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In this paper, we provide a formal proof of the power-watershed framework relying on the Γconvergence framework. The main ingredient for the proof is a concept of scale. The proof and the formalism introduced in this paper have the added benefit to clarify the algorithm, and to allow to extend the applicability of the power watershed algorithm to many other types of energy functions. Several examples of applications are provided, including Total Variation and Spectral Clustering.

1. Problem statement: the power watershed framework. We are interested in the following problem. Given three strictly positive integers p > 0, m > 0, n > 0 and n real numbers 1 ≥ λ 0 > λ 1 > . . . λ n-1 > 0, we set (1)

Q p (x) = 0≤k<n λ p k Q k (x)
where, for all 0 ≤ k < n, Q k : R m → R is a continuous function. We search x ∈ R m such that [START_REF] Anzellotti | Asymptotic development by γ-convergence[END_REF] x ∈ lim p→∞ arg min

x∈R m Q p (x)
We are going to see that λ k acts as a notion of scale for the problem at hands. Note that we are not interested in the limit of Q p (x) itself as p → +∞. Indeed, if λ 0 < 1, k λ p k Q k (x) tends to 0 uniformly on R m when p → +∞, and any x ∈ R m is a minimizer of 0. Instead, we are interested in the limit x of the minimizers of Q p as p → +∞. The whole question is thus the choice of an informative minimizing sequence. The study of these types of questions is the main objective of the Γ-theory [START_REF] Maso | An Introduction to Γ-convergence[END_REF][START_REF] Braides | A handbook of γ-convergence[END_REF], which has been adapted to the case of space of graphs in [START_REF] De Verdière | Singular limits of schrödinger operators and markov processes[END_REF][START_REF] De Verdière | of Cours Spécialisés[END_REF]. However, as the sequence of (continuous) functional is decreasing (i.e., Q p+1 ≤ Q p ) and converge pointwise to a continuous function (implying Γ-convergence), our formalism is simpler and does not require familiarity with the Γ-convergence framework. Furthermore, the theorems from the Γ-convergence theory are generally written with a coercivity 1 hypothesis (in our case, that would be on the Q k ) not applicable in our framework. We shall replace the coercivity hypothesis by a compactness argument. For the sake of completeness, we shall expose in this paper what is needed to understand the proof, without explicit reference to Γ-convergence.

As in many cases, the (first) limit of Q p provides a functional with a lot of minimizers. However, a further "limit of higher order", with a different scaling, bring more information (for a formalization of this idea in the Γ-convergence framework, see [START_REF] Anzellotti | Asymptotic development by γ-convergence[END_REF]).

The idea is thus the following. In order to observe what happens during the convergence process, one has to apply a change of scale. Roughly speaking, this amounts to dividing the generator Q p by λ 0 for the first scale, and this provides some information; dividing it further by λ 1 for the second scale will provide more information, and so on. By doing so, we build a sequence of functionals the minimizers of which being the solution we are looking for.

Intuitive explanation of the contributions of this paper: as it is clear from the content of the present paper, the proposed framework allows to combine in a specific and rigorous way minimum-spanning-tree based optimization with other optimization algorithms, such as for instance random-walk or spectral clustering. It is well known that minimum spanning tree is an efficient and fast way to do a clustering, although this algorithm is subject to leaks [START_REF] Zahn | Graph-theoretical methods for detecting and describing gestalt clusters[END_REF] (also known as the chaining effect) and can not impose any constraint on the border of the clusters (such as, for example, regularity). The intuitive idea behind the main results of this paper, is to compute a minimum spanning tree where it is easy to do so, i.e., the centers of the clusters, and to apply a more evolved algorithm on an "extended" boundary of the clusters, in order to impose the constraints. This is somehow similar to what is often done for solving practical problems when the data is large: in such cases, one often starts by reducing the data size by applying a first clustering algorithm, such as the minimum spanning tree. Thus, a different way to look at this paper is the following: we propose a theory and some algorithms to combine data reduction and optimization-based clustering, based on first principles.

Section 2 provides some motivations for solving [START_REF] Anzellotti | Asymptotic development by γ-convergence[END_REF], the main one being the powerwatershed [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF]. In section 3, the main theorem of this paper is demonstrated, with its associate generic algorithm. In section 4, a specific algorithm dedicated to a particular class of functions is given and proved. Section 5 clarifies the links of the proposed framework with the (union of) maximum spanning trees. Two examples of applications are then developed. Section 6 shows how total-variation is related to watershed-based mosaic images. Section 7 exhibits an application to spectral clustering. Finally, in section 8, we propose some ideas for extension and future work.

Motivation.

Although it is by no means necessary from a theoretical point of view, it is convenient for many practical purposes to think of R m as a graph. We shall adopt the following notations in this paper, which will allows us to clarify the links between Equation (2) and the classical minimum spanning tree problem.

