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Abstract

Frequency Response Functions (FRFs) are important for assessing the behavior of stochastic

linear dynamic systems. For large systems, their evaluations are time-consuming even for a single

simulation. In such cases, uncertainty quantification by crude Monte-Carlo (MC) simulation is

not feasible. In this paper, we propose the use of sparse adaptive Polynomial Chaos Expansions

(PCE) as a surrogate of the full model. To overcome known limitations of PCE when applied

to FRF simulation, we propose a frequency transformation strategy that maximizes the similarity

between FRFs prior to the calculation of the PCE surrogate. This strategy results in lower-order

PCEs for each frequency. Principal component analysis is then employed to reduce the number

of random outputs. The proposed approach is applied to two case studies: a simple 2-Degree Of

Freedom (DOF) system and a 6-DOF system with 16 random inputs. The accuracy assessment of

the results indicates that the proposed approach can predict single FRFs accurately. Besides, it

is shown that the first two moments of the FRFs obtained by the PCE converge to the reference

results faster than with the MC methods.

Keywords: Polynomial chaos expansions – Frequency response functions – Stochastic frequency-

transformation – Uncertainty quantification – Principal component analysis

1 Introduction

Interest towards working with large engineering systems is increasing recently, but long simulation

time is one of the main limiting factors. Although the development of the computational power of

modern computers has been very fast in recent years, increasing model complexity, more precise

description of model properties and more detailed representation of the system geometry still result

in considerable execution time and memory usage. Model reduction (Khorsand Vakilzadeh et al.,
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2012; Rahrovani et al., 2014), efficient simulation (Yaghoubi and Abrahamsson, 2014; Avitabile and

OCallahan, 2009; Liu et al., 2012) and parallel simulation methods (Yaghoubi et al., 2015; Tak and

Park, 2013) are different strategies to address this issue.

Consequently, uncertainty propagation in these systems cannot be carried out by classical ap-

proaches such as crude Monte-Carlo (MC) simulation. More advanced methods such as stochastic

model reduction (Amsallem and Farhat, 2011) or surrogate modeling (Frangos, Marzouk, Willcox,

and van Bloemen Waanders, Frangos et al.) are required to replace the computationally expensive

model with an approximation that can reproduce the essential features faster. Of interest here are

surrogate models. They can be created intrusively or non-intrusively. In intrusive approaches, the

equations of the system are modified such that one explicit function relates the stochastic prop-

erties of the system responses to the random inputs. The perturbation method (Schuëller and

Pradlwarter, 2009) is a classical tool used for this purpose but it is only accurate when the random

inputs have small Coefficients Of Variation (COV), say COV<5%. An alternative method is intru-

sive Polynomial Chaos Expansion (PCE) (Ghanem and Spanos, 2003). It was first introduced for

Gaussian input random variables (Wiener, 1938) and then extended to the other types of random

variables leading to generalized polynomial chaos (Xiu and Karniadakis, 2002; Soize and Ghanem,

2004).

In non-intrusive approaches, already existing deterministic codes are evaluated at several sample

points selected over the parameter space. This selection depends on the methods employed to

build the surrogate model, namely regression (Blatman and Sudret, 2010; Berveiller et al., 2006)

or projection methods (Gilli et al., 2013; Knio et al., 2001). Kriging (Fricker et al., 2011; Jones

et al., 1998) and non-intrusive PCE (Blatman and Sudret, 2011a) or combination thereof (Kersaudy

et al., 2015; Schöbi et al., 2015) are examples of the non-intrusive approaches. The major drawback

of PCE methods, both intrusive and non-intrusive, is the large number of unknown coefficients in

problems with large parameter spaces, which is referred to as the curse of dimensionality (Sudret,

2007). Sparse (Blatman and Sudret, 2008) and adaptive sparse (Blatman and Sudret, 2011b) PCE

have been developed to dramatically reduce the computational cost in this scenario.

To propagate and quantify the uncertainty in a Quantity of Interest (QoI) of a system, its

response should be monitored all over the parameter space. This response could be calculated

in time, frequency or modal domain. For dynamic systems, the frequency response is important

because it provides information over a frequency range with a clear physical interpretation. This

is the main reason of the recent focus on Frequency Response Functions (FRF) for uncertainty

quantification of dynamic systems and their surrogates (Fricker et al., 2011; Goller et al., 2011;

Kundu et al., 2014; Adhikari, 2011; Chatterjee et al., 2016).

Several attempts have been made to find a surrogate model for the FRF by using modal prop-

erties or random eigenvalue problems. Pichler et al. (2009) proposed a mode-based meta-model

for the frequency response functions of stochastic structural systems. Yu et al. (2011) used Her-

mite polynomials to solve the random eigenvalue problem and then employed modal assurance

criteria (MAC) to detect the phenomenon of modal intermixing. Manan and Cooper (2010) used

non-intrusive PCE to find the modal properties of a system and predict the bounds for stochastic

FRFs. They implemented the method on models with one or two parameters and COV ≤ 2%.
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Very few and recent papers addressed the direct implementation of PCE on the frequency re-

sponses of systems. Pagnacco et al. (2013) investigated the use of PCE for modeling multimodal

dynamic systems using the intrusive approach by studying a single degree of freedom (DOF) sys-

tem. They showed that the direct use of the polynomial chaos results in some spurious peaks and

proposed to use multi-element PCE to model the stochastic frequency response but, to the knowl-

edge of the authors, they did not publish anything on more complex systems yet. Jacquelin et al.

(2015b) studied a 2-DOF system to investigate the possibility of direct implementation of PCE for

the moments of the FRFs and they also reported the problem of spurious peaks. They showed that

the PCE converges slowly on the resonance parts. They accelerate the convergence of the first two

statistical moments by using Aitken’s method and its generalizations (Jacquelin et al., 2015a).

In general, there are two main difficulties to make the PCE surrogate model directly for the

FRFs: their non-smooth behavior over the frequency axis and the frequency shift of the eigenfre-

quencies due to uncertainties in the parameters. This results in very high-order PCEs even for the

FRFs obtained from cases with 1 or 2 DOFs. The main contribution of this work is to propose a

method that can solve both problems.

