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Extending the PowerWatershed framework thanks to Γ-convergence∗1

Laurent Najman†2

3

Abstract. In this paper, we provide a formal proof of the power-watershed framework relying on the Γ-4
convergence framework. The main ingredient for the proof is a concept of scale. The proof and5
the formalism introduced in this paper have the added benefit to clarify the algorithm, and to allow6
to extend the applicability of the power watershed algorithm to many other types of energy functions.7
Several examples of applications are provided, including Total Variation and Spectral Clustering.8
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1. Problem statement: the power watershed framework. We are interested in the fol-11

lowing problem. Given three strictly positive integers p > 0, m > 0, n > 0 and n real numbers12

1 ≥ λ0 > λ1 > . . . λn−1 > 0, we set13

(1) Qp(x) =
∑

0≤k<n
λpkQk(x)14

where, for all 0 ≤ k < n, Qk : Rm → R is a continuous function. We search x? ∈ Rm such15

that16

(2) x? ∈ lim
p→∞

arg min
x∈Rm

Qp(x)17

We are going to see that λk acts as a notion of scale for the problem at hands. Note that18

we are not interested in the limit of Qp(x) itself as p→ +∞. Indeed, if λ0 < 1,
∑

k λ
p
kQk(x)19

tends to 0 uniformly on Rm when p→ +∞, and any x ∈ Rm is a minimizer of 0. Instead, we20

are interested in the limit x? of the minimizers of Qp as p→ +∞. The whole question is thus21

the choice of an informative minimizing sequence. The study of these types of questions is the22

main objective of the Γ-theory [16, 7], which has been adapted to the case of space of graphs23

in [10, 19]. However, as the sequence of (continuous) functional is decreasing (i.e., Qp+1 ≤ Qp)24

and converge pointwise to a continuous function (implying Γ-convergence), our formalism is25

simpler and does not require familiarity with the Γ-convergence framework. Furthermore, the26

theorems from the Γ-convergence theory are generally written with a coercivity1 hypothesis27

(in our case, that would be on the Qk) not applicable in our framework. We shall replace28

the coercivity hypothesis by a compactness argument. For the sake of completeness, we shall29
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2 LAURENT NAJMAN

expose in this paper what is needed to understand the proof, without explicit reference to30

Γ-convergence.31

As in many cases, the (first) limit of Qp provides a functional with a lot of minimizers.32

However, a further “limit of higher order”, with a different scaling, bring more information33

(for a formalization of this idea in the Γ-convergence framework, see [2]).34

The idea is thus the following. In order to observe what happens during the convergence35

process, one has to apply a change of scale. Roughly speaking, this amounts to dividing the36

generator Qp by λ0 for the first scale, and this provides some information; dividing it further37

by λ1 for the second scale will provide more information, and so on. By doing so, we build a38

sequence of functionals the minimizers of which being the solution we are looking for.39

Section 2 provides some motivations for solving (2), the main one being the power-40

watershed [13]. In section 3, the main theorem of this paper is demonstrated, with its associate41

generic algorithm. In section 4, a specific algorithm dedicated to a particular class of functions42

is given and proved. Section 5 clarifies the links of the proposed framework with the (union43

of) maximum spanning trees. Two examples of applications are then developed. Section 644

shows how total-variation is related to watershed-based mosaic images. Section 7 exhibits an45

application to spectral clutering. Finally, in section 8, we propose some ideas for extension46

and future work.47

2. Motivation. Although it is by no means necessary from a theoretical point of view,48

it is convenient for many practical purposes to think of Rm as a graph. We shall adopt the49

following notations in this paper, which will allows us to clarify the links between Equation (2)50

and the classical minimum spanning tree problem.51

2.1. Notations. A (simple) graph G consists of a pair G = (V,E) with vertices v in a52

finite set V of cardinality |V | = m and edges e ∈ E ⊆ V × V with cardinality |E| ≤ m2.53

An edge, e, spanning two vertices, vi and vj , is denoted by eij . In 2D image processing54

applications, each pixel is typically associated with a vertex of the graph and the vertices are55

connected locally via a 4 or 8-connected lattice. An edge-weighted graph assigns a real value56

to each edge, called a weight. In this work, the weights are assumed to be non-negative and57

bounded by 1. The weight of an edge eij is denoted by w(eij) or wij . We also denote by wi the58

(unary) weights penalizing the observed configuration at node vi. In the context of filtering,59

segmentation and clustering applications, the weights encode nodal affinity such that nodes60

connected by an edge with high weight are considered to be strongly connected and edges61

with a low weight represent nearly disconnected nodes.62

2.2. Power-watershed with q ≥ 0. Let q ≥ 0, we set63

(3) W p(x) =
∑
eij∈E

wpij |xi − xj |
q +

∑
vi∈V

wpi |xi − fi|
q

64

This problem was introduced for segmentation purposes in [13], with q ≥ 1. In this case,65