Notations

. A (simple) graph G consists of a pair G = (V, E) with vertices v in a finite set V of cardinality |V | = m and edges e ∈ E ⊆ V × V with cardinality |E| ≤ m 2 .
An edge, e, spanning two vertices, v i and v j , is denoted by e ij . In 2D image processing applications, each pixel is typically associated with a vertex of the graph and the vertices are connected locally via a 4 or 8-connected lattice. An edge-weighted graph assigns a real value to each edge, called a weight. In this work, the weights are assumed to be non-negative and bounded by 1. The weight of an edge e ij is denoted by w(e ij ) or w ij . We also denote by w i the (unary) weights penalizing the observed configuration at node v i . In the context of filtering, segmentation and clustering applications, the weights encode nodal affinity such that nodes connected by an edge with high weight are considered to be strongly connected and edges with a low weight represent nearly disconnected nodes.

2.2. Power-watershed with q ≥ 0. Let q ≥ 0, we set

(3) W p (x) = e ij ∈E w p ij |x i -x j | q + v i ∈V w p i |x i -f i | q
This problem was introduced for segmentation purposes in [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF], with q ≥ 1. In this case, Eq. ( 3) is a discrete formulation of the many possible variations on total variation denoising. In these formulations, w ij are the pairwise weights, which can be interpreted as a weight on the gradient of the target configuration, such that the first term penalizes any unwanted high-frequency content in x and essentially forces x to vary smoothly within an object, while allowing large changes across the object boundaries. The second term enforces fidelity of x to a specified configuration f , w i being the unary weights enforcing that fidelity. If q > 1, the function W p in (3) is usually (depending on the w ij ) coercive, proper and strictly convex2 , and a unique minimum arg min x W p (x) exists for each p > 0. The existence and the unicity of the solution x to Eq. ( 2) thus depends on the convergence of these solutions. The earlier proof provided in [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF] is, unfortunately, incomplete and difficult to understand. In [START_REF] Allène | Some links between extremum spanning forests, watersheds and min-cuts[END_REF], there is a proof corresponding to the case q = 1, where several solutions arg min x W p (x) may exist. For a different perspective on the same topic in a different framework, see [START_REF] Ciesielski | Fuzzy connectedness image segmentation in graph cut formulation: A linear-time algorithm and a comparative analysis[END_REF]. We can rewrite Eq. (3) as follows:

(4)

W p (x) = 0≤k<n λ p k    e i,j ∈E k |x i -x j | q + v i ∈V k |x i -f i | q    with λ 0 > λ 1 > . . . > λ n-1
, where n ≤ |V | + |E| is the number of different weights present in the graph G, be they pairwise (i.e., on a edge linking two different x i and x j ) or unary (i.e., on a edge linking x i to f i ), E k is the set of edges with weights equal to λ k and V k is the set of vertices with data-fidelity weights equal to λ k . For 0 ≤ k < n, we set

(5) W k (x) = e i,j ∈E k |x i -x j | q + v i ∈V k |x i -f i | q
We have (6)

W p (x) = 0≤k<n λ p k W k (x)
(a) Some seeds (b) Result of the segmentation Figure 1: From [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF], an example of segmentation in Figure 1(b) with the power-watershed watershed framework, by computing the Γ-limit of (3) when q = 2, using the seeds shown in Figure 1(a)

Theorem 3.3 on page 6 ensures the convergence of the minimizers of W p . In particular, when q > 1 and when the problem is strictly convex, we have unicity of the limit of the minimizers. An example of application to seeded segmentation is shown in Figure 1 (see [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF] for more details on this example.)

We can extend the power-watershed formulation, while keeping the same properties. Let q 1 > 0, q 2 > 0, a ij ≥ 0 and a k ≥ 0. We set

(7) W p (x) = e ij ∈E w p ij a ij |x i -x j | q 1 + v i w p i a i |x i -f i | q 2
With the notation of the present paper, we can rewrite this equation as

(8) W p (x) = 0≤k<n λ p k W k (x) with (9) W k = e ij ∈E k a ij |x i -x j | q 1 + v i ∈V k a i |x i -f i | q 2
We remark that (loosely speaking) computing the limit of the minimizers amounts to solving a weighted-graph variational problem on each one of the subgraph defined by (V k , E k ).

2.3. Multi-scale regularization on weighted graphs. Let 1 ≥ λ 0 > λ 1 > . . . > λ n-1 > 0. For 0 ≤ k < n, let q k > 0, and we set [START_REF] Ciesielski | Fuzzy connectedness image segmentation in graph cut formulation: A linear-time algorithm and a comparative analysis[END_REF] T

k (x) = 1 q k v i ∈V k   {v j |{v i ,v j }∈E k } a ij |x i -x j | 2   q k 2 + v i ∈V k a i 2 |x i -f i | 2 where (V k , E k ) is any subgraph of G, a ij ≥ 0 and a k ≥ 0. Let us write (11) T p (x) = 0≤k≤n λ p k T k (x)
We recognize in Eq. ( 10) a discrete Total-Variation-based regularization (more precisely, a discrete weighted p-Dirichlet regularization) of the subgraph (V k , E k ) weighted with the corresponding a ij and a i [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF]. Theorem 3.3 (on page 6) allows us to combine several graph regularizations into one unique formulation: minimizing Eq. ( 11) can then be thought of as a combination of several scales of Total-Variation regularizations.