The proposed approach consists of two steps. First, the FRFs are transformed via a stochastic

frequency transformation such that their associated eigenfrequencies are aligned in the transformed

frequency axis, called scaled frequency. Then, PCE is performed on the scaled frequency axis.

The advantage of this procedure is the fact that after the transformation, the behavior of the

FRFs at each scaled frequency is smooth enough to be surrogated with low-order PCEs. However,

since PCE is made for each scaled frequency, this approach results in a very large number of random

outputs. To solve this issue, an efficient version of principal component analysis is employed.

Moreover, the problem of the curse of dimensionality is resolved here by means of adaptive sparse

PCEs.

The outline of the paper is as follows. In Section 2, the required equations for deriving the

FRFs of a system are presented. In Section 3, all appropriate mathematics for approximating a

model by PCE are presented. The main challenges for building PCEs for FRFs are elaborated and

the proposed solutions are presented. In Section 4, the method is applied to two case studies, a

simple case and a case with a relatively large number of input parameters.

2 Frequency response function (FRF)

Consider the spatially-discretized governing second-order equation of motion of a structure as

Mq̈ + V q̇ +Kq = f(t) (1)

where for an n-DOF system with nu system inputs and ny system outputs, q(t) ∈ Rn is the

displacement vector, f(t) is the external load vector which is governed by a Boolean transforma-

tion of stimuli vector f(t) = Puu(t); with u(t) ∈ Rnu . Real positive-definite symmetric matrices

M ,V ,K ∈ Rn×n are mass, damping and stiffness matrices, respectively. The state-space realiza-

tion of the equation of motion in Eq. (1) can be written as

3



ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (2)

where A ∈ R2n×2n, B ∈ R2n×nu , C ∈ Rny×2n, and D ∈ Rny×nu . xT (t) = [q(t)T , q̇T (t)] ∈ R2n is

the state vector, and y(t) ∈ Rny is the system output. A and B are related to mass, damping and

stiffness as follows

A =


 0 I

−M−1V −M−1K


 ,B =


 0

M−1P u


 . (3)

The output matrix C, which has application dependent elements, linearly maps the states to

the output y and D is the associated direct throughput matrix. The frequency response of the

model (2) can be written as

H(jω) = C(jωI −A)−1B +D, (4)

where H = [H1,H2, · · · ,Hnu×ny
]T ∈ C(ny×nu)×1,∀ω and j =

√
−1. (•)T stands for the transpose

of the matrix. It should be mentioned that the eigenvalues of A are the poles of the system. They

are complex values and their imaginary parts can be approximated as the frequencies, in rad/s, at

which the maximum amplitude occurs.

3 Methodology

3.1 Polynomial chaos expansions

Let M be a computational model with M -dimensional random inputs X={X1, X2, ..., XM}T and

a scalar output Y . Further, let us denote the joint probability distribution function (PDF) of the

random inputs by fX(x) defined in the probability space (Ω,F , P).

Assume that the system response Y =M(X) is a second-order random variable, i.e. E
[
Y 2
]
<

+∞ and therefore it belongs to the Hilbert space H = L 2
fX

(RM ,R) of fX -square integrable

functions of X with respect to the inner product:

E [ψ(X)φ(X)] =

∫

DX

ψ(x)φ(x)fX(x)dx (5)

where DX is the support of X. Further assume that the input variables are independent, i.e.

fX(x) =
∏M
i=1 fXi

(xi). Then the generalized polynomial chaos representation of Y reads (Xiu and

Karniadakis, 2002):

Y =
∑

α∈NM

ũαψα(X) (6)

in which ũα is a set of unknown deterministic coefficients, α = (α1, α2, ..., αM ) is a multi-index

set which indicates the polynomial degree of ψα(X) in each of the M input variables. ψαs are

multivariate orthonormal polynomials with respect to the joint PDF fX(x), i.e. :

E [ψα(X)ψβ(X)] =

∫

DX

ψα(x)ψβ(x)fX(x)dx = δαβ (7)
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where δαβ is the Kronecker delta. Since the input variables are assumed to be independent,

these multivariate polynomials can be constructed by a tensorization of univariate orthonormal

polynomials with respect to the marginal PDFs, i.e. ψα(X) =
∏M
i=1 ψ

(i)
αi (Xi). For instance, if

the inputs are standard normal or uniform variables, the corresponding univariate polynomials are

Hermite or Legendre polynomials, respectively.

In practice, the infinite series in Eq. (6) has to be truncated. Given a maximum polynomial

degree p, the standard truncation scheme includes all polynomials corresponding to the set AM,p =

{α ∈ NM : |α| ≤ p}, where |α| = ∑M
i=1 αi is the total degree of polynomial ψα. The cardinality

of the set AM,p =
(
M+p
p

)
= P increases rapidly by increasing the number of parameters M and the

order of polynomials p. However, it can be controlled with suitable truncation strategies such as

q-norm hyperbolic truncation (Blatman and Sudret, 2010), that drastically reduce the number of

unknowns when M is large.

The estimation of the vector of coefficient ũα can be done non-intrusively by projection (Ghanem

and Ghiocel, 1998; Ghiocel and Ghanem, 2002) or least square regression methods (Blatman and

Sudret, 2010; Berveiller et al., 2006). The latter is based on minimizing the truncation error ε via

least square as follows:

Y =M(X) =
∑

α∈AM,p

ũα ψα(X) + ε ≡ ŨT
Ψ(X) + ε (8)

This can be formulated as

ˆ̃U = arg minE
[(
Ũ

T
Ψ(X)−M(X)

)2]
. (9)

Let X = {x(1),x(2), ...,x(NED)} and Y = {y(1) =M(x(1)), y(2) =M(x(2)), ..., y(NED) =M(x(NED))}
be an experimental design with NED space-filling samples of X and the corresponding system re-

sponses, respectively. Then, the minimization problem (9) admits a closed form solution

ˆ̃U = (ΨTΨ)−1ΨTY , (10)

in which Ψ is the matrix containing the evaluations of the Hilbertian bases, that is Ψij =

ψαj
(x(i)), i = 1, 2, ..., NED, j = 1, 2, ..., P .