Eq. (3) is a discrete formulation of the many possible variations on total variation denoising.66

In these formulations, wij are the pairwise weights, which can be interpreted as a weight67

on the gradient of the target configuration, such that the first term penalizes any unwanted68

high-frequency content in x and essentially forces x to vary smoothly within an object, while69
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EXTENDING THE POWERWATERSHED FRAMEWORK THANKS TO Γ-CONVERGENCE 3

(a) Some seeds (b) Result of the segmentation

Figure 1: From [13], an example of segmentation in Figure 1(b) with the power-watershed
watershed framework, by computing the Γ-limit of (3) when q = 2, using the seeds shown in
Figure 1(a)

allowing large changes across the object boundaries. The second term enforces fidelity of x to70

a specified configuration f , wi being the unary weights enforcing that fidelity. If q > 1, the71

function W p in (3) is usually (depending on the wij) coercive, proper and strictly convex2,72

and a unique minimum arg minxW
p(x) exists for each p > 0. The existence and the unicity73

of the solution x? to Eq. (2) thus depends on the convergence of these solutions. The earlier74

proof provided in [13] is, unfortunately, incomplete and difficult to understand. In [1], there75

is a proof corresponding to the case q = 1, where several solutions arg minxW
p(x) may exist.76

We can rewrite Eq. (3) as follows:77

(4) W p(x) =
∑

0≤k<n
λpk

 ∑
ei,j∈Ek

|xi − xj |q +
∑
vi∈Vk

|xi − fi|q
78

with λ0 > λ1 > . . . > λn−1, where n ≤ |V |+ |E| is the number of different weights present in79

the graph G, be they pairwise or unary, Ek is the set of edges with weights equal to λk and80

Vk is the set of vertices with data-fidelity weights equal to λk.81

For 0 ≤ k < n, we set82

(5) Wk(x) =
∑

ei,j∈Ek

|xi − xj |q +
∑
vi∈Vk

|xi − fi|q83

We have84

(6) W p(x) =
∑

0≤k<n
λpkWk(x)85

Theorem 3.3 below ensures the convergence of the minimizers of W p. In particular, when86

q > 1 and when the problem is strictly convex, we have unicity of the limit of the minimzers.87

2See article by Combettes & Pesquet [11] for all the necessary hypotheses.
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4 LAURENT NAJMAN

An example of application to seeded segmentation is shown in Figure 1 (see [13] for more88

details on this example.)89

We can extend the power-watershed formulation, while keeping the same properties. Let90

q1 > 0, q2 > 0, aij ≥ 0 and ak ≥ 0. We set91

(7) W p(x) =
∑
eij∈E

wpijaij |xi − xj |
q1 +

∑
vi

wpi ai|xi − fi|
q292

With the notation of the present paper, we can rewrite this equation as93

(8) W p(x) =
∑

0≤k<n
λpkWk(x)94

with95

(9) Wk =
∑

eij∈Ek

aij |xi − xj |q1 +
∑
vi∈Vk

ai|xi − fi|q296

We remark that (loosely speaking) computing the limit of the minimizers amounts to solving97

a weighted-graph variational problem on each one of the subgraph defined by (Vk, Ek).98

2.3. Multi-scale regularization on weighted graphs. Let 1 ≥ λ0 > λ1 > . . . > λn−1 > 0.99

For 0 ≤ k < n, let qk > 0, and we set100

(10) Tk(x) =
1

qk

∑
vi∈Vk

 ∑
{vj |{vi,vj}∈Ek}

aij |xi − xj |2


qk
2

+
∑
vi∈Vk

ai
2
|xi − fi|2101

where (Vk, Ek) is a subgraph of G, aij ≥ 0 and ak ≥ 0. Let us write102

(11) T p(x) =
∑

0≤k≤n
λpkTk(x)103

We recognize in Eq. (10) a discrete Total-Variation-based regularization (more precisely, a dis-104

crete weighted p-Dirichlet regularization) of the weighted subgraph (Vk, Ek) [21]. Theorem 3.3105

allows us to combine several graph regularizations into one unique formulation: minimizing106

Eq. (11) can then be though as a combination of several scales of Total-Variation regulariza-107

tions.108

3. Scale-based approach for the Power Watershed framework.109

3.1. A simple example. For any ε > 0, let Qε : R2 → R be defined by110

(12) Qε(x0, x1) = ε(x0 − x1)2 + ε2
(
(x0 − 1)2 + x21

)
111

Note that Qε → 0 when ε tends to 0. Also note that the functional Qε is quadratic positive112

definite for any ε > 0. It is strongly convex with a single minimum (as we are going to verify113

shortly).114
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EXTENDING THE POWERWATERSHED FRAMEWORK THANKS TO Γ-CONVERGENCE 5

