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Abstract

Given a semisimple group over a local field of residual characteristic p, its
topological group of rational points admits maximal pro-p subgroups. Quasi-
split simply-connected semisimple groups can be described in the combinato-
rial terms of valued root groups, thanks to Bruhat-Tits theory. In this context,
it becomes possible to compute explicitly a minimal generating set of the (all
conjugated) maximal pro-p subgroups thanks to parametrizations of a suitable
maximal torus and of corresponding root groups. We show that the minimal
number of generators is then linear with respect to the rank of a suitable root

system.
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1 Introduction

In this paper, a smooth connected affine group scheme of finite type over a
field K will be called a K-group. Given a base field K and an K-group denoted
by G, we get an abstract group called the group of rational points, denoted
by G(K). When K is a non-Archimedean local field, this group inherits a
topology from the field. In particular, the topological group G(K) is totally
disconnected and locally compact. The maximal compact or pro-p subgroups
of such a group G(K), when they exist, provide a lot of examples of profinite
groups. Thus, one can investigate maximal pro-p subgroups from the profinite
group theory point of view.

1.1 Minimal number of generators

When H is a profinite group, we say that H is topologically generated
by a subset X if H is equal to its smallest closed subgroup containing X; such
a set X is called a generating set. We investigate the minimal number of
generators of a maximal pro-p subgroup of the group of rational points of an
algebraic group over a local field.

Suppose that K = F,((¢)) is a nonzero characteristic local field, where ¢ =
p™ and G is a simple K-split simply-connected K-group of rank [. By a recent
result of Capdeboscq and Rémy [CR14, 2.5], we know that any maximal pro-p
subgroup of G(K) admits a finite generating set X; moreover, the minimal
number of elements of such a X is m(l + 1).

In the general situation of a smooth algebraic K-group scheme G, we know
by [Loil6, 1.4.3] that an algebraic group over a local field admits maximal pro-
p subgroups (called pro-p Sylows) if, and only if, it is quasi-reductive (the split
unipotent radical is trivial). When K is of characteristic 0, this corresponds
to reductive groups because a unipotent group is always split over a perfect
field. To provide explicit descriptions of a pro-p Sylow thanks to Bruhat-Tits
theory, we restrict the study to the case of a semisimple group G over a local
field K.

Such a group G can be decomposed as an almost direct product of almost-
K-simple groups. Moreover, by [BoT65, 6.21], we know that for any almost-
K-simple simply connected group H, there exists a finite extension of local
fields K’/K and an absolutely simple K’-group H' such that H is isomorphic
to the Weil restriction R/ i (H'), that means H' seen as a K-group. Since



H(K) = H'(K') by definition of the Weil restriction, we can assume that G
is absolutely simple.

In the Bruhat-Tits theory, given a reductive K-group G, we define a poly-
simplicial complex X (G, K) (a Euclidean affine building), called the Bruhat-
Tits building of G over K together with a suitable action of G(K) onto
X (G, K). There exists a non-ramified extension K’/K such that the K-group
G quasi-splits over K’. There are two steps in the theory. The first part, cor-
responding to chapter 4 of [BrT84], provides the building X (G, K') of Gk
by gluing together affine spaces, called apartments. The second part, corre-
sponding to chapter 5 of [Br'T84], applies a Galois descent to the base field K,
using fixed point theorems.

In the non quasi-split case, the geometry of the building does not faithfully
reflect the structure of the group. There is an anisotropic kernel of the action of
G(K) on X(G, K). As an example, when G is anisotropic over K, its Bruhat-
Tits building is a point; the Bruhat-Tits theory completely fails to be explicit
in combinatorial terms for anisotropic groups. Thus, the general case may
require, moreover, arithmetical methods. Hence, to do explicit computations
with a combinatorial method based on Lie theory, we have to assume that G
contains a torus with enough characters over K. More precisely, we say that
a reductive group G is quasi-split if it admits a Borel subgroup defined over
K or, equivalently, if the centralizer of any maximal K-split torus is a torus
[BrT84, 4.1.1].

Now, assume that K is any non-Archimedean local field of residual charac-
teristic p # 2 and residue field x ~ F, where ¢ = p™. Let G be an absolutely-
simple simply-connected quasi-split K-group.

1.1.1 Theorem. Denote by I the rank of the relative root system of G, and
by n the rank of the absolute root system of G. Assume thatl > 2. If G has
a relative root system ® of type Go or BC), assume that p # 3. Let P be
a maximal pro-p subgroup of G(K). Denote by d(P) the minimal number of
generators of P. Then, we have:

d(P)=m(l+1) or m(n+1)

depending on whether the minimal splitting field extension of short roots is
ramified or not.

This theorem is formulated more precisely and proven in Corollary 5.2.2.
According to [Ser94, 4.2], we know that d(P) can also be computed via coho-
mological methods: d(P) = dimg,z H' (P, Z/pZ) = dimy,zHom(P, Z/pZ).

From now on, we need to be more explicit. In the following, given a
local field L, we denote by wy, the discrete valuation on L, by Of, the ring of
integers, by my, its maximal ideal, by @y, a uniformizer, and by k;, = Or/mp,
the residue field. Because we have to compare valuations of elements in L*,
we will normalize the discrete valuation wy, : L* — Q so that wp(L*) = Z.
When [ € R, we denote by |I] the largest integer less than or equal to [ and
by [I] the smallest integer greater than or equal to .

If it is clear in the context, we can omit the index L in these notations.
When L/K is an extension, we denote by G}, the extension of scalars of G
from K to L. When H is an algebraic L-group, we denote by Ry x(G) the
K-group obtained by the Weil restriction functor Ry x defined in [DG70, I§1
6.6).



1.2 Pro-p Sylows and their Frattini subgroups

In a general context, let K be a global field and V its set of places (i.e.
valuations of K). Let R < K be a Dedekind domain bounded except over a
finite set S C V of places. For any v € V' \ S, we consider the v-completion

R, of R. We get a first completion G(R) =[],y s G(2,). We get a second

completion of G(R) by considering its profinite completion denoted by G(R).
The congruence subgroup problem is to know when the natural map G(R) —

—

G(R) is surjective with finite kernel. For example, when G = SL,, with n > 2
and R = Z, by a theorem of Matsumoto [Mat69], the surjective map an(\Z) —
[1, SLn(Zp) has finite kernel if, and only if, n > 3.

Here, we focus on a single factor and, more precisely, on a pro-p Sylow of
a factor G(R,). More precisely, K is a non-Archimedean local field and G is
a semisimple K-group. We consider a maximal pro-p subgroup P of G(K).
When G is simply connected, we know by [Loil6, 1.5.3], that there exists a
model G provided by Bruhat-Tits theory, that means a Og-group with generic
fiber G = G, such that we can identifies P with the kernel of the natural
surjective quotient morphism G(Ok) — (QH/RM (QN)) (k). In another words,
the pro-p Sylow P is the inverse image of a p-Sylow among the surjective
homomorpshism G(Ok) — G(k).

To compute the minimal number of generators, the theory of profinite
groups provides a method consisting of computing the Frattini subgroup. The
Frattini subgroup of a pro-p group P consists of non-generating elements and
can be written as Frat(P) = [P, P]PP, the smallest closed subgroup generated
by p-powers and commutators of elements of P [DASMS99, 1.13]. Ounce the
group Frat(P) has been determined, it becomes immediate to provide a min-
imal topologically generating set X of P, arising from finite generating set of
P/Frat(P).

From this writing, we observe that the computation of the Frattini sub-
group of P is mostly the computation of its derived subgroup. Despite P
is close to be an Iwahori subgroup I of G(K) (in fact, I = Ngx)(P) is an
Iwahori subgroup and P has finite index in I), we cannot use the results of
[PR84, §6] because there are less toric elements in P than in I. However,
computations of Section 4 have some similarities with compurations of Prasad
and Raghunathan.

We say that P is finitely presented as pro-p group if there exists a closed
normal subgroup R of the free pro-p group 1/*"\” generated by n elements such
that P ~ F\np/R and R is finitely generated as a pro-p group. Let r(P)
be the minimum of all the d(R) among the R and n > d(P). According to
[Ser94, 4.3], P is finitely presented as pro-p group if, and only if H?(G,Z/pZ)
is finite. In this case, we get 7(P) = dimg,,z, H*(G,Z/pZ) and, for any R, we
have d(R) = n — d(P) + r(P). Note that r(P) does not depend on the choice
of a generating set and we can choose simultaneously a minimal generating
set and a minimal family of relations. More generally, Lubotzky has shown
[Lub01, 2.5] that any finitely presented profinite group P can be presented by
a minimal presentation as a profinite group. If we can show that H?(G,Z/pZ)
is finite, then, by [Wil99, 12.5.8], we get the Golod-Shafarevich inequality
r(P) > @. This has to be the case according to study of Og-standard
groups of Lubotzky and Shalev [LS94].

Here, the main result is a description of the Frattini subgroup of P, de-



noted by Frat(P), in terms of valued root groups datum. We assume that
K is a non-Archimedean local field of residue characteristic p and that G is
a semisimple and simply-connected K-group. To simplify the statements, we
assume, moreover, that G is absolutely almost simple; this is equivalent to
assuming that the absolute root system ® is irreducible. We know that it is
possible to describe a maximal pro-p subgroup P of G(K) in terms of the val-
ued root groups datum [Loil6, 3.2.9]. A maximal poly-simplex of the building
X (G, K), seen as poly-simplicial complex, is called an alcove. We denote by
car & well-chosen alcove to be a fundamental domain of the action of G(K)
on X (G, K). Any maximal pro-p subgroup ofG(K) fixes a unique alcove. Up
to conjugation, we can assume that ¢ = c, is the only alcove fixed by P. It
is then possible to describe the Frattini subgroup in terms of the valued root
groups datum, as stated in the following two theorems:

1.2.1 Theorem. We assume that p # 2 and, if ® is of type Gy or BCj, we
assume that p > 5.

Then the pro-p group P is topologically of finite type and, in particular,
Frat(P) = PP[P, P]. Moreover, when K is of characteristic p > 0, we have
PP C [P, P).

The Frattini subgroup Frat(P) can be written as a directly generated product
in terms of the valued root groups datum.

When @ is reduced (that means is not of type BC;), then Frat(P) is the
maximal pro-p subgroup of the pointwise stabilizer in G(K) of the combinato-
rial ball centered at c of radius 1.

For a more precise version, see Theorems 5.1.1 and 5.1.2.

1.3 Structure of the paper

We assume that G is a simply-connected quasi-split semisimpe K-group.
We fix a maximal Borel subgroup B of G defined over K. In particular, this
choice determines an order ®* of the root system and a basis A. By [Bor91,
20.5, 20.6 (iii)], there exists a maximal K-split torus S in G such that its
centralizer, denoted by T = Z¢(S), is a maximal K-torus of G contained in
B. We fix a separable closure K of K; by [Bor91, 8.11], there exists a unique
smallest Galois extension of K, denoted by K , splitting T', hence also splitting
G by [Bor91, 18.7]. We call the relative root system, denoted by @, the root
system of G relatively to S. We call the absolute root system, denoted
by CE, the root system of Gz relatively to Tz. In Section 2.1.2, we define
a Gal(K,/K)-action on ® which preserves the Dynkin diagram structure of

Dyn(A) and on its basis A corresponding to the Borel subgroup B. According
to [BrT84, 4.2.23], when G is absolutely simple (hence Dyn(A) is connected),
the group Aut (Dyn(ﬁ)) is a finite group of order d < 6. As a consequence,
the degree of each splitting field extension is small and does not interact a lot
with Lie theory. One can note that a major part of proofs in this paper is
taken by the non-reduced BCj cases and the trialitarian D, cases.

From this action and thanks to a rank 1 consideration, we define, according
to [BrT84, §4.2], a coherent system of parametrizations of root groups in
Section 2.1.3 together with a filtration of the root groups in Section 2.1.4. This

provides us a generating valued root groups datum (T(K ) (Ua(K), ¢4) . <1>>

built from (G, S, K, K ). This filtration corresponds to a prescribed affinisation
of the spherical root system ®. From this, we compute, in Sections 2.2 and 2.3,



various commutation relations between unipotent and semisimple elements in
rank 1. This will be useful to describe, in Section 3.2, the action of P onto a
combinatorial ball centered at c of radius 1. This will also be useful in Section
5.1 to generate semisimple elements of Frat(P).

We denote by A = A(G, S, K) the “standard” apartment and we choose
a fundamental alcove c,s C A, to be a fundamental domain of the action
of G(K) on X(G,K). Those objects will be described in Section 3.1.1 and
3.1.2 respectively thanks to the sets of values, defined in Section 2.1.5, which
measure where the gaps between two terms of the filtration are and, in the
non-reduced case, what kind of gaps we must deal with. From this, we deduce,
in Section 3.1.3, the geometrical description of the combinatorial ball centered
at ¢ of radius 1. Consequently, the geometric situation provides, in Section
3.2, an upper bound for Frat(P), that means a group @ containing Frat(P).

Thus, we seek a generating set of () contained in Frat(P). From the writing
Frat(P) = PP[P, P], we seek such a generating set by commuting elements of
P. In Section 4.1, we invert the commutation relations provided by [BrT84, A]
in the quasi-split case from which we deduce, in Section 4.2, a list of unipotent
elements contained in [P, P].

From these unipotent elements and from semisimple elements obtained by
the rank 1 case, we obtain, in Section 5.1, a generating set and a description of
the Frattini subgroup as a directly generated product. In Section 3.1.3, we go
a bit further than Bruhat-Tits in the study of quotient subgroups of filtered
root groups. From this, we can compute the finite quotient P/Frat(P) and
deduce, in Section 5.2, a minimal generating set of P. The minimal number
of elements of such a family is stated in Corollary 5.2.2.

We summarize this in the following graph:

3.1.1 2.2

3.1. 2.3 [4.1]

2/

[5.2[——5.1]

2 Rank 1 subgroups inside a valued root group
datum

We keep notations of Section 1.3. In particular, we always denote by K
a field and by G a semisimple K-group. From Section 2.1.4, we will assume
that K is a non-Archimedean local field, and we will assume that G is simply-
connected, almost-K-simple. In order to compute the Frattini subgroup of
a maximal pro-p subgroup of G(K), we adopt the point of view of valued
root groups datum. In Section 2.1, we recall how we define a valuation on
root groups, and how these groups can be parametrized. Thanks to these



parametrizations, given in Section 2.1.3, we compute explicitly, in Sections 2.2
and 2.3, the various possible commutators, and the p-powers of elements in a
rank 1 subgroup corresponding to a given root. The rank 1 case is not only
useful to define filtrations of root groups, but also useful to compute elements
in the Frattini subgroup corresponding to elements of the maximal torus 7.
There are exactly two root systems, up to isomorphism, whose types are named
Ay and BCY, corresponding to groups SLy (Section 2.2) and SU(h) C SLj
(Section 2.3) respectively.

We denote by T'(K); the maximal bounded subgroup of T'(K), defined in
[BrT84, 4.4.1]. We denote by T(K); the (unique) maximal pro-p subgroup of
T(K)y.

2.1 Valued root groups datum

We want to describe precisely the derived group of a maximal pro-p sub-
group. We do it in combinatorial terms, thanks to a filtration of root groups.
Because we have to deal with non-reduced root systems, we recall the following
definitions:

2.1.1 Definition. Let ® be a root system. A root a € & is said to be
multipliable if 2a € ®; otherwise, it is said to be non-multipliable. A
root a € ® is said to be divisible if %a € ®; otherwise, it is said to be
non-divisible.

The set of non-divisible roots, denoted by ®,4, is a root system; the set of
non-multipliable roots, denoted by ®,,,, is a root system.

2.1.1 Root groups datum

For each root a € ®, there is a unique unipotent subgroup U, of G whose
Lie algebra is a weight subspace with respect to a. In order to define an action
of G(K) on a spherical building with suitable properties, it suffices to have
suitable relations of the various root groups U, (K). These required relations
are the axioms given in the definition of a root groups datum. More precisely:

2.1.2 Definition. [BrT72, 6.1.1] Let G be an abstract group and ® be a root
system. A root groups datum of G of type ® is a system (T, (U,, My)aca)
satisfying the following axioms:

(RGD 1) T is a subgroup of G and, for any a € ®, the set U, is a non-trivial
subgroup of G, called the root group of G associated to a.

(RGD 2) For any a,b € ®, the group of commutators [U,, Up] is contained in
the group generated by the groups U,s, where r,s € N* and ra+ sb €
P.

(RGD 3) If a is a multipliable root, we have Us, C U, and Us, # U,.
(RGD 4) For any a € ®, the set M, is a right coset of T in G and we have
U_o\ {1} C UM, U,.

(RGD 5) For any a,b € ® and n € M,, we have nUpyn~! = U, @) where
7o € W(®) is the orthogonal reflection with respect to a* and W (®) is
the Weyl group of ®.

(RGD 6) We have TUg+ N Ugp- = {1} where &7 is an order of the root
system ® and @~ = —®T =\ .



A root groups datum is said to be generating if the groups U, and T
generate G.

Now, given a reductive group G over a field K, with a relative root system
O, we provide a root groups datum of G(K). Let a € ®. By [Bor91, 14.5 and
21.9], there exists a unique closed K-subgroup of G, denoted by U,, which is
connected, unipotent, normalized by 71" and whose Lie algebra is g, + g2,. This
group U, is called the root group of G associated to a. By [BrT84, 4.1.19],
there exists cosets M, such that (T(K), (Ua(K), M,)

groups datum of G(K) of type ®.

ac <1>) 1S a generating root

2.1.2 The x-action on the absolute root system and splitting
extension fields of root groups

From now on, G is a quasi-split semisimple group. As in Section 1.3, we
denote by K the minimal splitting field of G over K (uniquely defined in a
given separable closure K of K).

In a general context, there is a canonical action of the absolute Galois
group ¥ = Gal(K/K) on the algebraic group G. When G is quasi-split, we
can choose a maximal K-split torus S and we get a maximal torus T = Z5(.5)
of G defined over K. Thus, we define an action of ¥ on X*(Tk,) by:

Vo€, Vx € X*(Tk.), 0-x =t 0()((071(15)))

In the same way, thanks to conjugacy of minimal parabolic subgroups (which
are Borel subgroups when G is quasi-split), we define an action of ¥ on the
type of parabolic subgroups, from which we deduce an action on the (simple)
absolute roots.

2.1.3 Notation (The x-action on the absolute root system). This is a sum-
mary of [BoT65, §6] for a quasi-split group G. In particular, there exists a
Borel subgroup B of G defined over K. Denote by A the set of absolute simple
roots and by Dyn(&) its associated Dynkin diagram. There exists an action
of the Galois group & = Gal(K/K) on Dyn(A) which preserves the diagram
structure. This action is called the x-action and it can be extended, by linear-
ity, to an action of ¥ on V= X*(Tz) ®z R, and on ®. The restriction mor-
phism j = ¢* : X*(T') — X*(5), where ¢ : § C T'is the inclusion morphism,
can be extended to an endomorphism of the Euclidean space p : VE o VR
This morphism p is the orthogonal projection onto the subspace V* of fixed
points by the action of ¥ on V*. From a geometric realization of ® in the
Euclidean space V*, we deduce a geometric realization of & = p( ) in V*.
The orbits of the action of ¥ on ® are the fibers of the map p: - P.

2.1.4 Notation (Some field extensions). According to [BrT84, 4.1.2], by def-
inition of K as minimal splitting extension, the x-action of ¥ = Gal(K /K) on
Dyn(&) is faithful. Assume that G is almost-K-simple, so that the relative
root system @ is irreducible. Consider a connected component of Dyn(ﬁ).
Denote by ¥y its pointwise stabilizer in ¥. Denote by 3, its setwise stabi-
lizer, where d € N* is defined by d = [X4 : Xo]. We denote Ly = K% and
Ly = I?ZO, so that Ly/Ly is a Galois extension of degree d. Because of the
classification of root systems, the index d is an element of {1,2,3,6}.

If d =2, welet I’ = Lg; we fix 7 € Gal(Lg/Lg) to be the non-trivial
element.



If d > 3, we let L’ be a separable sub-extension of Ly (possibly non-Galois)
of degree 3 over Lg; we fix 7 € Gal(Lg/Lq4) to be an element of order 3.
Thus, we denote d' = [L' : Ly] € {1,2,3}. In practice, d’ = min(d, 3).

2.1.5 Remark. According to [BoT65, 6.21], we can write G = Ry, /x (G’) where
G’ is an absolutely simple Lg-group. Hence G(K) ~ G'(Lg). Because, in this
paper, we prove some results on rational points, we could assume that G is
absolutely simple. Under this assumption, the root system P is irreducible;
K = Ly and Ly = K. Despite this, we will only assume that G is K-simple
in order to have more intrinsic statements.

2.1.6 Definition. Let o € ® be an absolute root. Denote by X, be the
stabilizer of « for the x-action. The field of definition of the root « is the
subfield of K fixed by 2, denoted by L, = K>

Let a = ag. The splitting field extension class of a is the isomorphism
class of the field extension L, /K, denoted by L,/K.