The accuracy of PCE will be improved by reducing the effect of over-fitting in least square

regression. This can be done by using sparse adaptive regression algorithms proposed in (Hastie

et al., 2007; Efron et al., 2004). In particular, the Least Angle Regression (LAR) algorithm has

been demonstrated to be effective in the context of PCE by Blatman and Sudret (2011a).

3.2 Vector-valued response

In the case of vector-valued response, i.e. Y ∈ RN , N > 1, the presented approach may be applied

componentwise. This can make the algorithm computationally cumbersome for models with large

number of random outputs. To decrease the computational cost, one can extract the main statistical

features of the vector random response by Principal Component Analysis (PCA). The concept has

been adapted to the context of PCE by Blatman and Sudret (2013).
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To perform sample-based PCA, let us rewrite the Y as the combination of its mean Ȳ and

covariance matrix as follows:

Y = Ȳ +
N∑

i=1

uiv
T
i (11)

where the vi’s are the eigenvectors of the covariance matrix:

COV (Y) = E
[
(Y − Ȳ)T(Y − Ȳ)

]
= [v1, ...,vN ]




l1 . . . 0

. . .

0 . . . lN







vT1
...

vTN




T

(12)

and the ui’s are vectors such that

ui = (Y − Ȳ)vi. (13)

One can approximate Y by the N̂ -term truncation:

Y = Ȳ +
N̂∑

i=1

uiv
T
i , N̂ � N. (14)

Since Ȳ and vTi are the mean and the eigenvectors of the system responses, respectively, they

are independent of the realization. Therefore, PCE can be applied directly on the N̂ � N auxiliary

variables ui. Besides, acknowledging the fact that the PCA is an invertible transform, the original

output can be retrieved directly from Eq. (14) for every new prediction of u.

3.2.1 Vector-valued data with extremely large output size

Assume Y ∈ RNED×N , has an extremely large N and N � NED. Then COV (Y) ∈ RN×N is

exceptionally large and solving the eigenvalue problem numerically may be unfeasible. To address

this issue, the following well-known theorem and the associated corollary is presented.

Theorem 1. (Singular value decomposition) Let A ∈ Rn×N , n < N and rank(A) = n then there

exist two orthogonal matrices, U and V and two diagonal matrices S and Σ such that A = USV T =

U


 Σ 0

0 0


V T in which U ∈ Rn×n, S ∈ Rn×N , Σ ∈ Rn×n and V ∈ RN×N . Furthermore, this

decomposition can be written as eigenvalue decomposition as AATU = UΣ and ATAV = V S.

Corollary 1. The nonzero eigenvalues of ATA and AAT are equal. Furthermore, U and V are

related to each other by

U = AV S−1 (15)

The proof of the theorem can be found in any matrix analysis book, e.g. Laub (2004) and the

corollary directly follows from the theorem.

Therefore, instead of the eigenvalue calculation of (Y− Ȳ)T(Y− Ȳ) ∈ RN×N , which may be an

extremely large matrix, one can consider (Y − Ȳ)(Y − Ȳ)T ∈ RNED×NED , which is much smaller.

The associated eigenvectors can be transformed to the ones in Eq. (14) through Eq. (15).
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3.3 Stochastic frequency transformation

In this section, the method of stochastic frequency transformation is developed to address the

challenge of frequency shift at eigenfrequencies due to uncertainty in the parameters. The idea

is basically to apply a transformation to the system responses to maximize their similarity before

building PCE, as first proposed by Mai and Sudret (2015). Here, the technique is extended and

adopted into the frequency domain to obtain PCEs of the FRFs.

To this end, the following algorithm is proposed. First, an experimental design X and the

corresponding model responses Y are evaluated. Each system response will be called a trajectory

in the remainder of this paper. Let the frequency range of interest be discretized to nω equidistant

frequencies Ωd = [ω1, ω2, ..., ωnω
]. Then, the required system responses are matrices H(Ωd) ∈

Cnuny×nω and F ∈ Rnuny×nsf . The matrix H(Ωd) is obtained by evaluating Eq. (4) at frequencies

Ωd. The matrix F consists of all the peak and valley frequencies of the system’s input-output

relations for one system realization, as follows:

F =




ω1 ωp1 ω1
m1

ωp2 . . . ωpnp−1 ω1
mnp−1

ωpnp
ωnω

ω1 ωp1 ω2
m1

ωp2 . . . ωpnp−1 ω2
mnp−1

ωpnp
ωnω

...
...

...
...

. . .
...

...
...

...

ω1 ωp1 ω
nu×ny
m1 ωp2 . . . ωpnp−1 ω

nu×ny
mnp−1 ωpnp

ωnω




=




F1

F2

...

Fnu×ny




(16)

in which np is the number of eigenvalues of the system. Furthermore, {ωpii = 1, 2, ..., np} are

the resonant frequencies and {ωlmi
i = 1, 2, ..., np − 1, l = 1, 2, ..., nu × ny} are frequencies between

each two consecutive resonant frequencies at which the minimum amplitude occurs. Throughout

the paper, these important frequencies, shown by red asterisks in Figure 1 for a typical frequency

response, will be referred to as selected frequencies. Their number nsf is assumed to be constant

across different realizations of the system inputs. {Fi, i = 1, 2, · · · , nu×ny} includes all the selected

frequencies for the ith input-output relation.

For the next step of the algorithm, let x(ref) be selected randomly among the sample points in

the ED to have its associated trajectory as the reference, i.e. :

Href = H(x(ref),Ωd), Fref = F(x(ref);ω).

