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Transport-entropy inequalities and curvature in

discrete-space Markov chains

Ronen Eldan James R. Lee Joseph Lehec

Abstract

Let G = (Ω, E) be a graph and let d be the graph distance. Consider a discrete-time Markov
chain {Zt} on Ω whose kernel p satisfies p(x, y) > 0 ⇒ {x, y} ∈ E for every x, y ∈ Ω. In words,
transitions only occur between neighboring points of the graph. Suppose further that (Ω, p, d)
has coarse Ricci curvature at least 1/α in the sense of Ollivier: For all x, y ∈ Ω, it holds that

W1(Z1 | {Z0 = x}, Z1 | {Z0 = y}) ≤
(

1− 1

α

)

d(x, y),

where W1 denotes the Wasserstein 1-distance.
In this note, we derive a transport-entropy inequality: For any measure µ on Ω, it holds that

W1(µ, π) ≤
√

2α

2− 1/α
D(µ ‖ π) ,

where π denotes the stationary measure of {Zt} and D(· ‖ ·) is the relative entropy.
Peres and Tetali have conjectured a stronger consequence of coarse Ricci curvature, that

a modified log-Sobolev inequality (MLSI) should hold, in analogy with the setting of Markov
diffusions. We discuss how our approach suggests a natural attack on the MLSI conjecture.

1 Introduction

In geometric analysis on manifolds, it is by now well-established that the Ricci curvature of the
underlying manifold has profound consequences for functional inequalities and the rate of conver-
gence of Markov semigroups toward equilibrium. One can consult, in particular the books [BGL14]
and [Vil09]. Indeed, in the setting of diffusions (see [BGL14, §1.11]), there is an elegant theory
around the Bakry-Emery curvature-dimension condition.

Roughly speaking, in the setting of diffusion on a continuous space, when there is an appropriate
“integration by parts” formula (that connects the Dirichlet form to the Laplacian), a positive cur-
vature condition implies powerful functional inequalities. Most pertinent to the present discussion,
positive curvature yields transport-entropy and logarithmic Sobolev inequalities.

For discrete state spaces, the situation appears substantially more challenging. There are nu-
merous attempts at generalizing lower bounds on the Ricci curvature to discrete metric measure
spaces; we refer to the upcoming survey [CGM+16]. At a broad level, these approaches suffer from
one of two drawbacks: Either the notion of “positive curvature” is difficult to verify for concrete
spaces, or the “expected” functional analytic consequences do not follow readily.

In the present note, we consider the notion of coarse Ricci curvature due to Ollivier [Oll09].
It constitutes an approach of the latter type: There is a large body of finite-state Markov chains
that have positive curvature in Ollivier’s sense, but for many of them we do not yet know if strong
functional-analytic consequences hold. This study is made more fascinating by the straightforward
connection between coarse Ricci curvature on graphs and the notion of path coupling arising in
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the study of rapid mixing of Markov chains [BD97]. This is a powerful method to establish fast
convergence to the stationary measure; see, for example, [LPW09, Ch. 14].

In particular, if there were an analogy to the diffusion setting that allowed coarse Ricci curvature
lower bounds to yield logarithmic Sobolev inequalities (or variants thereof), it would even imply
new mixing time bounds for well-studied chains arising from statistical physics, combinatorics,
and theoretical computer science. A conjecture of Peres and Tetali asserts that a modified log-
Sobolev inequality (MLSI) should always hold in this setting. Roughly speaking, this means that
the underlying Markov chain has exponential convergence to equilibrium in the relative entropy
distance.

Our aim is to give some preliminary results in this direction and to suggest a new approach
to establishing MLSI. In particular, we prove a W1 transport-entropy inequality. By results of
Bobkov and Götze [BG99], this is equivalent to a sub-Gaussian concentration estimate for Lipschitz
functions. Sammer has shown that such an inequality follows formally from MLSI [Sam05], thus one
can see verification as evidence in support of the Peres-Tetali conjecture. Our result also addresses
Problem J in Ollivier’s survey [Oll10].