3. Scale-based approach for the Power Watershed framework.

3.1. A simple example. For any ε > 0, let Q ε : R 2 → R be defined by

(12) Q ε (x 0 , x 1 ) = ε(x 0 -x 1 ) 2 + ε 2 (x 0 -1) 2 + x 2 1
Note that Q ε → 0 when ε tends to 0. Also note that the functional Q ε is quadratic positive definite for any ε > 0. It is strongly convex with a single minimum (as we are going to verify shortly).

3.1.1. Direct approach. By consideration of symmetry, we can reduce the problem to a single variable λ ∈ R: we set x 0 = 1 2 -λ and x 1 = 1 2 + λ. We then have

(13) Q ε (λ) = 2ε 2 (λ + 1 2 ) 2 + 4ελ 2 = λ 2 (4ε + 2ε 2 ) + 2λε 2 + ε 2 2
A derivation with respect to λ leads to

(14) d dλ Q ε (λ) = 4ε(2 + ε)λ + 2ε 2
A second derivation yields:

(15) d 2 dλ 2 Q ε (λ) = 4ε(ε + 2),
which shows that the functional is strongly convex. As a minimum is reached for λ ε such that

d dλ Q ε (λ ε ) = 0, we get (16) λ ε = -ε 2(2 + ε) which corresponds to the point (x ε 0 , x ε 1 ) such that x ε 0 = 1 2 - -ε 2(2 + ε) = 1 + ε 2 + ε (17) x ε 1 = 1 2 + -ε 2(2 + ε) = 1 2 + ε (18) The distance of (x ε 0 , x ε 1 ) to ( 1 2 , 1 2 ) is equals to ε √ 2(2+ε)
, which proves the convergence of the sequence to ( 12 , 1 2 ) when ε tends to 0.

3.1.2. Scale-based approach. We first note that

(19) Q ε (x) ε = (x 0 -x 1 ) 2 + ε (x 0 -1) 2 + x 2 1
tends to (x 0 -x 1 ) 2 when ε tends to 0. Minimizing Q ε , a first approximation at scale ε imposes x 0 = x 1 . This corresponds to a restriction of the space on which Q ε is defined. From a graph point of view, this corresponds to identifying v 0 to v 1 by (continuously) contracting the edge e 01 = {v 1 , v 0 }. Minimizing the restriction of Q ε to the space {v 0 = v 1 } leads to x 0 = x 1 = 1 2 . The rest of the paper is dedicated to justifying that

x 0 = x 1 = 1 2 is indeed the limit of the minimizers of Q ε , generalizing Q ε to Q p .
Remark 3.1. Using results from [START_REF] De Verdière | of Cours Spécialisés[END_REF], Γ-theory allows to prove that [START_REF] De Verdière | of Cours Spécialisés[END_REF] (1, 0) = lim

ε→∞ arg min x Q ε (x).
3.2. Proof of the existence of the limit of the minimizers of Eq. ( 3).

Remark 3.2. The following theorem could also be proved with several applications of Claude Berge's maximum theorem [START_REF] Berge | Topological Spaces: including a treatment of multi-valued functions, vector spaces, and convexity[END_REF] (well known in mathematical economics), which provides conditions for the continuity of an optimized function and the set of its maximizers as a parameter changes.

We shall prove the following.

Theorem 3.3. Let Q p := 0≤k<n λ p k Q k , where (λ k ) 0≤i<n ∈ R n is such that 1 ≥ λ 0 > λ 1 > . . . > λ n-1 > 0, and (Q k ) 0≤k<n are real-valued continuous functions defined on R m .
Let M 0 be the set of minimizers of Q 0 , and for 0 < k < n, M k be recursively defined as follows:

M 0 = arg min x∈R m Q 0 (x) (21) ∀ 1 ≤ k < n, M k = arg min x∈M k-1 Q k (x) (22)
Any convergent sequence (x p ) p>0 of minimizers of Q p converges to some point of M n-1 . In particular, if for all p > 0, (x p ) p>0 is bounded (i.e. if there exists C > 0 such that for all p > 0, x p ∞ ≤ C), then, up to a subsequence, the sequence (x p ) p is convergent towards a point of M n-1 . Furthermore, we can then estimate the minimum of Q p as follows:

(23) min x∈R m Q p (x) = 0≤k<n λ p k m k + o(λ p n-1 )
where

m k = min x∈M k Q k (x)
and where o(λ p n-1 ) is the Landau notation for negligibility 3 . Note that there exist many applications where the minimizers of Q p are bounded. This is in particular the case for elliptical problems, and for many problems where Total-Variation is used as a regularizer. 3 In our case, this means that limp→∞

Q p (x)-0≤k<n λ p k m k λ p n-1 = 0
Thanks to Theorem 3.3, we remark that if M n-1 is a singleton set, then any sequence of minimizers converges to the point in M n-1 . Thanks to Theorem 3.3 and to the continuity of the application p → Q p (.), we can also remark that if for all p > 0, Q p has only one minimizer, then there exists a unique x ∈ R m such that {x} ⊆ M n-1 .