3.1.1. Direct approach. By consideration of symmetry, we can reduce the problem to a115

single variable λ ∈ R: we set x0 = 1
2 − λ and x1 = 1

2 + λ. We then have116

(13) Qε(λ) = 2ε2(λ+
1

2
)2 + 4ελ2 = λ2(4ε+ 2ε2) + 2λε2 +

ε2

2
117

A derivation with respect to λ leads to118

(14)
d

dλ
Qε(λ) = 4ε(2 + ε)λ+ 2ε2119

A second derivation yields:120

(15)
d2

dλ2
Qε(λ) = 4ε(ε+ 2),121

which shows that the functional is strongly convex. As a minimum is reached for λε such that122
d
dλQε(λε) = 0, we get123

(16) λε =
−ε

2(2 + ε)
124

which corresponds to the point (xε0, x
ε
1) such that125

xε0 =
1

2
− −ε

2(2 + ε)
=

1 + ε

2 + ε
(17)126

xε1 =
1

2
+

−ε
2(2 + ε)

=
1

2 + ε
(18)127

128

The distance of (xε0, x
ε
1) to (12 ,

1
2) is equals to ε√

2(2+ε)
, which proves the convergence of the129

sequence to (12 ,
1
2) when ε tends to 0.130

3.1.2. Scale-based approach. We first note that131

(19)
Qε(x)

ε
= (x0 − x1)2 + ε

(
(x0 − 1)2 + x21

)
132

tends to (x0−x1)2 when ε tends to 0. Minimizing Qε, a first approximation at scale ε imposes133

x0 = x1. This corresponds to a restriction of the space on which Qε is defined. From a graph134

point of view, this corresponds to identifying v0 to v1 by (continuously) contracting the edge135

e01 = {v1, v0}. Minimizing the restriction of Qε to the space {v0 = v1} leads to x0 = x1 = 1
2 .136

The rest of the paper is dedicated to justifying that x0 = x1 = 1
2 is indeed the limit of the137

minimizers of Qε, generalizing Qε to Qp.138

Remark 3.1. Using results from [19], Γ-theory allows to prove that139

(20) (1, 0) = lim
ε→∞

arg min
x

Qε(x).140
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6 LAURENT NAJMAN

3.2. Proof of the existence of the limit of the minimizers of Eq. (3).141

Remark 3.2. The following theorem could also be proved with several applications of142

Claude Berge’s maximum theorem [4] (well known in mathematical economics), which pro-143

vides conditions for the continuity of an optimized function and the set of its maximizers as144

a parameter changes.145

We shall prove the following.146

Theorem 3.3. Let Qp :=
∑

0≤k<n λ
p
kQk, where (λk)0≤i<n ∈ Rn is such that 1 ≥ λ0 > λ1 >147

. . . > λn−1 > 0, and (Qk)0≤k<n are real-valued continuous functions defined on Rm.148

Let M0 be the set of minimizers of Q0, and for 0 < k < n, Mk be recursively defined as149

follows:150

M0 = arg min
x∈Rm

Q0(x)(21)151

∀ 1 ≤ k < n, Mk = arg min
x∈Mk−1

Qk(x)(22)152

153

Any convergent sequence (xp)p>0 of minimizers of Qp converges to some point of Mn−1.154

In particular, if for all p > 0, (xp)p>0 is bounded (i.e. if there exists C > 0 such that for all155

p > 0, ‖xp‖∞ ≤ C), then, up to a subsequence, the sequence (xp)p is convergent towards a156

point of Mn−1. Furthermore, we can then estimate the minimum of Qp as follows:157

(23) min
x∈Rm

Qp(x) =
∑

0≤k<n
λpkmk + o(λpn−1)158

where mk = minx∈Mk
Qk(x).159

Note that there exist many applications where the minimizers of Qp are bounded. This is in160

particular the case for elliptical problems, and for many problems where Total-Variation is161

used as a regularizer.162

Thanks to Theorem 3.3, we remark that if Mn−1 is a singleton set, then any sequence of163

minimizers converges to the point in Mn−1. Thanks to Theorem 3.3 and to the continuity of164

the application p→ Qp(.), we can also remark that if for all p > 0, Qp has only one minimizer,165

then there exists a unique x ∈ Rm such that {x} ⊆Mn−1.166

We are now ready to prove Theorem 3.3.167

3.2.1. Scale λ0. We write168

(24)
Qp(x)

λp0
= Q0(x) +

∑
k>0

(
λk
λ0

)p
Qk(x)169

As λ0 > λk for any k > 0, the second term of Eq. (24) is negligible with respect to Q0(x)170

as soon as p is large enough. Let us write M0 := arg minxQ0(x) = {y | y ∈ arg minxQ0(x)}.171

Let us set m0 = minxQ0(x). By definition of M0, for any x ∈ M0, we have Q0(x) = m0. If172

the minimizers of Qp are bounded, i.e., if they live in a compact, then we can also bound the173

Qk(x) for any x in the same compact and for all k. We thus have174

(25) min
x
Qp(x) = λp0m0 + o(λp0)175

This manuscript is for review purposes only.



