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Extending the PowerWatershed framework thanks to Γ-convergence∗

Laurent Najman†

Abstract. In this paper, we provide a formal proof of the power-watershed framework relying on the Γ-
convergence framework. The main ingredient for the proof is a concept of scale. The proof and
the formalism introduced in this paper have the added benefit to clarify the algorithm, and to allow
to extend the applicability of the power watershed algorithm to many other types of energy functions.
Several examples of applications are provided, including Total Variation and Spectral Clustering.

Key words. Power Watershed, Γ-convergence, image filtering, image segmentation, classification, spectral clus-
tering
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1. Problem statement: the power watershed framework. We are interested in the fol-
lowing problem. Given three strictly positive integers p > 0, m > 0, n > 0 and n real numbers
1 ≥ λ0 > λ1 > . . . λn−1 > 0, we set

(1) Qp(x) =
∑

0≤k<n
λpkQk(x)

where, for all 0 ≤ k < n, Qk : Rm → R is a continuous function. We search x? ∈ Rm such
that

(2) x? ∈ lim
p→∞

arg min
x∈Rm

Qp(x)

We are going to see that λk acts as a notion of scale for the problem at hands. Note that
we are not interested in the limit of Qp(x) itself as p→ +∞. Indeed, if λ0 < 1,

∑
k λ

p
kQk(x)

tends to 0 uniformly on Rm when p→ +∞, and any x ∈ Rm is a minimizer of 0. Instead, we
are interested in the limit x? of the minimizers of Qp as p→ +∞. The whole question is thus
the choice of an informative minimizing sequence. The study of these types of questions is the
main objective of the Γ-theory [17, 7], which has been adapted to the case of space of graphs
in [11, 20]. However, as the sequence of (continuous) functional is decreasing (i.e., Qp+1 ≤ Qp)
and converge pointwise to a continuous function (implying Γ-convergence), our formalism is
simpler and does not require familiarity with the Γ-convergence framework. Furthermore, the
theorems from the Γ-convergence theory are generally written with a coercivity1 hypothesis
(in our case, that would be on the Qk) not applicable in our framework. We shall replace
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2 LAURENT NAJMAN

the coercivity hypothesis by a compactness argument. For the sake of completeness, we shall
expose in this paper what is needed to understand the proof, without explicit reference to
Γ-convergence.

As in many cases, the (first) limit of Qp provides a functional with a lot of minimizers.
However, a further “limit of higher order”, with a different scaling, bring more information
(for a formalization of this idea in the Γ-convergence framework, see [2]).

The idea is thus the following. In order to observe what happens during the convergence
process, one has to apply a change of scale. Roughly speaking, this amounts to dividing the
generator Qp by λ0 for the first scale, and this provides some information; dividing it further
by λ1 for the second scale will provide more information, and so on. By doing so, we build a
sequence of functionals the minimizers of which being the solution we are looking for.

Intuitive explanation of the contributions of this paper: as it is clear from the content
of the present paper, the proposed framework allows to combine in a specific and rigorous
way minimum-spanning-tree based optimization with other optimization algorithms, such as
for instance random-walk or spectral clustering. It is well known that minimum spanning tree
is an efficient and fast way to do a clustering, although this algorithm is subject to leaks [38]
(also known as the chaining effect) and can not impose any constraint on the border of the
clusters (such as, for example, regularity). The intuitive idea behind the main results of this
paper, is to compute a minimum spanning tree where it is easy to do so, i.e., the centers of the
clusters, and to apply a more evolved algorithm on an “extended” boundary of the clusters,
in order to impose the constraints. This is somehow similar to what is often done for solving
practical problems when the data is large: in such cases, one often starts by reducing the data
size by applying a first clustering algorithm, such as the minimum spanning tree. Thus, a
different way to look at this paper is the following: we propose a theory and some algorithms
to combine data reduction and optimization-based clustering, based on first principles.

Section 2 provides some motivations for solving (2), the main one being the power-
watershed [14]. In section 3, the main theorem of this paper is demonstrated, with its associate
generic algorithm. In section 4, a specific algorithm dedicated to a particular class of functions
is given and proved. Section 5 clarifies the links of the proposed framework with the (union
of) maximum spanning trees. Two examples of applications are then developed. Section 6
shows how total-variation is related to watershed-based mosaic images. Section 7 exhibits an
application to spectral clustering. Finally, in section 8, we propose some ideas for extension
and future work.

2. Motivation. Although it is by no means necessary from a theoretical point of view,
it is convenient for many practical purposes to think of Rm as a graph. We shall adopt the
following notations in this paper, which will allows us to clarify the links between Equation (2)
and the classical minimum spanning tree problem.