Then, the other trajectories are transformed in the frequency axis so as to have the peaks and

valleys as close to the corresponding locations in the reference trajectory as possible i.e. :

T ki = T (k)
i (ω, ν

(k)
i ) = {ν(k)i = f(ω)|Fi(x(k); ν(k)) = Frefi } (17)

where i = 1, 2, · · · , nu×ny, k = 1, 2, · · · , NED and ν is the transformed frequency axis called scaled

frequency. The transform T ki consists of a continuous piecewise linear transform of the intervals

between the identified selected frequencies that align them to the corresponding ones of the reference

trajectory as follows,

T ki : ν
(k)
i,l = a(k)ωl + b(k) F (k)

i (j) ≤ ωl ≤ F (k)
i (j + 1) (18)
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where

a(k) =
Frefi (j)−Frefi (j + 1)

F (k)
i (j)−F (k)

i (j + 1)
,

b(k) =
Frefi (j)F (k)

i (j + 1)−Frefi (j + 1)F (k)
i (j + 1)

F (k)
i (j)−F (k)

i (j + 1)
,

j = 1, 2, · · · , nsf−1 and l = 1, 2, · · · , nω. This transformation results in the FRFs which are similar

to the reference one in the scaled frequency domain:

H̃i(x(k),N (k)
i ) = Hi(x(k),Ωd) ◦ T ki (19)

where the set N (k)
i = {ν(k)i,1 , ν

(k)
i,2 , · · · , ν

(k)
i,nω
} consists of the discretized scaled frequencies which are

non-equidistantly spread over the frequency range of interest.

Figures 2a and 2b illustrate the FRFs of a 2-DOF system versus frequency and scaled frequency,

respectively. An example of such a transform used for transforming the FRFs of a 2-DOF system

is presented in Figure 3.

One should notice that since N (k)
i contains the non-equidistant scaled frequencies, a final inter-

polation is required to obtain a common discretized scaled frequency N ref = {νref1 , νref2 , · · · , νrefnω
}

between the reference and all other trajectories. To reduce interpolation error in the system re-

sponse, small frequency steps should be selected. The proposed approach for preprocessing the

FRFs is summarized in Algorithm 1.

Algorithm 1 Data preprocessing: continuous piecewise-linear transformation

1: Input: X = {x(1),x(2), ...,x(NED)}
2: Href=H(x(r),Ωd), Fref = F(x(r);ω), for a random r ∈ [1, ..., NED]

3: for k = 1 to NED do

4: F(x(k);ω)=[F1(x
(k);ω)F2(x

(k);ω), · · · ,Fnu×ny(x(k);ω)]T using Eq. (16)

5: H(x(k); Ωd)=[H1(x
(k); Ωd),H2(x

(k); Ωd), · · · ,Hnu×ny(x(k); Ωd)]T using Eq. (4)

6: for i = 1 to nu × ny do

7: Evaluate T k
i using Eq. (18)

8: H̃i(x
(k),N (k)

i )=Hi(x
(k),Ωd) ◦ T k

i

9: H̃i(x
(k),N ref )=interpolate(H̃i(x

(k),N (k)
i ),N (k)

i ,N ref )

10: end for

11: H̃(x(k);N ref )=[H̃1(x
(k);N ref ), H̃2(x

(k);N ref ), · · · , H̃nu×ny(x(k);N ref )]T

12: end for

13: F={vect(F(x(1);ω)), vect(F(x(2);ω)), ..., vect(F(x(NED);ω))}T

14: H̃(N ref )= {vec(H̃(x(1),N ref )), vec(H̃(x(2),N ref )), ..., vec(H̃(x(NED),N ref ))}T,

15: Output: F, GR=real(H̃(N ref )), GI=imag(H̃(N ref ))

8
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(a) FRFs calculated at first system output
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(b) FRF calculated at second system output

Figure 1: FRFs of the 2-DOF system presented in Figure 4. The selected frequencies F and the

associated notations are illustrated with asterisks (∗).
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(a) FRFs before frequency transformation.
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(b) FRFs after frequency transformation.

Figure 2: Several realizations of the FRFs of the 2-DOF system at first system output.
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Figure 3: Continuous piecewise-linear function used to transform the FRFs in Figure 2a into Figure

2b

3.4 Polynomial chaos representation

The non-smooth behavior of the FRFs makes their surrogation by polynomials a problematic task.

To solve this issue, one PCE could be calculated for each scaled frequency. This means that

to compute PCEs for the FRFs, two sets of PCEs are required. The first set is to predict the

selected frequencies, collected in the matrix F (16), which are required for performing the stochastic

transformation as explained in Section 3.3. This matrix includes eigenfrequencies of the system,

therefore by obtaining this set of PCEs, the problem of random eigenvalue calculation is solved by

the use of PCE as a byproduct. This problem has been addressed in some recent works, e.g. Pichler

et al. (2012). Since the number of random outputs for this set is not very large, PCE can be applied

to each of the selected frequencies separately, i.e. for i = 1, 2, · · · , nu × ny and j = 1, 2, · · · × nsf

F̂i(j) =
∑

α∈AM,p

f iα(j)ψα(x). (20)

The second set of PCE is for the system response at each individual scaled frequency. To this

end, let H̃(N ref ) ∈ CNED×(nω×nu×ny), defined in Algorithm 1, be a matrix of trajectories at scaled

frequencies. Since the FRFs have complex-valued responses, whereas the PCEs are defined for

real-valued functions only1, separate PCEs need to be performed for real and imaginary parts of

the FRFs. Therefore, the matrix:

G = {GR,GI} = {real(H̃(N ref )), imag(H̃(N ref ))} ∈ RNED×(2×nω×nu×ny)

1Limited literature is available on the use of PCE for complex-valued functions, see e.g. Soize and Ghanem (2004).
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is the response matrix for which the PCE should be built.

The number of random outputs for this set, N = 2× nω × nu × ny, can be extremely large. As

discussed in Section 3.2, the PCEs are therefore applied directly to the principal components of G,

yielding:

ĜR
= ḠR

+
N ′∑

j=1

∑

α∈AM,p

(uRαψα(x))jv
RT

j , (21)

ĜI
= ḠI

+
N ′∑

j=1

∑

α∈AM,p

(uIαψα(x))jv
IT

j , (22)

where uRα and uIα are respectively the vectors of coefficients of the PCEs made for the real and

imaginary parts of the FRFs.