EXTENDING THE POWERWATERSHED FRAMEWORK THANKS TO Γ-CONVERGENCE 7

3.2.2. Scale λ1. The process can be repeated with the next scale λ1. We set176

(26) Rp0(x) = Qp(x)− λp0Q0(x)177

and we note that
Rp

0(x)

λp1
= Q1(x) +

∑
k>1(

λk
λ1

)pQk(x). We set M1 := arg minx∈M0
Q1(x), and178

we have179

(27) min
x
Qp(x) = λp0m0 + λp1m1 + o(λp1)180

where m1 = minx∈M0 Q1(x).181

3.2.3. Scale λk. More generally, the step corresponding to scale λk is182

(28) Rpk(x) = Rpk−1(x)− λpkQk(x)183

and the whole process is repeated for all k.184

Repeating the process for all scales λk, we obtain185

(29) min
x
Qp(x) =

∑
0≤k<n

λpkmk + o(λpn−1)186

where mk = minx∈Mk
Qk(x).187

Now, let us take a sequence (xp)p of minimizers of Qp converging to some x? ∈ Rm.188

Thanks to the continuity of the application (x, p) 7→ Qp(x) and to the continuity of Q0, we189

obtain x? ∈ M0. By reiterating the argument, we get that x? ∈ M1, and so on, until we get190

x? ∈Mn−1.191

Hence the Theorem 3.3.192

3.3. A generic algorithm. The algorithm 1 is a direct application of Theorem 3.3. How-193

ever, in its generic form, it is not easy to implement. In the next section, we are going to194

particularize the function Qk, so that we can provide a more specific implementation and so195

that we can link this implementation with minimum spanning tree algorithms.196

Data: A set of n continuous functions (Qk)0≤k<n from Rm to R, together with their
scale λ0 > λ1 > . . . > λn−1.

Result: x solution to Eq. (2)
forall scales λk by decreasing value do

Compute Mk = arg minx∈Mk−1
Qk.

end
return some x ∈Mn−1
Algorithm 1: Generic hierarchical optimization algorithm, optimizing Eq. (2)

4. Algorithm for the Power Watershed.197
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8 LAURENT NAJMAN

4.1. Notations and preliminary concepts. We are going to detail how the limit of the198

minimizers in Eq. (2) is obtained for a specific class of functions Qp that extends the power-199

watershed formulation given by Eq. (9).200

We suppose that the graph G is weighted by w, and that we are given a family (ϕij)eij∈E201

of positive functions from R to R+ such that ϕij(z) = 0 if and only if z = 0. We set202

(30) Qp(x) =
∑
eij∈E

wpijϕij(xi − xj)203

Let V f ⊆ V , V f 6= ∅. The set V f is the set of boundary conditions for which the value xi = fi204

of a point vi ∈ V f is known (fixed). If there exists (at least) wij > 0 for which vi ∈ V f , then205

one can show that the minimum of Qp is bounded.206

Let n be the number of different weights wij , and let λ0 > λ1 > . . . > λn−1 be those207

different weights. We set Ek = {eij | wij = λk}. We write208

(31) Qk(x) =
∑

eij∈Ek

ϕij(xi − xj).209

Then Qp can be written as210

(32) Qp(x) =
∑

λpkQk(x)211

Recall that an edge-induced subgraph of a graph G is a subset of the edges of G together212

with any vertices that are their endpoints. A path in a graph G is a sequence of edges of the213

graph which connect a sequence of vertices. A connected component is a subgraph of G in214

which any two vertices are connected to each other by paths, and which is connected to no215

additional vertices in G. We denote by CC(G) the set of connected components of a graph G.216

In the rest of the paper, we suppose that the graph G is connected. For any t ≥ 0, the217

level set [w]t is the graph induced by {eij ∈ E | wij ≥ t}. We remark that any two connected218

components of ([w]t)t>0 are either disjoint or nested. Thus, these connected compontents can219

be organized in a tree structure3. [wt] is a subgraph of G. If a connected component C of220