1.1 Coarse Ricci curvature and transport-entropy inequalities

Let Ω be a countable state space, and let p : Ω× Ω → [0, 1] denote a transition kernel. For x ∈ Ω,
we will use the notation p(x, ·) to denote the function y 7→ p(x, y). For a probability measure π on
Ω and f : Ω → R+, we define the entropy of f by

Entπ(f) = Eπ

[

f log

(

f

Eπ[f ]

)]

.

We also equip Ω with a metric d. If µ and ν are two probability measures on Ω, we denote
by W1(µ, ν) the transportation cost (or Wasserstein 1-distance) between µ and ν, with the cost
function given by the distance d. Namely,

W1(µ, ν) = inf {E [d(X,Y )]}

where the infimum is taken on all couplings (X,Y ) of (µ, ν). Recall the Monge–Kantorovitch duality
formula for W1 (see, for instance, [Vil09, Case 5.16]):

W1(µ, ν) = sup

{
∫

Ω
f dµ−

∫

Ω
f dν

}

, (1)

where the supremum is taken over 1–Lipschitz functions f . We consider the following notion of
curvature introduced by Ollivier [Oll09].

Definition 1.1. The coarse Ricci curvature of (Ω, p, d) is the largest κ ∈ [−∞, 1] such that the
inequality

W1(p(x, ·), p(y, ·)) ≤ (1− κ) d(x, y)

holds true for every x, y ∈ Ω.

In the sequel we will be interested in positive Ricci curvature. Under this condition the map
µ 7→ µp is a contraction for W1. As a result, it has a unique fixed point and µpn converges to this
fixed point as n → ∞. In other words the Markov kernel p has a unique stationary measure and is
ergodic. The main purpose of this note is to show that positive curvature yields a transport-entropy
inequality, or equivalently a Gaussian concentration inequality for the stationary measure.
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Definition 1.2. We say that a probability measure µ on Ω satisfies the Gaussian concentration
property with constant C if the inequality

∫

Ω
exp(f) dµ ≤ exp

(
∫

Ω
f dµ+ C ‖f‖2Lip

)

holds true for every Lipschitz function f .

Now we spell out the dual formulation of the Gaussian concentration property in terms of
transport inequality. Recall first the definition of the relative entropy (or Kullback divergence): for
two measures µ, ν on (Ω,B),

D(ν ‖µ) = Entµ[
dν
dµ ] =

∫

Ω
log

(

dν

dµ

)

dν

if ν is absolutely continuous with respect to µ and D(ν ‖µ) = +∞ otherwise. As usual, if X and Y
are random variables with laws ν and µ, we will take D(X ‖Y ) to be synonymous with D(ν ‖µ).
Definition 1.3. We say that µ satisfies (T1) with constant C if for every probability measure ν on
Ω we have

W1(µ, ν)
2 ≤ C ·D(ν ‖µ) . (T1)

As observed by Bobkov and Götze [BG99], the inequality (T1) and the Gaussian concentration
property are equivalent.

Lemma 1.4. A probability measure µ satisfies the Gaussian concentration property with constant
C if and only if it satisfies (T1) with constant 4C.

This is a relatively straightforward consequence of the Monge–Kantorovitch duality (1); we refer
to [BG99] for details.

Theorem 1.5. Assume that (Ω, p, d) has positive coarse Ricci curvature 1/α and that the one–step
transitions all satisfy (T1) with the same constant C: Suppose that for every x ∈ Ω and for every
probability measure ν we have

W1(ν, p(x, ·))2 ≤ C ·D(ν ‖ p(x, ·)) . (2)

Then the stationary measure π satisfies T1 with constant Cα
2−1/α .

Remark 1.6. Observe that Theorem 1.5 does not assume reversibility.

The hypothesis (2) might seem unnatural at first sight but it is automatically satisfied for the
random walk on a graph when d is the graph distance. Indeed, recall Pinsker’s inequality: For
every probability measures µ, ν we have

TV(µ, ν) ≤
√

1

2
D(µ ‖ ν),

where TV denotes the total variation distance. This yields the following lemma.

Lemma 1.7. Let µ be a probability measure on a metric space (M,d) and assume that the support
of µ has finite diameter ∆. Then µ satisfies (T1) with constant ∆2/2.

