

belonging to the class of low-rank approximations (LRA); as mentioned in the Introduction, the

term “rank” herein refers to the so-called “canonical rank”. The corresponding approximation

of Y =M(X) has the general form:

Y LRA =MLRA(X) =
R∑

l=1

blwl(X), (8)

in which bl is a normalizing constant and wl is a rank-one function of X. The rank-one function

wl is a product of univariate functions of the components of X:

wl(X) =
M∏

i=1

v
(i)
l (Xi), (9)

where v
(i)
l denotes a univariate function of Xi. Accordingly, R in Eq. (8) represents the number

of rank-one components retained in the approximation. Naturally, representations with a small

number of rank-one components are of interest, thus named low-rank.

In order to obtain a representation of Y = M(X) in terms of polynomial functions, we

expand v
(i)
l onto a polynomial basis {P (i)

k , k ∈ N} that is orthonormal with respect to fXi , i.e.

satisfies:

< P
(i)
j , P

(i)
k >=

∫

DXi

P
(i)
j (xi)P

(i)
k (xi)fXi

(xi)dxi = δjk, (10)

where DXi
denotes the support of Xi and δjk is the Kronecker delta symbol, equal to one if

j = k and zero otherwise. Accordingly, the univariate function of Xi takes the form:

v
(i)
l (Xi) =

pi∑

k=0

z
(i)
k,lP

(i)
k (Xi), (11)

where P
(i)
k is the k-th degree univariate polynomial in the i-th input variable of maximum

degree pi and z
(i)
k,l is the coefficient of P

(i)
k in the l-th rank-one term. By substituting Eq. (11)

into Eq. (8), we obtain:

Y LRA =MLRA(X) =

R∑

l=1

bl

(
M∏

i=1

(
pi∑

k=0

z
(i)
k,lP

(i)
k (Xi)

))
. (12)

Disregarding the redundant parameterization arising from the normalizing constants, the number
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of unknowns in Eq. (12) is R ·∑M
i=1(pi + 1), which grows only linearly with the input dimension

M . We will see later that this is a key factor for the higher efficiency of LRA as compared to

polynomial chaos expansions when dealing with high-dimensional problems.

Classical algebra allows one to build a family of polynomials satisfying Eq. (10) Abramowitz

and Stegun (1970). For standard distributions, the associated families of orthonormal polyno-

mials are well known; for instance, a uniform variable with support [−1, 1] is associated with

the family of Legendre polynomials, whereas a standard normal variable is associated with the

family of Hermite polynomials Xiu and Karniadakis (2002). However, it is common in practi-

cal situations that the input variables do not follow standard distributions. In such cases, the

random vector X is first transformed into a basic random vector U (e.g. a standard normal or

standard uniform random vector) through an isoprobabilistic transformation X = T−1(U) and

then, the model responseM(T−1(U)) is expanded onto the polynomial basis associated with U .

Cases with mutually dependent input variables can also be treated through an isoprobabilistic

transformation into a vector of independent variables, e.g. the Nataf transformation in the case

of a joint PDF with Gaussian copula Lebrun and Dutfoy (2009b,a). We underline that although

the focus of the present work is on LRA developed with polynomial functions, the use of such

functions is not a constraint in a general case.

3.2 Construction with greedy approaches

Different non-intrusive algorithms have been proposed recently for developing LRA in the form

of Eq. (12); see e.g. Chevreuil et al. (2013,?); Doostan et al. (2013); Rai (2014); Validi (2014).

A common attribute of these algorithms is that the computation of the polynomial coefficients

relies on an alternated least-squares (ALS) minimization approach. The ALS technique consists

in solving a series of small-size least-squares minimization problems, where each minimization

is performed along a single dimension. Chevreuil et al. Chevreuil et al. (2013) proposed to

construct LRA in a greedy manner by successively adding rank-one components and updating

the entire set of normalizing constants following each increase of the rank. Aspects of this

algorithm were further investigated by Konakli and Sudret Konakli and Sudret (2015a). This

greedy approach is employed in the present study and described analytically below.

Let Y LRA
r =MLRA

r (X) denote the rank-r approximation of Y =M(X):

Y LRA
r =MLRA

r (X) =
r∑

l=1

blwl(X), (13)

where:

wl(X) =
M∏

i=1

(
pi∑

k=0

z
(i)
k,lP

(i)
k (Xi)

)
. (14)
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The employed algorithm comprises a sequence of pairs of a correction step and an updating step,

so that the r-th correction step yields the rank-one component wr and the r-th updating step

yields the set of coefficients {b1, . . . , br}. Details on these steps are given next.

Correction step: Let Rr(X) denote the residual after the completion of the r-th iteration:

Rr(X) =M(X)−MLRA
r (X). (15)

The sequence is initiated by setting MLRA
0 (X) = 0 leading to R0(X) = M(X). In the r-th

correction step, the new rank-one tensor wr is determined by minimizing the empirical error

with respect to the current residual:

wr = arg min
ω∈W

‖Rr−1 − ω‖2E , (16)

whereW represents the space of rank-one tensors. Eq. (16) is solved by means of an ALS scheme

that involves successive minimizations along the dimensions {1, . . . ,M}. In the minimization

along dimension j, the polynomial coefficients in all other dimensions are “frozen” at their current

values; the coefficients z
(j)
r = {z(j)1,r . . . z

(j)
pj ,r} are therefore obtained as:

z(j)r = arg min
ζ∈Rpj+1

∥∥∥∥∥Rr−1 − C
(j) ·

(
pj∑

k=0

ζkP
(j)
k

)∥∥∥∥∥

2

E
, (17)

where C(j) represents the “frozen” component:

C(j)(X1, . . . , Xj−1, Xj+1, . . . , XM ) =
∏

i6=j
v(i)r (Xi) =

∏

i 6=j

(
pi∑

k=0

z
(i)
k,rP

(i)
k (Xi)

)
. (18)

Because Eq. (17) involves only (pj + 1) unknowns (pj < 20 in typical applications), it can be

easily solved using the ordinary least squares (OLS) method.

The correction step is initiated by assigning arbitrary values to the unknowns and may involve

several iterations over the set of dimensions. Note that assigning initial values to the functions

v
(i)
r (Eq. (11)) is sufficient; for instance, unity values may be used. Konakli and Sudret Konakli

and Sudret (2015a) investigated the effect of the number of iterations performed in a correction

step on the accuracy of LRA. They proposed a stopping criterion combining the number of

iterations Ir with the decrease in the relative empirical error ∆êrrr in two successive iterations.

The relative empirical error êrrr is obtained by normalizing the error measure:

Êrrr = ‖Rr−1 − wr‖2E (19)

with the empirical variance of Y = {M(χ(1)), . . . ,M(χ(N))}, the latter denoting the set of
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model responses at the ED. Accordingly, the algorithm exits the r-th correction step if either Ir

reaches a maximum allowable value Imax or ∆êrrr becomes smaller than a prescribed threshold

∆êrrmin. Based on numerical investigations in different case studies, Konakli and Sudret Konakli

and Sudret (2015a) proposed to use Imax = 50 and ∆êrrmin = 10−6.

Updating step: After the completion of a correction step, the algorithm moves to an

updating step, in which the set of coefficients b = {b1 . . . br} is obtained by minimizing the

empirical error with respect to the response of the original model:

b = arg min
β∈Rr

∥∥∥∥∥M−
r∑

l=1

βlwl

∥∥∥∥∥

2

E
. (20)

Note that in each updating step, the size of vector b is increased by one. In the r-th updating

step, the value of the new element br is determined for the first time, whereas the values of the

existing elements {b1, . . . , br−1} are updated (recomputed). Because Eq. (20) involves only r

unknowns (recall that small ranks are of interest in LRA), it can be easily solved using OLS.