CC([w]t) is such that V (C)∩ V f 6= ∅, we say that C is seeded. As V f 6= ∅, at least one of the221

connected component of one the level sets is seeded.222

Lemma 4.1. Let t > 0 and C ∈ CC([w]t). We have
∑

eij∈E(C) ϕij(xi− xj) = 0 if and only223

if xi = xj for any vi, vj ∈ V (C).224

In particular, if C is not seeded, then arg minx
∑

eij∈E(C) ϕij(xi− xj) = 0, and any x that225

achieves the minimum is constant on C.226

Proof. As for any z ∈ R, ϕij(z) ≥ 0 a the sum can only vanish if all terms ϕij(xi − xj)227

vanish. Thus, if two vertices vi and vj are connected by an edge of C, then xi needs to be equal228

to xj . As ϕij(z) = 0 if and only if z = 0, we see that x needs to be constant for all vertices229

which can be connected by a path in the graph. By definition of a connected component, all230

the vertices of C are connected by a path, hence x needs to be constant on C.231

In particular, if C is not seeded, then any x that achieves the minimum is constant on232

C.233

3This tree structure is called the Max-tree in the litterature. There exist fast algorithms for building this
Max-tree [8].
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EXTENDING THE POWERWATERSHED FRAMEWORK THANKS TO Γ-CONVERGENCE 9

4.2. Algorithm for the power watershed.. To provide an algorithm computing Eq. (2)234

where Qp is given by Eq. (30), we need to define the contract operation. We say that we235

contract two connected vertices v1 and v2 when we remove the edge {v1, v2} linking v1 to v2236

while simultaneously merging the two vertices into a unique vertex. We say that we contract a237

connected subgraph C when we repeat the contraction until there is no edge in C, i.e. when C238

is reduced to a unique vertex. We remark that the order of the sequence of edge removal has239

no consequence on the result. We also remark that when we contract a connected subgraph240

C of a simple graph G, the resulting graph G′ might no longer be a simple graph, but G′ can241

be a multi-graph, i.e., a graph in which an edge is repeated several times4.242

We are now ready to state algorithm 2. This algorithm is essentially the same as the one243

proposed in [13], although the presentation is simplified by the formalism we introduce in this244

paper. As stated previously, the various λk act as a notion of scale for the problem. Roughly245

speaking, at a given scale λk, this algorithm considers the level set of the graph corresponding246

to λk, and find the minimum of Qk on this part of the graph. In the subsequent scales, the247

potentials fixed at previous scales are used as initial conditions.248

Data: A weighted graph G′ = (V ′, E′, w) and the functions Qk
Result: x solution to Eq. (2)
forall scales λk by decreasing value do

forall connected components C of [w]λk do
if C is seeded then

Fix the unknown potential xi of the vertices vi ∈ V (C) by minimizing Qk
on C.

end
else Contract C. ;

end

end

Algorithm 2: Power watershed algorithm, optimizing Eq. (2)

We have the following theorem.249

Theorem 4.2. Let Qp given by Eq. (30), and such that, for any p ≥ 0, arg minxQ
p(x) is250

bounded. Then algorithm 2 computes the solution to Eq. (2).251

Remark that Eq. (30) includes ϕij(z) = aijz
qij , with aij > 0 and qij > 0, which itself252

generalizes the power-watershed equation (3). When the solutions to arg minxQ
p(x) can be253

bounded (which is the case for the power-watershed), then, by application of Theorem 3.3,254

there exists at least one minimizer x ∈Mn−1 such that x ∈ limp arg minxQ
p(x).255

The rest of the section is dedicated to proving Th. 4.2. We will proceed by succesively256

considering the various scales λk.257

4.2.1. Scale λ0. As the restriction of Q0 to any connected component of [w]λ0 is positive,258

we can independently optimise Q0 on each element C ∈ CC([w]λ0).259

4As in the contraction of a connected set C we remove any edge connecting two (not necessarily different)
vertices of the set, there is no loop in the resulting contracted set.

This manuscript is for review purposes only.



10 LAURENT NAJMAN

1 x0

x1

x2 x3 0

1
2

1
2

1
1
2

1
2

1
2

(a) Graph corresponding to
Eq. (33)

1 x0 x2x2 x3 0

(b) After the contraction

Figure 2: Applying algorithm 2 on Eq. (33)

If C is seeded, the data attachment term provides a boundary condition for finding the260

minimum, and a potential xi for any vi ∈ V (C) is fixed at this scale.261

Otherwise, if C is not seeded (i.e., there is no data attachment for C and only the regu-262

larisation term is present), we obtain xi = xj for any vi, vj ∈ V (C) thanks to Lemma 4.1. In263

other word, we contract C.264

For the sake of simplicity, in the sequel, we still denote by G the resulting contracted265

multi-graph.266

4.2.2. Scale λ1. At scale λ1, we want to find a minimizer of Q1 restricted to the minimiz-267

ers of Q0. In other words, we want to obtain the potential xi of any vi in [w]λ1 , constrained268

by the information on any vj ∈ V ([w]λ0) obtained at the previous scale. The xi of any269

vi ∈ V ([w]λ0) plays the role of a data attachment for the vertices of [w]λ1 \ [w]λ0 .270