2.1. Notations. A (simple) graph G consists of a pair G = (V,E) with vertices v in a
finite set V of cardinality |V | = m and edges e ∈ E ⊆ V × V with cardinality |E| ≤ m2.
An edge, e, spanning two vertices, vi and vj , is denoted by eij . In 2D image processing
applications, each pixel is typically associated with a vertex of the graph and the vertices are
connected locally via a 4 or 8-connected lattice. An edge-weighted graph assigns a real value
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to each edge, called a weight. In this work, the weights are assumed to be non-negative and
bounded by 1. The weight of an edge eij is denoted by w(eij) or wij . We also denote by wi the
(unary) weights penalizing the observed configuration at node vi. In the context of filtering,
segmentation and clustering applications, the weights encode nodal affinity such that nodes
connected by an edge with high weight are considered to be strongly connected and edges
with a low weight represent nearly disconnected nodes.

2.2. Power-watershed with q ≥ 0. Let q ≥ 0, we set

(3) W p(x) =
∑
eij∈E

wpij |xi − xj |
q +

∑
vi∈V

wpi |xi − fi|
q

This problem was introduced for segmentation purposes in [14], with q ≥ 1. In this case,
Eq. (3) is a discrete formulation of the many possible variations on total variation denoising.
In these formulations, wij are the pairwise weights, which can be interpreted as a weight
on the gradient of the target configuration, such that the first term penalizes any unwanted
high-frequency content in x and essentially forces x to vary smoothly within an object, while
allowing large changes across the object boundaries. The second term enforces fidelity of x to
a specified configuration f , wi being the unary weights enforcing that fidelity. If q > 1, the
function W p in (3) is usually (depending on the wij) coercive, proper and strictly convex2,
and a unique minimum arg minxW

p(x) exists for each p > 0. The existence and the unicity
of the solution x? to Eq. (2) thus depends on the convergence of these solutions. The earlier
proof provided in [14] is, unfortunately, incomplete and difficult to understand. In [1], there
is a proof corresponding to the case q = 1, where several solutions arg minxW

p(x) may exist.
For a different perspective on the same topic in a different framework, see [10].

We can rewrite Eq. (3) as follows:

(4) W p(x) =
∑

0≤k<n
λpk

 ∑
ei,j∈Ek

|xi − xj |q +
∑
vi∈Vk

|xi − fi|q


with λ0 > λ1 > . . . > λn−1, where n ≤ |V |+ |E| is the number of different weights present in
the graph G, be they pairwise (i.e., on a edge linking two different xi and xj) or unary (i.e.,
on a edge linking xi to fi), Ek is the set of edges with weights equal to λk and Vk is the set
of vertices with data-fidelity weights equal to λk.

For 0 ≤ k < n, we set

(5) Wk(x) =
∑

ei,j∈Ek

|xi − xj |q +
∑
vi∈Vk

|xi − fi|q

We have

(6) W p(x) =
∑

0≤k<n
λpkWk(x)

2See article by Combettes & Pesquet [12] for all the necessary hypotheses.
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(a) Some seeds (b) Result of the segmentation

Figure 1: From [14], an example of segmentation in Figure 1(b) with the power-watershed
watershed framework, by computing the Γ-limit of (3) when q = 2, using the seeds shown in
Figure 1(a)

Theorem 3.3 on page 6 ensures the convergence of the minimizers of W p. In particular,
when q > 1 and when the problem is strictly convex, we have unicity of the limit of the
minimizers. An example of application to seeded segmentation is shown in Figure 1 (see [14]
for more details on this example.)

We can extend the power-watershed formulation, while keeping the same properties. Let
q1 > 0, q2 > 0, aij ≥ 0 and ak ≥ 0. We set

(7) W p(x) =
∑
eij∈E

wpijaij |xi − xj |
q1 +

∑
vi

wpi ai|xi − fi|
q2

With the notation of the present paper, we can rewrite this equation as

(8) W p(x) =
∑

0≤k<n
λpkWk(x)

with

(9) Wk =
∑

eij∈Ek

aij |xi − xj |q1 +
∑
vi∈Vk

ai|xi − fi|q2

We remark that (loosely speaking) computing the limit of the minimizers amounts to solving
a weighted-graph variational problem on each one of the subgraph defined by (Vk, Ek).