Proof. Let ν be absolutely continuous with respect to µ. Then both µ and ν are supported on a
set of diameter ∆. This implies that

W1(µ, ν) ≤ ∆ · TV(µ, ν).

Combining this with Pinsker’s inequality we get W1(µ, ν)
2 ≤ ∆2

2 D(ν ‖µ), which is the desired
result.
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Random walks on graphs. A particular case of special interest will be random walks on finite
graphs. Let G = (V,E) be a connected, undirected graph, possibly with self-loops. Given non-
negative conductances c : E → R+ on the edges, we recall the Markov chain {Xt} defined by

Pr[Xt+1 = y | Xt = x] =
c({x, y})

∑

z∈V c({x, z}) .

We refer to any such chain as a random walk on the graph G. If it holds that c({x, x}) ≥
1
2

∑

Z∈V c({x, z}) for all x ∈ V , we say that the corresponding random walk is lazy. We will
equip G with its graph distance d.

In this setting, the transitions of the walk are supported on a set of diameter 2. So combining
the preceding lemma with Theorem 1.5, one arrives at the following.

Corollary 1.8. If a random walk on a graph has positive coarse Ricci curvature 1
α (with respect to

the graph distance), then the stationary measure π satisfies

W1(µ, π)
2 ≤ 2α

2− 1/α
D(µ ‖π) ,

for every probability measure µ.

Remark 1.9. One should note that in this context we have

d(x, y) ≤ W1 (p(x, ·), p(y, ·)) + 2, ∀x, y ∈ Ω,

just because after one step the walk is at distance 1 at most from its starting point. As a result,
having coarse Ricci curvature 1/α implies that the diameter ∆ of the graph is at most 2α. So
by the previous lemma, every measure on the graph satisfies T1 with constant 2α2. The point of
Corollary 1.8 is that for the stationary measure π the constant is order α rather than α2.

We now present two proofs of Theorem 1.5. The first proof is rather short and based on the
duality formula (1). The second argument provides an explicit coupling based on an entropy-
minimal drift process. In Section 3, we discuss logarithmic Sobolev inequalities. In particular,
we present a conjecture about the structure of the entropy-minimal drift that is equivalent to the
Peres-Tetali MLSI conjecture.

After the first version of this note was released we were notified that Theorem 1.5 was proved
by Djellout, Guillin and Wu in [DGW04, Proposition 2.10]. Note that this article actually precedes
Ollivier’s work. The proof given there corresponds to our first proof, by duality. Our second
proof is more original but does share some similarities with the argument given by K. Marton
in [Mar96, Proposition 1]. Also, after hearing about our work, Fathi and Shu [FS15] used their
transport-information framework to provide yet another proof.

2 The W1 transport-entropy inequality

We now present two proofs of Theorem 1.5. Recall the relevant data (Ω, p, d). Define the process
{Bt} to be the discrete-time random walk on Ω corresponding to the transition kernel p. For x ∈ Ω,
we will use Bt(x) to denote the random variable Bt | {B0 = x}. For t ≥ 0, we make the definition

Pt[f ](x) = E[f(Bt(x))] .
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2.1 Proof by duality

Let f : Ω → R be a Lipschitz function. Using the hypothesis (2) and Lemma 1.4 we get

P1[exp(f)](x) ≤ exp

(

P1[f ](x) +
C

4
‖f‖2Lip

)

,

for all x ∈ Ω. Applying this inequality repeatedly we obtain

Pn[exp(f)](x) ≤ exp

(

Pn[f ](x) +
C

4

n−1
∑

k=0

‖Pkf‖2Lip

)

, (3)

for every integer n and all x ∈ Ω. Now we use the curvature hypothesis. Note that the Monge–
Kantorovitch duality (1) yields easily

1− 1
α = sup

x 6=y

{

W1(p(x, ·), p(y, ·))
d(x, y)

}

= sup
x 6=y,g

{

P1[g](x) − P1[g](y)

‖g‖Lipd(x, y)

}

= sup
g

{‖P1[g]‖Lip
‖g‖Lip

}

.