We are now ready to prove Theorem 3.3.

3.2.1. Scale λ 0 . We write

(24) Q p (x) λ p 0 = Q 0 (x) + k>0 λ k λ 0 p Q k (x)
As λ 0 > λ k for any k > 0, the second term of Eq. ( 24) is negligible with respect to Q 0 (x) as soon as p is large enough. Let us write

M 0 := arg min x Q 0 (x) = {y | y ∈ arg min x Q 0 (x)}. Let us set m 0 = min x Q 0 (x)
. By definition of M 0 , for any x ∈ M 0 , we have Q 0 (x) = m 0 . If the minimizers of Q p are bounded, i.e., if they live in a compact, then we can also bound the Q k (x) for any x in the same compact and for all k. We thus have [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] min

x Q p (x) = λ p 0 m 0 + o(λ p 0 ) 3.2.2. Scale λ 1 .
The process can be repeated with the next scale λ 1 . We set

(26) R p 0 (x) = Q p (x) -λ p 0 Q 0 (x)
and we note that

R p 0 (x) λ p 1 = Q 1 (x) + k>1 ( λ k λ 1 ) p Q k (x). We set M 1 := arg min x∈M 0 Q 1 (x)
, and we have [START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF] min

x Q p (x) = λ p 0 m 0 + λ p 1 m 1 + o(λ p 1 )
where

m 1 = min x∈M 0 Q 1 (x).
3.2.3. Scale λ k . More generally, the step corresponding to scale λ k is

(28) R p k (x) = R p k-1 (x) -λ p k Q k (x)
and the whole process is repeated for all k.

Repeating the process for all scales λ k , we obtain (29) min

x Q p (x) = 0≤k<n λ p k m k + o(λ p n-1 )
where

m k = min x∈M k Q k (x).
Now, let us take a sequence (x p ) p of minimizers of Q p converging to some x ∈ R m . Thanks to the continuity of the application (x, p) → Q p (x) and to the continuity of Q 0 , we obtain x ∈ M 0 . By reiterating the argument, we get that x ∈ M 1 , and so on, until we get x ∈ M n-1 .

Hence the Theorem 3.3.

Data: A set of n continuous functions (Q k ) 0≤k<n from R m to R, together with their scale λ 0 > λ 1 > . . . > λ n-1 . Result: x solution to Eq. ( 2) forall scales λ k by decreasing value do

Compute M k = arg min x∈M k-1 Q k . end return some x ∈ M n-1
Algorithm 1: Generic hierarchical optimization algorithm, optimizing Eq. (2)

A generic algorithm.

The algorithm 1 is a direct application of Theorem 3.3. However, in its generic form, it is not easy to implement. In the next section, we are going to particularize the function Q k , so that we can provide a more specific implementation and so that we can link this implementation with minimum spanning tree algorithms.

4. Algorithm for the Power Watershed.

4.1. Notations and preliminary concepts. We are going to detail how the limit of the minimizers in Eq. ( 2) is obtained for a specific class of functions Q p that extends the powerwatershed formulation given by Eq. ( 9).

We suppose that the graph G is weighted by w, and that we are given a family (ϕ ij ) e ij ∈E of positive functions from R to R + such that ϕ ij (z) = 0 if and only if z = 0. We set

(30) Q p (x) = e ij ∈E w p ij ϕ ij (x i -x j ) Let V f ⊆ V , V f = ∅.
The set V f is the set of boundary conditions for which the value x i = f i of a point v i ∈ V f is known (fixed). If there exists (at least) w ij > 0 for which v i ∈ V f , then one can show that the minimum of Q p is bounded.

Let n be the number of different weights w ij , and let λ 0 > λ 1 > . . . > λ n-1 be those different weights. We set

E k = {e ij | w ij = λ k }. We write (31) Q k (x) = e ij ∈E k ϕ ij (x i -x j ).
Then Q p can be written as

(32) Q p (x) = λ p k Q k (x)
Recall that an edge-induced subgraph of a graph G is a subset of the edges of G together with any vertices that are their endpoints. A path in a graph G is a sequence of edges of the graph which connect a sequence of vertices. A connected component is a subgraph of G in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G. We denote by CC(G) the set of connected components of a graph G.

In the rest of the paper, we suppose that the graph G is connected. For any t ≥ 0, the level set [w] t is the graph induced by {e ij ∈ E | w ij ≥ t}. We remark that any two connected components of ([w] t ) t>0 are either disjoint or nested. Thus, these connected components can be organized in a tree structure 4 

. [w t ] is a subgraph of G. If a connected component C of CC([w] t ) is such that V (C) ∩ V f = ∅,
we say that C is seeded. As V f = ∅, at least one of the connected component of one the level sets is seeded.