2.3. Multi-scale regularization on weighted graphs. Let 1 ≥ λ0 > λ1 > . . . > λn−1 > 0.
For 0 ≤ k < n, let qk > 0, and we set

(10) Tk(x) =
1

qk

∑
vi∈Vk

 ∑
{vj |{vi,vj}∈Ek}

aij |xi − xj |2


qk
2

+
∑
vi∈Vk

ai
2
|xi − fi|2
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where (Vk, Ek) is any subgraph of G, aij ≥ 0 and ak ≥ 0. Let us write

(11) T p(x) =
∑

0≤k≤n
λpkTk(x)

We recognize in Eq. (10) a discrete Total-Variation-based regularization (more precisely, a
discrete weighted p-Dirichlet regularization) of the subgraph (Vk, Ek) weighted with the cor-
responding aij and ai [22]. Theorem 3.3 (on page 6) allows us to combine several graph
regularizations into one unique formulation: minimizing Eq. (11) can then be thought of as a
combination of several scales of Total-Variation regularizations.

3. Scale-based approach for the Power Watershed framework.

3.1. A simple example. For any ε > 0, let Qε : R2 → R be defined by

(12) Qε(x0, x1) = ε(x0 − x1)2 + ε2
(
(x0 − 1)2 + x21

)
Note that Qε → 0 when ε tends to 0. Also note that the functional Qε is quadratic positive
definite for any ε > 0. It is strongly convex with a single minimum (as we are going to verify
shortly).

3.1.1. Direct approach. By consideration of symmetry, we can reduce the problem to a
single variable λ ∈ R: we set x0 = 1

2 − λ and x1 = 1
2 + λ. We then have

(13) Qε(λ) = 2ε2(λ+
1

2
)2 + 4ελ2 = λ2(4ε+ 2ε2) + 2λε2 +

ε2

2

A derivation with respect to λ leads to

(14)
d

dλ
Qε(λ) = 4ε(2 + ε)λ+ 2ε2

A second derivation yields:

(15)
d2

dλ2
Qε(λ) = 4ε(ε+ 2),

which shows that the functional is strongly convex. As a minimum is reached for λε such that
d
dλQε(λε) = 0, we get

(16) λε =
−ε

2(2 + ε)

which corresponds to the point (xε0, x
ε
1) such that

xε0 =
1

2
− −ε

2(2 + ε)
=

1 + ε

2 + ε
(17)

xε1 =
1

2
+

−ε
2(2 + ε)

=
1

2 + ε
(18)

The distance of (xε0, x
ε
1) to (12 ,

1
2) is equals to ε√

2(2+ε)
, which proves the convergence of the

sequence to (12 ,
1
2) when ε tends to 0.
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3.1.2. Scale-based approach. We first note that

(19)
Qε(x)

ε
= (x0 − x1)2 + ε

(
(x0 − 1)2 + x21

)
tends to (x0−x1)2 when ε tends to 0. Minimizing Qε, a first approximation at scale ε imposes
x0 = x1. This corresponds to a restriction of the space on which Qε is defined. From a graph
point of view, this corresponds to identifying v0 to v1 by (continuously) contracting the edge
e01 = {v1, v0}. Minimizing the restriction of Qε to the space {v0 = v1} leads to x0 = x1 = 1

2 .
The rest of the paper is dedicated to justifying that x0 = x1 = 1

2 is indeed the limit of the
minimizers of Qε, generalizing Qε to Qp.

Remark 3.1. Using results from [20], Γ-theory allows to prove that

(20) (1, 0) = lim
ε→∞

arg min
x

Qε(x).

3.2. Proof of the existence of the limit of the minimizers of Eq. (3).

Remark 3.2. The following theorem could also be proved with several applications of
Claude Berge’s maximum theorem [4] (well known in mathematical economics), which pro-
vides conditions for the continuity of an optimized function and the set of its maximizers as
a parameter changes.

We shall prove the following.

Theorem 3.3. Let Qp :=
∑

0≤k<n λ
p
kQk, where (λk)0≤i<n ∈ Rn is such that 1 ≥ λ0 > λ1 >

. . . > λn−1 > 0, and (Qk)0≤k<n are real-valued continuous functions defined on Rm.
Let M0 be the set of minimizers of Q0, and for 0 < k < n, Mk be recursively defined as

follows:

M0 = arg min
x∈Rm

Q0(x)(21)

∀ 1 ≤ k < n, Mk = arg min
x∈Mk−1

Qk(x)(22)

Any convergent sequence (xp)p>0 of minimizers of Qp converges to some point of Mn−1.
In particular, if for all p > 0, (xp)p>0 is bounded (i.e. if there exists C > 0 such that for all
p > 0, ‖xp‖∞ ≤ C), then, up to a subsequence, the sequence (xp)p is convergent towards a
point of Mn−1. Furthermore, we can then estimate the minimum of Qp as follows:

(23) min
x∈Rm

Qp(x) =
∑

0≤k<n
λpkmk + o(λpn−1)

where mk = minx∈Mk
Qk(x) and where o(λpn−1) is the Landau notation for negligibility3.

Note that there exist many applications where the minimizers of Qp are bounded. This is in
particular the case for elliptical problems, and for many problems where Total-Variation is
used as a regularizer.