Construction of a rank-R representation in the form of Eq. (12) requires repeating pairs of a

correction and an updating step for r = 1, . . . , R. The algorithm is summarized below.

Algorithm 1: Construction of a rank-R representation of Y = M(X) with polynomial

bases, using a set of input samples E = {χ(1), . . . ,χ(N)} and the corresponding model responses

Y = {M(χ(1)), . . . ,M(χ(N))}:

1. Set R0(χ(q)) =M(χ(q)), q = 1, . . . , N .

2. For r = 1, . . . , R, repeat steps (a)-(f):

(a) Assign initial values to v
(i)
r , i = 1, . . . ,M (e.g. unity values).

(b) Set Ir = 0 and ∆êrrr = ε > ∆êrrmin.

(c) While ∆êrrr > ∆êrrmin and Ir < Imax, repeat steps i-iv:

i. Set Ir ← Ir + 1.

ii. Determine z
(i)
r = {z(i)0,r . . . z

(i)
pi,r}, i = 1, . . . ,M , using Eq. (17).

iii. Use the current values of z
(i)
r , i = 1, . . . ,M , to update wr.

iv. Compute Êrrr using Eq. (19) and update ∆êrrr.

(d) Determine b = {b1 . . . br} using Eq. (20).

(e) Evaluate MLRA
r (χ(q)), q = 1, . . . , N , using Eq. (13).

(f) Evaluate Rr(χ(q)), q = 1, . . . , N , using Eq. (15).

Algorithm 1 describes the construction of LRA for a given rank R. However, in a typical

application, the optimal rank is not known a priori. Because Algorithm 1 yields a set of LRA

of progressively increasing rank r = 1, . . . , R, the optimal among those can be selected using
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error-based criteria. In the present study, the optimal LRA is identified by means of 3-fold

CV, as proposed by Chevreuil et al. Chevreuil et al. (2013) (see Section 2 for details on k-

fold CV). Thus, we set r = 1, . . . , rmax in Step 2 of Algorithm 1, where rmax is a maximum

allowable candidate rank, and at the end, select the optimal rank R ∈ {1, . . . , rmax} as the one

yielding the minimum 3-fold CV error estimate. Konakli and Sudret Konakli and Sudret (2015a)

investigated the accuracy of rank selection based on 3-fold CV in different case studies and found

that it leads to optimal or nearly optimal LRA in terms of the relative generalization errors,

with the latter estimated using large validation sets. We note that the 3-fold CV error estimate

may also be used to select the optimal polynomial degrees (see Konakli and Sudret (2015a) for

an investigation of the accuracy of this approach).

3.3 Comparison to polynomial chaos expansions

A popular method for developing meta-models with polynomial bases is the use of polynomial

chaos expansions (PCE). In this section, we provide a brief description of the PCE technique,

noting its similarities with LRA.

We consider again the map in Eq. (1) assuming that the components of X are independent

with a joint PDF fX . Analogously to LRA, the case of dependent input variables can be

herein treated with an appropriate isoprobabilistic transformation (see Section 3.1). A PCE

approximation of Y = M(X) has the form Xiu and Karniadakis (2002); Soize and Ghanem

(2004):

Y PCE =MPCE(X) =
∑

α∈A
yαΨα(X), (21)

where A is a set of multi-indices α = (α1, . . . , αM ), {Ψα, α ∈ A} is a set of multivariate

polynomials that are orthonormal with respect to fX and {yα, α ∈ A} is the set of polynomial

coefficients. The orthonormal polynomial bases in Eq. (21) can be obtained by tensorization of

univariate polynomials that are orthonormal with respect to the marginals fXi
:

Ψα(X) =
M∏

i=1

P (i)
αi

(Xi), (22)

where P
(i)
αi is a univariate polynomial of degree αi in the i-th input variable belonging to an

appropriate family. Obviously, the families of the univariate polynomials used to formulate the

multivariate PCE basis are the same as the families of polynomials that form the bases of the

univariate functions in LRA (see Section 3.1). However, as seen in Eq. (12), LRA retain the

tensor-product form of Eq. (22), whereas the expanded form is considered in PCE. Thus, LRA

with polynomial bases can be seen as equivalent compressed representations of PCE.

Different truncation schemes may be employed to determine the set of multi-indices {α ∈ A}
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in Eq. (21). When the maximum degree of P
(i)
αi is set to pi, i.e. A = {α ∈ NM : αi ≤

pi, i = 1, . . . ,M}, the expansion in Eq. (21) relies on exactly the same polynomial functions

with those used in Eq. (12). For this case, let us compare the number of unknowns in LRA

and PCE considering a common maximum polynomial degree in all dimensions, i.e. pi = p for

i = 1, . . . ,M . One has (p + 1)M unknowns in the PCE representation versus (p + 1) ·M · R
in LRA when redundant parameters are disregarded. Note that the number of unknowns grows

exponentially with M in PCE, but only linearly in LRA. For a typical engineering problem

with dimensionality M = 10, considering polynomials of low degree p = 3 and an example low

rank R = 10, the aforementioned formulas yield 1, 048, 576 PCE coefficients versus a mere 400

unknowns in LRA.

A more efficient truncation scheme is the hyperbolic scheme proposed by Blatman and Sudret

Blatman and Sudret (2010). This is defined by the condition that the q-norm of any multi-index

does not exceed a value pt, i.e. A = {α ∈ NM : ‖α‖q ≤ pt} with:

‖α‖q =

(
M∑

i=1

αi
q

)1/q

, 0 < q ≤ 1. (23)

When q = 1, multivariate polynomials of maximum total degree pt are retained in the expansion.

The corresponding number of terms in the truncated series is:

cardA =

(
M + pt

pt

)
=

(M + pt)!

M !pt!
, (24)

which grows polynomially with M . Smaller values of q impose limitations to the number of terms

that include interactions between two or more input variables. Optimal values of pt and q in

the hyperbolic truncation scheme can be determined by means of error-based criteria (e.g. the

leave-one-out error described later).

Once the basis has been specified, the set of coefficients y = {yα, α ∈ A} may be computed

by minimizing the empirical error of the approximation:

y = arg min
υ∈RcardA

∥∥∥∥∥M−
∑

α∈A
υαΨα

∥∥∥∥∥

2

E

. (25)

Even by employing a hyperbolic truncation scheme, the number of unknowns in Eq. (25) can be

very large in high-dimensional problems, requiring EDs of non-affordable size. Note that contrary

to LRA, where the computation of the polynomial coefficients in each dimension is performed

separately, the entire set of PCE coefficients is determined from a single minimization problem.

To improve efficiency in the latter, one may substitute Eq. (25) with a respective regularized

problem. By penalizing the L1 norm of y, insignificant terms are disregarded from the set of

12



predictors, leading to sparse PCE. An efficient method to solve L1-regularized problems is the

least angle regression (LAR) method Efron et al. (2004). A variation proposed by Blatman

and Sudret Blatman and Sudret (2011) under the name hybrid LAR consists in using the LAR

method to determine the best set of predictors and then, computing the PCE coefficients with

OLS.