Therefore ‖P1[g]‖Lip ≤ (1− 1/α)‖g‖Lip for every Lipschitz function g and thus

‖Pn[f ]‖Lip ≤ (1− 1/α)n‖f‖Lip,
for every integer n. Inequality (3) then yields

Pn [exp(f)] (x) ≤ exp

(

Pn[f ](x) +
Cα

4(2− 1/α)
‖f‖2Lip

)

.

Letting n → ∞ yields
∫

Ω
exp(f) dπ ≤ exp

(
∫

Ω
f dπ +

Cα

4 (2− 1/α)
‖f‖2Lip

)

.

The stationary measure π thus satisfies Gaussian concentration with constant Cα
4 (2−1/α) . Another

application of the duality, Lemma 1.4, yields the desired outcome, proving Theorem 1.5.

2.2 An explicit coupling

As promised, we now present a second proof of Theorem 1.5 based on an explicit coupling. The proof
does not rely on duality, and our hope is that the method presented will be useful for establishing
MLSI; see Section 3.

The first step of the proof follows a similar idea to the one used in [Mar96, Proposition 1]. Given
the random walk {Bt} and another process {Xt} (not necessarily Markovian), there is a natural
coupling between the two processes that takes advantage of the curvature condition and gives a
bound on the distance between the processes at time T in terms of the relative entropy. This step
is summarized in the following result.

Proposition 2.1. Assume that (Ω, p, d) satisfies the conditions of Theorem 1.5. Fix a time T
and a point x0 ∈ M . Let {B0 = x0, B1, . . . , BT } be the corresponding discrete time random walk
starting from x0 and let {X0 = x0,X1, . . . ,XT } be an arbitrary random process on Ω starting from
x0. Then, there exists a coupling between the processes (Xt) and (Bt) such that

E[d(XT , BT )] ≤
√

Cα

2− 1/α
D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }).
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In view of the above proposition, proving a transportation-entropy inequality for (Ω, p, d) is
reduced to the following: given a measure ν on Ω, we are looking for a process {Xt} which satisfies:
(i) XT ∼ ν and (ii) the relative entropy between (X0, . . . ,XT ) and (B0, . . . , BT ) is as small as
possible.

To achieve the above, our key idea is the construction of a process Xt which is entropy minimal
in the sense that it satisfies

XT ∼ ν and D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }) = D(XT ‖BT ) . (4)

This process can be thought of as the Doob transform of the random walk with a given target law.
In the setting of Brownian motion on Rn equipped with the Gaussian measure, the corresponding
process appears in work of Föllmer [Föl85, Föl86]. See [Leh13] for applications to functional in-
equalities, and the work of Léonard [Léo14] for a somewhat different perspective on the connection
to optimal transportation.

2.2.1 Proof of Proposition 2.1: Construction of the coupling

Given t ∈ {1, . . . , T} and x1, . . . , xt−1 ∈ M , let ν(t, x0, . . . , xt−1, ·) be the conditional law of Xt

given X0 = x0, . . . ,Xt−1 = xt−1. Now we construct the coupling of X and B as follows. Set X0 =
B0 = x0 and given (X1, B1), . . . , (Xt−1, Bt−1) set (Xt, Bt) to be a coupling of ν(t,X0, . . . ,Xt−1, ·)
and p(Bt−1, ·) which is optimal for W1. Then by construction the marginals of this process coincide
with the original processes {Xt} and {Bt}.

The next lemma follows from the coarse Ricci curvature property and the definition of our
coupling.

Lemma 2.2. For every t ∈ {1, . . . , T},

Et−1 [d(Xt, Bt)] ≤
√

C ·D(ν(t,X0, . . . ,Xt−1, ·) ‖ p(Xt−1, ·)) +
(

1− 1

α

)

d(Xt−1, Bt−1)

where Et−1[·] stands for the conditional expectation given (X0, B0), . . . , (Xt−1, Bt−1).

Proof. By definition of the coupling, the triangle inequality for W1, the one-step transport inequal-
ity (2) and the curvature condition

Et−1 [d(Xt, Bt)] = W1 (ν(t,X0, . . . ,Xt−1, ·), p(Bt−1, ·))
≤ W1 (ν(t,X0, . . . ,Xt−1, ·), p(Xt−1, ·)) +W1 (p(Xt−1, ·), p(Bt−1, ·))

≤
√

C ·D(ν(t,X0, . . . ,Xt−1, ·) ‖ p(Xt−1, ·)) +
(

1− 1

α

)

d(Xt−1, Bt−1) .