3In our case, this means that limp→∞
Qp(x)−

∑
0≤k<n λ

p
k
mk

λ
p
n−1

= 0
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Thanks to Theorem 3.3, we remark that if Mn−1 is a singleton set, then any sequence of
minimizers converges to the point in Mn−1. Thanks to Theorem 3.3 and to the continuity of
the application p→ Qp(.), we can also remark that if for all p > 0, Qp has only one minimizer,
then there exists a unique x ∈ Rm such that {x} ⊆Mn−1.

We are now ready to prove Theorem 3.3.

3.2.1. Scale λ0. We write

(24)
Qp(x)

λp0
= Q0(x) +

∑
k>0

(
λk
λ0

)p
Qk(x)

As λ0 > λk for any k > 0, the second term of Eq. (24) is negligible with respect to Q0(x)
as soon as p is large enough. Let us write M0 := arg minxQ0(x) = {y | y ∈ arg minxQ0(x)}.
Let us set m0 = minxQ0(x). By definition of M0, for any x ∈ M0, we have Q0(x) = m0. If
the minimizers of Qp are bounded, i.e., if they live in a compact, then we can also bound the
Qk(x) for any x in the same compact and for all k. We thus have

(25) min
x
Qp(x) = λp0m0 + o(λp0)

3.2.2. Scale λ1. The process can be repeated with the next scale λ1. We set

(26) Rp0(x) = Qp(x)− λp0Q0(x)

and we note that
Rp0(x)

λp1
= Q1(x) +

∑
k>1(

λk
λ1

)pQk(x). We set M1 := arg minx∈M0
Q1(x), and

we have

(27) min
x
Qp(x) = λp0m0 + λp1m1 + o(λp1)

where m1 = minx∈M0 Q1(x).

3.2.3. Scale λk. More generally, the step corresponding to scale λk is

(28) Rpk(x) = Rpk−1(x)− λpkQk(x)

and the whole process is repeated for all k.
Repeating the process for all scales λk, we obtain

(29) min
x
Qp(x) =

∑
0≤k<n

λpkmk + o(λpn−1)

where mk = minx∈Mk
Qk(x).

Now, let us take a sequence (xp)p of minimizers of Qp converging to some x? ∈ Rm.
Thanks to the continuity of the application (x, p) 7→ Qp(x) and to the continuity of Q0, we
obtain x? ∈ M0. By reiterating the argument, we get that x? ∈ M1, and so on, until we get
x? ∈Mn−1.

Hence the Theorem 3.3.
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Data: A set of n continuous functions (Qk)0≤k<n from Rm to R, together with their
scale λ0 > λ1 > . . . > λn−1.

Result: x solution to Eq. (2)
forall scales λk by decreasing value do

Compute Mk = arg minx∈Mk−1
Qk.

end
return some x ∈Mn−1
Algorithm 1: Generic hierarchical optimization algorithm, optimizing Eq. (2)

3.3. A generic algorithm. The algorithm 1 is a direct application of Theorem 3.3. How-
ever, in its generic form, it is not easy to implement. In the next section, we are going to
particularize the function Qk, so that we can provide a more specific implementation and so
that we can link this implementation with minimum spanning tree algorithms.

4. Algorithm for the Power Watershed.

4.1. Notations and preliminary concepts. We are going to detail how the limit of the
minimizers in Eq. (2) is obtained for a specific class of functions Qp that extends the power-
watershed formulation given by Eq. (9).

We suppose that the graph G is weighted by w, and that we are given a family (ϕij)eij∈E
of positive functions from R to R+ such that ϕij(z) = 0 if and only if z = 0. We set

(30) Qp(x) =
∑
eij∈E

wpijϕij(xi − xj)

Let V f ⊆ V , V f 6= ∅. The set V f is the set of boundary conditions for which the value xi = fi
of a point vi ∈ V f is known (fixed). If there exists (at least) wij > 0 for which vi ∈ V f , then
one can show that the minimum of Qp is bounded.

Let n be the number of different weights wij , and let λ0 > λ1 > . . . > λn−1 be those
different weights. We set Ek = {eij | wij = λk}. We write

(31) Qk(x) =
∑

eij∈Ek

ϕij(xi − xj).

Then Qp can be written as

(32) Qp(x) =
∑

λpkQk(x)

Recall that an edge-induced subgraph of a graph G is a subset of the edges of G together
with any vertices that are their endpoints. A path in a graph G is a sequence of edges of the
graph which connect a sequence of vertices. A connected component is a subgraph of G in
which any two vertices are connected to each other by paths, and which is connected to no
additional vertices in G. We denote by CC(G) the set of connected components of a graph G.