Proof that this definition makes sense. We know, by [BoT65, §6], that the set
{a € P, a = als} is a non-empty orbit of the x-action on ®. Hence, by
abuse of notation, we denote a = {« € 5, a = alg}. Thus, given any relative
root a € @, the field extension class L, /K does not depend of the choice of
o ca. O

2.1.7 Remark. If a € ® is a multipliable root, then there exists o, @’ € a such
that o + o/ € ®. Because a is an orbit, we can write o/ = o(c) where o € .
As a consequence, the extension of fields L, /Lt is quadratic. By abuse of
notation, we denote this extension class by L,/La,; the ramification of this
extension will be considered later.

2.1.3 Parametrization of root groups

In order to value the root groups (we do it in Section 2.1.4) thanks to the
valuation of the local field, we have to define a parametrization of each root
group. Moreover, these valuations have to be compatible. That is why we
furthermore have to get relations between the parametrizations.

Let (Za), g be a Chevalley-Steinberg system of G . This is a parametriza-
tion of the absolute root groups =, : U, — G, satisfying some compatibility
relations, that will be exploited to get commutation relations in Section 4.1.
We recall the precise definition and that such a system exists in Section 4.1).

Let a € ® be a relative root. To compute commutators between ele-
ments of opposite root groups, or between elements of a torus and of a root
group, it is sufficient to compute inside the simply-connected semisimple K-
group (U_,,U,) generated by the two opposite root groups U_, and U,. Let
m: G* = (U_4,U,) be the universal covering of the quasi-split semisimple K-
subgroup of relative rank 1 generated by U, and U_,. The group G® splits over
L, (this explains the terminology of “splitting field” of a root). A parametriza-
tion of the simply-connected group G® is given by [BrT84, 4.1.1 to 4.1.9]. We
now recall notations and the matrix realization that we will use later.

The non-multipliable case: Let a € ® be a relative root such that 2a ¢
®. By [BrT84, 4.1.4], the rank 1 group G is isomorphic to Ry, /x(SL2,z,). It

can be written as G* = RLQ/K(éa) with an isomorphism &, : SLy, 1. — G.



Inside the classical group SLj 1., a maximal L,-split torus of SLy ; can
be parametrized by the following homomorphism:

z Gm,LQ — SL27LQ

t 0
T

The corresponding root groups can be parametrized by the following homo-
morphisms:

y_ Ga7La — SL27LQ Yyt : Ga,La — SL27La

N 1 0\ and u’_>1u
—v 1 0 1

According to [BrT84, 4.1.5], there exists a unique L,-group homomorphism,
denoted by &, : SLa 1, — é‘% satisfying T4, =m0 &, 0 y+.

Thus, we define a K-homomorphism z, = 7o Ry /k(§s) which is a K-
group isomorphism between Ry, /x(Gq,r,) and U,. We also define the follow-
ing K-group isomorphism:

a= WORLO/K(é-a OZ) : RLQ/K(Gm,LQ) — T
where T =T N G*.

The multipliable case: Let a € ® be a relative root such that 2a € ®.
Let a € a be an absolute root from which a arises, and let 7 € ¥ be an element
of the Galois group such that o + 7(«) is again an absolute root. To simplify
notations, we let (up to compatible isomorphisms in ¥) L = L, = L, and
Ly = Loy = Layr(a)- By [BrT84, 4.1.4], the K-group G* is isomorphic to
Ry, k(SU(R)), where h denotes the hermitian form on L x L x L given by the
formula:

1
h: (x_l,l’o,l'l) — Z .ZiTiE_l'
i=—1

The group G7, can be written as G}, = HUeGal(Lz/K) Go(@):o(7(@) where each
Go(@):o(7(@) denotes a simple factor isomorphic to SU(h), so that SU(h)p ~
SL3’L.

We define a connected unipotent Lg-group scheme by providing the Lo-
subvariety Ho(L,Ls) = {(u,v) € L x L, w"u=v+"v} of L, x L, with the
following group law:

(u,v), (', v") = (u+u' v+ 0 +u"u)

Then, we let H(L,Lz) = Ry, x(Ho(L, L2)). For the rational points, we get
H(L,Ly)(K) = {(u,v) € L x L, w"u=v+"v} and the group law is given by
Za(u, 0) 2, (W, V") = zo(u+ v, v+ 0" +u"u).
2.1.8 Notation. For any multipliable root a € ®, in [BrT84, 4.2.20] are
furthermore defined the following notations:

o L' ={y€c L, y+ "y =0}, this is an Lo-vector space of dimension 1;

o ! ={ye L, y+T"y=1}, this is an L%-affine space.

Indeed, if K is not of characteristic 2, then L° = ker(7 +id) is of dimension
1 because Ly = ker(r — id) is of dimension 1 and +1 are the eigenvalues of

€ GL(L,). Moreover, the affine space L! is non-empty because it contains
. If K is of characteristic 2, then L° = ker(7 + id) = Lo.

[N

10



2.1.9 Remark (Interest of such notations). For any A € L° so that A # 0, we
Ly — Lo
= Ay
so that z,(0,\y) = 22,(y). This constitutes an additional uncertainty when
we want to perform computations in G(K). Because of valuation considera-
tions, we will have to choose a A whose valuation is equal to zero; in fact, this
is always possible. To avoid confusion, it is better to work with the isomor-
LY = Us(K)
= xa(o’ y)

have an isomorphism of abelian groups given by the relation

phism of abelian groups in order to realize this group as

a subgroup of U, (K).

The affine space L' has an interest in the context of a valued field. In
particular, as soon as we will know that L' is non-empty, we will write L =
Lo) & L° with a suitable A € L.

We parametrize a maximal torus of SU(h) by the isomorphism

z: RL/L2 (Gm,L) — SU(h)
t 0 0
t = |0 t7i7t 0
0 0 Tl

We parametrize the corresponding root groups of SU(h) by the homomor-
phisms:

Yy Ho(L,LQ) — SU(h)
1 0 0
(u,v) — u 1 0
v —Tu 1
and
y+: Ho(L,L2) — SU(R)

(u,v) — [0 1 u

By [BrT84, 4.1.9], there exists a unique Lo-group isomorphism, denoted by
€o :SU(R) — é"”(o‘), satisfying T4, = w0 &, oy+. From this, we define a K-
homomorphism z, = 7o Ry, /x({) which is a K-group isomorphism between
the K-group H(L,Ls) and the root group U,. We also define the following
K-group isomorphism:

a= 7TORL2/K(§a OZ) : RLQ/K(Gm,LG) — T

where T* =T N G°.

2.1.4 Valuation of a root groups datum

For each root group, we now use its parametrization to define an exhaustion
by subgroups. In order to define an action of G(K) on an affine building with
suitable properties, it suffices to have suitable relations between the terms of
filtration of root groups. More precisely:

2.1.10 Definition. [BrT72, 6.2.1] Let G be an abstract group, let ® be a
root system and let (T, (Ua7 Ma>ae<1>) be a root groups datum of G of type

®. A valued root groups datum is a system (T, (Ua, M, @a)aeq)), where

each ¢, is a map from U, to RU {oo}, satisfying the following axioms:
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(VRGD 0) for any a € @, the image of ¢, contains at least 3 elements;

(VRGD 1) for any a € ® and any | € RU {0}, the set U, = ¢, 1 ([l;00]) is
a subgroup of U, and the group U, ~ is {1};

(VRGD 2) for any a € ® and any m € M,, the map u — ¢_,(u) —
0a(mum™1) is constant over U_, \ {1};

(VRGD 3) for any a,b € ® such that b ¢ —Ra and any [,l’ € R, the group
of commutators [U,,Up,] is contained is the group generated by the
groups Urq+spri+siy Where r;s € N* and ra + sb € ®;

(VRGD 4) for any multipliable root a € ®, the map @2, is the restriction
of the map 2¢, to the subgroup Us,;

(VRGD 5) for any a € @, any u € U, and any v’ ,u” € U_, such that
wuu” € M,, we have p_,(u') = —pq(u).

Now, given a reductive group G over a non-Archimedean local field K, with
a relative root system @, we provide a valued root groups datum of G(K). We
define a filtration (pg)qca of the rational points U, (K) of each root group by:

e ¢,(x4(y)) = w(y) if a is a non-multipliable and non-divisible root, and
if y € Lg;
e 9u(za(y,y)) = Fw(y) if a is a multipliable root and if (y,y’) €

H(La7 LQQ);
o ¥2,(24(0,9y") = w(y) if a is a multipliable root and if ' € LY.
By [BrT84, §4.2], the family (T, (Ua(K)7 M,, <pa)a€q>> is a valued root groups

datum.

2.1.5 Set of values

If L/K is a finite extension of local fields, the valuation w over K* can be
extended uniquely to a valuation over L*, still denoted by w because of its
uniqueness. We let I'y, = w(L™).

Because we considered a discrete valuation w, the terms of filtration in-
dexed by R can, in fact, be indexed by discrete subsets. These subsets will be
used in Section 3.1, to provide an “affinisation” of the spherical root system.

Let a € ® be a root. We define the following sets of values:

o I'y = pa(Us(K)\ {1});

o T ={pa(u), ue Us(K)\ {1} and p,(u) = sup @, (ulz,(K))}.
Furthermore, for any value I € R, we denote [T = min{l’ € T'y, I’ > [}. This is
the lowest value, greater than [, for which we detect a change in the valued root
groups (Ug/)r>;. In order to characterize I',, we complete the notations of
2.1.8 introducing the following L/, ... = {z € L}, w(z) = sup{w(y), y € L} }}.
It is the subset of L} whose elements reach the maximum of the valuation.
2.1.11 Remark. Be careful that the value (T also depends on a.

The sense of I/, will be provided by Lemma 3.1.13, as the set of values

parametrizing the affine roots.

2.1.12 Lemma. If a is a non-multipliable non-divisible root, then we have
r,=1,="y,.

Proof. This is obvious by the isomorphism between U, (K) and L,. O
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Now, we assume that a € ® is a multipliable root.

Let p be the residue characteristic of K. Even if the sets of values can be
computed for any p, we assume here that p # 2. This assumption provides a
short cut in the computation of sets of values (mostly because % € L}%max i
this case), and will be necessary later for more algebraic reasons.

Since w is a discrete valuation and since for any y € L, we have w(y) < 0, it
is clear that L}Lmax is non-empty. Moreover, when p # 2, we have % € L;max.
Hence, by [BrT84, 4.2.21 (4)], we know that I', = 1I';, and that T, =T, .

By [BrT84, 4.3.4], we know that:

n

e when the quadratic extension L,/Ls, is unramified, we have the equali-
ties [gq = I, = w(LO) =Ty, =Ty, ;

e when the quadratic extension L,/Ls, is ramified, we have the equalities
Poq =T, = w(L0) = w(wy,) + 'L,

2.1.13 Lemma (Summary). Let a € ® be a multipliable root. If we normalize
the valuation w so that I'y, = 7, then we get:

Lo/La, | unramified | ramified
Iz, Z Z
T... Z %4

T, 1z 1z
Tan 7 1+2Z
I Z Z

2.1.14 Remark. The case of a divisible root has been treated. It is the case
2a of a multipliable root a.

2.1.15 Remark (The case of residue characteristic 2). When the residue char-
acteristic is any prime number (and in particular if p = 2), it can be
seen via further investigations, that the set L}l’max is non-empty and we let

{0} = w(L} smax)- We can compute the sets of values, depending on § and on
the ramification of L,/Lso,. We get the following results:

o I =30+TL,;

o I\, =T, Uil =1l ;

o if L, /Lo, is ramified, then I, N %Fga =@ and ey =6 +w(wr,)+TL,,;

o if L,/Ls, is unramified, then I, N %Fga #Pand Ty, =T, =T, .
Because § = 0 when p # 2, this is, in fact, the generalisation to any
residue characteristic.

2.2 The reduced case

Let a € ® be a non-multipliable root of ® arising from an absolute root
o € ®. In this section, in order to simplify notation, we denote L = L, = L,.
Denote by G* = (U_,,U,) the K-subgroup of G generated by U_, and U,.
The universal covering 7 : Ry x(SLa ) — G* is a central K-isogeny, which
allows us to compute relations between the elements of U,, U_, and T by the
parametrizations z,, _, and a thanks to matrix realizations in SLs.

We denote by 7% = T'N G* the maximal torus of G* and by T%(K);” =
T(K); NT%K) the maximal pro-p subgroup of T%(K). By [Loil6, 3.2.10]
(because G® is simply-connected, the torus T is an induced torus), we know
that a: 14+ mg, — T“(K)l;Ir is a group isomorphism.
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2.2.1 Lemma (Commutation relation [T,U,] in the reduced case).
(1) Let t € T(K). Then, for any © € L, we have

[xa(x),t} - xa((l - a(t))x)
(2) Normalize the valuation w by T'y =T, =Z. For anyl € Ty, we have:
[T(K)f Uy < Uagysr
and this is an equality if p # 2.
Proof. (1) By definitions, tz.(z)t™' = z(a(t)z). Hence [z4(z),t] =
za()a( — a(t)z) =24 (1 - a(®)z).

(2) Let t € T(K);" and u € U,;. Write u = x,(x) with x € L, such that
w(z) > 1. Writet = a(142) with 2 € my_ so that a(t) = (1+2)2. In particular,
w(l —a(t)) = 1. Applying (1), we get ¢q([t,u]) = w((1 — a(t))z). Hence
¢a([t,u]) > w(z) +1 > 1+ 1. This gives the inclusion [T(K);, Uau] C Uq 1.

Conversely, let y € L, be such that w(y) > 1+ 1. Let w be a uniformizer
of Op,. Assume p # 2. We have w(2w + w?) = 1. Set t = a(l + w)
and = (2 + @?)"'y. Then [t,z.(z)] = z4(y) and ¢t € T(K);. Hence
wx)=wly)—1>1. O

2.2.2 Lemma (Commutation relation [U_,;, U, /] in the reduced case).
Normalize w by Ty =T, =Z. Let l,lI'! € Ty = 7Z such that 1 +1" > 1. Then,
for any xz,y € L, such that w(x) > 1" and w(y) > 1, we have:

[”fa(y)vma(f”)} TP (1?;) al+ o)z (ffzi!)

In particular, [U—q1,Ua ] C U—q1i1T(K){ Ugr41.

Proof. We have w(ry) = w(z)+w(y) > 0, hence zy € m, . Thus, 1+2y € OF
and in SLa(L,), we have:

Kl 0) (1 x)] L0\ (1+ay 0 (1 7=
5 = 12 &
—y 1)°\0 1 £ 1 0 15/ \0 1

Applying 7 to this equality, we get the desired equality.

We have 1+zy € 14+my,, hence a(1—zy) € T(K); . Moreover, w (ﬁyjy) =

w(z) +2w(y) > 1+ w(y) and w (17:5;3@/) = 2w(z) + w(y) > 1+ w(x). Hence

w ) ey da, (728) €U 0
T_q T+zy S —a,l+1 and Tq Ttay € a,l’+1-

2.2.3 Proposition. Assume thatp #2 and 'y =1, =7Z. Letl € Z =T,,.
Let H be a compact open subgroup of G*(K) containing U,,;, T*(K); and

U_a,—141-

Then the group HP[H,H| contains the subgroups Ug +1, U—q—i112 and
oK)y

Moreover, in the case of equal characteristic char(K) = p, we have the
inclusion H? C [H, H].

Proof. Denote by w a uniformizer of L,. We firstly show that T“(K);‘ is
contained in HP[H, H]. For any t € 1 + my_, t # 1 and any u € L,, one can
check the following equalities inside SLo:

t 122) 1 0
s 4232 =
l<0 % _(1t2tu) 1
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[ S| B G

We have w(1+t) = w(2+s) = 0 because p # 2. Hence, for any u € w! 10y,
and for any t — 1 =5 € wOy,, we have the following:
w(t) +w(u) —w(l+1) —w(l 1)

()
o= w)—wls)
w (—%) = 2w(s) —w(u)

Moreover, we have:

(0 )6 =)=6 2 g

Let t =1+s € 1+mOy. Set u = @) so that w (f_—“tg) > | and

1 0
w (—%) > —Il+1. Hence, 7 (é 1t2> € H and (_(1—t2)2 1) € H.

t t2u

2

Thus, according to the equation (1), we get 7 (O t,l_g) € [H, H] . Similarly,
22—t
0 ¢
for any t € 1+ @Oy, we have a(t*) € [H, H] according to the equation (3).

Moreover, the elements a(t?) where t € 1 4+ my, are in H? because we
assumed H O T(K); . Since 4 and p are coprime, we have a(t) € HP[H, H].

In the case of equal characteristic char(K) = p > 2, the group homomor-

: { I+m, — 14+myg
phism

substituting u by —t*u, we get 7 ( u) € [H, H]. As a consequence,

; = 22 is surjective. Hence a(t) € [H, H].

As a consequence, the elements:

where u € @Oy and t = 1+ @™, are in HP[H, H] (resp. in [H, H] if
char(K') = p). Hence, the group H?[H, H| (resp. [H, H]) contains Ug j41.

Similarly, it contains U_, (_i41)+1 = Ua,—1+2, using the equation (2) in-
stead of (1).

It remains to prove that H? C [H,H] when char(K) = p > 2. Let
g € H and write g = z_, ( ) (t ) ( ). Cons1der the quotient IIlOI‘phlSIIl o
H — H/[H, H]. Then 7(¢” ( (t))ﬂ(ma(u))) Since

H/[H, H| is commutative, we have gP) = ( ( ) m (@)’ m(za(w)®
T(z_q(pv))m(a(t?))x (ma(pu )= 77( 7)) =1 because we got a(t?) € [H, H].
Hence ¢? € [H, H].

[j\_.

2.3 The non-reduced case

Let a € ® be a multipliable root of ® arising from an absolute root a € 3.
In this paragraph, we denote by L = L, = L, and L = Lyy7o = Lag,
where 7 = 7, is the non trivial element of Gal(L/L2). In order to simplify
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notations, for any x € L, we denote "z = 7(x). Denote by h the Lo-Hermitian

form:
h: LxLxL — L

1
(T_1,20,21) = Y T

Recall that the wuniversal covering is a central K-isogeny w
Ry (SU(R)) — G°, from which we compute, inside SU(h), relations be-
tween elements of U,, U_, and T thanks to parametrizations z,, r_, and
a.

Denote by 7% = TNG* and T*(K); = T(K); NT*(K), so that T*(K), =
a(l4+mpg,). For any | € N*, set T%(K); = a(1 —I—mlLa). Normalize w by
r.,=r_,= %Z, so that I';, = Z and I', = 2Z or Z depending on whether
the extension L/Ls is ramified or not. The analogue to Proposition 2.2.3, in
the non-reduced case, is the following:

2.3.1 Proposition. Assume that p > 5. Letl € T, = %Z. Let H be a
compact open subgroup of G(K) containing the following subgroups T(K),
U_, -1 and Ua’H%.

If L/Ls is not ramified, then there exists I € N* such that HP[H, H|
contains the following subgroups T*(K)} , U_o 111 and Ugiys-

If L/ Ly is ramified, then there exists I € N* such that HP[H, H] contains
the following subgroups T“(K)é”, U_q 113 and Uq iy,

Precisely, up to exchanging a with —a, we can assume l € T, = Z and, in
this case, we get I” = 3 + ¢ where

- 1 4f L/Ly is ramified and 1 € 2Z+1=Tp\ T,
| 0 otherwise

Moreover, when char(K) =p > 0, we have HP C [H, H].

2.83.2 Remark. Since the maximal pro-p subgroups are pairwise conjugated by
[Loil6, 1.2.1], by the choice of a maximal pro-p subgroup corresponding to a
suitable alcove, we can assume later that ¢ = 0. Such a choice will be done in
Section 3.1.2. Moreover, because of the lack of rigidity, computations in the
rank 1 case gives large inequalities for the commutator group. In fact, when
the rank is > 2, we can make a stronger assumption, to get a more precise
computation of the Frattini subgroup, as stated in Proposition 2.3.11.

In order to simplify notation, denote by H (L, Ls) the rational points of the
K-group H(L, Ls), instead of H(L, Ls)(K). For any (z,y), (u,v) € H(L, L)
and for any t € 1 + wyOp, up to precomposing by 7, we have the following
matrix realization:

t 0 0
alt)y=(0 t717t 0
0o o ¢t
1 "z —y 1 0 0
zo(z,y) =10 1 x T_g(u,v)=1| u 1 0
0 O 1 —v —"u 1

We want to obtain some unipotent elements, and some semisimple ele-
ments, by multiplying suitable commutators and p-powers of elements in H,
as we have done, previously, in the reduced case. In particular, in Lemma 2.3.4
we bound explicitely, thanks to these parametrizations, the group generated by
commutators of toric elements and unipotent elements in a given root group.
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In Lemma 2.3.6, we provide an explicit formula for the commutators of unipo-
tent elements taken in opposite root groups, in terms of the parametrizations.
Finally, thanks to Lemma 2.3.10, we invert such a commutation relation. At
last, we prove Proposition 2.3.1 thanks to these lemmas.

The following lemma provides the existence of elements with minimal val-
uation, used in the parametrization of coroots.

2.3.3 Lemma. Let L/K be a quadratic Galois extension of local fields and
7 € Gal(L/K) be the non-trivial element. Let wy, be a uniformizer of the local
ring Or. Denote by p the residue characteristic and assume that p # 2.

(1) For any Vt € 1+ my, we have w (t* —"t) > w(wy) and w (t7t —1) >
w (wp).