Lemma 4.1. Let t > 0 and C ∈ CC([w] t ). We have e ij ∈E(C) ϕ ij (x i -x j ) = 0 if and only if x i = x j for any v i , v j ∈ V (C).
In particular, if C is not seeded, then arg min x e ij ∈E(C) ϕ ij (x i -x j ) = 0, and any x that achieves the minimum is constant on C.

Proof. As for any z ∈ R, ϕ ij (z) ≥ 0 a the sum can only vanish if all terms ϕ ij (x i -x j ) vanish. Thus, if two vertices v i and v j are connected by an edge of C, then x i needs to be equal to x j . As ϕ ij (z) = 0 if and only if z = 0, we see that x needs to be constant for all vertices which can be connected by a path in the graph. By definition of a connected component, all the vertices of C are connected by a path, hence x needs to be constant on C.

In particular, if C is not seeded, then any x that achieves the minimum is constant on C.

4.2.

Algorithm for the power watershed.. To provide an algorithm computing Eq. ( 2) where Q p is given by Eq. ( 30), we need to define the contract operation. We say that we contract two connected vertices v 1 and v 2 when we remove the edge {v 1 , v 2 } linking v 1 to v 2 while simultaneously merging the two vertices into a unique vertex. We say that we contract a connected subgraph C when we repeat the contraction until there is no edge in C, i.e. when C is reduced to a unique vertex. We remark that the order of the sequence of edge removal has no consequence on the result. We also remark that when we contract a connected subgraph C of a simple graph G, the resulting graph G might no longer be a simple graph, but G can be a multi-graph, i.e., a graph in which an edge is repeated several times 5 .

We are now ready to state algorithm 2. This algorithm is essentially the same as the one proposed in [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF], although the presentation is simplified by the formalism we introduce in this paper. As stated previously, the various λ k act as a notion of scale for the problem. Roughly speaking, at a given scale λ k , this algorithm considers the level set of the graph corresponding to λ k , and find the minimum of Q k on this part of the graph. In the subsequent scales, the potentials fixed at previous scales are used as initial conditions.

We have the following theorem.

Theorem 4.2. Let Q p given by Eq. ( 30), and such that, for any p ≥ 0, arg min x Q p (x) is bounded. Then algorithm 2 computes the solution to Eq. (2).

Remark that Eq. ( 30) includes ϕ ij (z) = a ij z q ij , with a ij > 0 and q ij > 0, which itself generalizes the power-watershed equation [START_REF] Bao | Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree, Image Processing[END_REF]. When the solutions to arg min x Q p (x) can be bounded (which is the case for the power-watershed), then, by application of Theorem 3.3, there exists at least one minimizer x ∈ M n-1 such that x ∈ lim p arg min x Q p (x).

Data: A weighted graph G = (V , E , w) and the functions Q k Result: x solution to Eq. ( 2 The rest of the section is dedicated to proving Th. 4.2. We will proceed by successively considering the various scales λ k .

Scale λ

0 . As the restriction of Q 0 to any connected component of [w] λ 0 is positive, we can independently optimize Q 0 on each element C ∈ CC([w] λ 0 ).
If C is seeded, the data attachment term provides a boundary condition for finding the minimum, and a potential x i for any v i ∈ V (C) is fixed at this scale.

Otherwise, if C is not seeded (i.e., there is no data attachment for C and only the regularization term is present), we obtain x i = x j for any v i , v j ∈ V (C) thanks to Lemma 4.1. In other word, we contract C.

For the sake of simplicity, in the sequel, we still denote by G the resulting contracted multi-graph. 4.2.2. Scale λ 1 . At scale λ 1 , we want to find a minimizer of Q 1 restricted to the minimizers of Q 0 . In other words, we want to obtain the potential x i of any v i in [w] λ 1 , constrained by the information on any v j ∈ V ([w] λ 0 ) obtained at the previous scale. The x i of any v i ∈ V ([w] λ 0 ) plays the role of a data attachment for the vertices of [w] 

λ 1 \ [w] λ 0 .
As in the previous step, the restriction of Q 1 to any connected component of [w] λ 1 being positive, we can independently optimize Q 1 on each element C ∈ CC([w] λ 1 ). If C is seeded, then the data attachment allows us to fix the potential x i of any v i ∈ [w] λ 1 not already fixed at the previous scale. Otherwise, if C is not seeded, (i.e., there is no data attachment for C), Lemma 4.1 ensures that x i = x j for any v i , v j ∈ V (C). We thus contract C onto a unique vertex. As before, we continue to denote by G the resulting contracted multi-graph.

Other scales λ

k , 1 < k < n.
The process is straightforwardly repeated for all the other scales λ k , 1 < k < n. At each step of the scaling process, the potential x i of some vertices v i becomes known. At the end, as the graph G is connected and as at least one of component of the level set is seeded, a complete potential x ∈ R m has been obtained. This concludes the proof.