In the rest of the paper, we suppose that the graph G is connected. For any t ≥ 0, the
level set [w]t is the graph induced by {eij ∈ E | wij ≥ t}. We remark that any two connected
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components of ([w]t)t>0 are either disjoint or nested. Thus, these connected components can
be organized in a tree structure4. [wt] is a subgraph of G. If a connected component C of
CC([w]t) is such that V (C)∩ V f 6= ∅, we say that C is seeded. As V f 6= ∅, at least one of the
connected component of one the level sets is seeded.

Lemma 4.1. Let t > 0 and C ∈ CC([w]t). We have
∑

eij∈E(C) ϕij(xi− xj) = 0 if and only

if xi = xj for any vi, vj ∈ V (C).
In particular, if C is not seeded, then arg minx

∑
eij∈E(C) ϕij(xi− xj) = 0, and any x that

achieves the minimum is constant on C.

Proof. As for any z ∈ R, ϕij(z) ≥ 0 a the sum can only vanish if all terms ϕij(xi − xj)
vanish. Thus, if two vertices vi and vj are connected by an edge of C, then xi needs to be equal
to xj . As ϕij(z) = 0 if and only if z = 0, we see that x needs to be constant for all vertices
which can be connected by a path in the graph. By definition of a connected component, all
the vertices of C are connected by a path, hence x needs to be constant on C.

In particular, if C is not seeded, then any x that achieves the minimum is constant on
C.

4.2. Algorithm for the power watershed.. To provide an algorithm computing Eq. (2)
where Qp is given by Eq. (30), we need to define the contract operation. We say that we
contract two connected vertices v1 and v2 when we remove the edge {v1, v2} linking v1 to v2
while simultaneously merging the two vertices into a unique vertex. We say that we contract a
connected subgraph C when we repeat the contraction until there is no edge in C, i.e. when C
is reduced to a unique vertex. We remark that the order of the sequence of edge removal has
no consequence on the result. We also remark that when we contract a connected subgraph
C of a simple graph G, the resulting graph G′ might no longer be a simple graph, but G′ can
be a multi-graph, i.e., a graph in which an edge is repeated several times5.

We are now ready to state algorithm 2. This algorithm is essentially the same as the one
proposed in [14], although the presentation is simplified by the formalism we introduce in this
paper. As stated previously, the various λk act as a notion of scale for the problem. Roughly
speaking, at a given scale λk, this algorithm considers the level set of the graph corresponding
to λk, and find the minimum of Qk on this part of the graph. In the subsequent scales, the
potentials fixed at previous scales are used as initial conditions.

We have the following theorem.

Theorem 4.2. Let Qp given by Eq. (30), and such that, for any p ≥ 0, arg minxQ
p(x) is

bounded. Then algorithm 2 computes the solution to Eq. (2).

Remark that Eq. (30) includes ϕij(z) = aijz
qij , with aij > 0 and qij > 0, which itself

generalizes the power-watershed equation (3). When the solutions to arg minxQ
p(x) can be

bounded (which is the case for the power-watershed), then, by application of Theorem 3.3,
there exists at least one minimizer x ∈Mn−1 such that x ∈ limp arg minxQ

p(x).

4This tree structure is called the Max-tree in the literature. There exist fast algorithms for building this
Max-tree [8].

5As in the contraction of a connected set C we remove any edge connecting two (not necessarily different)
vertices of the set, there is no loop in the resulting contracted set.
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Data: A weighted graph G′ = (V ′, E′, w) and the functions Qk
Result: x solution to Eq. (2)
forall scales λk by decreasing value do

forall connected components C of [w]λk do
if C is seeded then

Fix the unknown potential xi of the vertices vi ∈ V (C) by minimizing Qk
on C.

end
else Contract C. ;

end

end

Algorithm 2: Power watershed algorithm, optimizing Eq. (2)

The rest of the section is dedicated to proving Th. 4.2. We will proceed by successively
considering the various scales λk.

4.2.1. Scale λ0. As the restriction of Q0 to any connected component of [w]λ0 is positive,
we can independently optimize Q0 on each element C ∈ CC([w]λ0).

If C is seeded, the data attachment term provides a boundary condition for finding the
minimum, and a potential xi for any vi ∈ V (C) is fixed at this scale.

Otherwise, if C is not seeded (i.e., there is no data attachment for C and only the regu-
larization term is present), we obtain xi = xj for any vi, vj ∈ V (C) thanks to Lemma 4.1. In
other word, we contract C.

For the sake of simplicity, in the sequel, we still denote by G the resulting contracted
multi-graph.