3.5 Surrogate response prediction

To predict the surrogate model response at a new sample point x(0), several steps need to be taken

to transform the PCE predictors in Eqs. (21) and (22) from the scaled frequency axis ν to the

original frequency axis ω. The matrices ĜR
and ĜI

are obtained by evaluating the second set of

PCEs in Eqs. (21) and (22), respectively. Then, the FRFs at the scaled frequencies can be obtained

at the new sample point by the inverse vectorization of ˆ̃H(N ref ) = ĜR
+ jĜI

where j =
√
−1. To

obtain the FRF at the original frequency ω the following transformation is used,

ˆ̃Hi(x(0),Ω
(0)
i ) = ˆ̃Hi(x(0),N ref ) ◦ (T 0

i )−1, i = 1, 2, · · · , nu × ny (23)

where T 0
i is obtained by evaluating Eq. (18) at F̂ (0)

= F̂(x(0);ω) which is the matrix of selected

frequencies at the new sample point x(0) evaluated by Eq. (20). Besides, Ω
(0)
i is a set of discretized

frequencies which are non-equidistantly spread over the frequency rage of interest. In order to

provide the frequency response at the desired frequencies Ωd, interpolation is inevitable. The

algorithm for predicting the system response at a new sample point is briefly presented in Algorithm

2.

4 Examples

4.1 Introduction

In this section, the proposed method will be applied to two case studies. The first one is a simple

2-DOF system to illustrate how the method works. The second one is a system with a relatively

large (16-dimensional), parameter space.

To assess the accuracy of the surrogate models quantitatively, two measures are defined. The

first one aims at measuring the relative difference between the selected frequencies:

∆ω =
|ωex − ωapprox|

ωex
× 100. (24)
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Algorithm 2 Predicting system responses

1: Input: x(0) 6= x(l), l = 1, 2, ..., NED and Href ,Fref , Ḡ and N ref

2: ĜR
= ĜR

(x(0),N ref ) using Eq. (21).

3: ĜI
= ĜI

(x(0),N ref ) using Eq. (22).

4:
ˆ̃H(x(0),N ref ) = ĜR

+jĜI

5: Construct ˆ̃H(x(0),N ref ) from ˆ̃H(x(0),N ref ) by inverse vectorization operation

6: for i = 1 to nu × ny do

7: Evaluate F̂0
i =F̂i(x

(0);ω) using Eq. (20)

8: Evaluate T 0
i using Eq. (18)

9: Ĥi(x
(0),Ω

(0)
i )= ˆ̃Hi(x

(0),N ref ) ◦ (T 0
i )−1

10: Ĥi(x
(0),Ωd)=interpolate(Ĥi(x

(0),Ω
(0)
i ),Ω

(0)
i ,Ωd)

11: end for

12: Output: Ĥ(Ωd)={Ĥ1(x
(0),Ωd), Ĥ2(x

(0),Ωd), · · · , Ĥnu×ny(x(0),Ωd)}

The second one aims at measuring the relative difference between vectorial data, such as one FRF

or the mean and standard deviation of several FRFs. This error is based on the root mean square

(rms) error of the logarithm of the vectors, defined as:

Error(•) =
rms(log(|(•)ex|)− log(|(•)approx)|)

rms(log(|(•)ex|)) × 100, (25)

in which (•) is the vector of interest. (·)ex and (·)approx represent results obtained by running

the true and surrogate models, respectively. For the mean and standard deviation of the data,

the reference results are obtained by evaluating the true model at 10,000 MC samples and the

approximations are calculated by the PCE surrogate at the same 10,000 points.

4.2 Simple 2-DOF system (Jacquelin et al., 2015b)

As the first example, the simple 2-DOF system shown in Figure 4 is selected to highlight the steps

of the proposed method. In this system, stiffness is assumed to be uncertain

k = k̄(1 + δkξ) (26)

where ξ is a standard normal random variable. Other properties of the system are listed in Table

1. The system has one input force f at mass 1, two physical outputs q1 and q2 and thus, two FRFs.

The FRFs of the system are obtained in the range of 10 to 35 Hz with a frequency step of 0.01 Hz,

as shown in Figure 1. The selected frequencies are also shown in the figure with red asterisks.
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Figure 4: 2-DOF system

Table 1: 2-DOF system’s charactristic

Characteristics m (kg) k̄ (Nm−1) c (Nm−1s−1) δk

Value 1 15000 1 5%

40 points are sampled in the parameter space using Latin Hypercube Sampling (LHS) to form

an Experimental Design (ED) X and the model is evaluated at these points to find the system

responses of interest, namely the FRFs, H, and the selected frequencies F .

Figure 2a shows the FRFs of the system evaluated at X . To find the transformed FRFs, i.e.

FRFs at scaled frequencies ν, one trajectory was selected randomly as the reference and the others

were scaled such that their peaks and valleys were at the same scaled frequencies as that of the

reference trajectory. The transformed FRFs and the corresponding continuous piecewise-linear

transformations are respectively shown in Figure 2b and Figure 3.

The next step is to find a suitable basis and the associated coefficients for the PCE. In this

case, since the random variable is Gaussian, the basis of the polynomial chaos consists of Hermite

polynomials. The LARS algorithm (Blatman and Sudret, 2011b) is employed here to calculated a

sparse PCE with adaptive degree.

The first set of expansion consists of 10 PCEs to surrogate the selected frequencies F , shown

in Figure 1 by red asterisks. As the second set of expansions, PCE is made for the dominant

components of G as explained in Section 3.2.1. To do so, the N̂ largest principal components are

selected such that the sum of their associated eigenvalues amounts to 99% of the sum of all the

eigenvalues, i.e.
∑N̂
i=1 λi = 0.99

∑N
i=1 λi in which λi’s are the eigenvalues of the covariance matrix

of either GR or GI. By this truncation, the number of random outputs is reduced from 2501 × 2 ×
2 to 6 components, namely 3 components for the real part and 3 components for the imaginary part.