(2) If the extension L/K is unramified, then there exists t € 14+wmy, such that
wtTt—1)=w (t* —"t) = w(wy).

(3) If the extension L/K is ramified, then for any t € 14+ mp, we have the
inequality w (t7t — 1) > 2w (wy). If p > 5, then there exists t € 1 +my,
such that w (t7t — 1) = 2w (1 — "t) = 2w (wr).

Proof. (1) Write t = 1+ s with w(s) > w(wy). Then w(t? —7t) = w(2s + 52 —
Ts) > w(s)and w(t"t —1) =w(s+ s+ s7s) > w(s).

(2) If L/K is unramified, one can choose a uniformizer wy, € O N K. Let
t =1+ @y, so that t2 — "t = wy, + w2. Since p # 2, then w(2) = 0. Hence
wtTt—1) =w (2w, + @}) =w(wL).

(3) If L/K is ramified, the inequality w (t"t —1) > w(wy) is never an
equality because t"t — 1 € K. Consequently, w ({7t — 1) > 2w (wr). Remark
that w (wr, + "wy) > 2w (wr) = w(wr"wyr). Define t = 1+ wy, so that
2 — Tt =2 — Twy, —I-TD%.

By contradiction, if we had w (2o, — "wy) > 2w (wy), then, by triangle
inequality, we would get w (3wy) > min (w (wy, + "wyr),w (2oL — TwL)> >
2w (wp). When p # 3, we have w (3wy) = w(wyr). Hence, there is a con-
tradiction with w (wr) > 0. As a consequence, w (2w — "wy) = w (wy,), for
any uniformizer wy, € Op,.

Define w) = wy, + wy wy. This element w) € Of is also a uniformizer.
Define ¢’ = 1 + @}, We have seen that w (> — 7t') = w (wy).

Claim: Either ¢ or ¢’ satisfies the desired equalities.

Indeed, we have t"t —1 = wy +"wy +wr wp and t'"t' — 1 = wp + ", +
3w wr + Trp k (w%TwL) + Np/k (wL)Q.

By contradiction, assume that we have w(wp + 7wy +wr wrn) >
2w (wy) and w (wr, + "wr + 3w wyr) > 2w (wr). Then, by triangle inequal-
ity, we get w (2w wr) > 2w (wy). Since p # 2, we have w (2w wy) =
2w (wy,) and there is a contradiction.

Hence, we have, at least, w(wp + "wy +wr"wr) = 2w(wy), or
w(wr + Twr, + 3w "wr) = 2w (wyr). So, at least one of the two following
equalities w (t"t — 1) = 2w () or w (#'"t' — 1) = 2w (wy) is satisfied. Hence
t or t’ is suitable. O

Denote by H(L,Ls); = {(u,v) € H(L,Ls), 3w(v) >1} the filtered sub-
group of H(L,Ls). Remark that H(L,Ls), can be seen as the integral
points of a Ox-model of the K-group scheme H(L,Ls), namely the group
scheme H! defined by [Lan96, 4.23]. Recall that for any [ € R, we have
H(L,Ly); ~ Uy, by definition of the filtration on root groups, through the
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isomorphism (u,v) — z,(u,v). Recall that we also have an isomorphism
a:1+my ~TYK) .

2.3.4 Lemma. Letl eI, = %Z.
If L/ Ly is unramified, we have

Ua,l+1 C [T(K);—, Ua,l] C Ua,l-‘r%
If L/ Ly is ramified, we have

U,

a)

l+% C [T(K);aUa,l] - []a,lJrl

Proof. For any t € 1 + @O ~ T(K); and all (u,v) € H(L, L2);, we have:

1 —"u —v t 0 0 1 -"U -V
0 1 wl], (0ot o]l=]0 1 U
0 0 1 0 0 <+ 0 0 1

Tt

where U = (1 — —) wand V = ( ?) v+ (tTt — ?) Tv. One can check
that (U, V) € H(L, Ly). We have:

w(V) > min (w (t—7t3) +wv) —wt),w (¢) +w (2 —Tt) +w (Tv)>
by the triangle inequality

= w) +w(t*="1) because T preserves the valuation

> 20+1 by lemma 2.3.3(1)

From this inequality, we deduce (U,V) € H(L,LQ)Z_;'_%, hence we have
[Uml,T(K)z_] C Ua,l-&-%'

Conversely, let I € 1Z. Let (U,V) € H(L,Ls)y. We want elements
te€l+myg and (u,v) € H(L, Ly) such that [a(t), zq(u,v)] = 2,(U, V) and so
that w(v) is as big as possible.

Choose t satisfying the equalities (2) or (3) in Lemma 2.3.3 applied to the
extension of local fields L/Ly. Let u = — thU We seek X, Y € Ok (t,7t)
such that (1 — —) v+ (tTt — %) v =V where weset v=XV +Y"V. It
suffices to find X, Y such that:

b (tTt—?)TY -1
)y (=) X = 0

t

The unique solution of this linear system is:

_ 1
A T ()]
t
Yy — T
(1—t7t ( )
so that: .
V+ LTy
v=XV+Y'V =

(1—t7t) (1 - 2)

t
satisfies (u,v) € H(L, Ls).

By a matrix computation, and because t,u,v have been chosen for this,
we can check that [z,(u,v),a(t)] = z,(U,V). Moreover, the valuation gives

us w(v) > w(V) —w(l —t7t) — w(t — Tt2) because w (V + %TV) > w(V).

18



When L/L, is unramified, by 2.3.3(2), this gives us w(v) > 2I’ — 2. From
this inequality, we deduce (u,v) € H(L, L2);—1, hence:

[Ua,l’—h T(K)Ij_] 2 Ua,l’

When L/Ls is ramified, by 2.3.3(3), this gives us w(v) > 2I’ — 3. From this
inequality, we deduce (u,v) € H(L, Lg)l,_%, hence:

{Ua,l’—% ; T(K)ﬂ D Uqr
O

2.8.5 Remark. These inequalities could be refined, with a deeper study on
the arithmetic properties of the local fields. As an example, when L/Ly is
ramified, and [ ¢ Z, we obtain [T(K)EL, Ua,l] CUgi41-

2.3.6 Lemma (Commutation of opposite root groups). Letl,l’ € T, = %FL =
37 be such that 1 +1' > 0. Let (z,y) € H(L, L2); and (u,v) € H(L,Ly);. We
have [2_q(x,y), Tq(u,v)] = 2_o (X, Y)a(T)zo(U, V) where:

= 1—-Tux+vy

% (u%m —Tvx — u"va)
(wv™x — TuTvz + vTyY)
(TuxQ —uy + vxy)

(T

zuy — TuzTy + vy"y)

NSO
[

Nl=S=N=

Moreover, w(V) > [3l' + 1] and w(Y') > [ + 31].
Consequently,

U—ap,Uar] C U_mmgmT“(K);Ua,“f,m
- Ufa,lJr%Ta(K);Ua,l’Jr%

Proof. Because T preserves w, we have the following in H(L, Ly):
2w(u) = w(u u) =w + "v) > w()

Hence, we have:

| =

w(@) +wu) > = (w(y) +w)) =1+ >0

|20 V]

By a matrix computation in SU(h), we have:

1 —u —v\ /1 0 0 1 0 0\ /T 0 0\ /1 —"U
0 1 u z 1 0)=(X 1 o)[lo FE o]lo 1
0 0 1) \~y —"z 1 -Yo —"Xo 1/ \0 0 </ \0
where

T = 1—"ux+vy

U = +(u—"vz)

Vo = v

Xy = %(m—uy)

Yy Y

19
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Because w(Tuz) > tw(vy) > 0, we get T € 1+ my. Hence +

well-defined. It follows:

Sl
m

S
o

1 0 0 1 —"u —v 1 0 0 T 0 0 1
-z 1 of,l0 1 w]|l=lX 1 off{o ZF o]fo
-7y Tz 1 0 0 1 -y —-"x 1/ \0 0 £/ \0
where
T = 1-"Tux+vy
U = TIT (UZT:Cf vr —uTv y)
V o= £ (wz—"uTvz +0Tvy)
X %(um —uy—i—vmy)
Y = £ (Tzuy —TuzTy+vyTy)
We have
w(V) > min(w(uwwz),w(uvz), w(v vy))
> w(v) +min (w(u) + w(z), w(v) + w(y))
> 2041+
Because w(V') € Z, we have in fact w(V) > [3I' +1] > 2’ 4+ 1.
We proceed in the same way to find a lower bound of w(Y). O

In order to compute a derived group in terms of root groups, we would
like to invert the above equations. Precisely, given a t € 1 + mg/, we seek
elements (u,v), (z,y) € H(L,Ly) with prescribed valuations [,I’ € 1Z such
that ¢ = 1 — Tux 4+ vy. The existence of such (u,v), (z,y) is not guaranteed
if I’ is not large enough. Firstly, we seek an element (u,v) € H(L, Ly); such
that w (Tr(w)) is minimal.

2.3.7 Lemma. Let L/K be a quadratic Galois extension of local fields with
a residue characteristic p # 2 and a discrete valuation w : L* — Z. There
exists a uniformizer wr, in Or such that Try, i (wr) is a uniformizer of O .

Proof. If L/K is unramified, we can choose a uniformizer wy, of Or, in Ok.
Because p # 2, the element Try k(@) = 2wy, is a uniformizer in Of.

If L/K is ramified, let @’ be a uniformizer of Op. We know that
w(Trp k(@) > min (w(@'),w("®@’)) = 1. This is never an equality be-
cause 'y = w(K*) = 2Z.

If w (TrL/K(w’)) = 2, then we set w;, = w'. Otherwise, we set
w, = @ 4+ Np k(@'). Thus, @y, is a uniformizer because w (Ny,/x(@')) =
2 > 1= w(w'). Moreover, Try /g (wr) = Trp x(w') + 2Nk (w’). Because
w (TrL/K(w’)) > w (2NL/K(w’)) = 2, we get the result. O
2.3.8 Lemma. Assume thatp # 2 and letl € 'y = 7.

If L/ Ly is unramified, set € = 0.

If L/ Lo is ramified, set € = { 0 ylels, =22

1 otherwise
There exists uw € L such that:

(a) wu) =1;
(b) w(TrL/Lz(u)) :l+€,'
(c) (u Su u) € H(L,Lsy);.
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Proof. Let wy be a uniformizer of Op such that wp, = Try 1, (L) is a
uniformizer of Op,, such a uniformizer exists by Lemma 2.3.7. Define v =

l—e
(wr)® - (wp,) L.

(a) w(u) = ew(wy) + w(l;;)w(wh) =1
(b) We have:
TrL/Lz (u) = TrL/Lz ((wL)E) : (sz)w(sz)
l—¢
) (@o)FE T ife=1
- l—¢
2(wyp, ) L) ife=0

Hence w (Try /1, (u)) = ( = f) ) (w L2)=l—6+€w(WL2)—l+6
(c) We have Ny, (u) = u"u = Tr (3u"u). O

As a consequence, we got an element (u,v) such that Try,,z, (u) is minimal.
Secondly, we seek an element (z,y) € H(L, La); such that t =1 — "uzx + vy.
This is a quadratic problem. That is why we recall the following lemma on
the existence of square root.

2.3.9 Lemma. Let L be a local field of residue characteristic p # 2. For all
a € my, there exists b € my, such that (1 +b)?> =1+ a and w(a) = w(b).

Proof. Let a € my. By Hensel’s Lemma, the polynomial X2 — 1 — a admits
exactly two roots 1 +b and —1 + b in Oy, with b,b € my, since 1 and —1
are two distinct roots in sr of the polynomial X2 — 1. Moreover w(a) =
w((1+b)2 —1) =w(b) + w(2+b). Since p # 2, we have w(2 + b) = 0. Hence,
w(a) = w(b). O

We provide a solution (z,y) € H(L, L2)p of t = 1 —"ux 4 vy for a suitable
value I such that ¢t € 1 +m} .

2.3.10 Lemma. Assume that p # 2. Letl,l' € Ty be such that l+1" > 0 and
leT! =7Z. Definee € {0,1} as in Lemma 2.3.8. Define

" = max (14 2,6+ 20 +20') e N*

For any w € ml | there exist (u,v) € H(L, Ly); and (z,y) € H(L, L)y such
that "uxr — vy = w.

Proof. In order to simplify notation in this proof, we denote by T the field
trace operator Try,/r, : L — Lo.

Let w € (mL)l”. Choose u € L satisfying the properties (a),(b) and (c) of
Lemma 2.3.8 and set v = Ju"u. We seek an element (x,y) € H(L, Ly) N (La x

2
L) such that "zu — vy = w, which is equivalent to

p——
{ w2 =T(y) = =T (3) +2T ()
because v # 0 (otherwise property (a) would be contradicted).
Denote § = 4 (( ; We have T( ) = 22(:;) by definition of v = %uTu €
Ly and by Lo-linearity of T. Hence w (T (54)) = w (T(u)) — 2w(u) = I +&.
We have w (T (£)) > w(w) — w(v) > 1" — 2. Hence w(d) = w (T (%)) —

v

2w (T (%“)) > 1" — 2 > 1. By Lemma 2.3.9, there exists b € my, such
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that (1 +0)? =1 -6 and w(b) = w(5). We denote v/1 —& = 1 + b. Hence
V1—=0€1+60y, is well-defined and w (V1 -6 — 1) = w(d).

Set © = %T(TT“) (1-¥1-90) € Ly and set y = “’_TT“” € L. We have
22 = T(y). Moreover, w(z) = w(8) + & — I. We check the valuation of y:

min (w(w),w(u) + w(z)) — w(v)
min (I, w(0) 4+ ¢) — 2

min (I",1" — 2 +¢) — 21
I"—e—2I

2U

w(y)

VoIV v

Hence (u,v) € H(L, Ls); and (z,y) € H(L, Ly); are suitable. O

Finally, we can combine Lemmas 2.3.4, 2.3.6 and 2.3.10 in order to prove
Proposition 2.3.1.

Proof of Proposition 2.3.1. Up to exchanging a and —a, one can suppose [ €
Il =Z=T;.

By Lemma 2.3.4, we get U_q 41 C [H, H] and U, ;s C [H, H] when
L/Ls is unramified; we get U_, ;13 C [H,H] and Uqu42 C [H, H] when
L/Ls is ramified.

Let t € T*(K)}' and write it ¢ = a(1 + w) where w € (mL)lN. Set Iy =
l+1€Zetly=-l+1 By Lemma 2.3.10, there exists (u,v) € H(L, Ls),,
and (z,y) € H(L, L2);, such that —w = "ux — vy.

We use the commutation relation of opposite root groups 2.3.6. Let:

|
4
g

(u27x — Tvx — uTva)
(uwv™z — TuTvx + vTvy)
( ur? — uy + vxy)

("zuy — TuzTy + vy"y)

*
ﬂ‘“

NSO
I

T

By Lemma 2.3.6, we have [z_q(2,y), Zq(u,v)] = 2_o(X,Y)a(T)z,(U, V) with
w(V) > [3I' +1] and w(Y') > [U' + 31].

Because | € Z, we have 31+ 1] = =+ 3 and 1[I +3lo] = [ +2. Hence
T_o(X,Y) € [T(K)f,U_o,] and z,(U, V) € [T(K);, Ua,41] by Lemma 2.3.4.
Because 5(1 +w) = (X, Y) r_o(z,y), za(u,v)] 2, (U, V)~ € [H, H], we
get T*(K)L < [H, H].

We now assume that char(K) = p > 5. It suffices to check that H? C
[H,H]. Inside H/[H,H], we have u? = 1 for any u € U, and it is the
same for —a. Indeed, the element z, (u,v)” = z, (pwpv + @u%c) is the
neutral element in characteristic p # 2.

Moreover, if t € T%(K);", write t = a(1 4+ w) where w € mr. We have
(1+w)? = 1+w? with w(w?) > p >5>1". Hence t* € T*(K), c [H,H]. O

In the case of higher rank, we obtain in Proposition 4.1.3 some inclusions
of the form U, ;, C [H, H] with a suitable value [,, by commuting some root
groups corresponding to non-collinear roots. Hence, it is useful to do a further
assumption on subgroups contained in [H, H].

2.3.11 Proposition. If in Proposition 2.3.1 we furthermore assume that
[H, H|H? contains Ua,+1 and U_, 1, then one can take I" =1+ 2.
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Proof. In the above proof, up to exchanging a and —a so that [ € Z + % and
" € Z, we can replace the equalities [p = [+1 and [, = —l—I—% by lp = l—i—é ez
and [{) = —[. Indeed, in this case we obtain [3lf +lo] = [-20 + 3] = =20 +1,
so that U_, 173, 14,7 C HP[H, H] by the additional assumption. In the same
way, [3ly +lo] = 20+ 2 so that U, 1y 43,0 C HP[H, H]. As a consequence,
we can conclude as before. O

To conclude this section, we compute the commutation relation between
elements of the same root group. This is non-trivial because, in the non-
reduced case, the root group is non-commutative. This will be useful in order
to understand the action of a maximal pro-p subgroup on the Bruhat-Tits
building.

2.3.12 Lemma (Computation of the derived group of a valued root group:
specificity on the non-reduced case). Let l,l' e T, = %Z, In general, we have
Uat, Uair] C Usa, 141117 -

If L/ Ly is unramified and p # 2, then [Uqa1, Ua,] = Usa 2m-

s

If L/ Ly is ramified and p # 2, then [Ua 1, Uat] = Usg211741-

Proof. Let (u,v), (z,y) € H(L, Ly). In matrix-wise terms, we have

1 "z —y 1 —"u —v 1 0 27u—u"z
0 1 —z|,[0 1 —u =(0 1 0
0 0 1 0 0 1 0 0 1

We deduce that [z4(z,y), za(u, v)] = 24 (0,270 — u"x).

If w(y) > 2I, then w(z) > [l] because w(x) € I'y, = Z. Likewise, if
w(v) > 2l then w(u) > [I']. Hence w (x7u —u"z) > w(u) +w(x) > [1]+ [U'].
We obtain [U, i, Uaﬂ C U2a7m+[m.

Conversely, we show that any element of Uy, o[ can be written as the
commutator of two suitable elements in U,;. For that, it suffices to show
that for any w € (L°)sp, there exist (u,v),(x,y) € H(L,Lz); such that
w=z"u—uz.

We firstly consider the case of a unramified extension L/Ls with p # 2.
In this case, we have I',, = I's, = Z by Lemma 2.1.13. Hence, there exists
Xo € (L% = {A€ Of, A+7A=0}. Let w € O, be a uniformizer. Set
z = Aow!!l and set y = 227z so that (z,y) € H(L,Ls);. Let w € (L°)gp) =

{wo € (mL)Qm , Wo + Twy = O}. Then u = —*— € La. Indeed, "u = “w_

Tx Tx—x
—ory = u- Moreover, w(z—"2) = w (Mo —"A0)@) = w(2Xo) +w(w )
[1] because p # 2. Hence w(u) = w(w) —w(z —"2) = [I]. Set v = 2uTu =
so that (u,v) € H(L, Ly);. We have 27u — u"x = u(z — ") = w.

We secondly consider the case of a ramified extension L/Ls with p # 2. In
this case, I'y, = I'yq = 2Z + 1 by Lemma 2.1.13. Thus Uz, 2111 = Usa 2[1741-
Moreover, there exists A\g € (L°); = {\ € O, A+"A=0cet w(\) = 1}. Let
w € Or, be a uniformizer.

If [1] € 27Z, we set x = Aow 2 and y = 227z so that (2,y) € H(L, La);.

Otherwise, [I] € 2Z 4+ 1. We set z = Aw e
(x,y) € H(L, L2);.

Let w € (LO)QM = {wo € (mL)2m , wo + Twy = O}. Then, as before, we
get u = —“— € Ly. Moreover, w ((Ao — "Ao) = w(2Xg) = 1 because p # 2.
Hence, we obtain the inequalities w(z) > [l] and w(x —"2) =< [I] + 1.

S|

and y = %xTx so that
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Hence w(u) = w(w) —w(z — "z) > [I]. We set v = Iu"u = “72 so that

(u,v) € H(L,L2);. We get 27u —u"2x = u(z — ") = w. O

3 Bruhat-Tits theory for quasi-split semisimple
groups

In Bruhat-Tits theory, a building is attached to a reductive group in two
steps. The first step, in [BrT84, §4], corresponds to split and quasi-split
groups. The second step in [BrT84, §5] is an étale descent to the base field.
In order to describe some subgroups in terms of the action on the Bruhat-Tits
building, in Section 3.1, we recall how the simplicial structure of the building
is defined thanks to the valuation of root groups. Then, in Section 3.2, we
consider the action of the group G(K) on its Bruhat-Tits building X (G, K). In
this section, K is a local field and G is an almost-K-simple simply-connected
quasi-split K-group.

3.1 Numerical description of walls and alcoves

The Bruhat-Tits building of (G, K) is obtained by gluing together affine
spaces, called apartments, having the same given simplicial structure. This
consists in defining the building as X(G,K) = G(K) x A/ ~, where A is
a suitable affine space, called the standard apartment, see [Lan96, §9]. The
apartments are glued together along hyperplanes called walls, that we will
describe as zero sets of affine functions thanks to the sets of values defined
in Section 2.1.5. In Section 3.1.1, we recall how we deduce the simplicial
structure of an apartment from the definition of walls. More precisely, we
define an “affinisation” of the spherical root system following the Bruhat-Tits
method. In Lemma 3.1.13, we check that this construction coincide with the
affine root system defined by Tits in [Tit79]. In Section 3.1.2, we describe,
thanks to the sets of values, a well-chosen alcove, which is the candidate to be
a fundamental domain of the action of G(K) on X (G, K). In Section 3.1.3,
we look locally the building near an alcove.