4.2.2. Scale λ1. At scale λ1, we want to find a minimizer of Q1 restricted to the minimiz-
ers of Q0. In other words, we want to obtain the potential xi of any vi in [w]λ1 , constrained
by the information on any vj ∈ V ([w]λ0) obtained at the previous scale. The xi of any
vi ∈ V ([w]λ0) plays the role of a data attachment for the vertices of [w]λ1 \ [w]λ0 .

As in the previous step, the restriction of Q1 to any connected component of [w]λ1 being
positive, we can independently optimize Q1 on each element C ∈ CC([w]λ1). If C is seeded,
then the data attachment allows us to fix the potential xi of any vi ∈ [w]λ1 not already fixed
at the previous scale. Otherwise, if C is not seeded, (i.e., there is no data attachment for C),
Lemma 4.1 ensures that xi = xj for any vi, vj ∈ V (C). We thus contract C onto a unique
vertex. As before, we continue to denote by G the resulting contracted multi-graph.

4.2.3. Other scales λk, 1 < k < n. The process is straightforwardly repeated for all the
other scales λk, 1 < k < n. At each step of the scaling process, the potential xi of some
vertices vi becomes known. At the end, as the graph G is connected and as at least one of
component of the level set is seeded, a complete potential x ∈ Rm has been obtained.

This concludes the proof.
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(a) Graph corresponding to
Eq. (33)
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(b) After the contraction

Figure 2: Applying algorithm 2 on Eq. (33)

4.3. An illustration of the application of Theorem 4.2. Let us consider the following
equation.

(33) Qp(x) = (x0 − x1)2 + (
1

2
)p((x1 − x2)2 + (x0 − x2)2 + (x2 − x3)2 + (x0 − 1)2 + x23))

The graph corresponding to Eq. (33) is depicted in Figure 2(a). After the contraction,
we obtain the unweighted multi-graph depicted in Figure 2(b), which corresponds to the
polynomial

(34) 2(x0 − x2)2 + (x2 − x3)2 + (x0 − 1)2 + x23.

Hence, the solution of the minimization leads to x0 = x1 = 5
7 , x3 = 2

7 and x2 = 4
7 .

5. Power-watershed and the union of all maximum spanning trees. Algorithm 2 has
the structure of Kruskal’s algorithm for the maximum spanning tree [25], and thus this invites
us to look precisely at the relation between Eq. (2) and the maximum spanning tree problem.

A tree T is a connected graph such |E(T ) = |V (T )| − 1. A spanning tree T of a graph G
is a tree such that V (T ) = V (G). The weight of a weighted graph (G,w) is the number

(35) W (G) :=
∑

eij∈E(G)

wij

A maximum spanning tree of a graph G is a spanning tree T such that the weight of T is
greater or equal to the weight of any other spanning tree of G.

The problem of finding a maximum spanning tree is the oldest problem in combinatorial
optimization [30].

In general, there exist several maximum spanning trees of a given weighted graph. We
denote by MST (G) the union of all the maximum spanning trees of the graph G. We remark
that MST (G) is a subgraph of G such that |E(MST (G))| ≤ |E(G)|.

The following lemma, illustrated on Fig. 3, is easily deduced from the proof of Kruskal’s
algorithm for maximum spanning tree, and thus its proof is left for the reader. To ease the
writing of the lemma, we note by convention [w]λ−1 = ∅, where λ−1 > λ0.

Lemma 5.1. Let eij = {xi, xj} be an edge of [w]λk such that wij = λk. Then one of the
two situations holds:
• either eij links two different components of [w]λk−1

. In this case, eij belongs to a maximum
spanning tree of G, i.e., eij ∈ E(MST (G)).
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Figure 3: A graph illustrating lemma 5.1. The edges in red and blue form the union of all the
maximum spanning trees of the graph. The grey edges {x2, x3} and {x4, x6} do not belong
to any maximum spanning tree. One can check that both x2 and x3 (resp. x4 and x6) belong
to the same red component of [w]3. Each of the blue edges {x1, x6}, {x3, x4} and {x2, x5}
belongs to different maximum spanning trees of the graph. One can check that each one of
these edges links the two red components of [w]2.

• or xi and xj belong to the same component of [w]λk−1
. In that case eij 6∈ E(MST (G)).

Theorem 5.2. Solving Eq. (2) on G is equivalent to solving it on MST (G).

Proof. It is a straightforward consequence of Theorem 4.2 and of Lemma 5.1. Indeed, let
eij 6∈MST (G), with wij = λk. According to Lemma 5.1, eij links two vertices of a component
C of [w]λk−1

. Hence, by Theorem 4.2 (more precisely, by application of algorithm 2), either
all the potential of the vertices of C have been fixed at a previous scale, or C has been
contracted.

We denote by R(G) the graph obtained by contracting any non-seeded component of [w]t
for any t > 0.