The PCE accuracy can be assessed by means of the leave-one-out error ÊrrLOO, correspond-

ing to the CV error for the extreme case k = N Allen (1971). Using algebraic manipulations,

this error can be computed based on a single PCE that is built with the full ED (see Blatman

and Sudret (2011) for details). The corresponding relative error, denoted by êrrLOO, is obtained

after normalizing ÊrrLOO with the empirical variance of Y = {M(χ(1)), . . . ,M(χ(N))}. Be-

cause êrrLOO can be too optimistic, Blatman and Sudret Blatman and Sudret (2011) proposed

the use of the corrected leave-one-out error, which includes a multiplication factor derived by

Chapelle et al. Chapelle et al. (2002).

4 EXAMPLE APPLICATIONS

In this section, we confront LRA to sparse PCE in uncertainty propagation through four models

with different characteristics and dimensionality. In the first example, we consider a structural-

mechanics model of dimension M = 5 having an analytical rank-one structure. The following

three examples involve finite-element models; in particular, we consider a truss model with

independent input of dimension M = 10, a heat-conduction model with thermal conductivity

described by a random field, which is approximated by a series expansion of dimension M = 53,

and a frame model with correlated input of dimension M = 21. For the aforementioned models,

we investigate the comparative accuracy of LRA and PCE in the estimation of small failure

probabilities P̂f and of the corresponding reliability indices β̂ = −Φ−1(P̂f ), where Φ denotes the

standard normal cumulative distribution function (CDF).

In all applications, the EDs used to build the LRA and PCE meta-models are obtained

using Sobol pseudo-random sequences Niederreiter (1992). The LRA meta-models are built by

implementing Algorithm 1 in Section 3.2. A common maximum polynomial degree p1 = . . . =

pM = p is considered in all dimensions, with its optimal value selected by means of 3-fold CV.

The involved minimization problems are solved using the OLS method. In building the PCE

meta-models, a candidate basis is first determined by employing a hyperbolic truncation scheme

and then, a sparse expansion is obtained by evaluating the PCE coefficients with the hybrid LAR

method, as described in Section 3.3. The optimal combination of the maximum total polynomial

degree pt and the parameter q controlling the truncation, where q ∈ {0.25, 0.50, 0.75, 1.0}, is

selected as the one leading to the minimum corrected leave-one-out error (see Section 3.3).
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The PCE meta-models are built using the UQLab software Marelli and Sudret (2014, 2015); an

implementation of the algorithm for developing LRA in the same software in currently underway.

4.1 Beam deflection

In the first example, we perform reliability analysis of a simply supported beam subjected to

a concentrated load at the midspan. The beam has a rectangular cross-section of width b and

height h, length L and material Young’s modulus E. The magnitude of the concentrated load

is denoted by P . The aforementioned parameters are modeled as independent random variables

following the distributions listed in Table 1. The response quantity of interest is the midspan

deflection, which is obtained through basic structural mechanics as:

U =
P L3

4Ebh3
. (26)

Because U is a product of lognormal random variables, the response PDF can be herein ob-

tained analytically. In particular, U follows a lognormal distribution with parameters (mean

and standard deviation of the corresponding normal variable logU) given by:

λU = − log(4) + λP + 3λL − λE − λb − 3λh (27)

and

ζU =
(
ζ2P + 9ζ2L + ζ2E + ζ2b + 9ζ2h

)1/2
, (28)

where λXi
and ζXi

respectively denote the mean and standard deviation of logXi.

Table 1: Beam-deflection problem: Distributions of input variables.

Variable Distribution mean CoV

b [m] Lognormal 0.15 0.05
h [m] Lognormal 0.3 0.05
L [m] Lognormal 5 0.01

E [MPa] Lognormal 30,000 0.15
P [KN] Lognormal 10 0.20

We develop LRA and sparse PCE meta-models of U = M(P, L, E, b, h) using two EDs of

size N = 30 and N = 50. For both types of meta-models, we use Hermite polynomials to build

the basis functions, after an isoprobabilistic transformation of the input variables to standard

normal variables. In the LRA algorithm, we define the stopping criterion in the correction

step by setting Imax = 50 and ∆êrrmin = 10−8 (it was shown in Konakli and Sudret (2015a)

that in the considered problem, selecting a small value for ∆êrrmin is critical for the LRA

accuracy). Parameters and error estimates of the LRA and PCE meta-models are listed in
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Tables 2 and 3,respectively. In particular, Table 2 lists the rank R and polynomial degree p of

the LRA meta-model, the 3-fold CV error estimate êrrCV3 and the generalization error êrrG.

Table 3 lists the parameter q controlling the truncation scheme and the total polynomial degree

pt of the PCE meta-model, the corrected leave-one-out error êrr
∗
LOO and the generalization

error êrrG. The generalization errors are estimated using a validations set of size nval = 106

sampled with MCS. The ED-based error estimates êrrCV3 and êrr
∗
LOO are fairly close to the

corresponding generalization errors except for the LRA meta-model when N = 50. In the latter

case, êrrCV3 underestimates êrrG by approximately one order of magnitude; however, êrrG

is sufficiently small. Note that for each ED, the generalization error of LRA is 2-3 orders of

magnitude smaller than that of sparse PCE, which can be justified by the rank-one structure of

the herein considered model.

Table 2: Beam-deflection problem: Parameters and error estimates of LRA meta-models.

N R p êrrCV3 êrrG
30 1 2 1.21 · 10−4 2.32 · 10−4

50 1 3 3.14 · 10−7 2.63 · 10−6

Table 3: Beam-deflection problem: Parameters and error estimates of PCE meta-models.

N q pt êrr∗LOO êrrG
30 1 2 3.13 · 10−2 1.47 · 10−2

50 1 2 1.56 · 10−3 1.81 · 10−3

In Figure 1, we compare the analytical response PDF fU to the respective kernel density

estimates (KDEs) obtained with the LRA and sparse PCE meta-models. The KDEs are based

on the meta-model responses at a set of n = 107 points in the input space sampled with MCS. In

Figure 2, we show a similar comparison but using a logarithmic scale in the vertical axis in order

to highlight the behavior at the tails of the PDF. Clearly, for the considered EDs of relatively

small size, LRA yield superior estimates of the PDF as compared to PCE. It is remarkable that

with the LRA approach, an ED of size as small as N = 30 is sufficient to obtain an excellent

approximation of fU in the normal scale and a fairly good approximation of the tails.

In the sequel, we use the LRA and sparse PCE meta-models to estimate the failure probability

Pf = P(ulim − U ≤ 0) = P(U ≥ ulim), i.e. the probability that the beam deflection U exceeds a

prescribed threshold ulim. The estimates of the failure probability obtained with the meta-models

are compared to the analytical solution. By varying the deflection threshold ulim in the range

[4, 9] mm, the analytical failure probability varies in the range [6.60 ·10−2, 1.07 ·10−5]. The LRA-

and PCE-based estimates of the failure probabilities are obtained using a MCS approach with an

input sample of size n = 107. According to Eq. (7), this sample size would be sufficient to estimate

the smallest failure probability with a CoV< 0.10 if the meta-models were exact representations
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Figure 1: Beam-deflection problem: Probability density function of the response (normal scale).
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Figure 2: Beam-deflection problem: Probability density function of the response (log-scale).

of the actual model in Eq. (26). It is worth mentioning that the current implementation of PCE

and LRA allows one to sample 107 values in a matter of a few seconds using a standard desktop.