1 x 0 x 1 x 2 x 3 0 1 2 1 2 1 1 2 1 2 1 2
(a) Graph corresponding to Eq. ( 33) 

1 x 0 x 2 x 2 x 3 0 (b) After the contraction
) Q p (x) = (x 0 -x 1 ) 2 + ( 1 2 ) p ((x 1 -x 2 ) 2 + (x 0 -x 2 ) 2 + (x 2 -x 3 ) 2 + (x 0 -1) 2 + x 2 33 
))

The graph corresponding to Eq. ( 33) is depicted in Figure 2(a). After the contraction, we obtain the unweighted multi-graph depicted in Figure 2(b), which corresponds to the polynomial [START_REF] Stawiaski | Minimum spanning tree adaptive image filtering[END_REF] 2

(x 0 -x 2 ) 2 + (x 2 -x 3 ) 2 + (x 0 -1) 2 + x 2 3 .
Hence, the solution of the minimization leads to x 0 = x 1 = 5 7 , x 3 = 2 7 and x 2 = 4 7 . 5. Power-watershed and the union of all maximum spanning trees. Algorithm 2 has the structure of Kruskal's algorithm for the maximum spanning tree [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF], and thus this invites us to look precisely at the relation between Eq. ( 2) and the maximum spanning tree problem.

A tree T is a connected graph such |E(T ) = |V (T )| -1. A spanning tree T of a graph G is a tree such that V (T ) = V (G). The weight of a weighted graph (G, w) is the number [START_REF] Strang | Maximal flow through a domain[END_REF] W (G) :=

e ij ∈E(G) w ij
A maximum spanning tree of a graph G is a spanning tree T such that the weight of T is greater or equal to the weight of any other spanning tree of G.

The problem of finding a maximum spanning tree is the oldest problem in combinatorial optimization [START_REF] Nešetřil | Otakar Borůvka on minimum spanning tree problem: translation of both the 1926 papers[END_REF].

In general, there exist several maximum spanning trees of a given weighted graph. We denote by M ST (G) the union of all the maximum spanning trees of the graph G. We remark that

M ST (G) is a subgraph of G such that |E(M ST (G))| ≤ |E(G)|.
The following lemma, illustrated on Fig. 3, is easily deduced from the proof of Kruskal's algorithm for maximum spanning tree, and thus its proof is left for the reader. To ease the writing of the lemma, we note by convention [w] λ -1 = ∅, where λ -1 > λ 0 . Lemma 5.1. Let e ij = {x i , x j } be an edge of [w] λ k such that w ij = λ k . Then one of the two situations holds:

• either e ij links two different components of [w] λ k-1 . In this case, e ij belongs to a maximum spanning tree of G, i.e., e ij ∈ E(M ST (G)).

x 0

x 1

x 2

x 3 x 4

x 5

x 6

x 7 Figure 3: A graph illustrating lemma 5.1. The edges in red and blue form the union of all the maximum spanning trees of the graph. The grey edges {x 2 , x 3 } and {x 4 , x 6 } do not belong to any maximum spanning tree. One can check that both x 2 and x 3 (resp. x 4 and x 6 ) belong to the same red component of [w] 3 . Each of the blue edges {x 1 , x 6 }, {x 3 , x 4 } and {x 2 , x 5 } belongs to different maximum spanning trees of the graph. One can check that each one of these edges links the two red components of [w] 2 .

• or x i and x j belong to the same component of [w] λ k-1 . In that case e ij ∈ E(M ST (G)). Proof. This theorem is also a straightforward consequence of Theorem 4.2, Theorem 5.2, and Lemma 5.1.

6. An application to Total Variation: the watershed-based mosaic image. Let p ≥ 0, and q ∈ {0, 1, 2}. We set [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] T V p q (x) =

e ij ∈E w p ij |x i -x j | + v i ∈V w p i |x i -f i | q
In this section, we study the dependence of the solution x of Eq. ( 2) with respect to data f when Q p = T V p q is given by Eq. [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. This corresponds to a discrete version of the Total Variation problem [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Darbon | Image restoration with discrete constrained total variation part I: Fast and exact optimization[END_REF]. More precisely, depending on the value of q, it is a discrete Total Variation model with a data attachment term in L 0 (with the convention that 0 0 = 0), L 1 (TV-L1) or L 2 (the ROF model) norm.

Let T q be the operator that maps f to a solution x of Eq. (2).