Theorem 5.3. Solving Eq. (2) on G is equivalent to solving it on MST (R(G)).

Proof. This theorem is also a straightforward consequence of Theorem 4.2, Theorem 5.2,
and Lemma 5.1.

6. An application to Total Variation: the watershed-based mosaic image. Let p ≥ 0,
and q ∈ {0, 1, 2}. We set

(36) TV p
q (x) =

∑
eij∈E

wpij |xi − xj |+
∑
vi∈V

wpi |xi − fi|
q

In this section, we study the dependence of the solution x? of Eq. (2) with respect to data
f when Qp = TV p

q is given by Eq. (36). This corresponds to a discrete version of the Total
Variation problem [31, 19]. More precisely, depending on the value of q, it is a discrete Total
Variation model with a data attachment term in L0 (with the convention that 00 = 0), L1

(TV-L1) or L2 (the ROF model) norm.
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Let Tq be the operator that maps f to a solution x? of Eq. (2).

6.1. Inheriting some properties of TV-L1. The following properties are inherited from
the properties of the classical TV-L1 model, see for example [21]. Formal proofs are omitted
for brevity.

Property 6.1. The operator T1 is idempotent, i.e.. T1(T1(f)) = T1(f).

Property 6.2. The operator T1 commutes with the addition of constants (i.e., T1(f +C) =
T1(f) + C) and is self-dual (i.e., T1(1− f) = 1− T1(f)).

Property 6.3. The operator T1 is a contrast-invariant operator, i.e., T1(g ◦ f) = g(T1(f)),
where g is an bounded increasing C1 diffeomorphism.

Property 6.4. The operator T1 satisfies the maximum principle (m ≤ f ≤ M =⇒ m ≤
T1(f) ≤M).

6.2. Total Variation and the flat-zone hierarchy. In this section, we fix f ∈ [0, 1]m, and
we set wij = exp(−|fi − fj |). For the sake of simplicity, we set wi = exp(−µ) for all i, with
µ ∈ R (so that µ varies in the same range as the gradient). For any 0 ≤ µ ≤ 1, we note xµq a
solution to Eq. (2), i.e., xµq = Tq(f).

We remark that for µ = 0 (strong data attachment), xµq = f and that for µ ≥ 1 (no
data attachment), xµq is constant. For 0 ≤ µ ≤ 1, let us denote by CCµq (vi) the connected
component that contains vi such that xµq is constant on the component. We call CCµq (vi) a
flat zone of xµq .

It is easy to see, thanks to a simple computation that, for eij ∈ E, as soon as µ > |fi−fj |,
then xi = xj . Conversely, if µ < |fi − fj |, then xi = fi. Thus the class CCµq of a point vi is
given by

CCµq (vi) = {vi} ∪
{
vj | there exists a path 〈vi = v1, . . . , vn = vj〉,

such that |fk − fk+1| < µ

∀1 ≤ k < n
}

(37)

It is the quasi-flat zones hierarchy, introduced by Nagao et al. in 1979 [27], recently revived
in [33] and shown to be equivalent to an edge-based topological watershed of the gradient in
[28].

Let Hq be the the family of all flat zones of the solutions xµq for all µ. The family Hq is
hierarchical in the sense that:

• For any q ∈ {0, 1, 2}, x1q is totally flat. Indeed, we have x10 is the mode of the vector

f , x11 is the median of f and x12 = 1
N

∑
vi
fi is the mean of f . Hence the whole space

is an element of H,
• x0q is exactly f , hence all the points are elements of H,
• two elements of H are either disjoint or nested.

Thus, we have the following remarkable result. A classical morphological idea [5, 6] consists
in computing a watershed of the gradient and building a mosaic image by setting the value of
the mosaic image to be the mode for q = 0 (resp. the median for q = 1, the mean for q = 2) of
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the original image on each one of the regions of the watershed segmentation. Such a mosaic
image is the optimal solution of Eq. (2).

As an example of application, let us consider the graph depicted in Figure 4(a), that
corresponds to the following equation

TV Lp1(x) =e−9p|x0 − x1|+ e−4p|x0 − x2|+ e−3p|x1 − x3|+ e−2p|x2 − x3|(38)

+ e−µ [|x0 − 1|+ |x1 − 10|+ |x2 − 5|+ |x3 − 7|] .

The hierarchy H1 corresponding to all flat zones of the solution xµ1 to Eq. (2) for all µ is
depicted in Figure 4(b). Some xµ1 are given in Figures 4(c) to 4(f) depending on different
values for µ.

x0

x1

x2

x3

1 5

10 7

µ

µ

µ

µ

9

4

3

2

(a) Graph corresponding to
Eq. subsection 6.2

x0x1x2x3

2

3

4

(b) The corresponding hierar-
chy

1
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(c) µ < 2

1
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(d) 2 < µ < 3

1

7

7

7

(e) 3 < µ < 4

6

6

6

6

(f) µ > 4

Figure 4: An example of application of the Γ-limit of the TV-L1 scheme corresponding to
Eq. subsection 6.2.