Remark that the chain rule for relative entropy asserts that

T
∑

t=1

E[D(ν(t,X0, . . . ,Xt−1, ·) ‖ p(Xt−1, ·))] = D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }) . (5)

Using the preceding lemma inductively and then Cauchy-Schwarz yields

E[d(XT , BT )] ≤
T
∑

t=1

(

1− 1

α

)T−t

E

[

√

C ·D(ν(t,X0, . . . ,Xt−1, ·) ‖ p(Xt−1, ·))
]

≤

√

√

√

√

T
∑

t=1

(

1− 1

α

)2(T−t)

√

√

√

√

T
∑

t=1

C · E [D(ν(t,X0, . . . ,Xt−1, ·) ‖ p(Xt−1, ·))]

(5)

≤
√

α

2− 1/α

√

C ·D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }),

completing the proof of Proposition 2.1.

6



2.2.2 The entropy-optimal drift process

Our goal in this section is to construct a process x0 = X0,X1, . . . ,XT satisfying equation (4).
Suppose that we are given a measure ν on Ω along with an initial point x0 ∈ Ω and a time T ≥ 1.
We define the Föllmer drift process associated to (ν, x0, T ) as the stochastic process {Xt}Tt=0 defined
as follows.

Let µT be the law of BT (x0) and denote by f the density of ν with respect to µT . Note that f
is well-defined as long as the support of µT is Ω. Now let {Xt}Tt=0 be the non homogeneous Markov
chain on Ω whose transition probabilities at time t are given by

qt(x, y) := P(Xt = y) | Xt−1 = x) =
PT−tf(y)

PT−t+1f(x)
p(x, y). (6)

We will take care in what follows to ensure the denominator does not vanish. Note that (qt) is
indeed a transition matrix as

∑

y∈Ω

PT−tf(y) p(x, y) = PT−t+1f(x). (7)

We now state a key property of the drift.

Lemma 2.3. If pT (x0, x) > 0 for all x ∈ supp(µ), then {Xt} is well-defined. Furthermore, for
every x1, . . . , xT ∈ Ω we have

P ((X1, . . . ,XT ) = (x1, . . . , xT )) = P ((B1, . . . , BT ) = (x1, . . . , xT )) f(xT ). (8)

In particular XT has law dν = f dµT .

Proof. By definition of the process (Xt) we have

P ((X1, . . . ,XT ) = (x1, . . . , xT )) =

T
∏

t=1

P (Xt = xt | (X1, . . . ,Xt−1) = (x1, . . . , xt−1))

=
T
∏

t=1

PT−tf(xt)

PT−t+1f(xt−1
p(xt−1, xt)

=
f(xT )

PT f(x0)

(

T
∏

t=1

p(xt−1, xt)

)

,

which is the result.

In words, the preceding lemma asserts that the law of the process {Xt} has density f(xT ) with
respect to the law of the process {Bt}. As a result we have in particular

D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }) = E[ log f(XT )] = D(ν ‖µT ) ,

since XT has law µ. Note that for any other process {Yt} such that Y0 = x0 and YT has law ν, one
always has the inequality

D({Y0, Y1, . . . , YT } ‖ {B0, B1, . . . , BT }) ≥ D(YT ‖BT ) = D(ν ‖µT ) . (9)

Besides {Xt} is the unique random process for which this inequality is tight. Uniqueness follows
from strict convexity of the relative entropy.

We summarize this section in the following lemma.
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Lemma 2.4. Let (Ω, p) be a Markov chain. Fix x0 ∈ Ω and let x0 = B0, B1, . . . be the associated
random walk. Let ν be a measure on Ω and let T > 0 be such that for any y ∈ Ω one has that
P(BT = y) > 0. Then there exists a process x0 = X0,X1, . . . ,XT such that:

• {X0, . . . ,XT } is a (time inhomogeneous) Markov chain.

• XT is distributed with the law ν.

• The process satisfies equation (4), namely

D(XT ‖BT ) = D({X0,X1, . . . ,XT } ‖ {B0, B1, . . . , BT }) .