The spectra of the eigenvalues of the covariance matrix of the GR and GI are displayed in Figure

5. All the PCEs used to make this surrogate model, including those for the selected frequencies

and those for the dominant components have orders between 3 and 8.
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Figure 5: Spectrum of the eigenvalues of the covariance matrix for the 2-DOF system; evaluated for

both real part GR and imaginary part GI

The efficiency of the proposed approach is assessed by comparing the prediction accuracy of the

surrogate model on a large reference validation set (10,000 samples calculated with the full model).

PCE estimate of the mean and standard deviation of the surrogate model are compared to their

MC estimators on ED of increasing size. The resulting convergence curves are given in Figure 6.

They indicate that the PCE converges faster to the reference results for the mean and standard

deviation. Their estimates are approximately two and one order of magnitude more accurate than

those from the MC estimators. In addition, one can conclude that 40 points are enough for the ED

in this example, since for larger sizes the accuracy does not improve significantly.

It is worth mentioning that the COV of the parameters and the level of damping are among the

criteria that can affect the size of the ED. Therefore, larger COV and lower levels of damping are

not obstacles for the proposed method provided a sufficiently large ED is used.
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# ED points
10 20 30 40 50 60 70 80 90 100

E
rr

or
(s

td
)(

%
)

10-2

10-1

100

101

1st output-PCE
2nd output-PCE
1st output-MC
2nd output-MC

(b) Convergence plot of the standard deviation of the FRFs

Figure 6: Convergence plot of the statistics of the FRFs obtained by the PCE (∗) and the true model

(×) with increasing ED size. The reference results were obtained by 10,000 MC simulations of the

true model.

The 10,000 model evaluations used to produce the convergence curves in Figure 6 are also used

to provide a detailed validation of the performance of the PCE surrogates on various quantities of

interests. The results are presented in the following figures. In Figure 7, the selected frequencies

obtained by the PCE are shown versus the true ones. The results show that the PCE model
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accurately predicts the selected frequencies. To assess this accuracy quantitatively, the error defined

in Eq. (24) is used for each selected frequency and their histograms are presented. The excellent

agreement shown in Figure 7 is confirmed by the error distribution in Figure 8.
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Figure 7: Selected frequencies predicted by the surrogate model versus by the true model. upper

row: eigenfrequencies, lower row: frequencies where minimum amplitude occurs, see matrix (16) for

notations.
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Figure 8: Error of the selected frequencies predicted by PCE surrogate model, evaluated by Eq. (24).

In Figure 9, the FRFs obtained by the true model and the surrogate model at all 10,000

validation points are depicted. Their associated means are also shown by black lines. The results

indicate accurate prediction of the FRFs. A quantitative accuracy analysis was also done by using

Eq. (25) and its histogram presented in Figure 10 confirms the high accuracy of the surrogate

model.

Another accuracy test is given by the comparison between the first two moments of the FRFs.

The mean and standard deviation of the trajectories obtained by the true model and the surrogate

model are compared in Figure 11 and 12, respectively. They reveal the accuracy of the proposed

surrogate model in predicting the first two moments of the FRFs.
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(a) First system output- True model (b) First system output- Surrogate model

(c) 2nd system output- True model (d) 2nd system output-Surrogate model

Figure 9: All the FRFs obtained by evaluating the true and the surrogate model at 10,000 MC samples.
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Figure 10: Error of the FRF predicted by PCE surrogate model, evaluated by Eq. (25).
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Figure 11: Mean of the FRFs evaluated over 10,000 sample points, by the true model (red) and by

the surrogate model (black).
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Figure 12: Standard deviation of the FRFs evaluated over 10,000 sample points, by the true model

(red) and by the surrogate model (black).

To show the feasibility of the proposed method to estimate the statistics of the FRFs, the results

obtained here are compared to their counterparts in two of the most recent works available in the

literature. The first study (Jacquelin et al., 2015a) directly uses high-order PCE for estimating the

first two moments of the FRF, whereas the second method (Jacquelin et al., 2015b) proposes to

use Aitken’s transformation in conjunction with PCEs. Both methods use PCEs of order 50 and

tend to produce spurious peaks around the resonance region. The use of Aitken’s transformation

slightly improves convergence. Their results for the mean and standard deviation are shown in

Figure 13 and Figure 14 respectively. For comparison, the results from our approach in Figure 11a

and Figure 12a are reproduced in Figure 13c and Figure 14c respectively, with a scaling similar to
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the other panels. They indicate that the stochastic frequency transformation approach proposed

here significantly improves the estimation accuracy of the PCE surrogate, as no spurious peaks are

visible in this case.
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(b) PCE with order 50 and Aitken’s transformation. Pro-

posed in Jacquelin et al. (2015b)

Frequency (Hz)
10 15 20 25 30 35

m
ea

n 
|F

R
F|

×10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
True model
Surrogate model

(c) The proposed method in this work. Sparse PCEs with
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Figure 13: Average of the FRFs at the first mass, evaluated by PCE: comparison between the proposed

method and state of the art methods. The red line is for the reference result and the black line is for

the surrogate models
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Figure 14: Standard deviation of the FRFs at the first mass, evaluated by PCE: comparison between

the proposed method and state of the art methods. The red line is for the reference result and the

black line is for the surrogate models

As far as individual comparison between the true and the predicted FRF are concerned, two

realizations were considered, namely one with a typical error, about 0.001%, and the one with

the maximum error, or about 2%. They are presented in Figures 15 and 16, respectively. They

indicate that even for the worst-case, the presented approach results in prediction of the FRFs with

excellent accuracy.
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Figure 15: Typical FRF prediction for a particular realization, true (in red) and predicted (in black)

FRF of the system
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Figure 16: Worst case FRF prediction among 10,000 sample points, true (in red) and predicted (in

black) FRF of the system.