Figure 3 depicts the estimates of the failure probability for the two EDs of size N = 30 and

N = 50 together with the respective analytical solutions. For N = 30, the LRA-based estimates

are close to the analytical solutions, especially for the smaller deflection thresholds, whereas

the PCE-based estimates are overall highly inaccurate. For N = 50, the LRA-based estimates

are excellent in the entire range examined, whereas the PCE-based estimates remain poor for

the larger deflection thresholds. Figure 4 shows the corresponding ratios of the reliability index

estimates based on the LRA and sparse PCE meta-models, respectively denoted by βLRA and

βPCE, to the reliability index based on the analytical solution, denoted by β. For the considered

deflection thresholds, β varies in the range [1.51, 4.25]. Note that with the LRA approach, we

estimate the largest β with a relative error smaller than 2% using only N = 30 evaluations of

the actual model. The values of the failure probabilities and corresponding reliability indices
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depicted in Figures 3 and 4 are listed in the Appendix.
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Figure 3: Beam-deflection problem: Failure probabilities.
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Figure 4: Beam-deflection problem: Ratios of meta-model-based to reference reliability indices.

4.2 Truss deflection

In the second example, we conduct reliability analysis of the truss structure shown in Figure 5

with respect to the midspan deflection u. The random input comprises the six vertical loads,

denoted by P1, . . . , P6, the cross-sectional area and Young’s modulus of the horizontal bars,

respectively denoted by A1 and E1, and the cross-sectional area and Young’s modulus of the

vertical bars, respectively denoted by A2 and E2. The distributions of the input random variables

are listed in Table 4. The deflection is computed with an in-house finite-element analysis code

developed in the Matlab environment.

We develop LRA and sparse PCE meta-models of U =M(A1, A2, E1, E2, P1, . . . , P6) using

two EDs of size N = 50 and N = 100. For both types of meta-models, we use Hermite
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Figure 5: Truss structure.

Table 4: Truss-deflection problem: Distributions of input random variables.

Variable Distribution mean CoV

A1 [m] Lognormal 0.002 0.10
A2 [m] Lognormal 0.001 0.10

E1, E2 [MPa] Lognormal 210,000 0.10
P1, . . . , P6 [KN] Gumbel 50 0.15

polynomials to build the basis functions, after an isoprobabilistic transformation of the input

variables to standard normal variables. In the LRA algorithm, we define the stopping criterion

in the correction step by setting Imax = 50 and ∆êrrmin = 10−6. Parameters and error estimates

of the LRA and PCE meta-models are listed in Tables 5 and 6, respectively. The generalization

errors êrrG are estimated using a validation set of size nval = 106 sampled with MCS. For

N = 50, the generalization error of LRA is nearly an order of magnitude smaller than that of

sparse PCE. For N = 100, the generalization errors of the two types of meta-models are fairly

close.

In Figure 6, we compare the KDEs of the response PDF fU obtained with the LRA and

sparse PCE meta-models with that obtained with the actual model, which is considered the

reference solution for fU . All aforementioned KDEs are based on the evaluation of the different

models at a MCS sample of n = 106 points in the input space. In Figure 7, the same KDEs are

shown in the logarithmic scale in order to emphasize the behavior at the tails. When the LRA

approach is employed, the ED of size N = 50 is sufficient to approximate the response PDF with

high accuracy in its entire range including the tails. The PCE solution converges more slowly

to the reference solution. For N = 50, the discrepancy between the PCE-based KDE from the

reference one is obvious even in the normal scale; for N = 100, the PCE-based KDE remains

inaccurate for u > 0.11 m (99.1-th percentile).

Table 5: Truss-deflection problem: Parameters and error estimates of LRA meta-models.

N R p êrrCV3 êrrG
50 1 2 6.26 · 10−3 2.85 · 10−3

100 1 2 3.33 · 10−3 2.10 · 10−3

Next, we assess the comparative accuracy of LRA and sparse PCE in estimating the failure
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Table 6: Truss-deflection problem: Parameters and error estimates of PCE meta-models.

N q pt êrr∗LOO êrrG
50 0.25 2 4.25 · 10−2 1.24 · 10−2

100 1 2 3.50 · 10−3 2.56 · 10−3
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Figure 6: Truss-deflection problem: Probability density function of the response (normal scale).
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Figure 7: Truss-deflection problem: Probability density function of the response (log-scale).

probabilities Pf = P(ulim − U ≤ 0) = P(U ≥ ulim), with the deflection threshold ulim varying in

[10, 15] cm. The LRA- and PCE-based estimates are compared with respective reference values

obtained with (i) SORM and (ii) IS (see Section 2.2 for a brief description of these methods). In

the IS approach, we utilize the results of a previous analysis with FORM and sequentially add

samples of size NIS = 100 until the coefficient of variation of the estimated failure probability

becomes smaller than 0.10. The SORM- and IS-based failure probabilities are computed with

the software UQLab Marelli and Sudret (2014); Marelli et al. (2015). The IS-based estimates,

considered the reference solution, vary in the range [4.13 ·10−2, 3.90 ·10−6]. The LRA- and PCE-

19



based estimates are obtained using a MCS approach with an input sample of size n = 3 · 107,

which is sufficient to estimate the smallest failure probability with CoV < 0.10, i.e. with a

coefficient of variation similar to that of the reference IS solution. The results are shown in

Figure 8. It is remarkable that with the LRA approach, an ED of size as small as N = 50

proves sufficient to evaluate failure probabilities of the order of 10−6. The PCE-based estimates

converge to the reference solution with increasing N , but at a slower rate than LRA. Figure 9

shows the corresponding ratios of the LRA- and PCE-based reliability indices, βLRA and βPCE

respectively, to the reference reliability indices β, evaluated from the IS estimates of the failure

probabilities. The latter varies in the range [1.74, 4.47]. The relative difference between the

LRA-based and the reference reliability indices in all cases do not exceed 3%. The values of the

failure probabilities and corresponding reliability indices depicted in Figures 8 and 9 are listed

in the Appendix.
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Figure 8: Truss-deflection problem: Failure probabilities.
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Figure 9: Truss-deflection problem: Ratios of meta-model-based to reference reliability indices.
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It is worth noting that although the two types of meta-models obtained with N = 100

are characterized by similar generalization errors, use of LRA leads to significantly superior

estimates of the tail probabilities. This can be explained by examining the behavior of the meta-

models at the upper tail of the response distribution. In Figure 10, we plot the responses of the

LRA and sparse PCE meta-models, denoted by uLRA and uPCE respectively, versus the actual

model responses, denoted by u, at the points x of the validation set satisfying the condition

u =M(x) ≥ 10 cm. The figure shows that LRA clearly outperform PCE at the upper tail of the

response distribution, with the latter yielding obviously biased values. Because the considered

points of the validation set belong to the upper 5-th percentile of the response distribution, they

have a rather small contribution to the generalization error. The above observations become more

pronounced by considering smaller percentiles at the upper tail of the response distribution. In

order to capture the meta-model performance in particular regions of interest, we introduce the

conditional generalization error :

Êrr
C

G =
∥∥∥M−M̂

∥∥∥
2

XC
val

. (29)

The conditional generalization error is computed similarly to the generalization error in Eq. (3),

but by considering only a subset XC
val of the validation set Xval, defined by an appropriate

condition. The corresponding relative error is obtained after normalization with the empirical

variance of YC
val, which denotes the set of model responses at XC

val. In reliability analysis, we are

interested in conditional errors evaluated at subsets of the validation set defined as:

XC
val = {x ∈ Xval : u =M(x) ≥ ulim}. (30)

In Table 7, we list the relative conditional generalization errors of the LRA and sparse PCE meta-

models obtained with N = 100, considering the same values of ulim as in the above reliability

analysis. These errors are significantly smaller for LRA than for PCE (about one order of

magnitude smaller for the larger response thresholds), which is consistent with Figure 10 and

with the results of the reliability analysis.