2.3 Finishing up the proof

Fix an arbitrary x0 ∈ Ω and consider some T ≥ diam(Ω, d). Let {Xt} be the Föllmer drift process
associated to the initial data (ν, x0, T ). Then combining Proposition 2.1 and equation (4), we have

W1(ν, µT ) = E[d(XT , BT )] ≤
√

Cα

2− 1/α
D(ν ‖µT ). (10)

Now let T → ∞ so that µT → π, yielding the desired claim.

3 The Peres-Tetali conjecture and log-Sobolev inequalities

Recall that p : Ω × Ω → [0, 1] is a transition kernel on the finite state space Ω with a unique
stationary measure π. Let L2(Ω, π) denote the space of real-valued functions f : Ω → R equipped
with the inner product 〈f, g〉 = Eπ[fg]. From now on we assume that the measure π is reversible,
which amounts to saying that the operator f 7→ pf is self-adjoint in L2(Ω, π).

We define the associated Dirichlet form

E(f, g) = 〈f, (p − I)g〉 = 1
2

∑

x,y∈Ω

π(x)p(x, y)(f(x) − f(y))(g(x) − g(y)) .

Recall the definition of the entropy of a function f : Ω → R+:

Entπ(f) = Eπ

[

f log

(

f

Eπf

)]

.

Now define the quantities

ρ = inf
f :Ω→R+

E(
√
f ,

√
f)

Entπ(f)

ρ0 = inf
f :Ω→R+

E(f, log f)
Entπ(f)

.

These numbers are called, respectively, the log-Sobolev and modified log-Sobolev constants of the
chain (Ω, p). We refer to [MT06] for a detailed discussion of such inequalities on discrete-space
Markov chains and their relation to mixing times.

One can understand both numbers as measuring the rate of convergence to equilibrium in appro-
priate senses. The modified log-Sobolev constant, in particular, can be equivalently characterized
as the largest value ρ0 such that

Entπ(Htf) ≤ e−ρ0tEntπ(f) (11)
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for all f : Ω → R+ and t > 0 (see [MT06, Prop. 1.7]). Here, Ht : L2(Ω, π) → L2(Ω, π) is the
heat-flow operator associated to the continuous-time random walk, i.e., Ht = e−t(I−P ), where P is
the operator defined by Pf(x) =

∑

y∈Ω p(x, y)f(y).
The log-Sobolev constant ρ controls the hypercontractivity of the semigroup (Ht), which in turn

yields a stronger notion of convergence to equilibrium; again see [MT06] for a precise statement.
Interestingly, in the setting of diffusions, there is no essential distinction between the two notions;
one should consider the following calculation only in a formal sense:

“ E(f, log f) =
∫

∇f∇ log f =

∫ |∇f |2
f

= 4

∫

∣

∣

∣
∇
√

f
∣

∣

∣

2
= 4 E

(

√

f ,
√

f
)

. ′′

However, in the discrete-space setting, the tools of differential calculus are not present. Indeed, one
has the bound ρ ≤ 2ρ0 [MT06, Prop 1.10], but there is no uniform bound on ρ0 in terms of ρ.

3.1 MLSI and curvature

We are now in position to state an important conjecture linking curvature and the modified log-
Sobolev constant; it asserts that on spaces with positive coarse Ricci curvature, the random walk
should converge to equilibrium exponentially fast in the relative entropy distance.

Conjecture 3.1 (Peres-Tetali, unpublished). Suppose (Ω, p) corresponds to lazy random walk on
a finite graph and d is the graph distance. If (Ω, p, d) has coarse Ricci curvature κ > 0, then the
modified log-Sobolev constant satisfies

ρ0 ≥ Cκ . (12)

where C > 0 is a universal constant.

A primary reason for our interest in Corollary 1.8 is that, by results of Sammer [Sam05],
Conjecture 3.1 implies Corollary 1.8. We suspect that a stronger conclusion should hold in many
cases; under stronger assumptions, it should be that one can obtain a lower bound on the (non-
modified) log-Sobolev constant ρ ≥ Cκ. See, for instance, the beautiful approach of Marton [Mar15]
that establishes a log-Sobolev inequality for product spaces assuming somewhat strong contraction
properties of the Gibbs sampler.