4.3 6-DOF system: large parameter space

The second example is chosen to illustrate the application of the proposed method to a problem

with a relatively large parameter space. The system, shown in Figure 17, consists of 10 springs

and 6 masses which are modeled by random variables with lognormal distributions. Their mean

values are listed in Table 2. The uncertainty on the springs (resp. masses) has a COV = 10% (resp.

COV = 5%). The damping matrix is V = 0.01M̂ , where M̂ is the matrix of the mean value of

the system masses. The system has one input force at mass 6 and 6 system outputs, one for each

mass. The FRF of the system is evaluated at a frequency range from 1 to 25 rad/s with the step

of 0.01π rad/s.
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In this example, the ED consists of 1,000 points sampled from the parameter space using LHS.

The marginal distributions of the input vectors X consists of lognormal distributions. Therefore,

the chosen PCE basis consists of Hermite polynomials on the reduced variable Z = ln(X). Eq. (6)

thus, can be written as

Y =M(X) =
∑

α∈AM,p

ũα ψα(ln(X)).

The LARS algorithm has been employed to build sparse PCEs with adaptive degree for both

the selected frequencies and the principal components of the scaled FRF. For the second set of

PCEs, PCA has been performed and the dominant components are selected such that
∑N̂
i=1 λi =

0.999
∑N
i=1 λi. This truncation reduced the number of random outputs from 761 × 6 × 2 to 82

components. Since the dimension of the input parameter space is large, to reduce the unknown

coefficients of the PCEs and avoid the curse of dimensionality, a hyperbolic truncation with q-norm

of 0.7 was used before the LARS algorithm. Besides, only polynomials up to rank 2 were selected

here (i.e. polynomials that depend at most on 2 of the 16 parameters). It should be mentioned

that all the PCEs used for the surrogate model have eventually maximum degrees less than 10.

To start building PCEs, the basis should be selected. Since X ∼ LN (λ, ξ) to find suitable

basis, one isoprobabilistic transform is employed here as follows, Z = ln(X) ∼ N (λ, ξ), therefore,

the Hermite polynomials can be used as basis for Z, and Eq. (6) can be written as

Y =M(X) =
∑

α∈AM,p

ūα ψα(ln(X)).

In order to select a proper ED, the convergence of the mean and standard deviation of the FRFs

w.r.t the reference ones has been studied by enlarging the ED. They are shown in Figures 18 and 19,

respectively, for the mean and standard deviation at two outputs. The results for the other outputs

are presented in A. They indicate that the mean converges faster than when using Monte-Carlo

simulation but the standard deviations converges slower due to the error introduced by interpolation

and PCA. Besides, it can be inferred that 1,000 points are enough for the ED.Therefore, 1,000

sample points are selected from the parameter space using LHS.
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Figure 17: The 6-DOF system
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Table 2: The 6-DOF system’s variables

Variables mean Coeff. of variation (%)

Masses (Kg)

m1 50 5

m2 35 5

m3 12 5

m4 33 5

m5 100 5

m6 45 5

Stiffnesses (N/m)

k1 3000 10

k2 1725 10

k3 1200 10

k4 2200 10

k5 1320 10

k6 1330 10

k7 1500 10

k8 2625 10

k9 1800 10

k10 850 10

The efficiency of the proposed method is assessed by comparing the PCE estimates of the

first two moments of the surrogate model with the plain MC estimators on experimental designs

of increasing size. The reference validation set is obtained by 10,000 points sampled from the

parameter space by LHS at which the full model is evaluated. The results are respectively shown

in Figures 18 and 19 for the mean and standard deviation at two of the outputs. The results for

the other outputs are presented in A. They indicate that the convergence of the standard deviation

evaluated by the surrogate model is comparable with that of the MC simulations, however, the

mean converges faster. Besides, it can be inferred that 1,000 points are enough for the ED.
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Figure 18: Convergence plot of the mean of the FRFs at 2 outputs obtained by the PCE (black ∗)
and the true model (red ×) by enlarging the experimental design. The reference results were obtained

by 10,000 Monte-Carlo simulation of the true model.
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Figure 19: Convergence plot of the standard deviation of the FRFs at 2 outputs obtained by the PCE

(black ∗) and the true model (red ×) by enlarging the experimental design. The reference results were

obtained by 10,000 Monte-Carlo simulation of the true model.

In order to assess the accuracy of the surrogate model in estimating various quantities of inter-

ests, the same 10,000 points used as the reference validation set to study the convergence are used

here. Figure 20 illustrates some of the predicted selected frequencies (only eigenfrequencies) versus

the true ones so that the accuracy of the surrogate model in this step can be inferred. While the

overall accuracy is very good for all frequencies, it tends to degrade somewhat at higher frequencies.

Besides, at all the validation points the FRFs are calculated by both the true model and the

surrogate model. Plots of the individual FRFs are reported in B. In order to assess the error
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quantitatively, each response of the surrogate model has been compared with the corresponding

one of the true model in the root-mean-square sense. This error is evaluated using Eq. (25) and the

corresponding results are presented in Figure 21. They indicate the high accuracy of the proposed

surrogate model in predicting the FRFs.

As an individual comparison between the true FRFs and predicted by the surrogate model, two

cases are considered: one case with an average error, about 5%, and one with the maximum overall

error, about 100% , are selected. Two of their outputs are demonstrated in Figures 22 and 23 and

the other outputs are presented in D.
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Figure 20: The eigenfrequencies predicted by the surrogate model versus obtained by the true model,

evaluated at 10,000 MC samples.
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Figure 21: Error of the FRFs predicted by the surrogate model versus obtained by the true model,

evaluated at 10,000 MC samples by Eq. (25).

The mean and standard deviations of the FRFs were compared with the reference ones. The

results for two of the six outputs are plotted in Figures 24 and 25 and the other outputs are plotted

in C. They indicate that the mean matches with the reference but the standard deviation has some
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minor mismatch at the peaks.

In general, it can be concluded that the proposed method predicts the eigenfrequencies and

FRFs with excellent precision, although the detailed peaks are generally captured less accurately.