3.1.1 Walls of an apartment of the Bruhat-Tits building

In [Lan96, §1|, we define a simplicial structure for apartments as follows.
Firstly, we let A = A(G, S, K) be the unique affine space under V = X, (S)®zR
together with a suitable group homomorphism v : Ng(S)(K) — Aff(A).

Secondly, each relative root a € ® C X*(S) induces a linear form on V/
deduced by linearity from the dual pairing X.(S) x X*(S) — Z. Hence, up
to choice of an origin O € A, each relative root induces an affine map on A.

Thirdly, any relative root a € ® C X*(.S) can be seen as a linear form on
V = X.(S) ®z R, arising from the dual pairing (-,-) : X*(5) x X,(5) — R.
From this spherical root system (where each root is seen as a linear form), we
define an “affinisation”. Hence, each affine map 6(a,l) = a(-—O0) —1: A = R,
where a € ® and | € R, determinates a unique half-apartment denoted by:

D(a,l) ={z € A, 0(a,l)(z) > 0}
whose border (an affine subspace of codimension one) is denoted by Hq,; =

{z € A, 0(a,l)(x) =0}. When ! € T, the affine map 6(a,l) is called an affine
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root. In Lemma 3.1.13, we will see that the set of affine roots is the affine
root system of [Tit79, 1.6].

For each affine root 6(a,l), the corresponding H,; is called a wall of A.
The walls induce a structure of poly-simplicial complex on A: a connected
component of A\ U Ha, is called an alcove. It is a simplex of maximal

acd, ler,
dimension. More generally, we define an equivalence relation on points on A

by z ~ y if, for any a € @, if the real numbers a(z) and a(y) have the same sign
or are both equal to zero. That means x ~ y if, and only if, z and y always are
in the same half-apartment. An equivalence class is called a facet; alcoves are
the facets of maximal dimension. The set of facets constitutes a partition of
A. Finally, the affine space A together with the affine root system {6(a,l), a €
® and [ € T} and the structure of poly-simplicial complex deduced from the
walls is called the standard apartment.

3.1.1 Notation. For any non-empty bounded subset Q2 of A, according to
[BrT84, §4] and [Lan96, §5], we denote:

o fa(a) =sup{—a(z), = € Q} for any relative root a € ®;

o Uso = U, fo(a) for any relative root a € ®;

ffll(a/) lnf{lel—‘:}, lZfQ(a) or %lzfﬂ(%)}
= sup{l €R, Usy =Uq o)}

Uq the subgroup of G(K) generated by the groups U, o where a € ®;
No={neNg(S)(K), Ve €Q, n-z=xa};

Po =Ugq - T(K)p, (we recall that T(K), normalizes Ug);

e P, the subgroup of G(K) generated by Ug and Ng.

Moreover, because G is a (quasi-split) semisimple K-group, the group ]39 can
be realized as the integral points of a suitable model B¢ of G, and we write
Py = 62 (Ok). This group is the connected pointwise stabilizer in G(K) of
the subset Q2 C X (G, K) [BrT84, 4.6.28].

From the dual pairing, each relative root a € ® can be realized geomet-
rically in the Euclidean dual space V*. By [Bou81, VI.1.4 Prop. 12], there
are exactly one or two values for the length of a root if ® is reduced; and by
[Bou81, VI.4.14] there are three values if ® is non-reduced. We say that a root
a € ® is a long root if its length is maximal in its irreducible component,
and is a short root otherwise. More precisely, if ® is a reduced non-simply
laced root system, the ratio between the length of a long root and the length
of a short root is exactly v/d’ where the integer d’ € {1,2,3} has been defined
in 2.1.4 considering the smallest extension of K splitting G.

3.1.2 Proposition. Let d, L', Lq as in 2.1.4.

(1) If d =1, every root a € ® has L, = L' = Lq = Ly as splitting field (up
to isomorphism, in the sense of 2.1.6).

(2) If d > 2 and ® is reduced, every short root has L' as splitting field;
every long root has Ly as splitting field.

(8) If d = 2 and ® is non-reduced, every non-divisible root has L' as
splitting field; every divisible root has Lg as splitting field.

Proof. (1) If d =1, then ¥y = X4 = X, for any root a € ®. Hence, we have
the equality of the corresponding fixed fields Lo = Ly = L, = L.
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Suppose now that d > 2. Because Dyn(A) has a non-trivial symmetry,
all the absolute roots have the same length in the geometric realisation in v+
defined in 2.1.3. Let a be a relative root, seen as orbit, which contain several
absolute roots. In the geometric realization, the orbit a can be geometrically
realized as the orthogonal projection of its absolute roots. Hence, the length
of the orbits having several roots is shorter than that of the orbits having only
one root.

Let a € ® be a relative root and let o € ® be an absolute root so that the
relative root a = a|g is its orbit for the x-action.

(2) If d > 2 and @ is reduced. If a is short, then ¥ fixes a but ¥, does not.
Moreover, we observe that for d = 6 (hence d is of type Dy), the stabilizer
of @ in ¥4/%y ~ &3 has index 3. Hence L, is a separable extension of L4
of degree 3 if d > 3 and of degree 2 otherwise, hence isomorphic to L’. Thus
L' = L,. If a is long, then X, is the stabilizer of o. Hence Ly = L.

(3) If d = 2 and @ is non-reduced. If a is divisible, then a is a long root.
Hence X5 is the stabilizer of a. Thus Ly, = L,. Otherwise, a is a short root.
Hence Y is the stabilizer of . Thus L' = Ly = L,. O]

3.1.2 Description of an alcove by its panels

An alcove is the candidate to be a fundamental domain of the action of
G(K) on its Bruhat-Tits building X (G, K).

3.1.3 Definition. A panel is a facet of X (G, .S) of codimension 1.

We want to describe precisely, thanks to some relative roots and their sets
of values, walls bounding a given alcove. To do this, we may have to consider
a dual root system, which appears to be necessary in some ramified cases.

Firstly, we define a dual root system of ® by a suitable normalisation of
the canonical dual root system in Lie considerations.

3.1.4 Notation. We consider a geometric realization of ®,4 in the Euclidean
2

space (V*,(:|-)). For each root a € ®pq, we set A\, = ((‘l“a) € {1,d'} and

aP = A\,a € V where p is the length of a long root, so that a” = a for any

long roots. The set @2, = {aP, a € ®,q} is a root system, because it is

proportional (by a factor “72) to the dual root system ®V of [Bou81, VI.1.1
Prop. 2]. In particular, if ® is a reduced irreducible root system, then ®° = @
if, and only if, it is a simply laced root system (type A, D, or E). Moreover,
by [Bou81, VL.1.5 Rem.(5)], if A is a basis of ®, then AP = {aP, a € A} isa
basis of ®2,.

Whereas ®V and ®” are constructions strictly in terms of Lie theory, we
have found it was more convenient to introduce the following root system ®°
which takes into account the splitting field extensions of root groups.

3.1.5 Definition. For any non-divisible root a € ®,4, we denote by §, €
{1,d'} the order of the quotient group I'y,, /T, (resp. T'r, /T'z/) if @ is reduced
(resp. non-reduced), by a® = §,a and by ®; = {a’, a € ®,,q}. We denote by
A% = {a°, a € A}. We will see below that ®°, = ®,4 or ®2,.
3.1.6 Notation. In the following, we denote by:

e h the highest root of ® with respect to the chosen basis A;

e 0 € ®,4 the root such that §° is the highest root of ®°, with respect to
the basis A%,
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Moreover, if ® is non-reduced, we will see below that (ng = fI)nDd = &, SO
that h = 26.

Note that if @ is multipliable and 21 € T, it is possible that Hag 01 = Ha,
be a wall even if [ ¢ I',. Moreover, we have ', = I, U 1T}, in this case.
Otherwise, if a is non-multipliable and non divisible, we have I'; = I/, by
Lemma 2.1.12. In fact, the walls of A are described by the various a € ®,q
and [ € T',.

According to [BrT84, 4.2.23], we can classify the scalings to describe the
various alcoves for a K-simple group G. In a similar way, there exists a
classification of (quasi-split) absolutely almost-simple groups over a local field,
provided by Tits in [Tit79, §4]. Here, we reduce the discussion to three types
of behaviours.

First case: ® is reduced and L'/L; is unramified. These groups
are the residually split groups named A,,, B,, C,, D,, Fg, Fr, Es, Fy and
G; and the non-residually split groups named 245, , 2D, 11, 2Eg and 3Dy
in the Tits tables [Tit79, 4.2, 4.3]. These correspond respectively to scalings,
classified in [BrT72, 1.4.6], of type A, By, Cn, Dy, Fs, E7, Es, Fy and Go;
and Cn7 Bn, F4 and GQ.

Let a be a relative root. Because @ is reduced, I', = I';,, by Lemma 2.1.12.
Hence, by Proposition 3.1.2, we have T', = I'y,,. Because L’/L, is unramified,
we have I';, =T'r,. Hence PO =@ and h = 6.

In order to simplify notations, we normalize the valuation w so that 'y, =
Z =Ty, and 07 = 1. By definition of alcoves as connected components, we can
define an alcove as the intersection of all the various half-apartments D(a,l)
and D(b,IT) where a € ®T, b € &~ and | € RT. Because D(A4,1) C D(a,l)
for any [ > I’, we are in fact considering the finite intersection of all the various
half-apartments D(a,0) and D(b,1) where a € &+ and b € &~. We call it
“the” fundamental alcove, denoted by cs.

By [Bou81, VI.2.2 Prop. 5|, its panels are exactly contained inside the
walls Hq,0, where a € A, and H_p 1.

3.1.7 Example (The apartments and their fundamental alcoves in dimension 2).

Type Co
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Second case: ® is reduced and L’/L, is ramified. These groups are
the residually split groups named B-C,,, C-B,,, F} and G} in the Tits tables
[Tit79, 4.2]. These correspond respectively to scalings, classified in [BrT72,
1.4.6], of type B-C,,, C-B,,, F{ and GJ.

Because L'/L, is ramified, d’ € {2,3}, hence ® is a non-simply laced root
system. Moreover, we have d'T';, = T'r,. Let a be a relative root. Because
® is reduced, I'y = I',, by Lemma 2.1.12. By Proposition 3.1.2, if a is a
long root, I'y = I'z,,; if a is a short root, I'y = I'r/. Thus, 6, = A,. Hence
‘I)gd = ‘I’Ed-

In order to simplify notations, we normalize the valuation w so that I'y, =
Z. The intersection of all the various half-apartments D(a,0) and D(b,0")
where ¢ € ®F and b € ®~ in exactly an alcove. If b € ®~ is short, then
I'y =T’z so that D(b,07) = D(b,1); if ¥’ € &~ is long, then I', = 'z, so that
D(b,07) = D(V',d"). We call it “the” fundamental alcove, denoted by cyt.

Its panels are exactly contained inside the walls H, 0, where ¢ € A, and
H_p,1- Indeed, let a € ® and [ € R. Let 1P = 6,1 so that for any x € A:

a(z—0)-1=0d’@@x-0)-1P =0

By definition, the set H,; is a wall of A if, and only if, [ € I'y; hence if, and
only if, I[P € T'z,. Thus, the panels of c,¢ are contained in the walls Hop 0
described in the first case. Because the highest root 87 is a long root in ®%
by [Bou81, VI.1.8 Prop. 25 (iii)], hence € is a short root in ® and g = d'.

3.1.8 Remark. The ramification as the effect of adding some walls in the di-
rection corresponding to short roots. For instance, if d = 2 and if the absolute
root system ® is of type As, then the relative root system is of type Cy and
we obtain the following picture where we print the “added” walls with dotted
lines, and the root system ® instead of ®:

Ca

“pm.

Third case: ® is non-reduced. These groups are named C-BC,, and
2 AL, in the Tits tables [Tit79, 4.2, 4.3]. These correspond respectively to
scalings, classified in [BrT72, 1.4.6], of type C-BCL!! and C-BC!V.

Because @ is non-reduced, d = d’ = 2. In order to simplify notations,
we normalize the valuation w so that I'yr = Z. Let a be a non-divisible
relative root. If a is multipliable, by Lemma 2.1.13, we have ', = %FL/; if
a is non-multipliable, by Lemma 2.1.12, and by Proposition 3.1.2, we have
Fa == FLa = FL’- ThU.S7 5aI’a = FL’-

As above, one can see that the intersection of all the various following half-
apartments: D(a,0) where a € <I>Id, D(b,1) where b € ®_ is non-multipliable,
and D(¥, %) where b € ®~ is multipliable, is exactly an alcove. We call it
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“the” fundamental alcove, denoted by c,¢. Its panels are exactly contained
inside the walls H, o, where a € A, and 7-[_9)%.

Indeed, we proceed in the same way as in the previous case, with the
reduced root system CIDI’?d.

3.1.9 Example (&) of type A4 and @ of type BCs).

Ca

20

3.1.3 Counting alcoves of a panel residue

Because a maximal pro-p subgroup P fixes an alcove c, it acts on the set
of alcoves which are adjacent to c. We want to describe this set of alcoves.

3.1.10 Definition. Let F' be a panel. The panel residue with respect to

F, denoted by E, is the set of the alcoves whose the closure contains F'.
The combinatorial unit ball centered in ¢, denoted by B(c, 1), is the

union of all the panel residues with respect to a panel F' in the closure of c.
We say that two alcoves are adjacent if they have a common panel.

In what follows, we provide a reformulation and a proof of [Tit79, 1.6].

3.1.11 Proposition. Let a € ® and | € I'y. The group U, ;+ is a normal
subgroup of Uq,. We denote by Xo1 = Uq /U, 1+ the quotient group.

If a is non-multipliable, then there exists a canonical Kp,, -vector space
structure on X, of dimension 1.

If a is multipliable, then there exists a canonical group homomorphism
Xoa21t = Xai; so that we have the inclusion [Xq 1, Xoi] < Xogo. There
exists a canonical Ky, -vector space structure on the quotient group Xa,l/XQ,LQl
of dimension 0 or 1.

Proof. Suppose that a is non-multipliable, then U, (K) is commutative. Hence
U, i+ is a normal subgroup of U, ; and the quotient group X, ; is commutative.
We define a O, -module structure on X, ; by:

Vo € Or,, Yy € Lq such that w(y) > 1, 2 24(y)Uqi+ = a(2y)Uq i+

For any z € wy, O, and any y € L, such that w(y) > I, we have w(xy) >
I, hence X, < U, +. This provides a rr, = Or, /wr,Or,-vector space
structure on X, ;. We check that this vector space is of dimension 1: for
any y,y € L, such that w(y) = w(y’) = [, since y is invertible, we have
x =y 'y € Or,. Moreover, such elements y, %’ exist by definition of I'y,,.

Suppose now that a is multipliable. By Lemma 2.3.12 applied to [, It € T,
we get that U, ;+ is a normal subgroup of U, ;.
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The normal subgroup Uy, o+ of Uaa 2 is the kernel of the canonical group
homomorphism Us, 2; = X,,;. Hence we deduce a quotient group homomor-
phism X5, oy = X, ;. Passing to the quotient the formula of Lemma 2.3.12,
we get [ X1, Xai] < Xoa21-

In particular, the group X, ;/Xo, 2/ is commutative. There exist an Oy, -
module structure given by:

Vo € Or,, Y(y,y') € H(Ly, La,) such that w(y') > 2I,
Z - xa(yv y/)Ua7l+ U2a,2[ — xa(xy; xTZ'y/)Ua)[-F U2a,2l

For any x € wy, O, and any (y,y’) € H(Lg, L2,) such that w(y') > 2I,
we have w(z"xy’) > 2(I7). This defines a kp,-vector-space structure on
X1/ X24,21. This vector-space is of dimension at most 1. Indeed, if there
exist elements (y,y’),(z,2") € H(Lg,La,) such that w(y') = w(z') = 21,
12 € O, because y is invertible. Hence, we have
za(2,7') € - 2(y, ¥ )U2a,21- O

then we can set x = y~

If a is a non-multipliable root, we set X5, 9, = 0 and kr,, = rr,. Hence,
the dimension d(a,l) = dimy,, Xa,1/X24,21 has a sense for any root a € .

3.1.12 Remark. Let F' be a panel contained in a wall H,; corresponding to
an affine root 6(a,l). Denote ¢ = Card(kp,,). The panel residue Er contains
1+ Card(X,,) = 14 ¢4(53)+d@D+d(2a.2) glements. This is a consequence of
Lemma 3.2.3.

The following lemma states that the affine root systems defined in [BrT72,
6.2.6] and in [Tit79, 1.6] are the same.

3.1.13 Lemma. Let a € ® be a root and ! € R. Then d(a,l) > 0 if, and only
if, LeT,.

Proof.
lel, & 3FJueUyK), po(u)=1=supyp,(uls(K))
& FueUy(K), po(u) =1and Vu” € Ug,y(K), pqo(uu’”) < It
= UaJ 7é Ua,H and Ju € UaJ, Yu” e Uga(K), uu”’ ¢ Ua,H
=4 Xa,l 7é 0 and Xa,l 75 Xga’gl
& d(a,l)#0

O

This affine root system is an affinisation of the spherical root system. It
can be obtained by adding affine reflections corresponding to elements m(u) =
w'uu” where for any u € U,(K) \ {1}, there exist v',u” € U_,K uniquely
determined such that m(u) € Ng(S)(K).

3.2 Action on a combinatorial unit ball

We consider a maximal pro-p-subgroup P = P} of G(K). For any a € @, if
there exists a wall #,; bounding ¢, we denote by F; , the panel of ¢ contained
in Hq,. Let Ec o = EF,, be the panel residue of F¢ ,. We want to study the
action of the derived group and of the Frattini subgroup of P on the Bruhat-
Tits building X (G, K) of G over K. For this, we consider the action, on each
set E¢ 4, of the various valued root groups U, ¢ and of the group T'(K );r

3.2.1 Lemma. Let c; and co be two adjacent alcoves of the apartment A
along a wall directed by a root a € ®. Ifb € ®\Ra, then f (b) = fi,(b) where
[’ is defined in 3.1.1. In particular, we have Up e, = Upc,-
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Proof. In order that f (b) # f¢,(b), it is necessary and sufficient that there
exists a wall directed by b separating the alcoves ¢; and ¢y in two opposed
half-apartments. The alcoves ¢; and cs contain a panel contained in a wall
directed by a. This wall is the only one separating the alcoves in two opposed
half-apartments. Hence, if f¢ (b) # fe,(b), then a and b are collinear. O

3.2.2 Proposition. Let a € ® = ®(G, S) be a relative root such that there
exists a wall Hq; bounding c. If a is non-multipliable or if the quadratic
extension Lo /Lo, is ramified, then the Frattini subgroup Frat(P) fizes Eq,
pointwise.

As a consequence, if © is a reduced root system or if the extension L/L, is
ramified, then Frat(P) fizes pointwise the simplicial closure cl(B(c,1)) of the
combinatorial unit ball.

In general, denoting by Q. the pointwise stablizer of E¢ ., we have the
group inclusion Frat(P) C QqUazq,c-

The rest of this section consists in proving the above proposition.

Let ¢’ be an alcove of A adjacent to c. In particular, we have ¢’ € B(c,1).
Write @’ + 7/, with ' € ® and r’ € Ty, the affine root directing the wall
separating the alcoves ¢ and ¢’. If ’ is divisible, we set @ = 1a’ and r = 11’
Remark that we still have r € T, but a + r may or may not be an affine root
according to r is an element of I'/, or not. Otherwise, we set a = a’ and r = 1.
We also have the following definition of r by the equality r = fc(a) = f.(a)
by [Lan96, 7.7]. Up to exchanging a and —a, one can assume that fo (a) =
fc(a)+ > fe(a) and that fo(—a) < fe(—a) = fc’(fa)+'

The group P acts on the finite set of alcoves E. , and fixes c. Hence, it acts
on the set of alcoves Ef, , = E. \{c}. Denote by Q, the kernel of this action.
We will show that the quotient group P/Q, is isomorphic to a subgroup of

Ua,r/Ug s -

3.2.3 Lemma. The group U, acts transitively on the set E(’:,a.

Proof. By construction of the building, the subgroup P, acts transitively on
the set of apartments containing ¢ [Lan96, 9.7 (i)]. Because the action pre-
serves the type of facets, we obtain E. , = P, - ¢’.

Write P, = Ua,c'Hbg@jd\(a) Upe ' U_g+ o T(K)y [BrT72, 7.1.8]. The group
T(K)y fixes A pointwise [Lan96, 9.8], hence it also fixes ¢’. For any b € ®\Ra,
by Lemma 3.2.1 we have Uy, . = Up . Hence U, ¢ fixes ¢/. Since we assumed
that fo'(—a) < fo(—a), we have U_,c C U_q¢. Hence U_, ¢ fixes ¢’. As
a consequence E(’:)a = U, - ¢, because the valued root groups U, . and the
group T(K), fix ¢’ O

3.2.4 Lemma. Let g € P be an element fixing c’. If [v,g] fizes ¢’ for any
v € Uyc, then g fizes Ec .

Proof. Let ¢ € E ,. By Lemma 3.2.3, there exists an element v € U, . such
that ¢’ = vc’. We do the following computation:

" /

g’ = gv-c
= U[U_lmg]g -
= ool g]-¢  because g fixes ¢’
= wvc because [v7!, g] fixes ¢’
C//

Since this is true for any ¢” € F!

a,c’

we conclude that g fixes Fg c. O
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Hence, to show that g € [P, P] fixes E q, it suffices to verify that [U, e, g]
fixes c'.