As in the previous step, the restriction of Q1 to any connected component of [w]λ1 being271

positive, we can independently optimise Q1 on each element C ∈ CC([w]λ1). If C is seeded,272

then the data attachment allows us to fix the potential xi of any vi ∈ [w]λ1 not already fixed273

at the previous scale. Otherwise, if C is not seeded, (i.e., there is no data attachment for C),274

Lemma 4.1 ensures that xi = xj for any vi, vj ∈ V (C). We thus contract C onto a unique275

vertex. As before, we continue to denote by G the resulting contracted multi-graph.276

4.2.3. Other scales λk, 1 < k < n. The process is straightforwardly repeated for all the277

other scales λk, 1 < k < n. At each step of the scaling process, the potential xi of some278

vertices vi becomes known. At the end, as the graph G is connected and as at least one of279

component of the level set is seeded, a complete potential x ∈ Rm has been obtained.280

This concludes the proof.281

4.3. An illustration of the application of Theorem 4.2. Let us consider the following282

equation.283

(33) Qp(x) = (x0 − x1)2 + (
1

2
)p((x1 − x2)2 + (x0 − x2)2 + (x2 − x3)2 + (x0 − 1)2 + x23))284

The graph corresponding to Eq. (33) is depicted in Figure 2(a). After the contraction,285

we obtain the unweighted multi-graph depicted in Figure 2(b), which corresponds to the286

polynomial287

(34) 2(x0 − x2)2 + (x2 − x3)2 + (x0 − 1)2 + x23.288

Hence, the solution of the minimzation leads to x0 = x1 = 5
7 , x3 = 2

7 and x2 = 4
7 .289

This manuscript is for review purposes only.



EXTENDING THE POWERWATERSHED FRAMEWORK THANKS TO Γ-CONVERGENCE 11

5. Power-watershed and the union of all maximum spanning trees. Algorithm 2 has290

the structure of Kruskal’s algorithm for the maximum spanning tree [24], and thus this invites291

us to look precisely at the relation between Eq. (2) and the maximum spanning tree problem.292

A tree T is a connected graph such |E(T ) = |V (T )− 1|. A spanning tree T of a graph G293

is a tree such that V (T ) = V (G). The weight of a weighted graph (G,w) is the number294

(35) W (G) :=
∑

eij∈E(G)

wij295

A maximum spanning tree of a graph G is a spanning tree T such that the weight of T is296

greater or equal to the weight of any other spanning tree of G.297

The problem of finding a maximum spanning tree is the oldest problem in combinatorial298

optimization [29].299

In general, there exist several maximum spanning trees of a given weighted graph. We300

denote by MST (G) the union of all the maximum spanning trees of the graph G. We remark301

that MST (G) is a subgraph of G such that |E(MST (G))| ≤ |E(G)|.302

The following lemma is easily deduced from the proof of Kruskal’s algorithm for maximum303

spanning tree, and thus its proof is left for the reader. To ease the writing of the lemma, we304

note by convention [w]λ−1 = ∅.305

Lemma 5.1. Let eij = {xi, xj} be an edge of [w]λk such that wij = λk. Then one of the306

two situations holds:307

• either eij links two different components of [w]λk−1
. In this case, eij belongs to a maximum308

spanning tree of G, i.e., eij ∈ E(MST (G)).309

• or xi and xj belong to the same component of [w]λk−1
. In that case eij 6∈ E(MST (G)).310

Theorem 5.2. Solving Eq. (2) on G is equivalent to solving it on MST (G).311

Proof. It is a straightforward consequence of Theorem 4.2 and of Lemma 5.1. Indeed, let312

eij 6∈MST (G), with wij = λk. According to Lemma 5.1, eij links two vertices of a component313

C of [w]λk−1
. Hence, by Theorem 4.2 (more precisely, by application of algorithm 2), either314

all the potential of the vertices of C have been fixed at a previous scale, or C has been315

contracted.316

We denote by R(G) the graph obtained by contracting any non-seeded component of [w]t317

for any t > 0.318

Theorem 5.3. Solving Eq. (2) on G is equivalent to solving it on MST (R(G)).319

Proof. This theorem is also a straightforward consequence of Theorem 4.2, Theorem 5.2,320

and Lemma 5.1.321

6. An application to Total Variation: the watershed-based mosaic image. Let p ≥ 0,322

and q ∈ {0, 1, 2}. We set323

(36) TV p
q (x) =

∑
eij∈E

wpij |xi − xj |+
∑
vi∈V

wpi |xi − fi|
q

324

In this section, we study the dependence of the solution x? of Eq. (2) with respect to data325

f when Qp = TV p
q is given by Eq. (36). This corresponds to a discrete version of the Total326
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Variation problem [30, 18]. More precisely, depending on the value of q, it is a discrete Total327