Table 7: Truss-deflection problem: Relative conditional generalization errors of the LRA and PCE
meta-models obtained with N = 100 for different response thresholds.

ulim [cm] LRA PCE

10 2.89 · 10−2 8.68 · 10−2

11 5.70 · 10−2 2.58 · 10−1

12 1.04 · 10−1 6.45 · 10−1

13 2.00 · 10−1 1.45 · 100

14 3.94 · 10−1 3.55 · 100

15 2.67 · 100 2.62 · 101
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Figure 10: Truss-deflection problem: Meta-model versus actual model responses at a subset of the
validation set corresponding to the upper tail of the response distribution.

To further highlight the efficiency of the LRA meta-modeling approach, in Table 8, we list

the number of evaluations of the actual (finite-element) model required by SORM and IS to

compute the failure probability for each threshold. The given number for IS includes the model

evaluations required to obtain the FORM estimate. To limit the number of model evaluations in

the sequential analyses performed for the increasing thresholds, we start a new FORM analysis

from the previous design point. Note that by using the LRA meta-model, we can obtain Pf

values similar to those computed with SORM and IS, while relying on a much smaller number

of model evaluations. We underline that once a meta-model is built, the failure probability for

any threshold can be estimated without any additional model evaluations, whereas a new set of

model evaluations for each threshold is required by the FORM, SORM and IS techniques.

Table 8: Truss-deflection problem: Number of model evaluations required in the computation of
failure probabilities with SORM and IS.

ulim [cm] SORM IS

10 387 475
11 285 473
12 297 585
13 309 597
14 321 709
15 333 921

4.3 Heat conduction with spatially varying diffusion coefficient

The present example, inspired by Nouy (2010), concerns two-dimensional stationary heat-conduction

defined on the square domain D = (−0.5, 0.5) m× (0.5, 0.5) m shown in Figure 11. The temper-
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ature field T (z), z ∈ D, is described by the partial differential equation:

−∇(κ(z)∇T (z)) = QIA(z), (31)

with boundary conditions T = 0 on the top boundary and∇T ·n = 0 on the left, right and bottom

boundaries, where n denotes the vector normal to the boundary. In Eq. (31), Q = 2 ·103 W/m3,

A = (0.2, 0.3) m×(0.2, 0.3) m is a square domain within D (see Figure 11) and IA is the indicator

function equal to 1 if z ∈ A and 0 otherwise. The diffusion coefficient κ(z) is a lognormal random

field defined as:

κ(z) = exp[aκ + bκg(z)], (32)

where g(z) denotes a standard Gaussian random field with autocorrelation function:

ρ(z, z′) = exp (−‖z − z′‖2/`2). (33)

In Eq. (32), the parameters aκ and bκ are such that the mean and standard deviation of κ are

µκ = 1 W/C ·m and σκ = 0.3 W/C ·m, respectively, while in Eq. (33), ` = 0.2 m.

To solve Eq. (31), the Gaussian random field g(z) in Eq. (32) is first discretized using

the expansion optimal linear estimation (EOLE) method Li and Der Kiureghian (1993). Let

{ζ1, . . . , ζn} denote the points of an appropriately defined grid in D. By retaining the first M

terms in the EOLE series, g(z) is approximated by:

ĝ(z) =

M∑

i=1

ξi√
li
φT
i Czζ(z), (34)

where {ξ1, . . . , ξM} are independent standard normal variables; Czζ is a vector with elements

C
(k)
zζ = ρ(z, ζk) for k = 1, . . . , n; and (li,φi) are the eigenvalues and eigenvectors of the corre-

lation matrix Cζζ with elements C
(k,l)
ζζ = ρ(ζk, ζl) for k, l = 1, . . . , n. In Sudret and Der Ki-

ureghian (2000), it is recommended that for a square-exponential autocorrelation function, the

size of the element in the EOLE grid must be 1/2− 1/3 of `. Accordingly, in the present numer-

ical application, we use a square grid with element size 0.01 m, thus comprising n = 121 points.

The number of terms in the EOLE series is determined according to the rule:

M∑

i=1

li/
n∑

i=1

li ≥ 0.99, (35)

herein leading to M = 53. The shapes of the first 20 basis functions {φTi Czζ(z), i = 1, . . . , 20}
are shown in Figure 12.

The response quantity of interest is the average temperature in the square domain B =

23



(−0.3,−0.2) m× (−0.3,−0.2) m (see Figure 11), denoted by T̃ :

T̃ =
1

|B|

∫

z∈B
T (z)dz. (36)

For a given realization of {ξ1, . . . , ξM}, the “exact” model response is obtained with an in-house

finite-element analysis code developed in the Matlab environment. The employed finite-element

discretization in 16,000 triangular T3 elements is depicted in Figure 11; this discretization is

obtained using software Gmsh Geuzaine and Remacle (2009). Figure 13 shows the temperature

field T (z) for two example realizations of the conductivity random field.
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Figure 11: Heat-conduction problem: Domain and boundary conditions (left); finite-element mesh
(right).

We develop LRA and sparse PCE meta-models of T̃ = M(ξ1, , . . . , , ξ53) using EDs of size

varying from 50 to 2, 000. Because the random input herein comprises standard normal variables,

we build the basis functions by relying on the associated family of Hermite polynomials. In the

LRA algorithm, we define the stopping criterion in the correction step by setting Imax = 50

and ∆êrrmin = 10−6. Parameters and error estimates of the resulting LRA and PCE meta-

models are listed in Tables 9 and 10, respectively. The generalization errors êrrG are estimated

using a validation set of size nval = 104 sampled with MCS. The two types of meta-models

are characterized by generalization errors of the same order of magnitude when a certain ED is

considered, except for N = 2, 000. Note that the LRA meta-models exhibit smaller êrrG than

sparse PCE only when N ≤ 200. For both types of meta-models, the ED-based error estimates

are well approximated by the respective generalization errors, particularly for the larger EDs.

We first compare the KDEs of the response PDF fT̃ obtained with the LRA and sparse

PCE meta-models with that obtained with the actual model, which is considered the reference
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Figure 12: Heat-conduction problem: Shapes of the first 20 basis functions in the EOLE discretiza-
tion (from left-top to bottom-right row-wise).

Figure 13: Heat-conduction problem: Example realizations of the temperature field.

Table 9: Heat-conduction problem: Parameters and error estimates of LRA meta-models.

N R p êrrCV3 êrrG
50 3 1 6.51 · 10−2 1.08 · 10−1

100 1 1 3.56 · 10−2 2.46 · 10−2

200 1 1 1.79 · 10−2 1.38 · 10−2

500 1 2 1.13 · 10−2 9.68 · 10−3

1,000 1 2 8.40 · 10−3 8.19 · 10−3

2,000 1 2 7.81 · 10−3 7.72 · 10−3

solution for fT̃ . All aforementioned KDEs are based on the evaluation of the different models

at a MCS sample of n = 104 points in the input space. In Figure 14, we depict the KDEs for

the cases with N = 200 and N = 500; by using a logarithmic scale in Figure 15, we emphasize
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Table 10: Heat-conduction problem: Parameters and error estimates of PCE meta-models.