Ua,fc(aﬁ' = U, o fixes c.

We are reduced to compute commutators. Recall that the group

3.2.5 Lemma. The following groups:
1. Ua, foa)+
2. T(K);
3. Up,c whereb e @\ Ra
4 U_gpe
fiz the panel residue Eg .

Proof. (1) Let u € U £ (q)+- Then u fixes ¢’. Let v € Uyc.

If a is non-multipliable, then [v,u] = 1 because the root group U, (K) is
commutative.

If a is multipliable, by Lemma 2.3.12, we know that [v™ ! u] €
Usa,[ fo(@) 1+ fola)]-  Since [fe(a)t] + [fe(a)] > 2fc(a), we deduce that
[t u] € Uy fo(a)+ = Ua, . (a) fixes ¢

Applying Lemma 3.2.4, we obtain that u fixes E ,.

(2) Let t € T(K);. The element t fixes ¢/ because T(K), fixes the
apartment A. By Lemmas 2.2.1 and 2.3.4, we know that [T(K);, U] C
Ua,fo(a)t = Ua,er. Hence [v,t] € Uy fixes ¢ for any v € Uy .. We deduce
from (1) that T(K); fixes Ee .

(3) Let g € Upc and v € Uy . By Lemma 3.2.1, we get Uy, o = Uy . Hence
g - ¢ = c’. By quasi-concavity of the functions f’ applied in the case where a
and b are not collinear, we get by [BrT84, 4.5.10]:

1

[Uﬁla g} € H Uma—i—nb,fé(nm+nb)
m,neEN* ma+nbed
Applying again Lemma 3.2.1, we get Unngtnbec = Umatnb,er- Thus [v, g] fixes

¢’ for any v, hence, by Lemma 3.2.4, the element g fixes E¢ ,.

(4) Let u € U_4c and v € Uy c. Since fo(—a) < fe(—a), we get U_q e C
U_q.c'- Hence u fixes ¢’.

According to whether a is multipliable or not, we know that [v,u] C
U,a,fc(,aﬁT(K);Ua,fc(aﬁ, by applying either Lemma 2.3.6 or Lemma 2.2.2.
The groups Ug f_(a)+ 5 T(K);, and U_afo(—a)y+ CU_q . (~a) fix ¢’. Thus, the
commutator [v,u] fixes ¢’ because it can be written as the product of three
such elements. Applying lemma 3.2.4, we conclude that u fixes E ,. O

Proof of Proposition 3.2.2. We keep notations introduced below Proposition
3.2.2. In particular, a is a root such that there exists a wall H,; bound-
ing the alcove ¢ C A; the alcove ¢’ € A has the panel F., in com-
mon with ¢. We have the equalities f.(a)T = flL(a) = f. o (a). Hence
Us fo(a)t = Uacuer. For any root b € ®pq \ Ra, by Lemma 3.2.1, we
get fi(b) = fl(b) = fiie(b). Hence Uys.y = Ubecuer- Finally, be-
cause we have assumed f/,(—a) < fl(—a), we get the equality of groups
Ucacuer = U—afi(—a) N U—a,f7, (~a) = U—amax(fi(~a).f2, (-a)) = U-a,e- From
this, we deduce the equality of groups:

Ua,fc(a)Jr H Ub,C T(K)bJrU—‘i’*,c = U<I>+,cUc’T(K)b+U—‘i’+,cUc/
be®yq\{a}
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We denote this group by P, because one could show (as in [Loil6, 3.2.9])
that it is the (unique because of simply connectedness assumption on G) max-

imal pro-p subgroup of the pointwise stabilizer in G(K) of cUc'.

By Lemma 3.2.5, the subgroup @, contains the subgroup PC'DC/. Firstly,
we prove that Pch/ is a normal subgroup of P. We can write P = Ua,cpctc'-

We have the following group inclusions:

® Uae Us ()] CUq fo(a)yr C PCTJC, by Lemma 2.3.12 or commutativity
according to whether the root a is multipliable or not;

o [Uae, T(K)}] C U, f.(a)y+ C Pt by Lemma 2.3.4 or 2.2.1;

o Uae,U—ae] C Uy (@ T(K){ Uy fo(—ay+ C P by Lemma 2.3.6 or
2.2.2;

o [Use,Upe] C PJUC, for any b € ®,q \ Ra by quasi-concavity [BrT84,
4.5.10], as in proof of Lemma 3.2.5 (3).

Hence, Pctc, is a normal subgroup of P and the quotient P/ PCJ[JC/ is isomorphic
to U, f.(a)/Ua,fo(a)r = Xa,fo(a)- Secondly, Q, is a normal subgroup of P as
the kernel of the action of P on E.,. Hence, the quotient group P/Q, is a
subgroup of X, f_(a)-

We define a subgroup @), by Q,, = QaUsq 27, (a) if @ is multipliable, L, /L,
is ramified and f.(a) € T; and by Q) = Q, otherwise. We show that the
quotient group P/Q!, can be endowed with a vector space structure.

Firstly, assume that a is non-multipliable or that L, /Lo, is ramified. Then,
by Proposition 3.1.11, we know that the quotient group P/Q;, = X, ¢.(a) is a
kr,-vector space (of dimension 1).

Secondly, assume that a is multipliable, that the extension L,/La, is un-
ramified and that f.(a) ¢ I7,. Then, by Proposition 3.1.11, we know that
Xa,f1(a) = X2a,2f1(a) 18 & K L,,-vector space of dimension 1 because the quotient
space Xq 1(a)/X2a,2f:(a) I8 zero by Lemma 3.1.13. Hence P/Q|, = X, f/(a) is
a vector space.

Finally, assume that a is multipliable, that L,/Ls, is unramified and
that fl(a) € T%. Then, by Proposition 3.1.11, we know that P/Q/ =~
Xavfé(a)/XQa,Qfé(a) is a K1, -vector space of dimension 1.

As a consequence, on the one hand, the group P/Q/, is commutative; hence
[P, P] C Q. On the other hand, the group P/Q), is of exponent p; hence PP C
Q.. We get PP[P, P] C Q),. Because G(K) acts continuously on X (G, K), the
group @), is a closed subgroup of P as the kernel of the action of P on FE,.
Moreover, the group Q,Uszq 27, (a) is still closed. Hence Frat(P) = PP[P, P] C
Q..

If ® is a reduced root system or if the extension L'/L, is ramified, then
for any root a € ® corresponding to a panel of ¢, we get that Frat(P) fixes
E. . pointwise and so it fixes the combinatorial ball of radius 1 centered in c,
denoted by B(c,1), which is the union of all the E.,. By continuity of the
action, the group Frat(P) = PP[P, P] fixes pointwise the simplicial closure of
B(c,1). O

3.2.6 Remark. Though the bounded torus T(K), fixes pointwise the apartment
A, its action on the 1-neighbourhood of this apartement is, in general, non-
trivial. For instance, assume that ® is a reduced root system and choose a
spherical root a € ® directing a wall bordering the alcove c. The action of
T(K), on Eg, corresponds to the action of a subgroup of mff C Kza. The

useful term of an element ¢t € T'(K); to describe its action on the set of alcoves
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Ec.o\{c'} is a(t)/wr,OL, € nzf Indeed, let ¢” € E., \ {c’} and write it
¢ = x,(z) ¢’ where w(x) = f.(a). Then t-c” = tx, ()t 1 ¢’ = x4(a(t)z) .

3.2.7 Corollary (of Proposition 3.2.2). For any non divisible relative root
a € (I)ncb

e ifad AU{—0}, we set Ve =Ugpe;
e if a € AU{—0} is non-multipliable, we set Voo = Uq s (a)+;

e ifac AU{—0} and if a is multipliable, and either L, /Lo, is unramified
or fl(a) €T, we set V, o = a,fola)ts

o ifa € AU{=0} and if a is multipliable, the extension L, /La, is ramified
and fi(a) € Ty, we set Voo = Uq 1. (a)+ U2a,2f0(a) = Ua, fu(a)+ U2ase-

We have the following:

Frat(P) S H Va,c T(K)Ij— ! H Va,c = T(K);_ H Va,c

acd, acdf a€Pnq

Proof. Since Frat(P) C P, it suffices to check that Frat(P) N Uy(K) C V,¢
for any a € AU{—6}. Let a € AU {—0}. By Proposition 3.2.2, we have the
inclusion Frat(P) C QqUaq,c when a is multipliable, the extension L, /Lo, is
ramified and f.(a) € I'}; we have the inclusion Frat(P) C @, otherwise. In

a’

particular, Frat(P) N Uy (K) C Vyc. O

3.2.8 Proposition. We assume that ® is a reduced root system. The group
Q= T(K)b+ [Loco Vac is the maximal pro-p subgroup of the pointwise stabi-
lizer in G(K) of cl(B(c,1)).

Proof. Denote by cl (B(c,1)) the simplicial closure of the combinatorial ball of
radius 1. Set Q = cl(B(c,1)) NA. Denote by ﬁB(cJ) (resp. Pg) the pointwise
stabilizer in G(K) of ¢l (B(c, 1)) (resp. ). By [Lan96, 9.3 and 8.10], we can
write ﬁQ = T(K)b Ha€<I> Us.0-

By Proposition 3.2.2, we get that @ fixes cl(B(c,1)) pointwise. Let g €
133(071) C Pq. Write g =t]],cq ua Where t € T(K)y and uy € Ug o = Vae.
By Lemma 3.2.5, we know that u, fixes pointwise cl(B(c, 1)).

Let t € T(K), fixing pointwise cl(B(c,1)). Let a be a root corresponding
to a panel of c. By Lemma 3.2.3, we write the orbit Ef , = U, cc’. For any
u € Ug,c, the computation v - ¢’ = tu - ¢’ = [t,u]uc’ shows that [t,u] € V, c.
By Lemma 2.2.1, we get a(t) = 1lmod w.

Because this equality is true for any a € A, we get t € T/ =
[Toen a(£1+mp, ). Hence ISB(CJ) CT'[laco Vare-

The index [T : T(K)lﬂ divides [J,ca |1+ mg, /1 +mp, | = 2121 which
is prime to p since p # 2. Hence @ is a subgroup, which has an index prime
to p, of the profinite group ]33((:,1). Since @ is a pro-p-group, we get that it is
a maximal pro-p subgroup of ﬁB(c,1)~

It remains to show that it is the only one, in other words that @ is normal
in ]33(,:71). But since T'(K), normalises @, this gives the result. O

4 Computation in higher rank

As before, G is an almost- K-simple quasi-split simply-connected K-group
and P is a maximal pro-p subgroup of G(K). By a geometrical analysis, we
provided, in Proposition 3.2.8, a description of the Frattini subgroup Frat(P)
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as a subgroup of the (unique) maximal pro-p subgroup @ of a well-described
stabilizer in G(K). We now want to provide a large enough subset of Frat(P),
so that this subset generates @), and thus Frat(P). We provide unipotent
elements of Frat(P) by finding some values /, € R with a € ® such that the
valued root groups U, ;, are subgroups of [P, P] C Frat(P). In the rank-1 case
treated in Section 2, we have already found some values [,. In higher rank,
we can improve these values for most of roots; more precisely, for all roots
which are not corresponding to panels of the (unique) alcove stabilized by P.
In Section 4.1, we invert most of commutation relations providing bounds of
valuations of root groups. In Section 4.2, we combine those inversions in the
whole root system.

4.1 Commutation relations between root groups of a
quasi-split group

We consider both the split semisimple K- group G=Gr G and the quasi-
split K-group G. A Chevalley-Steinberg system of (G, K, K) is the datum
of morphisms: 7, : G, z — U, parametrizing the various root groups of G
and satisfying some axioms of compatibility, given in [BrT84, 4.1.3], taking in
account the commutation relations of absolute root groups and the Gal(K /K )-
action on root groups. Note that despite the morphisms parametrize root
groups of C~}’, a Chevalley-Steinberg system also depends on the quasi-split
group G because of the relations between the Z, where a € 3. According
to [BrT84, 4.1.3|, a quasi-split group always admits a Chevalley-Steinberg
system.

According to [Bor91, 14.5], there exist constants (cr.sa,8), sen-1a ped D
K , uniquely determined by the Chevalley-Steinberg system (Z) so that
we have the following relations:

acd?

Fa(w), ()] = [[ Fratss(crsasuv®)
r,sEN*

for any non-collinear roots «, 8 € ® and any parameters u,v € K. Moreover
Crs;0,3 = 0 as soon as ra + sf ¢ ® which makes the above products finite.
These constants are called the structure constants. There is some flexibility
in the choice of a Chevalley-Steinberg system, so that we can choose ¢, s.q,g in
Z1 % where 15 denotes the identity element of K. More precisely, because G
is generated by its root groups, it comes from a base change of a Z-reductive
group [SGA3, XXV 1.3]. In this case, one can determinate the ¢, 50,8, Up
to sign, to be some coefficients of a Cartan matrix [SGA3, XXIII 6.4]. More
precisely, we have:

4.1.1 Lemma. Leta, € ® be two (non-collinear) roots such that a+ 3 € d.
If(FI3 is of type Ap, Dy, or Ey, then c1 1,03 € {£15}.
If(f is of type By, Cy, or Fy, then c1 1,05 € {£15,£2- 15}
If ® is of type Ga, then c11.05 € {£15, 2 15,4312}

In the quasi-split case, given two non-collinear relative roots a,b € @,
there exist commutation relations between the corresponding root groups in
terms of the parametrizations (z,)sce. These commutation relations can be
completely computed in the irreducible root system ®(a,b) = ® N (Ra ¢ Rb)
of rank 2. Hence ®(a, b) is of type Ag, Cy, BC5 or Go, and we can assume that

35



a is shorter or has the same length as b. The various commutation relations
are written down in [BrT84, Annexe A] where Bruhat and Tits consider the
angles between roots. Here, we follow another description in terms of length
of roots, as in [PR84, §1].

We recall that, according to Section 2.1.2, the Galois group Gal(K/K)
acts on the absolute roots ® and that the relative roots ® can be seen as the
orbits for this action. We recall that d’ = [L’/Lg4] has been defined in 2.1.4 to
be the number of absolute roots in a short root seen as an orbit. We do the
following assumptions:

4.1.2 Hypothesis. We assume that the residue characteristic p of K is such
that p > d’ and the following structure constants ¢1,1,,3, where o, 8 € 57 are
invertible in Ok . In other words, this is to say that p > 3 if the relative root
system @ of the quasi-split almost- K-simple K-group G is of type B,,, C,, of
Fy; and that p > 5 if @ is of type Ga.

4.1.3 Proposition. Let a,b,c € ® be relative roots such that ¢ = a + b and,
at least, one of the two roots a,b is non-multipliable. Letl, € Ty, l, € T'y and
l. € ' be values such that l. =1 + .

Let w € U.,,. If Hypothesis 4.1.2 is satisfied, then there exist elements
vE€Uuy,, v €Uy, andv" € H Uratsbri,+si, such that u= [v,v'|v".

r,seN*

r4+s>2
Proof. If u is the identity element, the statement is clear. From now on, we
assume that u is not the identity element. We choose o € a and 8 € b. In this
proof, length of root is considered in the irreducible (possibly non-reduced)
root system ®(a,b) of rank 2.

In the below various cases, we always follow the same sketch of proof.
Firstly, we recall the splitting field of the roots a, b and ¢ = a + b computed
in Proposition 3.1.2. Secondly, we recall the commutation relation between
U, and Uy, provided by [BrT84, A.6] and we draw the relative roots that
appear in the writing of this commutation relation. Thirdly, given a non-
trivial unipotent element u € U, ., we use the parametrisation of root groups,
defined in Section 2.1.3, to provide suitable elements v € U, ;, and v € Upy,-
Finally, we check that v” = [v,v/]71u is suitable.

Case d’ = 1 or the relative roots a,b, c are long:
By Proposition 3.1.2, we have L, = Ly, = L. = Lg.
By [BrT84, A.6], we have the following commutation relation:

Vy € La, z € Ly, [za(y), 76(2)] = H xm+sb(cr,5;aﬁyrzs)
r,s€EN*

There exists a parameter x € L, such that © = x.(z) and w(x) > .. We
choose y € L, such that w(y) = l,. This is possible because I, € T, =T,
by Lemma 2.1.12. We set z = ciiaﬁxy*1 € Ly. Then w(z) = w(z) —w(y) >
le — 1o = 1, satisfies * = ¢1,1.0.8y2. Then, we set v = z,(y), v = zp(2)
and (v")7! = H Tratsb(Crs:a,8y 2°). For any pair of non-negative

r,s€EN*, r4s>2
integers (r, s) such that 7+s > 2 and ra+ sb is a root, we get w(cy s;0,8Y"2°) >
rw(y) + sw(z) > rly + slp. Hence v’ € HT,seN*;THZQ Uratsb,ria+sl,- Thus
[v,v"] = u(v") 7L
Case d' = 2, the roots a,c are short, b is long and non-divisible:
By Proposition 3.1.2, we have Ly = Log1p = Lgand L, = L. = L'.
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By [BrT84, A.6.b|, there exist €1, 2 € {£1} such that we have the following

commutation relation:
a+b=c

Yy € Ly, Vz € Ly, b 2a +0
{xa (v), :vb(Z)] = Taib (611/27) \ i
T2a+b <€2yTyZ) a

There exists a parameter x € L. such that v = z.(z) and w(x) > l.. We
choose z € Ly such that w(z) = ;. This is possible because I, € T, = I'f,.
We set y = eyxz~! € L' = L,. Then w(y) = w(z) —w(z) > 1. -l = I, and
x = eg1yz. The root 2a+b is non-divisible and we get w(y"yz) = 2w(y)+w(z) >
21, +lp. Then, we set v = z4(y), v' = x(2) and v"" = 2241 4(—£2y"yz). Hence
V" € Usap 2, +1,- Thus u = [v,v']v".

Case d’ = 2, the roots a,c are short, b is long and divisible:
By Proposition 3.1.2, we have L, = L, = L.
By [BrT84, A.6.c], there exist €1,c9 € {£1} such that we have the following

commutation relation:
2a +b

Vy € Ly, Yz € LY,
{xa(y),xg((),z)} = xa+b<€lyz) a at+b=c
Toyb (O,EQyTyz)

There exists a parameter z € L. such that u = z.(x) and w(zx) > .
By Lemma 2.1.13, we have [, € T, = w(L/°*). Hence, we can choose z €
LY = L such that w(z) = l,. We set y = gy2z=! € L, = L’. Then
w(2y) =w(x) —w(z) > 1. —1ly =1, and = g1yz. The root 2a + b is divisible
and we can check that w(eqy™yz) = 2w(y) + w(z) > 21, + lp. Then, we set
v =z4(y), v = xp(2) and v" = I’(H_%(O, —e9y yz). Thus u = [v,v']v".

Case d’' = 2, the roots a,b are short, c is long and non-divisible:

By Proposition 3.1.2, we have L, = L, = L' and L. = Lq.

By [BrT84, A.6.b], there exists ¢ € {£1} such that we have the following
commutation relation:

Yy € L, Vz € Ly, b at+b=c
[:ca(y), xb(z)] = Tatb (s(yz + TyTz)) M
a

There exists a parameter © € L. such that u = z.(x) and w(z) > .. We
choose z € L, = L such that w(z) = l. This is possible because I, € T.
We set y = %332_1 € L, = L'. This makes sense because p does not divide
d =2, hence 2 € Of. Then w(y) = w(x) —w(z) > . —ly =, and eTr(yz) =
2 + 22 = 3 because x € Lq. Then, we set v = ,(y), v’ = z5(2) and v = 1.
Thus v = [v,v']v".

Case d’ = 2, the roots a,b are short, c is long and divisible:

By Proposition 3.1.2, we have L, = Ly = Le = L'

By [BrT84, A.6.c|, there exists € € {£1} such that we have the following
commutation relation:
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at+b=c

Yy € Ly, Vz € Ly,
[ma(y), zb(z)] = Zatb (O,s(yz - TyTz)) a b

There exists a parameter x € L% = L'V such that u = z¢ (0, z) and w(z) >
l.. We choose z € L, = L' such that w(z) = [,. This is possible because
lp € T'y. We set y = %xz’l € L, = L'. This is possible because p does not
divide d’ = 2, hence 2 € Of. Then w(y) = w(z) —w(z) > l. — I = l, and
e(yz— "y z) = % = x because  + "x = 0. Then, we set v = x,(y),
v' = xp(z) and v = 1. Thus u = [v,v']v".
Case d' = 2, the roots a,b,c are short, a,b are non-multipliable:

By Proposition 3.1.2, we have L, = L, = L. = L'.