Variation model with a data attachment term in L0 (with the convention that 00 = 0), L1328

(TV-L1) or L2 (the ROF model) norm.329

Let Tq be the operator that maps f to a solution x? of Eq. (2).330

6.1. Inheriting some properties of TV-L1. The following properties are inherited from331

the properties of the classical TV-L1 model, see for example [20]. Formal proofs are omitted332

for brevity.333

Property 6.1. The operator T1 is idempotent, i.e.. T1(T1(f)) = T1(f).334

Property 6.2. The operator T1 commutes with the addition of constants (i.e., T1(f +C) =335

T1(f) + C) and is self-dual (i.e., T1(1− f) = 1− T1(f)).336

Property 6.3. The operator T1 is a contrast-invariant operator, i.e., T1(g ◦ f) = g(T1(f)),337

where g is an bounded increasing C1 diffeomorphism.338

Property 6.4. The operator T1 satisfies the maximum principle (m ≤ f ≤ M =⇒ m ≤339

T1(f) ≤M).340

6.2. Total Variation and the flat-zone hierarchy. In this section, we fix f ∈ [0, 1]m, and341

we set wij = exp(−|fi − fj |). For the sake of simplicity, we set wi = exp(−µ) for all i, with342

µ ∈ R (so that µ varies in the same range as the gradient). For any 0 ≤ µ ≤ 1, we note xµq a343

solution to Eq. (2), i.e., xµq = Tq(f).344

We remark that for µ = 0 (strong data attachment), xµq = f and that for µ ≥ 1 (no345

data attachment), xµq is constant. For 0 ≤ µ ≤ 1, let us denote by CCµq (vi) the connected346

component that contains vi such that xµq is constant on the component. We call CCµq (vi) a347

flat zone of xµq .348

It is easy to to see, thanks to a simple computation that, for eij ∈ E, as soon as µ > |fi−fj |,349

then xi = xj . Conversely, if µ < |fi − fj |, then xi = fi. Thus the class CCµq of a point vi is350

given by351

CCµq (vi) = {vi} ∪
{
vj | there exists a path 〈vi = v1, . . . , vn = vj〉,352

such that |fk − fk+1| < µ353

∀1 ≤ k < n
}

(37)354
355

It is the quasi-flat zones hierarchy, introduced by Nagao et al. in 1979 [26], recently revived356

in [32] and shown to be equivalent to an edge-based topological watershed of the gradient in357

[27].358

Let Hq be the the family of all flat zones of the solutions xµq for all µ. The family Hq is359

hierarchical in the sense that:360

• For any q ∈ {0, 1, 2}, x1q is totally flat. Indeed, we have x10 is the mode of the vector361

f , x11 is the median of f and x12 = 1
N

∑
vi
fi is the mean of f . Hence the whole space362

is an element of H,363

• x0q is exactly f , hence all the points are elements of H,364

• two elements of H are either disjoint or nested.365
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Thus, we have the following remarkable result. A classical morphological idea [5, 6] consists366

in computing a watershed of the gradient and building a mosaic image by setting the value of367

the mosaic image to be the mode for q = 0 (resp. the median for q = 1, the mean for q = 2) of368

the original image on each one of the regions of the watershed segmentation. Such a mosaic369

image is the optimal solution of Eq. (2).370

As an example of application, let us consider the graph depicted in Figure 3(a), that371

corresoponds to the following equation372

TV Lp1(x) =e−9p|x0 − x1|+ e−4p|x0 − x2|+ e−3p|x1 − x3|+ e−2p|x2 − x3|(38)373

+ e−µ [|x0 − 1|+ |x1 − 10|+ |x2 − 5|+ |x3 − 7|] .374375

The hierarchy H1 corresponding to all flat zones of the solution xµ1 to Eq. (2) for all µ is376

depicted in Figure 3(b). Some xµ1 are given in Figures 3(c) to 3(f) depending on different377

values for µ.378

x0

x1

x2

x3

1 5

10 7

µ

µ

µ

µ

9

4

3

2

(a) Graph corresponding to
Eq. subsection 6.2

x0x1x2x3

2

3

4

(b) The corresponding hierar-
chy

1

10

5

7

(c) µ < 2

1

10

6

6

(d) 2 < µ < 3

1

7

7

7

(e) 3 < µ < 4

6

6

6

6

(f) µ > 4

Figure 3: An example of application of the Γ-limit of the TV-L1 scheme corresponding to
Eq. subsection 6.2.

