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Abstract

Collaborative robotics is a possible solution to the problem of musculoskeletal disorders (MSDs) in industry, but efficiently designing such
robots remains an issue because ergonomic assessment tools are ill-adapted to such devices. This paper presents a generic method for
performing detailed ergonomic assessments of co-manipulation activities and its application to the optimal design of collaborative robots.
Multiple ergonomic indicators are defined to estimate the different biomechanical demands which occur during manual activities. For any
given activity, these indicators are measured through dynamic virtual human simulations, for varying human and robot features. Sensitivity
indices are thereby computed to quantify the influence of each parameter of the robot and identify those which should mainly be modified
to enhance the ergonomic performance. The sensitivity analysis also allows to extract the indicators which best summarize the overall
ergonomic performance of the activity. An evolutionary algorithm is then used to optimize the influential parameters of the robot with
respect to the most informative ergonomic indicators, in order to generate an efficient robot design. The whole method is applied to the
optimization of a robot morphology for assisting a drilling activity. The performances of the resulting robots confirm the relevance of the
proposed approach.
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1. Introduction

Work-related musculoskeletal disorders (MSDs) represent a ma-
jor health problem in developed countries. They account for the
majority of reported occupational diseases and affect almost 50 %
of industrial workers [1]. Since MSDs result from strenuous
biomechanical solicitations [2], assisting workers with collabora-
tive robots can be a solution when a task is physically demanding
yet too complex to be fully automatized (Fig. 1); a collaborative
robot enables the joint manipulation of objects with the worker (co-
manipulation) and thereby provides a variety of benefits, such as
strength amplification, inertia masking and guidance via virtual sur-
faces and paths [3].

In order to design a robot which decreases at best the risk of
developing MSDs, an ergonomic assessment of the robot-worker
system must be performed throughout the design process. Though
standard ergonomic assessments are based on the observation of a
worker performing the task [4, 5], digital evaluations now tend to
replace physical evaluations in the design process of workstations;
digital evaluations — in which a digital human model (DHM) is used
to simulate the worker — indeed present several major advantages
[6]. Firstly, the simulation enables easy access to detailed biome-
chanical quantities, which otherwise can only be measured on real
humans through complex instrumentation, if at all (e.g. muscle or
joint forces). Secondly, different morphologies of workers can eas-
ily be tested without the need for a wide variety of real workers.
And thirdly, a virtual — instead of a physical — mock-up of the robot
is used for digital assessments, thus removing the need to build a
new prototype every time a parameter of the robot is tuned. The
overall development time and cost is thereby decreased.

Figure 1: A collaborative robot providing strength amplification for tire retread-
ing (developed by RB3D, CEA-LIST, CETIM).

To perform digital ergonomic evaluations, several commercial
DHM software for workplace design provide ergonomic analysis
tools (e.g. Delmia, Jack [7], Ramsis [8], Sammie [9]). These soft-
ware — based on simple rigid-body models of the human body —
include standard assessment methods which estimate an absolute
level of risk depending on the main MSDs factors [2] (posture, ef-
fort, duration and frequency of the task) and possibly additional fac-
tors (e.g. RULA [10], REBA [11] and OWAS [12] methods, OCRA
index [13], NIOSH equation [14]). The resulting ergonomic indica-
tors are, however, either very rough (e.g. effect of external load in
RULA) and/or task-specific (e.g. NIOSH equation for lifting loads),
so they do not accurately cover all kinds of manual activities which
may be addressed by collaborative robots. Besides, these assess-
ment methods are static, i.e. dynamic phenomena are not taken into
account; yet fast motions do increase the risk of developing MSDs
*Corresponding author: pauline.maurice(at)polytechnique.org [15]. In collaborative robotics, evaluating the dynamic phases of
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an activity is even more important because the robot is never per-
fectly backdrivable and some phenomena cannot be compensated
even with a dedicated control law (e.g. additional inertia); manip-
ulating the robot might then require extra efforts and cause new
MSDs.

Concurrently to DHM software for workplace design, other
DHM software provide more accurate musculoskeletal models of
the human body, including muscles, tendons, and bones (e.g. Open-
Sim [16], AnyBody [17], LifeMOD). Beyond classic macroscopic
measurements (joint angles, joint forces and moments), these soft-
ware also provide dynamic measurements (joint velocities and ac-
celerations) and quantities that more accurately account for the
biomechanical demands on the human body (muscle force, tendon
deformation, muscle fiber length...). The high number of outputs
(one for each muscle/tendon/joint) is, however, difficult to inter-
pret without specific biomechanical knowledge, especially when
the purpose is to summarize the global ergonomic level of the ac-
tivity.