By [BrT84, A.6.b], there exists ¢ € {£1} such that we have the following

commutation relation:
at+b=c

Vy € Lg, Yz € Ly, b
[wa)s(2)] = waro(ev2) \/
a

There exists a parameter x € L. such that © = x.(z) and w(x) > .. We
choose z € L, = L such that w(z) = l;. We set y = exzz~! € L, = L’. Then
w(y) = w(x) —w(z) > l. — Iy, =, and © = eyz. Then, we set v = x4(y),
v/ = xp(2) and v = 1. Thus u = [v,v']v".
Case d’ = 2, the roots a, b, c are short, b is non-multipliable and « is
multipliable:

By Proposition 3.1.2, we have L, = L, = L. = L.

By [BrT84, A.6.c], there exist 1,2 € {£1} such that we have the following

commutation relation:
2a + 2b

V(yvy/) € H(LayLQQ), Vz € Ly,
/ — ! T a+ b=c
[%(yvy )ﬁfb(z)} = ma+b(51yz,y z z) b 24 +b
ZT2a+b (Egzy’)
a

There exists a parameter (x,2") € H(L., L) such that v = z.(z,2’) and
w(z") > 2l.,. We choose z € L; such that w(z) = ;. This is possible because
Iy €Ty. Wesety=cizz ' € Landy = 2’27727, Theny"y =3’ + 7y and
w(y') = w(@’) — 2w(z) > 2l — 21, = 2l,. This implies (y,y') € H(Lq, L24)1, -
Moreover (z,z') = (e1yz,y'272). The root 2a + b is non-multipliable, non-
divisible, and we can check that w(e22y’) = w(y') + w(z) > 21, + 1. Then, we
set v = 1,4(y,9'), v = 2p(2) and v = zo44p(—c22’Tz71). Thus u = [v,v']v".
Case d' = 2, the roots a,b, c are short and a,b are multipliable:

This case where a and b are both multipliable is the only one excluded by
the third assumption. It is considered in Remark 4.1.4.

From now on, we assume d’ = 3. This occurs only for the trialitarian Dy.
Case d’ = 3, the roots a,c are short and b is long:

By Proposition 3.1.2, we have L, = L, = Logyp = L' and Ly = Lzqyp =
L3aq2p = Lg.

We denote by 7 € 3, an element representing an element of order 3 in
the quotient group X4/%g. For any y € L', we denote O(y) = Ty y and
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N(y) = yO(y). By [BrT84, A.6.d], there exist an integer n € {1,2} and four
signs e1,e9,€3,64 € {—1,1} such that we have the following commutation

relation:
Yy € Ly, Vz € Ly,

[ralw) a(2)] = zass(2192) Batby p ., p30+2

Zoq+b|€20(y)2 at+b=c

Z3q+5 | €3N(y)z

T3a-+2b (5477N(y)22>

There exists a parameter © € L. = L’ such that u = z.(z) and w(z) > ..
We choose z € L, = L, such that w(z) = l,. This is possible because {;, € T'.
We set y = eyzz™! € L, = L'. Then w(y) = w(z) —w(z) > l.— 1l = l4
and z = e1yz. The root 2a + b is short and the parameter £20(y)z € L’
satisfies w(e2y™ yz) = 2w(y) + w(2) > 2, + . The root 3a + b is long
and the parameter e3N(y)z € Lg satisfies w(537y72yz) = 3w(y) + w(z) >
3ly + Ip. The root 3a + 2b is long and the parameter ne,22N(y) € L satisfies
w(n54z2y7y72y) =w(n) + 3w(y) + 2w(z) > 3l, + 2.

Then we set v = z,(y), v' = z3(z) and

b

v = x3a+2b( - 7754N(y)22)x3a+b( - 53N(y)z) x2a+b( - 52@(y)z)

Hence v" € Usqib,21,+1, Usatb,31 +1, Usa+2b,31,+21,- Thus v = [v,v]v”
Case d’ = 3, the roots a,b are short and c is long:

By Proposition 3.1.2, we have L, = L, = L' and L. = Lg.

We denote by 7 € ¥; an element representing an element of order 3 in the
quotient group ¥;/%g. For any y € L', we denote Tr(y) =y + "y + ™y. By
[BrT84, A.6.d], there exists a sign € € {—1,1} such that:

a+b=c
Yy € Ly, Vz € Ly,

a@)an(z)] = warn(eTr(y2)) b

There exists a parameter © € L. = Ly such that u = z.(x) and w(z) > .
We choose z € L, = L' such that w(z) = Il,. This is possible because I, € T'.
We set y = %:cz’l € L, = L. This is possible because p does not divide 3 = d’,
hence 3 € Of. Then w(y) = w(z) —w(z) > l. — I = l, and x = eTr(yz).
Then, we set v = z4(y), v' = 24(2) and v = 1. Thus u = [v,v']v"”

Case d’ = 3 and the roots a,b,c are short:

By Proposition 3.1.2, we have L, = L, = L. = L' and Log1p = Layop =
Ly.

We denote by 7 € ¥; an element representing an element of order 3 in the
quotient group S4/%. For any y € L', we denote O(y) = "y" y € L' and
Tr(y) =y+ "y + ™y € Ly and N(y) = yO(y) € Ly. For any y,z € L', we
denote (yz) = O(y+2) —O(y) —O(z) ="y z+7 y"z. By [BrT84, A.6.d],
there exist three signs e1,e9,e3 € {—1,1} such that we have the following
commutation relation:

Yy € Ly, Vz € Ly,
[ra@)2(2)] = zass(crly*2)
T2a+6(€2Tr(0(y)2) &
Tayon(e3Tr(yO(2))

2a+ b a+2b
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We choose z € Ly, = L’ such that w(z) = I, this is possible because I}, € T,
Because p does not divide 2, hence 2 € O, we can set:
e1 Tr(zz) —2zz €1

y=75 o0 = NE (2Tr(zz) — 222%)

so that (y * z) = ;2. Indeed:

(yxz2) = B (T2Tr(zz) — 272" 2%) T+ e (T2zTr(xz) - 272x7222) Tz
= 5211\(?(22)) (Tr(xz) — Tz 4 Tr(wz) — 27 a7 z)
= 5L (2z2)

Then we have:

w(y) = w(Tr(zz) — 2z2) —w(O(2))
> min (w(Tr(z2)),w(z) + w(z)) — 2w(2)
> (w(z) +w(2)) — 2w(z)
= w(r) —w(z)
> le=la=1

In fact, we get w(y) = w(z) — w(z) because we deduce the inequality w(z) >
w(y) + w(z) from the formula = = €1(y * z). The root 2a + b is long and we
can check that the parameter e;Tr(©(y)z) € Ly satisfies w(ngr(G(y)z)) >
2w(y) + w(z) = 2, + lp. The root a + 2b is long and we can check that
the parameter £3Tr(yO(2)) € Ly satisfies w(agTr(y@(z))) > w(y) + 2w(z) =
lo 4+ 2lp. Then, we set v = z4(y), v' = zp(2) and

v = Ia+gb( - 53Tr(y@(z)))x2a+b< - 52Tr(@(y)z)>

Hence v" € Usqtb,21, +1, Ua+2b,1,+21,- Thus u = [v,v']v”.
All the cases except the excluded one, where a,b both are multipliable,
have been treated. O

4.1.4 Remark. In the excluded case, by [BrT84, A.6.c|, there exists a sign
¢ € {1} such that we have the following commutation relation:

V(yvy,) € H(L(laLQG)v
V(Z,Z/) EH(Lb,LQb)v b a—|—b=c

2.y (2] = wars(ep2) )

There exists a parameter x € L. = L’ such that u = z.(z) and w(z) > [..
The problem is that, for a multipliable root a € ®, the set of values I',
does not control completely the valuation of the first term y of a parameter
(y,v') € H(Lq, Lag). One can show that, when I, ¢ I, we get w(y) > I,.
Hence the inclusion [Ug,,, Up,1,] C Ugtn,i,+1, 1S not, in general, an equality.

4.2 Generation of unipotent elements thanks to commu-
tation relations between valued root groups

In Corollary 3.2.7, we obtained that Frat(P) is a subgroup of a pro-p group
@ written in terms of valued root groups. We want to get an equality when

it is possible. It suffices to provide a generating system of the biggest group
consisting of p-powers and commutators of elements chosen in P. In a general
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consideration of a compact open subgroup H of G(K), in Section 4.2.1, we
do an induction on the positive roots from the highest to the simple roots to
provide bounds of valued root groups contained in [H, H]; in Section 4.2.2, we
furthermore consider the length of roots to provide bounds for the whole root
system. In Section 4.2.3, we go back to the situation of the Frattini subgroup
Frat(P) = PP[P,P] D [P, P].

In order to do an induction on the set of relative roots, the following lemma
in Lie combinatorics explains how to get, step by step, all the roots as a linear

combination with integer coeflicients of the lowest root and the simple roots.

4.2.1 Lemma. Let ® be an irreducible root system of rank greater or equal
to 2 and A be a basis of simple roots in ®, associated to an order ®T. Let h
be the highest root for this order.

(1) Let 3 € ®F\ (AU2A) be a positive root which is not the multiple of a
simple root. Then, there exists a simple root a« € A and a positive root
B € ®* such that B = a+ B and the roots o, B’ are not collinear.

(2) Let v € @ \ {—h}. There exists a positive root 3 € ®* and a negative
root v' € ®~ such that v = 8+~ and the roots 5,7 are not collinear.

(8) Let o € A. There exists a simple root § € A such that a+ 8 is a positive
root. Moreover, the roots a + 3 € ®+ and —f3 are not collinear.

Proof. According to notations of [Bou81, VI.1.3], we denote by V the R-
vector space generated by A containing ® and by (-|-) a scalar product which
is invariant by the Weyl group.

(1) Let 8 € @+ \ A be a positive non-simple root. Because A is a basis
of the Euclidean vector space V and 8 € ®7 is in the cone Z~qA generated
by A, there exists o € A such that («|3) > 0. By [Bou8l, VI.1.3 Corollaire],
we get 8/ = 8 — a € ® because we excluded the case where o = 8 assuming
B & A. Moreover, ' is a positive root because its integer coefficients when
we write it in the basis A all have the same sign (hence are positive). Finally,
B and « are not collinear because we assumed that 3 is not the multiple of a
simple root. Hence ' = 8 — « satisfies assertion (1).

(2) Let v € = \ {—h,—%}. If (—h|y) > 0, then the sum 8 = h + v € &+
is a positive root. Moreover, —h and [ are not collinear because we assumed
that « and h are not collinear. Hence 8 and v’ = —h satisfies assertion (2).
Otherwise, we necessarily get the equality (—h|y) = 0 according to [Bou81,
VI.1.8 Proposition 25] and there exists a simple root o € A such that (a|y) >
0, because the roots o € A form a basis of the Euclidean space V and —h # 0.
The roots v and « are not collinear because, if they were, we should have
~v € Ry« according to assumption (y|a) > 0; and this contradicts v € @~
Hence v/ = v — a € ®~ is a negative root. Thus, 7' and 8 = a satisfies
assertion (2).

Let v = f%. In particular, this happens only if ® is non-reduced. We can
apply the same method inside ®,4, because the root —% is a short root of
®,4, hence it cannot be collinear to the highest root of ®,4.

(3) Let & € A. Any 8 connected to o by an edge in Dyn(A) satisfies (3).
Such a simple root exists because we assumed ® to be of rank greater of equal
to 2. O

4.2.2 Lemma. Let ® be an irreducible root system of rank greater or equal
to 2 and A be a basis of simple roots in ®, associated to an order ®T. Let h
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be the highest root for this order. For any root v € ®, there exist non-negative
integers (nq(7))aca such that:

~vy=—h+ Z na(7)a

a€A

Proof. We proceed by induction on height. If v = —h, it is clear.

Induction step: If ¥ € ®, by 4.2.1, there exists 8 € ®+ and 4/ € ® such
that v = o' + 3. Hence by induction hypothesis, there exist non-negative
integers (no(7')) such that o' = —h + > A na(7')a. According to [Bou8l,
VI.1.6 Théoréme 3|, there exist non-negative integers (n,(8)) such that 8 =
> wea Ma(B)a. Hence, the property is satisfied by nq(v) = na(v")+n4(8). O

4.2.3 Definition. Let f : ® — R be a map. We say that the map f is
concave if it satisfies the following axioms:

(C0) f(2a) <2f(a) for any root a € ® such that 2a € P;
(C1) f(a+b)< f(a)+ f(b) for any roots a,b € ® such that a +b € ¥;
(C2) 0< f(a)+ f(—a) for any root a € P.

Despite these axioms look like a convexity property, they correspond in
fact to a concavity property in terms of valued root groups.

4.2.4 FExample. For any non-empty subset Q@ C A, the map fqo : a —
sup{—a(z), = € Q} is concave. Later, we will apply Propositions 4.2.6 and
4.2.9 to values I, = fc.,(a).

4.2.1 Lower bounds for positive root groups

Let (la)aca be any values in R. We define the following values (I} )pcq+
depending on the [,, to become bounds for the positive root groups.

4.2.5 Notation. For any positive root b € &, we can write uniquely b =
> aea Na(b)a where n,(b) € N are nonnegative integers (not all equal to zero).
We define a value Iy = > A 1a(b)la-

Thanks to Lemma 4.2.1, we do several inductions on various root systems
to provide bounds, thanks to Proposition 4.1.3, for the valuations of the valued
root groups contained in the Frattini subgroup Frat(P). The first step, in
terms of positive roots, is the following:

4.2.6 Proposition. Let (I3)acao be values in R. Assume that for any simple
root a € A, we have l, € T',.

(1) Then 1l € Ty, for any positive root b € ®+.

(2) Assume, moreover, that the map a w— 1, is concave. Then we have
I}, > 1y for any positive root b € ®T.

(8) Furthermore, assume that Hypothesis 4.1.2 is satisfied. Let H be a
(compact open) subgroup of G(K) containing the valued root groups Ug, for
a € ®. Then for any root b € ®1 \ A, the derived group [H, H] contains the
valued root group Uy ;.

Proof. (1) We apply Proposition 3.1.2 and Lemmas 2.1.13 and 2.1.12 in the
various cases.

First case: ® is a reduced root system and L'/L, is unramified.
For any root b € ®T, the set of values ', of b is 'z, = I'y,. Hence, the sum
I, = aeana(b)ly is an element of ', = T's.
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Second case: ® is a reduced root system and L'/L; is ramified.
For any long root of @, its set of values is the group d'T';, = I'r,. For any
short root of @, its set of values is the group I';,. Hence, for any short root
be @, the sum lj = > A na(b)ly is an element of 'z, = Ty,

Let b € ® be a long relative root arising from an absolute root 5 € 3.
Write 8 = 3 .z ng(B)a. Hence ng(b) = 3 5, n5(8). Moreover, n%(j) is
constant along the class a because [ is Yg-invariant and o = X4 - & is an
orbit. Hence, for any short simple root « arising from « taking in the same
irreducible component as (3, we obtain n,(b) = d'n(8). As a consequence,
na(b)la = n5(B)d'l, € dT = Tr,. For any long simple root a, we have
lo € T'p,. Hence, the sum Ij, = > A 7a(b)ly is an element of 'y, = T,

Third case: ® is a non-reduced root system. The set of values of
any multipliable root is %1" 1. The set of values of any non-multipliable, non-
divisible root is I'z,. For any multipliable root b € ®*, the sum /] is an element
of 'y, = I',. We number by ay,...,a;—; the non-multipliable simple roots
and by a; the multipliable simple root. Any non-multipliable non-divisible
root b € &t can be written as b = 23:1 n;(b)a; with n; € {0,2}. We have
nj(b)la; € Toq; = T'r and ny(b)l,, € 2Ty, = I'rs. Hence the sum [ is an element
of FL/ = Fb.

(2) For any positive root b € ®T, we apply recursively Lemma 4.2.1(1) to
&1 in order to write b = Zj\lzl a; where a; € A are simple roots (possibly with
repetitions) and N € N* such that b, = Z?zl a; is a (positive) root for any
n € [1, N]. By induction, we get that [, >, . Indeed, for any 0 <n < N—1,
we have lgnﬂ =1y, +la,yy >, +la,,, by induction hypothesis; and from the
concavity relation (C1), we end the inequality by Iy, +la,,., > b, +ansy = lbpyr-
Hence, we obtain the inequality , <1;.

(3) Consequently, we have the inclusion Uy C Upy,. We proceed by
decreasing strong induction on height in the root system ® relatively to the
basis A.

Basis: Let h be the highest root of ®. For the root group Unu , we
know by Lemma 4.2.1(1) that there exists a simple root a € A and a pos-
itive root b € ®* non-collinear to a, and non both multipliable, such that
h=a+b Letuc€ Uh,l;L. We have the group inclusion Ub,lg C Uy, We
know by Proposition 4.1.3, that there exist elements v € U, , v’ € Up,; and
v’ e HT756N*;T+822 Ura+sb,ria+si, such that u = [v,v']v”. But, for any pair of
positive integers (r, s) such that r + s > 2, the character ra + sb is not a root
because this would contradict maximality of height of h. Hence v" = 1. Thus,
we get Uy, C [H, H.

Inductive step: Let ¢ € &\ A. By Lemma 4.2.1(1), we write c=a + b
where a € A and b € dF. Let u € Uec,.. We know by Proposition 4.1.3, that
there exist elements v € Uy ;,, v € Up,1; and v € Hr,seN*;r+322 Uratsbyrla+st
such that v = [v,v']v”. For any pair of positive integers (r,s) such that
r 4 s > 2, if the character ra + sb is a root, then we have rl, + sl =1, .,
by definition of the I’. Moreover, the height of ra + sb is greater than c.
By induction hypothesis, the valued root group Usq+sp.1” ot is a subgroup of
[H, H], hence v" € [H, H]. As a consequence, we get U.» C [H, H]. O

4.2.2 Lower bounds for negative root groups

In order to get an analogous result for negative roots, doing an induction
on height no longer works. In fact, we have to consider length of roots instead
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of height. We recall that, in Notation 3.1.4, we defined a pure Lie theoretic
dual root system ®P.

4.2.7 Lemma. Let ® be a reduced irreducible non-simply laced root system of
rank | > 2. Let ® be an ordering on ® and 6 € ® be the short root such that
6P is the highest root of ®F in the corresponding ordering. Then, any short
root ¢ € ® \ {—0} can be written ¢ = a + b where a,b € ® are non-collinear
roots such that a € ® is short and b € ®*. In particular, every short root is
higher than —6.

Proof. We provide these roots case by case thanks to an explicit realization
of the root system in RL. Let (es)1<i<i be the canonical basis of the Eucliean
space R’

® is of type B; with [ > 2:
Basis: a; = e; —e;4+1 where 1 <i <!l and a; = ¢
Short roots: +e; for 1 <i <l and 0 = ¢e;
For any short root ¢ € &\ {—0},

e ifcedt wewritec=¢; =a+bwithl <i<l, a=—e;,b=¢ +e,
and j # 1i;

o if ce€ &, we write c = —¢; = a+bwith 1 <i <1, a = —e and
b:elfei.

® is of type C; with [ > 3:
Basis: a; = e; — e;41 where 1 <i <[ and a; = 2¢;
Short roots: +e; +e; where 1 <i < j<land § =e; +e3
For any short root ¢ € &\ {—0},

o ifc=e;+e; where 1 <7 < j <, we write c=a+b where a = —e; Le;
and b = 2e¢;;

o ifc=—e;+e; where 1 <7 < j <1, we write c = a+b where a = —e; —¢;
and b= e; + e

o if c=—e; *e; where 2 < j <[, we write ¢ = a + b where a = —e; — e

and b = ez  e;;
e if c=—ey + ey, we write ¢ = a + b where a = —e; — ez and b = es + e3.

® is of type Fj:
Basis: a1 = ey —e3, as = e3 —e4, a3 = €4 and ag = %(el —e3—e3—ey)
Highest root: h = e; + e2 = 2a1 + 3as + 4as + 2a4
Short roots: +e; where 1 <7 <4 and %(:I:el testestey) and 0 =e
For any short root ¢ € &\ {—0},
e if ¢ = e1, we write ¢ = a + b where a = %(61762763764) and
b= %(61 +ea+e3+eq);
e if ¢ = *e; where 1 < i < 4, we write ¢ = a + b where a = %(—el + +e; —
ej —ex) and b= L(e; + te; + €5 + ex) where {4, j, k} = {2,3,4};
o ifc= %(el testegtey), we write ¢ = a+b where a = %(—eﬂiegie3ie4)
et b=-e; £ eo;
o if ¢c = %(—el + eyt eg+ey), we write ¢ = a + b where a = —e; and
b= %(61 i@g ieg i€4).
® is of type Gs:
Basis: «, 8 where « is short and f is long
Highest root: h = 3a + 20
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We have 6 = 2a + 5. We summarize the choices for the short roots, except
—0, case by case, in the following table:

20+ | a+p « —« —a—
a Q —a —a—0| 2a-0| 2a—-0
b| a+p8 |2a+8 | 2a+ 7 a+p Q@

O

We let (0¢)cean, <I>fld, 6 and h be defined as in Notation 3.1.6. Let (I5)qco
be any values in R. We define the following values (I/).ce depending on the
lq, to become bounds for all the root groups.