However, we recall that this cannot hold under just the assumptions of Conjecture 3.1. Indeed,
if G = (V,E) is the complete graph on n vertices, it is easy to see that the coarse Ricci curvature
κ of the lazy random walk is 1/2. On the other hand, one can check that the log-Sobolev constant
ρ decays asymptotically like 1

logn (use the test function f = δx for some fixed x ∈ V ).

3.2 An entropic interpolation formulation of MLSI

We now suggest an approach to Conjecture 3.1 using an entropy-optimal drift process. While we
chose to work with discrete-time chains in Section 2.2.2, working in continuous-time will allow us
more precision in exploring Conjecture 3.1. We will use the notation introduced at the beginning
of this section.

A continuous-time drift process. Suppose we have some initial data (f, x0, T ) where x0 ∈ Ω
and f : Ω → R+ satisfies Eπ[f ] = 1. Let {Bt : t ∈ [0,∞)} denote the continuous-time random walk
with jump rates p on the discrete state space Ω starting from x0. We let µT be the law of BT and
let ν be the probability measure defined by

dν =
f

HT f(x0)
dµT ,

where (Ht) is the semigroup associated to the jump rates p(x, y). Note that ν is indeed a probability
measure as

∫

f dµT = HT f(x0) by definition of µT .

9



We now define the continuous-time Föllmer drift process associated to the data (x0, T, f) as the
(time inhomogeneous) Markov chain {Xt, t ≤ T} starting from x0 and having transition rates at
time t given by

qt(x, y) = p(x, y)
HT−tf(y)

HT−tf(x)
. (13)

Informally this means that the conditional probability that the process {Xt} jumps from x to y
between time t and t+dt given the past is qt(x, y)dt. This should be thought as the continuous-time
analogue of the discrete Föllmer process defined by (6). We claim that again the law of the process
{Xt, t ≤ T} has density f(xT )/HT f(x0) with respect to the law of {Bt, t ≤ T}. Let us give a brief
justification of this claim. Define a new probability measure Q by setting

dQ

dP
=

f(BT )

HT f(x0)
. (14)

We want to prove that the law of B under Q coincides with the law of X under P. Let (Ft) be
the natural filtration of the process (Bt), let t ∈ [0, T ) and let y ∈ M . We then have the following
computation:

Q(Bt+∆t = y | Ft) =
EP[f(BT )1{Bt+∆t=y} | Ft]

EP[f(BT ) | Ft]
+ o(∆t)

=
HT−tf(y)

HT−tf(Bt)
P(Bt+∆(t) = y | Ft) + o(∆t)

=
HT−tf(y)

HT−tf(Bt)
p(Bt, y)∆t+ o(∆t).

This shows that under Q, the process {Bt, t ≤ T} is Markovian (non homogeneous) with jump
rates at time t given by (13). Hence the claim.

This implies in particular that XT has law ν. This also yields the following formula for the
relative entropy of {Xt}:

D({Xt, t ≤ T} ‖ {Bt, t ≤ T}) = E

[

log
f(XT )

HT f(x0)

]

= D(ν ‖µT ) . (15)

The process {Xt} starts from x0 and has law ν at time T . Because XT has law ν and BT has
law µT , the two processes must evolve differently. One can think of the process {Xt} as “spending
information” in order to achieve the discrepancy between XT and BT . The amount of information
spent must at least account for the difference in laws at the endpoint, i.e.,

D({Xt, t ≤ T} ‖ {BT , t ≤ T}) ≥ D(XT ‖BT ) .

As pointed out in Section 2.2.2, the content of (15) is that {Xt} spends exactly this minimum
amount.

For 0 ≤ s ≤ s′, we use the notations B[s,s′] = {Bt : t ∈ [s, s′]} and X[s,s′] = {Xt : t ∈ [s, s′]} for
the corresponding trajectories. From the definition of Q we easily get

dQ

dP

∣

∣

∣

Ft

= E

[

f(BT )

HT f(x0)
| Ft

]

=
HT−tf(Bt)

HT f(x0)
. (16)

As a result

D
(

X[0,t] ‖B[0,t]

)

= E

[

log
HT−tf(Xt)

HT f(x0)

]

(17)
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for all t ≤ T . Let us now define the rate of information spent at time t:

It =
d

dt
D
(

X[0,t] ‖B[0,t]

)

.