N q pt êrr∗LOO êrrG
50 0.25 2 1.71 · 10−1 2.53 · 10−1

100 0.25 1 3.69 · 10−2 3.89 · 10−2

200 0.25 3 4.08 · 10−2 2.58 · 10−2

500 0.50 5 8.36 · 10−3 9.39 · 10−3

1,000 0.75 3 2.65 · 10−3 2.19 · 10−3

2,000 0.75 3 1.22 · 10−3 9.58 · 10−4

the behavior at the tails of the PDF. With only N = 200, the LRA approach yields a good

approximation of the reference PDF in both the normal and the logarithmic scales, which is

clearly superior to the PCE approximation. For N = 500, the PCE estimate becomes fairly

accurate, except for the upper tail of the PDF. We underline that by using the meta-models, we

can easily sample larger sets of responses and thus obtain KDEs with smooth tails; for instance,

the current implementation of PCE and LRA allows sampling 106 values in only a few seconds

with a standard desktop. On the other hand, obtaining such large sets of responses by using the

actual finite-element model requires prohibitively high computational times (a single evaluation

takes approximately 16 sec). We herein consider the same set comprising n = 104 points for the

evaluation of all KDEs for the sake of comparison.
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Figure 14: Heat-conduction problem: Probability density function of the response (normal scale).

Next, we assess the accuracy of the LRA and sparse PCE meta-models in estimating tail prob-

abilities of the form Pf = P(t̃lim − T̃ ≤ 0) = P(T̃ ≥ t̃lim) for the thresholds t̃lim ∈ {6.0, 6.5} ◦C.

The reference failure probabilities are obtained with a MCS approach using n = 104 evalua-

tions of the actual model, which leads to Pf = 4.53 · 10−2 (β = 1.69) for t̃lim = 6.0 ◦C and

Pf = 1.43 · 10−2 (β = 2.19) for t̃lim = 6.5 ◦C; the CoVs of these estimates are < 0.10. The same

input sample is used to estimate the failure probabilities with the two types of meta-models. Fig-
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Figure 15: Heat-conduction problem: Probability density function of the response (log-scale).

ure 16 shows the ratios of the reliability indices βLRA and βPCE, based on the LRA and sparse

PCE meta-models, to the reference reliability index β versus the ED size. It is remarkable that

with an ED of size as small as N = 50, βLRA approximates β with a relative error < 5% for both

thresholds, whereas for N ≥ 500, this error becomes nearly zero. Obviously, the convergence of

βPCE to β with increasing N is much slower. The values of the LRA- and PCE-based reliability

indices and respective failure probabilities for the cases with N = 500 and N = 2, 000 are listed

in the Appendix.
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Figure 16: Heat-conduction problem: Ratios of meta-model-based to reference reliability indices.

The above analysis demonstrates that although sparse PCE are characterized by smaller

generalization errors for N ≥ 500, the LRA-based estimates of the tail probabilities remain

superior. This is because, contrary to PCE, the LRA responses tend to be unbiased at the

tails, even in cases when they exhibit a larger dispersion around the actual responses than

the PCE ones. This is illustrated in Figure 17 for the case with N = 1, 000. This figure
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depicts the responses of the LRA and sparse PCE meta-models, denoted by t̃LRA and t̃PCE

respectively, versus the actual model responses, denoted by t̃, at the points x of the validation

set satisfying the condition t̃ =M(x) ≥ 5.0 ◦C (27.7-th upper percentile). The LRA responses

are characterized by an overall larger dispersion around the actual model responses, which leads

to a larger generalization error. However, the LRA responses tend to be unbiased, whereas

PCE systematically underestimate the actual model responses at the upper tail. In this case,

the conditional generalization errors evaluated at XC
val = {x ∈ Xval : t̃ = M(x) ≥ t̃lim} for

t̃lim ∈ {6.0, 6.5} ◦C (the same thresholds considered in the reliability analysis) remain larger

for LRA. By accounting only for the absolute differences between the estimated responses from

the actual ones and disregarding their signs, the generalization errors do not reflect herein the

superior performance of LRA over PCE in the estimation of tail probabilities.

5 6 7 8
5

5.5

6

6.5

7

7.5

8

8.5

t̃ [◦C]

t̃
L
R
A
[◦
C
]

N=1000

5 6 7 8
5

5.5

6

6.5

7

7.5

8

8.5

t̃ [◦C]

t̃
P
C
E
[◦
C
]

N=1000

Figure 17: Heat-conduction problem: Meta-model versus actual model responses at a subset of the
validation set corresponding to the upper tail of the response distribution.

As mentioned earlier, by using the meta-models, we can easily sample larger sets of responses

and thus, estimate lower failure probabilities than the above. In Figure 18, we plot the LRA-

and PCE-based estimates of Pf versus the ED size for t̃lim ∈ {8.0, 8.5} ◦C. A MCS sample of

size n = 2 · 106 is used in order to achieve a CoV< 0.10. For both temperature thresholds, the

LRA estimates practically reach convergence at N = 500; the corresponding failure probabilities

are Pf = 3.22 · 10−4 for t̃lim = 8.0 ◦C and Pf = 7.35 · 10−5 for t̃lim = 8.5 ◦C. The PCE estimate

appears to converge to a similar value with increasing ED size, but at a much slower rate. It

is remarkable that an ED of size as small as N = 50 is sufficient to obtain a reasonable prelim-

inary estimate of the failure probability with LRA even for the higher temperature threshold,

whereas at least N = 500 points are required to obtain such an estimate with sparse PCE. The

values of the LRA- and PCE-based failure probabilities and respective reliability indices for the

cases with N = 500 and N = 2, 000 are listed in the Appendix. We emphasize that for the
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considered thresholds, reference solutions that rely on the evaluation of the actual finite-element

model cannot be obtained at an affordable computational time. Note that because of the high

dimensionality of the problem, the typically low-cost FORM and SORM approaches are herein

inefficient.
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Figure 18: Heat-conduction problem: Failure probabilities.

4.4 Frame displacement

In the last example, we consider the frame structure shown in Figure 19, also studied in Liu

and Der Kiureghian (1991); Blatman and Sudret (2010). We conduct reliability analysis with

respect to the horizontal displacement u at the top right corner of the top floor under the

depicted horizontal loads acting at the floor levels. The random input comprises the load values

P1, P2 and P3, the Young’s moduli of the column and beam elements, respectively denoted by

EC and EB , the moments of inertia of the column and beam elements, respectively denoted

by IBi
and ICi

, i = 1, . . . , 4, and the cross-sectional areas of the column and beam elements,

respectively denoted by IBi
and ICi

, i = 1, . . . , 4. The distributions of the aforementioned

variables are listed in Table 11. Contrary to the previous examples where the input variables were

independent, the input of the herein considered model has a dependence structure described by

means of a Gaussian copula (for further information on the modeling of probabilistic dependence

with copulas, the interested reader is referred to Nelsen (2006)). The non-zero elements of the

associated linear correlation matrix are defined as follows: the correlation coefficient between the

two Young’s moduli is ρEC ,EB
= 0.90; the correlation coefficient between the cross-sectional area

Ai and the moment of inertia Ii of a certain element i is ρAi,Ii = 0.95; the correlation coefficient

between the geometric properties of two distinct elements i and j are ρAi,Ij = ρIi,Ij = ρAi,Aj
=

0.13. In the original example, the above values represent the corresponding linear correlation

coefficients in the standard normal space; however, Blatman and Sudret Blatman and Sudret
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(2010) note that the differences between the two are insignificant. For a given realization of

the input random vector, the frame displacement is computed with an in-house finite-element

analysis code developed in the Matlab environment.
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Figure 19: Frame structure.