4.2.8 Notation. For any non-divisible root ¢ € ®,4, thanks to Lemma 4.2.2
applied in the root system @fld, we write:

=0+ Z n' (c)a’ € ®°

aleAd

with n/,(¢) € N. We define I/ € R by:

Selll =0_gl_g+ > Sanp(c)la
aEA

Furthermore, for any multipliable root ¢ € ®, we define I, = 2I/. Note that
for any root ¢ € @, there exist integers n,(c) for a« € A, uniquely determined

by:
c= Z ne(c)a

This extends Notation 4.2.5.

These values overestimate the values of valued root groups contained in the
derived group [H, H|. In particular, this proposition provides values even for
simple roots, which were not treated in Proposition 4.2.6. We can remark on
an example that, in general, this values are not optimal for positive non-simple
roots.

4.2.9 Proposition. Let (I3)qca be values in R. Assume that for any simple
root a € A, we have l, € Ty and that l_g € T _y.

(1) We have I € T'c for any non-divisible root ¢ € ®pq \ {—0}.

(2) We assume, moreover, that the map a — l, is concave. For any root
c € ®, we have I > l.; for any positive root b € ®+, we have lj > 1} > 1.

(8) We assume, moreover, that the irreducible root system ® is not of
rank 1 and that Hypothesis 4.1.2 is satisfied. Let H be a (compact open)
subgroup of G(K) containing the valued root groups U, for a € ®. If G is
a trialitarian Dy (i.e. ® of type G and 09 = 3), we assume furthermore that
Iy +1_9 < w(wyr). Then the derived group [H,H] contains the valued root
groups U1 for any root c € &\ {—6}.

Proof. (1) If ® is a reduced root system, then ®° = & if the extension L'/Lg4
is unramified; and ®° = ®P if the extension L’ /Lq is ramified. By Definition
3.1.5, for any root ¢ € ®, the integer 4. is the order of the quotient group
I'./TL,, so that 6.I'c = I'r,. Hence, each term n/ (¢)dnlo and 0_gl_g of the
sum belongs to the group I'y,,. Thus 6.1 € T'y,, = 6.I'c, and we obtain I/ € T,
for any root c € ®.
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If ® is a non-reduced root system, then the set of values of multipliable
roots is %F 1 by Lemma 2.1.13 and the set of values of non-multipliable and
non-divisible roots is I'y,. For any non-divisible root ¢ € ®, the value d.l. is
an element of I';/, hence so is the sum I”. If ¢ is non-multipliable, then 6. = 1,
hence I/ € T, = T'.. If ¢ is multipliable, then §. = 2 hence I/ € %FL/ =T..
(2) In the following, for any root ¢ € ®,q, we denote by n,(c) and
(c¢) the integers defined in Notation 4.2.8. We furthermore denote by
() the integers uniquely determined by the following writing in basis A°:
¢ = > cand(c)a®. From uniqueness, for any o € A, we deduce that
Sand(c) = 6ena(c) and that nl, (c) = nd(0) — n(c) > 0 (it is a non-negative
integer).

Let b € @, be a non-divisible positive root. In V* = Vect(®) we have:

l
nOé

0
Na

W= —0"+0+ ) nd(b)a’
aEA

= —0°+ Z (n(0) +nl (b)) o

acA

By definition of I}/, 1}, 1}, we get:

Sl = dal_g+ Y (nd,(b) +n2(0)) dala

acA
= bpl_g+ (Z 5bna(b)la> + (Z 59na(9)za>
aEA aEA

= dpl_g + 5512 + 59l/9

Hence &,(1)) — 1) = do(lj + I_p). According to Proposition 4.2.6(2), we have
I, > 1y for all positive roots and, in particular, lj > lg. Hence, by axiom (C2),
we get Iy +1_g > lg+1_9 > 0. As a consequence, we get [} > I} > .

Let b € @' be a multipliable root. Then %, = 2l > I}, = 2l; > 2l,. By
axiom (C0), we have 2l;, > lgp, hence 15, > lgy,.

Let ¢ € ®_ be a non-divisible negative root. We want to prove that I/ > ..
We proceed by induction on height in ®,4.

e First case: @gd = ®,q. Then dg = 1, h = 0 and §. = 1 for any root
¢ € ®. By definition, I, =1",=1_¢ =1_.

If ¢ # —0, by Lemma 4.2.1(2), there exist a € ®,q and b € <I>:d such that
c=a+b. Fromec= -0+ n,(c)a=—-0+>  n,(a)a+> no(b)a=a+b,
we deduce nl,(c) = n/,(a) + no(b). Hence Il =17/ + 1, > 1, + 1} by induction
hypothesis. By axiom (C1) and because I} > I, we get I/ > lo+1y > lgyp = lc.

e Second case: ®°, = &L £ ®,4. Then 6y = d'.

We firstly do the induction, initialized by I, = I_g, on height of short
roots. Assume that ¢ # —0 is a short root in ®,q. By Lemma 4.2.7, there
exist a short root a € ®,4 and a positive root b € (I)Id such that ¢ = a + b.
Hence 8, = 6. = dg. We have dgb = dg(c—a) = ¢® —a® = —0° + Yoo dann(c)+
0°—=>" danl(a) =3, da (n’a (¢)—n, (a)). Hence dgnq (b) = b4 (n'a(c)—n;(a))

for any a € A. Hence, we get:

5Cllcl = Ogl_g+ Za 5an; (C)la
= (0010 + T darta (@)l ) + 3, b (1 (€) = iy (@) )l
= 0al! + ol

Hence I/ =1 +1; > 1, + I} by induction hypothesis. By axiom (C1) and
because lj > I, we get I/ > 1, + 1 > logp = L.

46



Now we do an induction on height for all roots of ®,4. Basis: consider the
lowest root —h. Because ®,4 is non-simply laced, there exist two short roots
a,b € &4 such that —h = a + b. In particular, 6, = §, = dg. Then:

—h= —06¢0+ >, dan,(h)x
a= -0+, g—;‘n;(a)a
b= -0+, Fn,(b)a
(6 =20 = Y (damt(h) = Fonis(a) = Eni0))a
= > .06 —2)n.(0)c

Hence, we obtain:

1)
[ 7 I/ s o Ya
L (5916+%:na( h)éala) (z0+§a: > na(a)la)
(10 + X el (0)la)
= (00— 2o+ X (dami(—h) = S2nl(a) = Snl (1))l
= (59— 2)(1_g + 1)

Because g =d' > 2 and l_g+ 1), > l_g+ 19 > 0, we have I”, > 1/ + 1. By
the case of short roots, we know that I/ > I, and [}’ > ;. Hence, by axiom
(01)7 we have l/—/h >y + 1 > la+b =1_p.

Induction step: we consider the length of a root ¢ # —h. The case of
short roots has been treated. Let ¢ # —h € ®,4 be a long root and we
assume that [/ > [, for any root a lower than ¢ in ®,q. We have ¢ = A=
—090 + >, nh(c)da. By Lemma 4.2.1, there exist a € ®,q and b € 1 such
that ¢ =a +b.

If a is long, we have a = a® = —§pf + >, n\(a)dqa. Hence, donl(c) =
danl,(a) + nq(b). As a consequence, [/ = I/ + ;. By induction hypothesis,
I/ > 1, because c is strictly higher than a. Hence I/ > I, + 1, > 1, + 1, >
lo+s =l by axiom (C1).

Otherwise, a is a short root, so that §, = dp = d’. Hence a = —0 +
S, %en! (a)o. We have: 0 =a+b—c= (65— 1)0+3, (‘;—Zn;(a) +na(b) —

a Oy
ngé(c)éa)a. By uniqueness of coefficients, for any a € A, we have (§g —
Dna(0) = g—:n;(a) + nq(b) — nl,(c)do. Hence I =1/ — 1, = (dg — 1)i_p +
Y oa(00 — 1)na(0)ly = (69 — 1)(I—o + 1j)). Because l_g + 1y > 1_g+1p > 0 by
axiom (C2), we obtain I/ > I/ + ;. By induction hypothesis, I/ > l,. Hence
17 >1,+1p > larp =l by axiom (C1). This finishes the induction.

Finally if ¢ is a multipliable root, then 15, = 21!/ > 2I. > ls. by axiom (CO0).
This finishes the proof of (2).

(3) We now establish inclusions U.;» C [H, H] of valued root groups, in
the order from the longest roots to the shortest roots. According to ® is a
reduced root system or not, there are one, two or three distinct length of roots.

Let ¢ # —6 be a root. Write it as a sum of two non-collinear roots ¢ = a+b.
We want to apply Proposition 4.1.3, with suitable values I/ € 'y, [} € I';, and
l/; € T'. such that I/ > lAc =l + 1}, to prove that U.;» C [H, H]. Because in
4.1.3, there remains a term v”, we have to be careful in the order of the steps
of this proof. We proceed step by step from the longest length to the shortest
length of the roots, and we treat the case, when it happens, of ¢ = —h # —0
separately, at the end. We denote by (a,b) = {ra + sb, r,s € N} N ® and by
®(a,b) = (Za + Zb) N ®. Be careful that in general, ®(a,b) # (Ra + Rb) N .
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e Case of a divisible root: Suppose that ¢ # —h is a divisible root.
Hence @ is non-reduced and 6. = dp = d’ = 2. Moreover 20 = h. By Lemma
4.2.1 applied to @, there exist non-collinear roots a,b € ®,,;, such that
be ®pmt and ¢ = a + b. Moreover, a,b have to be non-divisible and we
have §, = &, = 1. As above, one can show again that [/ = 2l’é =U+1.
By Proposition 4.1.3, for any u € Uec,pr, there exist elements v € U, and
v" € Uy such that u = [v,v']. Hence Uy C [H, H].

e Case of a non-divisible long root: Let ¢ be a long root of ®,,4. Then
5. = 1 by definition. Suppose that ¢ = ¢® ¢ {—60,—h}. By Lemma 4.2.1
applied to ®,4, there exist non-collinear roots a,b € ® such that b € Dq"
and c=a+b.

First subcase: ®(a,b) is of type As. We have (a,b) = {a,b,a + b} and we
have shown in (2) that I; > I} +1;. By Proposition 4.1.3, for any u € Uc»,
there exist elements v € U,y and v' € Uy such that u = [v,0v']. Hence
Uer C [H, H] because I, > 1, and l; > I;.

Second subcase: ®(a,b) is of type Bz or Go. We have (a,b) = {a,b,a+b}
and §, = §, = dg because in this case, necessarily, the long root ¢ is the sum
of two short roots. We have shown that I/ > I/ +1;. By Proposition 4.1.3,
for any u € U v, there exist elements v € Ua,iy—1; and v’ € Ubiy such that
u = [v,v']. Hence U,y C [H, H].

Third subcase: ®(a,b) is of type BC5. Then a and b are multipliable,
and we have §, = 6, = 2. If a # —6, we define a’ = a — b € ¢, and
b = 2b € ®,,. Then o’ is a long non-divisible root and b’ is a divisible root.
We have §,, = 0. = 1 and 2a’ +b' = 2a. Hence a’ = —§g0 + > nl,(a’)dscx
and ' =2b =) 2n(b)a. For any a € A, we obtain n/, (¢)d, = nl,(a')dq +
2nq/(b). Hence I = dgl_g+ > ni(c)dala =1, +20, =1, +1;,.

We have —26 + >~ nl (a )5aa:a =a+b= (—0+Z 7" ' (a)a )—i—

S, Ma(D)a. For any a € A, we obtain n/,(a')d, — n4(0) = 2nl(a) + na(b).
Hence:
W+l = 0l + S, (Wa(@)0a +na(B))la
l

= 29+ 3, (Fnu@) +na®)l

= 2_g+ = (21"721 9)+l/

= (l_9 + l/) 2l %,
Because I_g + 1 > 0, we get 21/, + 1}, = 2(I!/, + 1)) > 14,. By Proposition
4. 1 3, for any u € U, v, there exist elements v € Uy, ", and v' € Uy, i, and
v € Usys 20,41, such that u = [v,v]v”. We have already shown, because
2a’ +b = 2a # —20 is a divisible root, that the group Us, b 21,41, C Usaiy,
is a subgroup of [H, H]. Hence U C [H, H].

If a = —0, we define @’ =2a € Py, and V' =b—a=0b+60 € &} . In the
same way, we obtain I/ =1/, + 1}, and I/, 4+ 2l;, = 2I;/ = [},. By Proposition
4.1.3, for any u € U v, there exist elements v € Ua’,lg, and v € Ub,l;, and
v e Ua/+2b/,l;f,+2[;, such that u = [v,v]v".
case of a divisible root, that the group Ua’+2b',l;’,+l’2b, = Uap,y, is a subgroup
of [H, H]. Hence U.;» C [H, H].

e Case of a short root: Let ¢ € ®,4 be a short root of ¢ € ®,4. Then
5. = g by definition. Suppose that ¢ # —6 and that —c” is not the highest
root of @Ed. By Lemma 4.2.7 applied to ®,4, there exist non-collinear roots
a,b € ® such that b € ®,4", the root a is short and ¢ = a + b.

First subcase: case of two short roots a and b. We have §, = §, = 6, =
d9 and we have shown in (2) that ! = [/ + ;. The rank 2 root subsystem

We have already shown, in the
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®(a,b) is of type Az or Go. Moreover, when ®(a,b) is of type Ga, we have
(a,b) = {a,b,a + b,2a + b,a + 2b}. By Proposition 4.1.3, for any u € Ue,
there exist elements v € U, 17 and v € Uy and v" € Uzayp 20413 Uay2p. 11217
if ®(a,b) is of type Ga, v/ =1 if ®(a,b) is of type Ag, such that u = [v,v']v".

It remains to prove that v” € [H, H]. In the G5 case, we have daq4p =
da+20 = 1. Moreover, 2a + b = 2( -0+>, g—‘:n;(a)a) + > na(b)a =

—0p0+ Y, (2‘;—3n;(a) + na(b) + (dg — 2)na(9))a. We have:
W= Sl g+ Y, (2%%(@ + na(b) + (6 — 2)na(0))la

Sol—g + £ (8all] — dol—g) + 1 + (50 — 2)1j
200+ 1, + (00 — 2)(1_g + 1))

In the same way, one can show that I, o, = 1] 4 2[; + (59 — 1)(lj +1_9).

If 69 = 1, because [_y +1j > 0, we get I3, ,, < 27 +1; and l;’+2b =1+ 2l;.
Hence, we get Usayb,iy , D Usato,2iy+1; and Uaganirr,,, = Uasan,i 121

Otherwise, 9 = 3 and G is a trialitarian D4. In that case, we assumed
that {_g + ) < w(wy) = 07 € T, Because I, 5,15, ., € ', = 3,
we obtain that 0 < (69 — 1)(lj + 1—9) < 3w(wr/) = 07 € T'z,. The same
is for (g — 1)(Ij + I_g). Hence, we have the equalities of root groups:
Uatoviy+2t, = Uatavir,, +Go-1)Uy+1-e) = Uatanrr,,, and Usepporyti; =
Usatb,1, , ,+6o—2)(th+-0) = U2atb,1y, -

In both cases, because 2a + b and a + 2b are long and different from —h,
we have shown that the root groups U2a+b’l,2,a+b and Ua+2b,lg+2b are contained
in [H, H]. Thus, v" € [H, H]. Hence U.;» C [H, H].

Second subcase: « is short and b is long. We have 6, = §. = Jy and
0p = 1. The rank 2 root subsystem ®(a,b) is of type By or BCy. Precisely,
we have (a,b) = {a,b,a+ b,2a + b} if @ is a reduced root system and (a,b) =
{a,b,a + b,2a,2a + b,2a 4+ 2b} otherwise. We have §, = 6. = dp and &, =
02q+6 = 1. We have d.c = 59( -0+, (‘;—Zn;(a) + na(b))a> = —0pf +
o (6anl(a) + Sgna(b))a. Hence 0.0 = 64l + dgl;. Thus I/ = I + 1.
By Proposition 4.1.3, for any u € U.», there exist elements v € U,/ and
S Up,, and v" € Upayp2141, such that u = [v,v']v". ‘

It remains to check that v” € [H, H]. We have:

Gsass(2a +b) = 2a+b = 2( 0+, gfng(a)a) + 3 na(b)a
= 0+, ((5a%n’a(a) + 1 (b) + (65 — 2)%(9))@

Hence:
Wiy = Ool_o+ £ (8alll — Sol—9) + 1 + (60 — 2)Ij
Spl_g + 20 —2l_o+ lg + (09 — 2)1/9
= 2+, + (60 —2)(l_g + 1))

Because dg € {1,2} and [ +1y > 0, we obtain the inequality 15, , < 21/ +1j.
Since 2a + b is a long root of @4, we have already shown that Usgyp 217417 C
U2a+b’l/2,a+b C [H, H]. Hence v" € [H, H] and it follows that U ;» C [H, H].

Now, two cases of roots may remain: the negative root ¢ such that —cP is
the highest root of ®” when h = 6; and the negative root ¢ = —h when h # 6.

e The lowest dual root: Assume that c is the negative root of ®,4 such
that —c” is the highest root of <I>nDd and h = 0 # —c (this case appears only if

L'/ L, is unramified and ® is not a simply laced root system). In this case, we
have §, = 8y = 6. = 69 = 1 and the rank 2 root subsystem ®(a,b) is reduced.
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By Lemma 4.2.1(2), there exists a € ®_, and b € @, such that ¢ = a + b. If
a is short, we can proceed as before. Hence we assume that a is a long root,
b and c are short roots.

If ®(a,b) is of type Ba, then (a,b) = {a,b,a + b,a + 2b} and we have the
equalities I}, = I}; 4+ I; and I] o, = I} + 2[;. By Proposition 4.1.3, for any
u € Ugy, there exist elements v € Uy v and v’ € U1, and v’ e Uat2b,17+21
such that u = [v,v']v”. Since a+2b is a long root of ®,q = ®, we have already
shown that Ua+2b,lg+2l; = Ua+2b,l;’+2b C [H, H]. Hence UCJ/C/ C [H, H].

If ®(a,b) is of type Ga, then (a,b) = {a,b,a + b,a + 2b,a + 3b,2a + 3b}
We have the equalities I/, = 1) + 1}, I o, = I + 2l and [} 5, = [} + 3.
Moreover, we have l’2’a+3b =2l + 3l — (g + 1j) < 2l + 3l;. By Proposition
4.1.3, for any u € U, v, there exist elements v € U, ;v and v’ € U1, and v’ e
Uarab 21, Uatsb 1431, Usay 3,21 431, such that u = [v,v']v”. Since a+ 3b and
2a + 3b are long roots of ®,4 = &, we have already shown that Uat3b,17+31, =
Ua+3b,l;’+3 [H H] and that U2a+3b 20/ 431 C U2a+3b 12a+3b [H, H] Since
a + 2b # —0 can be written as the sum of the two short roots b and a + b, we
have shown that Uy yap,1 121, = Usy2p, e [H, H]. Hence U C [H, H].

e The lowest root: To conclude, it remains to treat the case, when it
appears, of the root —h # —60 where h is the highest root of ® (this appears
only for G of type 24941, 2Dy 11, 2Eg, 2Dy or Dy with a ramified extension
L'/Ly). In this case, we have dp > 1 and h is a long root. In particular, the
integer (0p —2) is non-negative. We write h as a sum h = ¢ = a+b of two short
roots a and b, so that §, = 0, = dp and 6. = 1. Moreover (a,b) = {a,b,a + b}.
We have:

c=a+b

(—6+Z ;a)) ( 0+, dan ())
204, ( sl (a) + 5 <>)a
= b0+ X, (Bnla) + Bl 1) + (59— 2na(®) )a

040'1%
‘Q

Hence we obtain:

1= Ool_g+ 2=(3alll — 0ol_g) + 2= (duly — dl_p) + (5 — 2)1f
= Ul (6 — (g 1)
> l;’+l;’

By Proposition 4.1.3, for any u € U. ;v C Uc, 41y, there exist elements v €
Uq,iyy and v € Uy gy such that u = [v,v']. This finishes the proof. O

4.2.10 Remark. Proposition 4.2.6 and Proposition 4.2.9 do not restrict the
choice of the basis A but only the choice of values l,. In fact, the conditions
lp €Ty for any a € A and [_y € T'_y limit the available choices for the basis
A.

4.2.11 Lemma. Let ® be a non-reduced root system and A be a basis of ®.
Let a € A be the multipliable simple root. Let 0 be the half highest root of ®
relatively to the basis A. Then A" = (AU{—=0})\ {a} is another basis of ®;
and —a 1s the half highest oot of ® relatively to the basis A’.

Proof. We consider the following Euclidean geometric realisation of the root
system ® = {£e;, 1 <i<[}U{te;te;, 1 <i<j<IlJU{£2e;, 1<i<I}
where (e;) denotes the canonical basis of the Euclidean space R!. We denote
by a; = e;—e;4q forany 1 <4 <I—1and by a; = ¢;. Theset A ={ay,...,a;}
is a basis of ® and § = e; = a; + - - - + a; is the half highest root of ®.
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Let w € GL;(R) be the element of the Weyl group W (®) defined by w(e;) =
—ej—;+1. We observe that w stabilises A \ {a;}, that w(—0) = a; and that
w(a;) = —6.

If D is a half-space of R! defining the basis A, then w(D) is also a half-
space of R! and it defines the basis A’ = (A \ {a;}) U {—0}. The half highest
root of ® relatively to A’ is then —a;. O

4.2.3 Lower bounds for valued root groups of the Frattini
subgroup

We want to apply Propositions 4.2.6 and 4.2.9 to the maximal pro-p sub-
group P corresponding to the fundamental alcove c,s described in Section
3.1.