Intuitively, the entropy-optimal process {Xt} will spend progressively more information as t ap-
proaches T . Information spent earlier in the process is less valuable (as the future is still uncertain).
Let us observe that a formal version of this statement for random walks on finite graphs is equivalent
to Conjecture 3.1.

Conjecture 3.2. Suppose (Ω, p) corresponds to a lazy random walk on a finite graph and d is the
graph distance, and that (Ω, p, d) has coarse Ricci curvature 1/α. Given f : Ω → R+ with Eπ[f ] = 1
and x0 ∈ Ω, for all sufficiently large times T , it holds that if {Xt : t ∈ [0, T ]} is the associated
continuous-time Föllmer drift process process with initial data (f, x0, T ), then

D(XT ‖BT ) ≤ CαIT , (18)

where C > 0 is a universal constant.

As T → ∞, we have PT f(x0) → Eπf = 1 and thus

D(XT ‖BT ) → Entπ(f)

Moreover, we claim that IT → E(f, log f) as T → ∞. Together, these show that Conjectures 3.1
and 3.2 are equivalent.

To verify the latter claim, note that from (17) and (16) we have

D
(

X[0,t] ‖B[0,t]

)

= E

[

log

(

HT−tf(Xt)

HTf(x0)

)]

= E

[

log

(

HT−tf(Bt)

HTf(x0)

)

HT−tf(Bt)

HT f(x0)

]

=
1

HTf(x0)
Ht (HT−tf logHT−tf) (x0)− logHT f(x0).

Differentiating at t = T yields

IT =
1

HT f(x0)
HT (∆(f log f)− (∆f)(log f + 1)) (x0).

where ∆ = I− p denotes the generator of the semigroup (Ht). Recall that δx0
HT converges weakly

to π, and that by stationarity Eπ∆g = 0 for every function g. Thus

lim
T→∞

IT = −Eπ[(∆f) log f ].

The latter equals E(f, log f) by reversibility, hence the claim.
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[Léo14] Christian Léonard. A survey of the Schrödinger problem and some of its connections
with optimal transport. Discrete Contin. Dyn. Syst., 34(4):1533–1574, 2014.

[LPW09] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing
times. American Mathematical Society, Providence, RI, 2009. With a chapter by
James G. Propp and David B. Wilson.

[Mar96] K. Marton. Bounding d-distance by informational divergence: a method to prove mea-
sure concentration. Ann. Probab., 24(2):857–866, 1996.

[Mar15] K. Marton. Logarithmic Sobolev inequalities in discrete product spaces: A proof by a
transportation cost distance. Preprint: arXiv: 1507.02803, 2015.

[MT06] Ravi Montenegro and Prasad Tetali. Mathematical aspects of mixing times in Markov
chains. Found. Trends Theor. Comput. Sci., 1(3):x+121, 2006.

[Oll09] Yann Ollivier. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal.,
256(3):810–864, 2009.

[Oll10] Yann Ollivier. A survey of Ricci curvature for metric spaces and Markov chains. In
Probabilistic approach to geometry, volume 57 of Adv. Stud. Pure Math., pages 343–381.
Math. Soc. Japan, Tokyo, 2010.

[Sam05] Marcus D. Sammer. Aspects of mass transportation in discrete concentration inequali-
ties. ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–Georgia Institute of Tech-
nology.

[Vil09] Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 2009. Old and new.

12


	1 Introduction
	1.1 Coarse Ricci curvature and transport-entropy inequalities

	2 The W1 transport-entropy inequality
	2.1 Proof by duality
	2.2 An explicit coupling
	2.2.1 Proof of Proposition ??: Construction of the coupling 
	2.2.2 The entropy-optimal drift process

	2.3 Finishing up the proof

	3 The Peres-Tetali conjecture and log-Sobolev inequalities
	3.1 MLSI and curvature
	3.2 An entropic interpolation formulation of MLSI