6.1. Inheriting some properties of TV-L1. The following properties are inherited from the properties of the classical TV-L1 model, see for example [START_REF] Duval | The TVL1 model: a geometric point of view[END_REF]. Formal proofs are omitted for brevity. Property 6.1. The operator T 1 is idempotent, i.e.. T 1 (T 1 (f )) = T 1 (f ). Property 6.2. The operator T 1 commutes with the addition of constants (i.e., T 1 (f + C) = T 1 (f ) + C) and is self-dual (i.e., T 1 (1 -f ) = 1 -T 1 (f )). Property 6.3. The operator T 1 is a contrast-invariant operator, i.e., T 1 (g • f ) = g(T 1 (f )), where g is an bounded increasing C 1 diffeomorphism. Property 6.4. The operator T 1 satisfies the maximum principle (m

≤ f ≤ M =⇒ m ≤ T 1 (f ) ≤ M ).
6.2. Total Variation and the flat-zone hierarchy. In this section, we fix f ∈ [0, 1] m , and we set w ij = exp(-|f i -f j |). For the sake of simplicity, we set w i = exp(-µ) for all i, with µ ∈ R (so that µ varies in the same range as the gradient). For any 0 ≤ µ ≤ 1, we note x µ q a solution to Eq. ( 2), i.e., x µ q = T q (f ). We remark that for µ = 0 (strong data attachment), x µ q = f and that for µ ≥ 1 (no data attachment), x µ q is constant. For 0 ≤ µ ≤ 1, let us denote by CC µ q (v i ) the connected component that contains v i such that x µ q is constant on the component. We call CC µ q (v i ) a flat zone of x µ q . It is easy to see, thanks to a simple computation that, for e ij ∈ E, as soon as

µ > |f i -f j |, then x i = x j . Conversely, if µ < |f i -f j |, then x i = f i . Thus the class CC µ q of a point v i is given by CC µ q (v i ) = {v i } ∪ v j | there exists a path v i = v 1 , . . . , v n = v j , such that |f k -f k+1 | < µ ∀1 ≤ k < n (37)
It is the quasi-flat zones hierarchy, introduced by Nagao et al. in 1979 [START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF], recently revived in [START_REF] Soille | Constrained connectivity for hierarchical image decomposition and simplification[END_REF] and shown to be equivalent to an edge-based topological watershed of the gradient in [START_REF] Najman | On the equivalence between hierarchical segmentations and ultrametric watersheds[END_REF].

Let H q be the the family of all flat zones of the solutions x µ q for all µ. The family H q is hierarchical in the sense that:

• For any q ∈ {0, 1, 2}, x 1 q is totally flat. Indeed, we have x 1 0 is the mode of the vector f , x 1 1 is the median of f and x 1 2 = 1 N v i f i is the mean of f . Hence the whole space is an element of H, • x 0 q is exactly f , hence all the points are elements of H, • two elements of H are either disjoint or nested. Thus, we have the following remarkable result. A classical morphological idea [START_REF] Beucher | Watershed, hierarchical segmentation and waterfall algorithm[END_REF][START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF] consists in computing a watershed of the gradient and building a mosaic image by setting the value of the mosaic image to be the mode for q = 0 (resp. the median for q = 1, the mean for q = 2) of the original image on each one of the regions of the watershed segmentation. Such a mosaic image is the optimal solution of Eq. (2).

As an example of application, let us consider the graph depicted in Figure 4(a), that corresponds to the following equation

T V L p 1 (x) =e -9p |x 0 -x 1 | + e -4p |x 0 -x 2 | + e -3p |x 1 -x 3 | + e -2p |x 2 -x 3 | (38) + e -µ [|x 0 -1| + |x 1 -10| + |x 2 -5| + |x 3 -7|] .
The hierarchy H 1 corresponding to all flat zones of the solution x µ 1 to Eq. ( 2) for all µ is depicted in Figure 4(b). Some x µ 1 are given in Figures 4(c) to 4(f) depending on different values for µ. For fast algorithms computing the complete hierarchy of mosaic images, we refer to the ultrametric/saliency framework [START_REF] Najman | On the equivalence between hierarchical segmentations and ultrametric watersheds[END_REF][START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF][START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF][START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF]. Such algorithms allows one to compute the whole family of x µ q for µ ∈ [0, 1] m in linear or quasi-linear time.

7. An application to spectral clustering: the power-ratio cut. Spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] is a successful approach to clustering and many different variations do exist. One of those variations is called ratio-cut [START_REF] Wei | Towards efficient hierarchical designs by ratio cut partitioning[END_REF], and can be described thanks to the following optimization where L is the graph-laplacian 6 , T r is the trace operator and I is the identity matrix. Without restriction in generality, let us suppose that the graph has distinct weights w 1 < w 2 < . . . < w j with j ≤ m. Let us define L k as the graph-laplacian of the subgraph induced by the edges whose weight is exactly w k . As described in [START_REF] Challa | Gamma limit for spectral clustering[END_REF], it can be easily seen that ( 39) is equivalent to (41) minimize

H∈R m×k j k=1 w k T r(H t L k H)
subject to H t H = I By raising the w k at the power p, we can see that (41) fits into the power-watershed framework. Thus, we can define the power-ratio cut as the solution to the γ-limit of (41) when raising w k at the power p and letting p tends to infinity. Algorithm 2 is not applicable to this situation, but we can apply some variation of algorithm 1. A complete theory, together with an efficient algorithm for solving this problem, as well as illustrations (such as the one of Figure 5) and experiments, can be found in [START_REF] Challa | Gamma limit for spectral clustering[END_REF]. 6 The elements of L are given by (40)

Li,j :=

     deg(vi) if i = j -wij if i = j
and vi is adjacent to vj 0 otherwise where deg(vi) = j wij is the degree of the vertex 8. Conclusion: some ideas for extensions and applications. The framework developed in this paper casts a new light on the links and differences between the mathematical morphology theory for segmentation and filtering, and the more classical one based on optimization. We would like to highlight here some possible research directions for the future. Some of those ideas are natural extension of the current paper.