This is the main reason of slow convergence of the standard deviation process shown in Figure 19.

One of the sources for this error is the interpolation. One can reduce it by reducing the frequency

step. In addition, close to the resonance frequency, the amplitude is driven by damping ratio,

therefore another reason for this error is the low damping ratio. In this example, damping about

0.01-0.1% of critical damping was assumed for each mode.
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Figure 22: Typical FRFs predicted by the surrogate model at 2 outputs, evaluated by the true model

(red line) and the surrogate model (black line).
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Figure 23: The worst FRFs (out of 10,000) predicted by the surrogate model at 2 outputs, evaluated

by the true model (red line) and the surrogate model (black line).
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Figure 24: Mean of the FRF of the 6-DOF system at 2 outputs, evaluated at 10,000 MC sample points

by the true model (red line) and the surrogate model (black line).
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Figure 25: Standard deviation of the FRF of the 6-DOF system at 2 outputs, evaluated at 10,000 MC

sample points by the true model (red line) and the surrogate model (black line).

5 Conclusions

A novel method to build a surrogate model directly for the FRFs of stochastic linear dynamic

systems based on sparse PCE has been proposed. To this end, there were two major challenges

which have been addressed in this paper: the frequency shifts in the selected frequencies of the FRFs,

i.e. peaks and valleys, due to the uncertainty in the parameters of the system and the non-smooth

behavior of the FRFs. These can lead to very high-order PCEs even for the FRFs obtained from

cases with 1 or 2 DOFs. We thus propose a stochastic frequency-transformation as a preprocessing

step before building PCEs. This transformation scales the FRFs in the frequency horizon so that
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their selected frequencies become aligned. Although this preprocessing step results in one extra set

of PCEs, they do not require any additional full model evaluations. After the transformation, FRFs

are very similar and low-order PCEs can be built for each frequency. This leads to an enormously

large number of random outputs. An efficient implementation of principal component analysis has

been used to alleviate this issue. Moreover, the problem of curse of dimensionality of PCEs in cases

with large parameter space was resolved by employing the LARS algorithm to build sparse PCEs

together with adaptive degree.

Successfully applied to two case studies, the proposed method shows its capability of accurately

1) predicting individual FRFs, 2) estimating the mean and standard deviation of the FRFs, and 3)

estimating the eigenfrequencies of the system and their statistics. Some errors have been observed

at the peaks, likely caused by a combination of interpolation error and very small damping ratio.

Further investigation needs to be made to consider the effect of damping on the accuracy of the

FRF prediction.

A Convergence analysis

In this appendix, the results of the convergence analysis of the statistics of the FRFs of the 6-DOF

system is presented. The reference results are obtained by running the true model at 10,000 points

sampled randomly from the parameter space.
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A.1 Convergence of the mean of the FRFs
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Figure 26: Convergence plot of the mean of the FRFs at 4 outputs obtained by the PCE (black ∗)
and the true model (red ×) by enlarging the experimental design. The reference results were obtained

by 10,000 Monte-Carlo simulation of the true model
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A.2 Standard deviation of the FRFs
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Figure 27: Convergence plot of the standard deviation of the FRFs at 4 outputs obtained by the PCE

(black ∗) and the true model (red ×) by enlarging the experimental design. The reference results were

obtained by 10,000 Monte-Carlo simulation of the true model

B FRFs of the 6-DOF system

In this appendix, the envelope of the FRFs of the 6-DOF system is presented. It is obtained by

evaluating the true model and the proposed surrogate models at 10,000 points sampled randomly

from the parameter space. In each figure, the black line is the associated mean of the FRFs.
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Figure 28: Envelope of the FRF of the 6-DOF system, evaluated at 10,000 MC sample points by the

true model and the surrogate model. The black lines are the averaged FRFs.
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Figure 29: Envelope of the FRF of the 6-DOF system, evaluated at 10,000 MC sample points by the

true model and the surrogate model. The black lines are the averaged FRFs.
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C Moments of the FRFs of the 6-DOF system

In this appendix, the statistics of the FRFs are compared. They are obtained by evaluating the

surrogate model and the true model at 10,000 points sampled from the parameter space.

C.1 Mean of the FRFs

Frequency (Hz)
5 10 15 20 25

m
ea

n 
|F

R
F|

10-4

10-3

10-2

10-1

100

True model
Surrogate model

(a) Second output

Frequency (Hz)
5 10 15 20 25

m
ea

n 
|F

R
F|

10-4

10-3

10-2

10-1

100

True model
Surrogate model

(b) Third output

Frequency (Hz)
5 10 15 20 25

m
ea

n 
|F

R
F|

10-4

10-3

10-2

10-1

100

True model
Surrogate model

(c) Fourth output

Frequency (Hz)
5 10 15 20 25

m
ea

n 
|F

R
F|

10-4

10-3

10-2

10-1

100

True model
Surrogate model

(d) Fifth output

Figure 30: Mean of the FRF of the 6-DOF system at 4 outputs, evaluated at 10,000 MC sample points

by the true model (red line) and the surrogate model (black line).
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C.2 Standard deviation of the FRFs
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Figure 31: Standard deviation of the FRF of the 6-DOF system at 4 outputs, evaluated at 10,000 MC

sample points by the true model (red line) and the surrogate model (black line).

D Individual FRFs comparison of the 6-DOF system

In this appendix, individual FRFs are compared for two particular cases. One FRF that has

average error comparing to the true model and one FRF with the maximum error among 10,000

realizations.
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D.1 Typical FRFs
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Figure 32: Typical FRFs predicted by the surrogate model at 4 outputs, evaluated by the true model

(red line) and the surrogate model (black line).
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D.2 The worst FRFs
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Figure 33: The worst FRFs (out of 10,000) predicted by the surrogate model at 4 outputs, evaluated

by the true model (red line) and the surrogate model (black line).
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Schöbi, R., B. Sudret, and J. Wiart (2015). Polynomial-chaos-based Kriging. Int. J. Uncertainty

Quantification 5, 171–193.
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