For fast algorithms computing the complete hierarchy of mosaic images, we refer to the
ultrametric/saliency framework [28, 16, 29, 15]. Such algorithms allows one to compute the
whole family of xµq for µ ∈ [0, 1]m in linear or quasi-linear time.

7. An application to spectral clustering: the power-ratio cut. Spectral clustering [36]
is a successful approach to clustering and many different variations do exist. One of those
variations is called ratio-cut [37], and can be described thanks to the following optimization
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(a) Ratio-cut result
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(b) Power-ratio cut result

Figure 5: From [9], an example of comparison between ratio-cut and power-ratio cut spectral
clusterings on two nested noisy circular sets of 2D points.

problem. For finding k clusters, compute the solution to

(39)
minimize
H∈Rm×k

Tr(HtLH)

subject to HtH = I

where L is the graph-laplacian6, Tr is the trace operator and I is the identity matrix.
Without restriction in generality, let us suppose that the graph has distinct weights w1 <

w2 < . . . < wj with j ≤ m. Let us define Lk as the graph-laplacian of the subgraph induced
by the edges whose weight is exactly wk. As described in [9], it can be easily seen that (39)
is equivalent to

(41)
minimize
H∈Rm×k

j∑
k=1

wkTr(H
tLkH)

subject to HtH = I

By raising the wk at the power p, we can see that (41) fits into the power-watershed
framework. Thus, we can define the power-ratio cut as the solution to the γ-limit of (41)
when raising wk at the power p and letting p tends to infinity. Algorithm 2 is not applicable
to this situation, but we can apply some variation of algorithm 1. A complete theory, together
with an efficient algorithm for solving this problem, as well as illustrations (such as the one
of Figure 5) and experiments, can be found in [9].

6The elements of L are given by

(40) Li,j :=


deg(vi) if i = j

−wij if i 6= j and vi is adjacent to vj

0 otherwise

where deg(vi) =
∑
j wij is the degree of the vertex
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8. Conclusion: some ideas for extensions and applications. The framework developed in
this paper casts a new light on the links and differences between the mathematical morphology
theory for segmentation and filtering, and the more classical one based on optimization. We
would like to highlight here some possible research directions for the future.

Some of those ideas are natural extension of the current paper.
• Exploring the extension of the classical power-watershed, as proposed in Eq. (7), is a

must.
• We showed in section 6 how to express the morphological mosaic images as a Γ-limit

of some Total-Variation operators. The next steps would be to look at the theory
of scale-set image analysis [23, 24] and find if it would be possible to obtain optimal
hierarchies composed of optimal partitions. This possibly would allows us to think the
watershed operator as a projector, and would probably allows to strenghten the ideas
developed in [13] regarding anisotropic diffusion.
• Regarding spectral classification, we hint in section 7 at what can be done with the

ratio-cut criterion [9]. Other criterions, such as normalized cuts [32], should of course
be studied, but this could be more difficult. Such a study could lead to applications
in machine learning such as graph matching and non-linear dimensionality reduction
techniques.
• Application of the proposed framework for morphological filtering, in order to clarify

links and differences between for example MST-based filtering [34, 3] and distance-
based filtering (such as the amoeba framework [26]) is also of interest. A first step in
this direction can be found in [18].

We list below some other open problems.

8.1. Is x? useful for estimating xp?. Such an estimation would be most useful. For
example, if we know that xp is close to x?, then x? can be used to initialize a convergence
process to xp.

Under certain conditions, we can obtain such an estimation. For example, with strong
convexity: for any strongly convex function γ, there exists ν > 0 such that

(42) ‖x− x0‖22 ≤
2

ν
(γ(x)− γ(x0)).

where x0 is the unique minimum of γ. Hence we can approximate xp with x?. However, ν
would also tend to 0 when p→∞, so this has to be dig in.

8.2. Link between the continuous world and the discrete one. When ϕij(x) = ϕk(x) =
|x|, Eq. (3) is equivalent to a min-cut/max-flow problem. This problem has a continuous
formulation, that was proposed by G. Strang [35]. But the maximum spanning tree prob-
lem, being a tree problem, is purely discrete, and we do not see any obvious formulation in
continuous terms.

Can the link between max-flow/min-cut and maximum spanning tree described in the
present paper be used for proposing a continuous notion of maximum spanning tree?

8.3. Extension to quantum mechanics. Everything here should extend to Schrödinger
operators. This might open the door for novel applications in physics.
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