We develop LRA and sparse PCE meta-models ofX = {P1, P2, P3, EC , EB , IC1 , . . . , IB4 , AC1 , . . . , AB4}
using two EDs of size N = 500 and N = 1, 000. For both types of meta-models, we use Hermite

polynomials to build the basis functions, after an isoprobabilistic transformation of the input

variables to independent standard normal variables. In the LRA algorithm, we define the stop-

ping criterion in the correction step by setting Imax = 50 and ∆êrrmin = 10−6. Parameters and

error estimates of the LRA and PCE meta-models are listed in Tables 12 and 13, respectively.

The generalization errors êrrG are estimated using a validation set of size nval = 106 sampled

with MCS. For N = 500, the two types of meta-models exhibit similar generalization errors,

while for N = 1, 000, the PCE error is slightly smaller. Note that the generalization errors are

approximated fairly well by the corresponding ED-based error estimates.

In Figure 20, we assess the accuracy of the LRA and sparse PCE meta-models in estimating

the failure probability Pf = P(ulim − U ≤ 0) = P(U ≥ ulim), with the displacement threshold

ulim varying in the range [3, 8] cm. All failure probabilities are herein computed with the IS

technique. The reference values Pf are obtained by employing IS in conjunction with the actual

finite-element model; the LRA and PCE values are computed with exactly the same algorithm

but using the respective meta-models in lieu of the original model. As in the truss-deflection

problem, the auxiliary PDF in IS is defined in terms of the design point indicated by a previous

FORM analysis. Samples of size NIS = 1, 000 are then sequentially added until the coefficient
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Table 11: Frame-displacement problem: Distributions of input random variables.

Variable Distribution Mean Standard deviation

P1 [KN] Lognormal 133.45 40.04
P2 [KN] Lognormal 88.97 35.59
P3 [KN] Lognormal 71.17 28.47

EC [KN/m2] Truncated Gaussian over [0,∞) 2.3796 · 107 1.9152 · 106

EB [KN/m2] Truncated Gaussian over [0,∞) 2.1738 · 107 1.9152 · 106

IC1 [m4] Truncated Gaussian over [0,∞) 8.1344 · 10−3 1.0834 · 10−3

IC2 [m4] Truncated Gaussian over [0,∞) 1.1509 · 10−2 1.2980 · 10−3

IC3 [m4] Truncated Gaussian over [0,∞) 2.1375 · 10−2 2.5961e− 03
IC4 [m4] Truncated Gaussian over [0,∞) 2.5961 · 10−2 3.0288 · 10−3

IB1 [m4] Truncated Gaussian over [0,∞) 1.0811 · 10−2 2.5961 · 10−3

IB2 [m4] Truncated Gaussian over [0,∞) 1.4105 · 10−2 3.4615 · 10−3

IB3 [m4] Truncated Gaussian over [0,∞) 2.3279 · 10−2 5.6249 · 10−3

IB4 [m4] Truncated Gaussian over [0,∞) 2.5961 · 10−2 6.4902 · 10−3

AC1 [m2] Truncated Gaussian over [0,∞) 3.1256 · 10−1 5.5815 · 10−2

AC2 [m2] Truncated Gaussian over [0,∞) 3.7210 · 10−1 7.4420 · 10−2

AC3 [m2] Truncated Gaussian over [0,∞) 5.0606 · 10−1 9.3025 · 10−2

AC4 [m2] Truncated Gaussian over [0,∞) 5.5815 · 10−1 1.1163 · 10−1

AB1 [m2] Truncated Gaussian over [0,∞) 2.5302 · 10−1 9.3025 · 10−2

AB2 [m2] Truncated Gaussian over [0,∞) 2.9117 · 10−1 1.0232 · 10−1

AB3 [m2] Truncated Gaussian over [0,∞) 3.7303 · 10−1 1.2093 · 10−1

AB4 [m2] Truncated Gaussian over [0,∞) 4.1860 · 10−1 1.9537 · 10−1

Table 12: Frame-displacement problem: Parameters and error estimates of LRA meta-models.

N R p êrrCV3 êrrG
500 1 3 2.93 · 10−3 3.35 · 10−3

1,000 1 3 2.73 · 10−3 3.19 · 10−3

Table 13: Frame-displacement problem: Parameters and error estimates of PCE meta-models.

N q pt êrr∗LOO êrrG
500 0.50 7 1.67 · 10−3 3.06 · 10−3

1,000 1 3 9.37 · 10−4 1.42 · 10−3

of variation of the estimated probability becomes smaller than 0.01. Values of the so-obtained

reference failure probability vary in the range [8.72·10−2, 7.38·10−6]; for the largest displacement

thresholds, these tend to be underestimated when the actual model is replaced by the meta-

models. The LRA estimates are characterized by higher accuracy than the PCE ones and

remain within the order of magnitude of the reference value, even for the smallest ED and the

largest displacement threshold considered. Note again the superior performance of LRA in the

prediction of extreme responses, despite the smaller generalization error of PCE. Figure 21 shows

the corresponding ratios of the reliability indices βLRA and βPCE, based on the LRA and sparse
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PCE meta-models, to the reliability index β, obtained in terms of the reference Pf . The latter

varies in the range [1.36, 4.33]. When the LRA approach is employed, the relative error in β

remains smaller than 5% for N = 500 and smaller than 4% for N = 1, 000. The PCE errors are

slightly higher; for the largest displacement threshold, they exceed 10% and 5% when N = 500

and N = 1, 000, respectively. The values of the failure probabilities and corresponding reliability

indices depicted in Figures 20 and 21 are listed in the Appendix.
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Figure 20: Frame-displacement problem: Failure probabilities.
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Figure 21: Frame-displacement problem: Ratios of meta-model-based to reference reliability indices.

To highlight the computational gain achieved by using a meta-modeling approach, in Table 14,

we list the number of evaluations of the actual model (for each threshold) required to compute

the reference failure probability. The given numbers include the model evaluations used to

obtain the FORM estimate; as in the truss-deflection problem, the FORM analysis for each

threshold, except for the smallest, is initiated from the design point corresponding to the previous

threshold. The total computational cost of the reference solution comprises the sum of the listed
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model evaluations for all considered thresholds. We underline that this cost can increase fast

with decreasing target coefficient of variation (note the orders-of-magnitude larger number of

model evaluations in the present example, requiring CoV< 0.01, as compared to that in the

truss-deflection problem, requiring CoV< 0.10). Conversely, when the analysis relies on the

meta-models, IS is essentially costless, independently of the target coefficient of variation, and

the computational effort is confined to the evaluations of the actual model at the ED. As seen

above, LRA herein provides an estimate of a reliability index higher than 4 with an error smaller

than 5% based on an ED as small as N = 500.

Table 14: Frame-displacement problem: Number of model evaluations required in the computation
of the reference failure probabilities.

ulim [cm] IS

3 18,340
4 29,116
5 41,162
6 58,185
7 79,231
8 132,300

5 CONCLUSIONS

Reliability analysis faces challenges in cases when the systems under consideration are repre-

sented by complex high-dimensional computational models. In this paper, we demonstrate that

meta-models belonging to the class of canonical low-rank approximations (LRA) can provide

an accurate representation of the probability density function (PDF) of the model response at

the tails, thus leading to efficient estimation of the small exceedence probabilities required in

reliability analysis. By replacing a complex model by a meta-model that possesses similar sta-

tistical properties, evaluation of a response quantity of interest becomes essentially costless from

a computational viewpoint. The LRA approach can be particularly efficient in high-dimensional

problems because: (i) the number of unknowns grows only linearly with the input dimension

and (ii) their construction relies on a series of least-square minimization problems of small size

that is independent of the input dimension.