• Exploring the extension of the classical power-watershed, as proposed in Eq. ( 7), is a must. • We showed in section 6 how to express the morphological mosaic images as a Γ-limit of some Total-Variation operators. The next steps would be to look at the theory of scale-set image analysis [START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Kiran | Global-local optimizations by hierarchical cuts and climbing energies[END_REF] and find if it would be possible to obtain optimal hierarchies composed of optimal partitions. This possibly would allows us to think the watershed operator as a projector, and would probably allows to strenghten the ideas developed in [START_REF] Couprie | Anisotropic Diffusion Using Power Watersheds[END_REF] regarding anisotropic diffusion. • Regarding spectral classification, we hint in section 7 at what can be done with the ratio-cut criterion [START_REF] Challa | Gamma limit for spectral clustering[END_REF]. Other criterions, such as normalized cuts [START_REF] Shi | Normalized cuts and image segmentation[END_REF], should of course be studied, but this could be more difficult. Such a study could lead to applications in machine learning such as graph matching and non-linear dimensionality reduction techniques. • Application of the proposed framework for morphological filtering, in order to clarify links and differences between for example MST-based filtering [START_REF] Stawiaski | Minimum spanning tree adaptive image filtering[END_REF][START_REF] Bao | Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree, Image Processing[END_REF] and distancebased filtering (such as the amoeba framework [START_REF] Lerallut | Image filtering using morphological amoebas[END_REF]) is also of interest. A first step in this direction can be found in [START_REF] Danda | Power tree filter: A theoretical framework explaining and extending the minimum spanning tree filter[END_REF]. We list below some other open problems.

8.1. Is x useful for estimating x p ?. Such an estimation would be most useful. For example, if we know that x p is close to x , then x can be used to initialize a convergence process to x p .

Under certain conditions, we can obtain such an estimation. For example, with strong convexity: for any strongly convex function γ, there exists ν > 0 such that (42)

xx 0 2 2 ≤ 2 ν (γ(x) -γ(x 0 )).

where x 0 is the unique minimum of γ. Hence we can approximate x p with x . However, ν would also tend to 0 when p → ∞, so this has to be dig in.

8.2. Link between the continuous world and the discrete one. When ϕ ij (x) = ϕ k (x) = |x|, Eq. ( 3) is equivalent to a min-cut/max-flow problem. This problem has a continuous formulation, that was proposed by G. Strang [START_REF] Strang | Maximal flow through a domain[END_REF]. But the maximum spanning tree problem, being a tree problem, is purely discrete, and we do not see any obvious formulation in continuous terms.

Can the link between max-flow/min-cut and maximum spanning tree described in the present paper be used for proposing a continuous notion of maximum spanning tree? 
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 52 Solving Eq. (2) on G is equivalent to solving it on M ST (G). Proof. It is a straightforward consequence of Theorem 4.2 and of Lemma 5.1. Indeed, let e ij ∈ M ST (G), with w ij = λ k . According to Lemma 5.1, e ij links two vertices of a component C of [w] λ k-1 . Hence, by Theorem 4.2 (more precisely, by application of algorithm 2), either all the potential of the vertices of C have been fixed at a previous scale, or C has been contracted. We denote by R(G) the graph obtained by contracting any non-seeded component of [w] t for any t > 0. Theorem 5.3. Solving Eq. (2) on G is equivalent to solving it on M ST (R(G)).
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 44 Figure 4: An example of application of the Γ-limit of the TV-L1 scheme corresponding to Eq. subsection 6.2.
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 5 Figure5: From[START_REF] Challa | Gamma limit for spectral clustering[END_REF], an example of comparison between ratio-cut and power-ratio cut spectral clusterings on two nested noisy circular sets of 2D points.

8. 3 .

 3 Extension to quantum mechanics. Everything here should extend to Schrödinger operators. This might open the door for novel applications in physics.

  ) forall scales λ k by decreasing value do forall connected components C of [w] λ k do if C is seeded then Fix the unknown potential x i of the vertices v i ∈ V (C) by minimizing Q k

	on C.
	end
	else Contract C. ;
	end
	end
	Algorithm 2: Power watershed algorithm, optimizing Eq. (2)

See article by Combettes & Pesquet[START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for all the necessary hypotheses.

This tree structure is called the Max-tree in the literature. There exist fast algorithms for building this Max-tree[START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF].

As in the contraction of a connected set C we remove any edge connecting two (not necessarily different) vertices of the set, there is no loop in the resulting contracted set.
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