4.2.12 Theorem. Assume that the irreducible relative root system ® is of
rank | > 2 and that the residue characteristic p of K satisfies Hypothesis 4.1.2.
Let P be a mazimal pro-p subgroup of G(K) and let ¢ be the (unique) alcove
fized by P. For any root a € ®, if the wall H, f:(q) (this notation has been
defined in Section 3.1.1) contains a panel of ¢, then we have [P, P] D Ua,f1(a)+5
otherwise, we have [P, P] D Ug f:(a)-

Proof. We normalize I';, = Z. Up to conjugation, we can assume that ¢ =
caf is the fundamental alcove, defined in Section 3.1.2, and bounded by the
following walls:

o Hg o for all simple roots a € A;

o H_g, if @ is reduced,;

o H 41 if ® is non-reduced.

For any root a € ®, we have the following value:
o fl(a)=0ifac dt

o fl(a)= g—z € {l,d'} if a € &= and ® is reduced;

o fl(a)= 5% € {3,1} ifa € @, and ® is non-reduced.

The wall bounding the alcove c are directed by the relative roots AU{—6}.
Hence, for any a € AU{—0}, we get fe(a) = fl(a) € T,. Moreover, fo(—60) =
1 and Ij = 0 so that the sum satisfies fc(—0) +1), = 1 = w(wr/). As a
consequence, we can apply Propositions 4.2.6 and 4.2.9 to the group P and
the values I, = f.(c) where ¢ € ®.

For any non-divisible non-simple positive root b € @:d \ A, by Proposition
4.2.6, we get [j = 0. Hence [P, P] D Uy o = Up,y,.

For any root ¢ € ®~ \ {—6,—26}, by Proposition 4.2.9, we get 6.l =
do fL(—0). If ® is reduced, then we have I/ = g—‘: = fl(c). If ® is non-reduced,
then we have I/ = 5% = fl(c) because d_gl_p = 1. Hence [P, P] D U,,,.

We suppose that ® is reduced. Let a € AU {—0}. Then, by Proposition
2.2.3, we know that [P, P] D U, ;+.

We suppose that ® is non-reduced. Let a € A. By Proposition 4.2.9,
we get gl = dgfL(—0). We have [ = i = 0" = fl(a)*. Indeed, if a is
mutlipliable, I/ = %; otherwise I/ = 1 is the smallest positive value of T',.
Hence [P, P] D U, ;+.

Finally, when & is non-reduced, we can apply Lemma 4.2.11 to exchange
the roles of the multipliable simple root a € A and the opposite of the half
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highest root —6. We write 0 = >, _\ npb where n, € N*, so that —f =
0+ (—20) = naa+ZbEA\{a} npb+2(—0). Thus, by applying Proposition 4.2.9
to the basis A" = (A\ {a}) U{-0}, we get I, =21_g=1=1]. O

4.2.13 Remark. As an immediate consequence, the derived group [P, P] con-
tains Uc7fl/3(c,1)mA(C) for any root ¢ € ®.

In the rank 1 case, we have a lack of rigidity that could make [P, P] smaller
than expected. Typically, Propositions 4.2.6 and 4.2.9 cannot be applied.

4.2.14 Corollary. We assume that p # 2 and that the structure constant
¢1,150,8 are in Ok for all pairs of non-collinear roots o, . For any non-
divisible root a € ®nq and any mazximal pro-p subgroup P of G(K), we write
PNUL(K)=U,,, wherel, €Ty. Ifa € AU{-6},

e if a is a non-multipliable root or if the extension L, /Lsog is ramified, then
we have the equality [P, PN Uy(K) = U, ;+.
e if a is multipliable and if the extension L,/La, is unramified, then we

have the inclusions U, ;+ C [P, PN Uq(K) C U, ;+Usa,21, -
Ifa € @\ (AU{—-0}), then we have the equality [P, P] N Uy(K) = U,,, -

Proof. This results immediately from Theorem 4.2.12 and Proposition 3.2.2.
O

5 Generating set of a maximal pro-p subgroup

As before, G is an almost- K-simple quasi-split simply-connected K-group
and P is a maximal pro-p subgroup of G(K). In Corollary 5.2.2, we obtain the
minimal number of topological generators of the pro-p Sylow P in the various
cases.

In order to give explicit formulas for these numbers, we introduce the
following integers. We denote by e’ the ramification index of L' /Ly and by f’
its residue degree; we let m = log,(Card(k)) so that kg =~ Fym. Moreover,
when G is assumed to be almost-K-simple instead of absolutely simple, we
denote by e the ramification index of Ly/K and by f its residue degree.

5.1 The Frattini subgroup

In order to compute a minimal generating set of the maximal pro-p sub-
group P, we know by [DdSMS99, 1.9] that is suffices to compute a mini-
mal generating set of the p-elementary commutative group P/Frat(P), where
Frat(P) denotes the Frattini subgroup of P. According to [Loil6, 3.2.9], we
know that P = (Haeb;d Umc) T(K); (HaE‘I’L Ua,c) as directly generated
product, where c is a suitable alcove of X (G, K). Up to conjugation, we can
— and do — assume that ¢ = cg¢.

We want to describe the Frattini subgroup Frat(P), in the same way, in
terms of valued root groups Uaﬁ, with suitable values lAa € R, and a sub-

group of T'(K );r that we have to determinate. Since P is a pro-p group, by

[DASMS99, 1.13], we have Frat(P) = PP[P, P|. Hence P/Frat(P) is a Z/pZ
vector space of dimension d(P) that we want to compute explicitly.

5.1.1 Theorem (Descriptions of the Frattini subgroup of a maximal pro-p
subgroup: the reduced case). We suppose that the relative root system ® is
reduced and that p # 2. If ® is of type Go, we require that p > 5. Then:
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Profinite description: The pro-p group P is topologically of finite type
and, in particular, Frat(P) = PP[P, P]. Moreover, when K is of characteristic
p >0, we have PP C [P, P].

Description by the valued root groups datum: For any a € ®, we
set:

Vo= { Ua,fc(a)+ ifa € A u{-0}
’ Us.c otherwise

This group depends only on the root a € ® and the alcove ¢ C A, not on the
chosen basis A.
We have the following writing, as directly generated product:

Frat(P) = [ J] Via.e T(K)ZF<H Va,c>

—aedt acedt+

Geometrical description: The Frattini subgroup Frat(P) is the maximal
pro-p subgroup of the pointwise stabilizer in G(K) of the combinatorial ball
centered at ¢ of radius 1.

Proof. For any a € ®, we let [, = fc(a), so that [, € T, for any a € AU{-0}
IF ifae Au{-6}
l, otherwise '
We define @ = [[,co- U, 1 T(K){ - Tlecor U, .- We prove the chain of
inclusions @ C PP[P, P] C Frat(P) C Q.

The inclusion PP[P, P] C PP[P, P| = Frat(P) is immediate.

By Corollary 3.2.7, we have Frat(P) C Q.

If the reduced irreducible root system @ is of rank [ > 2, by Theorem
4.2.12, we have VYa € ®, [P,P| D Uaﬁ. If @ is of rank 1, by Proposition
2.2.3, we have Ya € ®, PP[P,P] D Uaj;' Moreover, by Proposition 2.2.3,
we also have T%(K);” C PP[P,P] for any a € ®. Because G is a simply-
connected semisimple group, T(K )[f is generated by the groups T (K );r, hence
T(K)} C PP[P,P]. As a consequence, Q C PP[P, P).

Hence, we obtain (2): Q = Frat(P) = PP[P, P].

Moreover, if K is of positive characteristic, by Proposition 2.2.3 one can
replace [P, P]P? by [P, P] so that we get (1): Q = [P, P].

(3) By Proposition 3.2.8, we know that Frat(P) = @ is the maximal pro-p
subgroup of the pointwise stabilizer of the combinatorial closure of the com-
binatorial unit ball centered in c. O

and the map a — [, is concave. We define l; = {

In the case of a non-reduced root system ®, we have seen that computation
of [P, P] is different from the reduced case because of non-commutativity of
root groups. We have to study this case separately.

5.1.2 Theorem (Descriptions of the Frattini subgroup of a maximal pro-p
subgroup: the non-reduced case). We suppose that ® is a non-reduced root
system of rank | > 2, and that p > 5. Then:

Profinite description: The pro-p group P is topologically of finite type
and, in particular, Frat(P) = PP[P, P].

Description by the valued root groups datum: Let a € ®,q be a
non-divisible root. If a € AU{—0}, we set Ve = Uy
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If a € AU{-0}, we set:

Ua,to(a)+ if a is non-multipliable
Voo Ua,f1(a)+ if a is multipliable and L'/ Ly is ramified
we Ua,f1(a)+ if a is multipliable, L' / Ly is unramified and fl(a) ¢ T,

Ua,1(a)*Usa2fi(ay  if a is multipliable, L' /Ly is unramified and f¢(a) € ',

Then Frat(P) = | [ Vae | TE)F | [] Ve

a€d acdt,
Proof. Let Q = | [] Vae | T(K)f | J] Vae |- By Corollary 3.2.7, we
a€® 4 ag® ],

have Frat(P) C Q.

If ® is of rank | > 2, by Theorem 4.2.12 and Lemma 2.3.12, we have
Va € @, [P,P] DV = [l,co,,
Proposition 2.3.1 and Proposition 2.3.11, because fe,,(a) = 0, we have ¢ = 0,
and so T*(K )2‘ C [P, P]. For any non-multipliable root a € ®, by Propositions
2.2.3 and 2.3.11, we have T%(K); C [P, P]. Hence, T(K); is a subgroup of
Frat(P). As a consequence, we have @ C Frat(P).

Moreover, because @ is an open subgroup of P (of finite index), the Frattini
subgroup Frat(P) = @ is open in P. By [DASMS99, 1.14], we know that P
is topologically of finite type. By [DdSMS99, 1.20], we deduce Frat(P) =
PP[P, P]. O

Va,c. For the multipliable simple root a, by

5.2 Minimal number of generators

5.2.1 Corollary (of Theorems 5.1.1 and 5.1.2). We assume p # 2.

If the root system ® is reduced, we assume that, at least, p # 3 or ® is not
of type Go. If the root system ® is non-reduced, we assume that p > 5 and
that ® is not of rank 1.

Then P/Frat(P) is isomorphic to the following direct product of p-
elementary commutative groups: Hae<1> Ua,c/Va,c, where the groups Vg o for
a € ® are defined in Theorems 5.1.1 and 5.1.2.

Proof. Let A =1]] acd Uae /Va,c be the considered direct product of quotient
groups. Let B = ([T cq- Ua.c) XT(K)} % ([Tycq+ Ua,c) be the direct product
of the valued root groups with respect to ¢ = c,¢, and of the maximal pro-p
subgroup of the bounded torus. Let C' = ([T, ce- Vac) X {1} X ([Tocop+ Uac)
be the direct product of the valued root groups provided by Theorems 5.1.1
and 5.1.2.

We want to define a surjective group homomorphism B — P/Frat(P).
Let 7 : P — P/Frat(P) be the quotient homomorphism. For any inclusion
ja : Use — P (resp. jo : T(K)j — P), we define a group homomorphism
o = T jo : Uge = P/Frat(P) (resp. ¢o = 7o jo). Since P/Frat(P) is
commutative, the multiplication map induces a group homomorphism p : B —
P/Frat(P). Applying [Loil6, 3.2.9] to P, we deduce that the homomorphism
W 1s surjective.

By Theorems 5.1.1(2) and 5.1.2(2), we get ker p = C. Passing to the quo-
tient, we deduce a group isomorphism B/C ~ P/Frat(P). Furthermore, there
is a canonical group isomorphism A ~ B/C. Hence P/Frat(P) is isomorphic
to A. O
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Since P/Frat(P) is a p-elementary commutative group, we deduce that
so are the quotient groups U,c/Vae. Hence, we can compute their di-
mension as F,-vector space. According to [DASMS99, 1.9], we know that
the minimal number of elements in a generating set of a pro-p group
is d(P) = dimg, (P/Frat(P)). It can also be computed by d(P) =
dimg,,7 (H' (P, Z/pZ)) according to [Ser94, 4.2 Corollaire 5]. We apply this
to our maximal pro-p subgroup P of G(K).

5.2.2 Corollary. As above we assume that K is a non-Archimedean local
field of residue characteristic p. We assume that G is an almost-K-simple
simply-connected quasi-split K-group and that p # 2. We keep notations of
2.1.4. Letn be the rank of an irreducible subsystem of the absolute root system
ZI;(Gf(,f() and l be the rank of the irreducible relative root system ®(G, K).
Let f be the residue degree of Lq/K and m = log, (Card(kk)).

(1) If ® is of type Go or if ® is non-reduced, suppose that p > 5. If
L'/ Ly is ramified, then d(P) =mf(l+1); if L'/ Lq is unramified, then d(P) =
mf(n+1).

(2) Suppose that ® is of type BCy and that p > 5. If L'/L4 is ramified,
then 2mf < d(P) < 6mf; if L' /Ly is unramified, then 3mf < d(P) < 9mf.

5.2.8 Remark (Summary in terms of quasi-split groups classification). We
recall that f’ denotes the residue degree of L’'/L,; and that there are, case by
case, identities between d, [ and n. In Corollary 5.2.2, if the quasi-split group
is of type 9X,,; (with notations of [Tit66]; Tits indices are not necessary in
this study because of quasi-splitness assumption), we have d(P) = mf¢ where:

Type (in)equality Assumption
IX; 1>1, X£G | €=1+1 p>3
'Gy §=3 p=>5
2Ag 1, 1>2 E=f(1-1)+2 p>3
Diy1, 1 >3 E=1+f p>3
2FEs E=3+2f p>3
3D, and 9Dy E=24+f pP=5
Ay, 1>2 E=f1+1 p>5
24, JH1<€<3f+3] p>5

Proof. According to [Tit66, 3.1.2|, there exists an absolutely simple group
G' such that G = Ry, /x(G'), so that G(K) = G'(Lg). Because Card(xr,) =
fCard(k ), we can assume that G is absolutely simple, so that ® is irreducible
and m = log, (Card(xyr,)).

(1) Suppose that & is reduced. By definition of the groups V,

5.1.1(2), we have U o/Vie = 4 “ode@ Ha€AU =0
’ ’ 0 otherwise

tient groups X, f,(4) are defined as in Proposition 3.1.11. Applying Corollary
5.2.1, we write P/Frat(P) =~ [[,cau(—0y Xa,fe(a)- We know by Proposition
3.1.11 that the group X, f_(q) is & kL,-vector space of dimension 1. The finite
field k1, is of order p™/« where f, denotes the residue degree of the extension
Lqo/Lg. Thus, we obtain dimg, (P/Frat(P)) = > ,cau—g) Mfa- It remains
to compute & = ZaEAU{—Q} fa- Let a € AU{—6}. If a is a long root, then
L, = Lg and f, = 1. Otherwise L, = L' and f, = f’.

Suppose that L'/Lg is ramified. We know that #° is the highest root of
®P with respect to AP. Hence —6P is a long root of ® and —6 is a short

, where the quo-
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root. Thus, L_g = L/, so that f_y = f' = 1. We have f, = 1 for any simple
root @ € A. Thus { = Card(A) + f_g =1+ 1.

Suppose that L’'/L; is unramified. We know that 6 is the highest root of
® with respect to A. Hence, —0 is a long root and L_g = Ly, so that f_y = 1.
We have f, = Card(a) where any simple root a € A is seen as an orbit of
absolute simple roots a € A. Thus & = Jo0+D aen fa= 1+Card(A) = 1+n.

Suppose that ¢ is non-reduced of rank [ > 2.

We have a group isomorphism P/Frat(P) >~ [Tycai(—gy Ubit,/Ve. We can
express each Uy, /V; in terms of X;,; (and of Xop o if b € {a, —0} is a multi-
pliable root).

First case: b is non-multipliable. In this case, we have Vi, = Uy, 7_ )+
By 3.1.11, we know that Uy s, )/Us, f.(5)+ = Xb,.(b) 15 @ KL,-Vector space of
dimension 1, hence a F,-vector space of dimension f/'m.

Second case: b is multipliable and L;/Ly, is ramified. By Lemmas
3.1.13 and 2.1.13, we know that Ub,fc(b)/% = Ub,fc(b)/Ub,fc(b)+ = Xp,1.0) 18 @
KL, = kr,-vector space of dimension 1, hence a Fp-vector space of dimension
m = f'm.

Third case: b is multipliable, L;/Lg, is unramified and f.(b) ¢
I',. By Proposition 3.1.11 and Lemma 3.1.13, we know that Uy s.)/Vs =
Ub7fc(b)/Ub7fc(b)+ = Xop2f.(b) 18 @ KL,,-vector space of dimension 1, hence a
F-vector space of dimension m.

Fourth case: b is multipliable, L;/Ly, is unramified and
fe(b) € TI,. By Proposition 3.1.11, we know that U, s )/V» =

Ub,fc(b)/(Ub,fc(b)+U2b,2fc(b)> = Xb’fc(b)/XQb’ch(b) is a /iLb—vector Space of
dimension 1, hence a Fp-vector space of dimension 2m = f'm.

Furthermore, we note that we have the alternative: either fe(a) € I', and
fe(=0) €T 4, or fo(a) ¢ I, and fo(—6) € I”_,. Hence, the sum of dimensions
over ), of U, 5. (a)/Va and U_g 5, (—9/ Vs is always equal to (f' +1)fm.

Since there are [ — 1 non-multipliable simple roots, we get d(P) = mf’(l —
D+ A+ f) =m(f +1). Let & be such that d(P) = m&. If L'/L, is
unramified, then f/ =2 and £ =204+ 1 =n+1. If L'/L, is ramified, then
fl=1land £ =1+1.

(2) Suppose that ® is non-reduced of rank 1. In this case, we
cannot apply Theorem 5.1.2 and its Corollary. Let H = U_a7%T(K)2_Ua,0
be a maximal pro-p subgroup of G(K) ~ SU(h)(K), so that £ = 0. Let
I = max(1,3) = 3.

Suppose that L/Ly is unramified. By Lemma 2.3.12, by Lemma 2.3.4 and
by Proposition 2.3.1, we have:

U_Q(L’QU_G,%T(K)é”Ua,1U2a70 C [H, H]Hp C U_2a72, U_a71T(K);U 1 U2a70

a,3

One the one hand, thanks to computation with the quotient groups X, ;, we
get the La-vector spaces Uy 0/U, 4 U2a,0 =~ X4,0/ X240 of dimension d(a,0) = 2
and U_, 1 /U_242,U-a1 =~ X_, 1 of dimension d(—a, 3 + d(—2a,1) = 0+
1 = 1. Hence d(H) > 3m. On the other hand, U, 0/U,,1U24,0 have to be
isomorphic to a subgroup of X, ¢/ X240 ® Xa)%/XgaJ, of dimension d(a,0) +
d(a,3) = 2 as kp,-vector space. In the same way, U_4,1/U-2a2U_, 3 is
isomorphic to a subgroup of X a1 DX_q1/X_24,_2, of dimension d(—a, %) +
d(—2a,1) +d(—a,1) = 0+ 1+2 = 3. Finally, T(K); /T(K)} is of dimension
2(1" — 1) = 4. Thus d(H) < m(5 + 4) = 9m.
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Suppose that L/Ls is ramified. By Lemma 2.3.12, by Lemma 2.3.4 and by
Proposition 2.3.1, we have:

U_2a73U_a,2T(K)é”U 3U2a71 C [H, H]Hp (- Uv_2a737 U_a71T(K);_U 1 U2a71

a,2 a,s
One the one hand, thanks to computation with the quotient groups X,
we get the Lo-vector spaces Ua’o/Ua’%Uga’l ~ X, 0 of dimension d(a,0) +
d(2a,0) = 1+ 0 and U_, 1 /U-24.3,U-a1 =~ X_, 1 of dimension d(—a, i+
d(—2a,1) =041 = 1. Hence d(H) > 2m. On the other hand, Ua70/Ua)%U2a,1
have to be isomorphic to a subgroup of X, 0 ® Xa’%/ngql ® Xo.1/X2a,2, of
dimension d(a, 0) +d(2a,0) +d(a, 1) +d(a,1) = 1+0+0+1 = 2 as rp,-vector
space. In the same way, U_a7%/U_2a)3U_a)2 is isomorphic to a subgroup of
X 01 ®X 01 ®X_, 3/X23, of dimension d(—a, D) +d(—2a,1)+d(—a,1)+
d(—2a,2) +d(-a,2) =0+ 1+ 1+0+0 = 2. Finally, T(K);/T(K)} is of
dimension (I” — 1) = 2. Thus d(H) < m(4 + 2) = 6m. O

3
—a,s

5.2.4 Remark (Generating set in terms of root groups). A generating set of
P/Frat(P) always come from a topologically generating set of P. Hence, when
the relative root system @ is reduced, a system of generators of P is given by:

{xa(Ai), 1<i<mandac A} U {{m,g()\ile), 1<4i< m}

where (A;)1<i<m is a family of elements of Op, such that (\;OL,/mr,)1<i<m
is a basis of k1,;; the root € is chosen as in Section 3.1; and wy- is a uniformizer
of OL/ .
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