For fast algorithms computing the complete hierarchy of mosaic images, we refer to the379

ultrametric/saliency framework [27, 15, 28, 14]. Such algorithms allows one to compute the380

whole family of xµq for µ ∈ [0, 1]m in linear or quasi-linear time.381

7. An application to spectral clustering: the power-ratio cut. Spectral clustering [35]382

is a successful approach to clustering and many different variations do exist. One of those383
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(a) Ratio-cut result

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

(b) Power-ratio cut result

Figure 4: From [9], an example of comparison between ratio-cut and power-ratio cut spectral
clusterings on two nested noisy circular sets of 2D points.

variations is called ratio-cut [36], and can be described thanks to the following optimization384

problem. For finding k clusters, compute the solution to385

(39)
minimize
H∈Rm×k

Tr(HtLH)

subject to HtH = I
386

where L is the graph-laplacian5, Tr is the trace operator and I is the identity matrix.387

Without restriction in generality, let us suppose that the graph has distinct weights w1 <388

w2 < . . . < wj with j ≤ m. Let us define Lk as the graph-laplacian of the subgraph induced389

by the edges whose weight is exactly wk. As described in [9], it can be easily seen that (39)390

is equivalent to391

(41)
minimize
H∈Rm×k

j∑
k=1

wkTr(H
tLkH)

subject to HtH = I

392

By raising the wk at the power p, we can see that (41) fits into the power-watershed393

framework. Thus, we can define the power-ratio cut as the solution to the γ-limit of (41)394

when raising wk at the power p and letting p tends to infinity. Algorithm 2 is not applicable395

to this situation, but we can apply some variation of algorithm 1. A complete theory, together396

with an efficient algorithm for solving this problem, as well as illustrations (such as the one397

of Figure 4) and experiments, can be found in [9].398

5The elements of L are given by

(40) Li,j :=


deg(vi) if i = j

−wij if i 6= j and vi is adjacent to vj

0 otherwise

where deg(vi) =
∑

j wij is the degree of the vertex
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8. Conclusion: some ideas for extensions and applications. The framework developped399

in this paper casts a new light on the links and differences between the mathematical morphol-400

ogy theory for segmentation and filtering, and the more classical one based on optimization.401

We would like to highlight here some possible research directions for the future.402

Some of those ideas are natural extension of the current paper.403

• Exploring the extension of the classical power-watershed, as proposed in Eq. (7), is a404

must.405

• We showed in section 6 how to express the morphological mosaic images as a Γ-limit406

of some Total-Variation operators. The next steps would be to look at the theory407

of scale-set image analysis [22, 23] and find if it would be possible to obtain optimal408

hierarchies composed of optimal partitions. This possibly would allows us to think the409

watershed operator as a projector, and would probably allows to strenghten the ideas410

developped in [12] regarding anisotropic diffusion.411

• Regarding spectral classification, we hint in section 7 at what can be done with the412

ratio-cut criterion [9]. Other criterions, such as normalized cuts [31], should of course413

be studied, but this could be more difficult.414

• Application of the proposed framework for morphological filtering, in order to clarify415

links and differences between for example MST-based filtering [33, 3] and distance-416

based filtering (such as the amoeba framework [25]) is also of interest. A first step in417

this direction can be found in [17].418

We list below some other open problems.419

8.1. Is x? useful for estimating xp?. Such an estimation would be most useful. For420

example, if we know that xp is close to x?, then x? can be used to initialize a convergence421

process to xp.422

Under certain conditions, we can obtain such an estimation. For example, with strong423

convexity: for any strongly convex function γ, there exists ν > 0 such that424

(42) ‖x− x0‖22 ≤
2

ν
(γ(x)− γ(x0)).425

where x0 is the unique minimum of γ. Hence we can approximate xp with x?. However, ν426

would also tend to 0 when p→∞, so this has to be dig in.427

8.2. Link between the continuous world and the discrete one. When ϕij(x) = ϕk(x) =428

|x|, Eq. (3) is equivalent to a min-cut/max-flow problem. This problem has a continuous429

formulation, that was proposed by G. Strang [34]. But the maximum spanning tree prob-430

lem, being a tree problem, is purely discrete, and we do not see any obvious formulation in431

continuous terms.432

Can the link between max-flow/min-cut and maximum spanning tree described in the433

present paper be used for proposing a continuous notion of maximum spanning tree?434

8.3. Extension to quantum mechanics. Everything here should extend to Schrödinger435

operators. This might open the door for novel applications in physics.436
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