In this paper, canonical LRA developed with polynomial bases are of interest because of

the simplicity and versatility characterizing the use of polynomial functions. The formulation

and construction of such LRA meta-models in a non-intrusive manner is detailed. Furthermore,

the links between canonical LRA and the popular meta-modeling technique of polynomial chaos

expansions (PCE) are explained. Canonical LRA are confronted to sparse PCE in reliability

applications involving a rank-one model (for which an analytical solution is available) and three
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finite-element models pertinent to structural mechanics and heat conduction. In all aforemen-

tioned applications, canonical LRA are found to outperform sparse PCE for cases when the size

of the experimental design is relatively small with respect to the input dimension. By providing

unbiased representations of the model responses at the tails, canonical LRA provide superior

estimates of small exceedence probabilities compared to sparse PCE, even in cases when the

latter exhibit smaller generalization errors. In the examined applications, failure probabilities of

the order of 10−5 are predicted with sufficient accuracy by canonical LRA based on 5M − 25M

evaluations of the original model, where M denotes the dimension of the random input. The

LRA approach is also found to outperform methods particularly targeted to reliability analysis

in terms of the required number of model evaluations. We underline that contrary to such meth-

ods, LRA provide a full probabilistic description of the model response, which can be used to

estimate any statistical measure of interest beyond the probabilities of exceedence.

Having introduced canonical LRA in reliability analysis and demonstrated its strong potential

for dealing with high dimensionality, we underline the need for further studies that will establish

the efficacy of the approach in diverse reliability applications. The construction and use of tensor

approximation of different formats, beyond the herein considered canonical formulation, is an

active research topic in the field of uncertainty quantification. We hope that the present study

will motivate further investigations into the capacities of such meta-models to accurately predict

extreme responses of high-dimensional models, thus opening new paths to the risk assessment

of complex systems.
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methods for static input–output models. Simul. Model. Pract. Th. 49, 287–304.

Najm, H. N., B. J. Debusschere, Y. M. Marzouk, S. Widmer, and O. Le Mâıtre (2009). Uncer-
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Appendix

Table A1: Beam-deflection problem: Failure probabilities (see Figure 3).

ulim [mm]
Analytical LRA PCE

N = 30 N = 50 N = 30 N = 50

4 6.60 · 10−2 6.56 · 10−2 6.57 · 10−2 5.67 · 10−2 6.37 · 10−2

5 1.19 · 10−2 1.15 · 10−2 1.18 · 10−2 5.94 · 10−3 9.23 · 10−3

6 2.00 · 10−3 1.81 · 10−3 1.96 · 10−3 4.00 · 10−4 1.00 · 10−3

7 3.37 · 10−4 2.80 · 10−4 3.25 · 10−4 2.07 · 10−5 9.08 · 10−5

8 5.86 · 10−5 4.57 · 10−5 5.57 · 10−5 5.00 · 10−7 6.70 · 10−6

9 1.07 · 10−5 7.90 · 10−6 1.01 · 10−5 - 3.00 · 10−7
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Table A2: Beam-deflection problem: Reliability indices (see Figure 4).

ulim [mm]
Analytical LRA PCE

N = 30 N = 50 N = 30 N = 50

4 1.51 1.51 1.51 1.58 1.52
5 2.26 2.27 2.26 2.52 2.36
6 2.88 2.91 2.88 3.35 3.09
7 3.40 3.45 3.41 4.10 3.74
8 3.85 3.91 3.86 4.89 4.35
9 4.25 4.32 4.26 - 4.99

Table A3: Truss-deflection problem: Failure probabilities (see Figure 8).

ulim [cm]
Reference LRA PCE

SORM IS N = 50 N = 100 N = 50 N = 100

10 4.47 · 10−2 4.13 · 10−2 4.35 · 10−2 4.23 · 10−2 3.17 · 10−2 3.83 · 10−2

11 9.28 · 10−3 9.86 · 10−3 8.88 · 10−3 8.47 · 10−3 3.66 · 10−3 6.45 · 10−3

12 1.63 · 10−3 1.34 · 10−3 1.52 · 10−3 1.41 · 10−3 2.58 · 10−4 8.19 · 10−4

13 2.57 · 10−4 2.14 · 10−4 2.28 · 10−4 2.09 · 10−4 1.20 · 10−5 8.03 · 10−5

14 3.77 · 10−5 3.46 · 10−5 3.23 · 10−5 2.73 · 10−5 4.00 · 10−7 6.03 · 10−6

15 5.31 · 10−6 3.90 · 10−6 4.73 · 10−6 3.10 · 10−6 - 4.33 · 10−7

Table A4: Truss-deflection problem: Reliability indices (see Figure 9).

ulim [cm]
Reference LRA PCE

SORM IS N = 50 N = 100 N = 50 N = 100

10 1.70 1.74 1.71 1.72 1.86 1.77
11 2.35 2.33 2.37 2.39 2.68 2.49
12 2.94 3.00 2.96 2.99 3.47 3.15
13 3.47 3.52 3.51 3.53 4.22 3.77
14 3.96 3.98 4.00 4.04 4.94 4.38
15 4.40 4.47 4.43 4.52 - 4.92

Table A5: Heat-conduction problem: Failure probabilities (see Figures 16 and 18).

t̃lim [◦C]
Reference LRA PCE

N = 500 N = 2, 000 N = 500 N = 2, 000

6 4.53 · 10−2 4.57 · 10−2 4.59 · 10−2 4.13 · 10−2 4.57 · 10−2

6.5 1.43 · 10−2 1.42 · 10−2 1.44 · 10−2 1.15 · 10−2 1.36 · 10−2

8 - 3.22 · 10−4 3.23 · 10−4 1.23 · 10−4 2.27 · 10−4

8.5 - 7.35 · 10−5 7.40 · 10−5 1.65 · 10−5 4.45 · 10−5

Table A6: Heat-conduction problem: Reliability indices (see Figures 16 and 18).

t̃lim [◦C]
Reference LRA PCE

N = 500 N = 2, 000 N = 500 N = 2, 000

6 1.69 1.69 1.69 1.74 1.69
6.5 2.19 2.19 2.19 2.27 2.21
8 - 3.41 3.41 3.67 3.51

8.5 - 3.80 3.79 4.15 3.92
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Table A7: Frame displacement: Failure probabilities (see Figure 20).

ulim
[cm]

Reference LRA PCE
N = 500 N = 1, 000 N = 500 N = 1, 000

3 8.72 · 10−2 8.51 · 10−2 8.69 · 10−2 8.54 · 10−2 8.75 · 10−2

4 1.15 · 10−2 1.10 · 10−2 1.12 · 10−2 1.04 · 10−2 1.08 · 10−2

5 1.53 · 10−3 1.32 · 10−3 1.35 · 10−3 1.07 · 10−3 1.22 · 10−3

6 2.27 · 10−4 1.61 · 10−4 1.70 · 10−4 1.04 · 10−4 1.31 · 10−4

7 3.78 · 10−5 2.10 · 10−5 2.32 · 10−5 9.16 · 10−6 1.45 · 10−5

8 7.38 · 10−6 2.94 · 10−6 3.32 · 10−6 7.36 · 10−7 1.58 · 10−6

Table A8: Frame displacement: Reliability indices (see Figure 21).

ulim
[cm]

Reference LRA PCE
N = 500 N = 1, 000 N = 500 N = 1, 000

3 1.36 1.37 1.36 1.37 1.36
4 2.27 2.29 2.28 2.31 2.30
5 2.96 3.01 3.00 3.07 3.03
6 3.51 3.60 3.58 3.71 3.65
7 3.96 4.10 4.07 4.28 4.18
8 4.33 4.53 4.51 4.82 4.66

41