The second criticism which can be addressed to both kinds of
DHM software concerns the animation of the DHM. The DHM
motion is generated through forward or inverse kinematics, pre-
defined postures and behaviors (e.g. walk towards, reach towards),
or from motion capture data. Apart from motion capture, none of
these animation techniques enables to come up with a truly realis-
tic human motion. Kinematic techniques do not take into account
the inertial properties of the human body or external load, so the
simulated motion is rarely human-like [6]. Pre-defined behaviors
result in more realistic motions since they rely on a pre-recorded
motions database, but only a limited number of behaviors can be
simulated and they become unrealistic when external conditions are
modified (e.g. adding a load in a reaching motion). In general, the
obtained motion is not even dynamically consistent. For instance,
the DHM balance is never considered though it affects the relevance
of the evaluation [18]. As for motion capture, the human subject
and the avatar must experience a similar environment to obtain a
realistic simulation. In particular, the interaction forces with the en-
vironment are crucial, so the subject must either be provided with a
physical mock-up (Fig. 2) or be equipped with complex instrumen-
tation (digital mock-up through virtual reality and force feedback
devices). Motion capture is therefore highly time and resource con-
suming. In order to circumvent the above-mentioned issues, De
Magistris et al. developed an optimization-based DHM controller
to automatically simulate dynamically consistent motions [19]. The
dynamic controller computes DHM joint torques from a combina-
tion of anticipatory feedforward and feedback control. It has many
advantages over kinematics techniques, such as ensuring DHM bal-
ance and generating hand trajectories that are in accordance with
some psychophysical principles of voluntary movements. How-
ever, though this controller has been successfully used for a virtual
ergonomic assessment, the Jacobian-transpose method used in the
feedback control does not guarantee the optimality of the solution,
because joint torques limits cannot be explicitly included in the op-
timization.

Eventually, evaluating the ergonomic benefit provided by a col-
laborative robot requires that the robot be included in the DHM sim-
ulation. Though most DHM software can simulate a DHM within a
static environment, they cannot simulate the motion of a collabora-
tive robot which depends on its physical interaction with the DHM,
both through its control law and through physical interferences.

Thus, despite many available tools for performing virtual er-

Figure 2: Animation of a DHM using motion capture data, with the Jack soft-
ware (picture from Jack documentation). The human subject is placed in a
physical mock-up of the environment in order to obtain realistic motions.

gonomic assessments, none of them is suitable to evaluate co-
manipulation activities. This work therefore presents a novel ap-
proach for quantitatively comparing the ergonomic benefit provided
by different collaborative robots when performing a given activity,
and its application to the optimal design of such robots. The pro-
posed method consists in four components (Fig. 3):

1. A list of ergonomic indicators defined to accurately account
for the different biomechanical demands which occur during
manual activities. They cover all kinds of manual activities,
without requiring any a priori hypotheses on the activity that
is performed.

2. A dynamic simulation framework in which a DHM can inter-
act with a controlled collaborative robot. The simulation is
used to measure the ergonomic indicators. The DHM is an-
imated through an optimization-based whole-body controller
to ensure the dynamic consistency of the motion. The con-
troller can be used either with high level tasks descriptions
(autonomous DHM, 2a), or with motion capture data (2b). 2a
enables the evaluation of robots under development without
the need for a human subject or physical mock-ups, while 2b
allows the replay of a recorded activity to acquire a reference
situation (non-assisted gesture) or evaluate existing robots.

3. A sensitivity analysis framework with which the relevance of
each ergonomic indicator and its dependence on the robot pa-
rameters can be established — for any given activity — without
the need for much input data. The analysis enables the iden-
tification of the indicators which best summarize the overall
ergonomic performance, and of the robot parameters which
most affect this performance. The aforementioned simulation
framework is used to automatically create and simulate a vari-
ety of situations.

4. A framework for optimizing design parameters of a collabora-
tive robot with respect to relevant ergonomic indicators, based
on a multi-objective evolutionary algorithm.

Thanks to the proposed tools, comparing and optimizing the er-
gonomic benefit provided by collaborative robots is facilitated. The
technical gesture is acquired on the initial situation and serves as an
input for the sensitivity analysis. The sensitivity analysis enables
the identification of a small number of ergonomic indicators rele-
vant for the comparison of robots performances, as well as of the
robot parameters to primarily optimize. An optimal robot is then
designed with the evolutionary tool by optimizing the relevant er-
gonomic indicators. The initial (non-assisted) and final (with the



Worker performing a non-assisted activity

1&2- Ergonomic measurements
for co-manipulation activities

(1) Ergonomic indicators
for manual activities

Virtual human simulation
of co-manipulation activities

A~ Motion capture and

Reference situation
2b

Task description

3- Sensitivity analysis
of ergonomic indicators

) 22

ergonomic assessment

O %

dynamic replay Relevant indicators
Applications
Differential

Y

Validated workstation

4- Optimization Comparison of :
of robot design | IS ISR Ik
) 2 O 2 %
T T
Validated robot .. Validated robot

Figure 3: Overview of the methodology developed for performing ergonomic assessments of collaborative robots, and its applications. This paper focuses on the

optimization of robot design (4), but other applications are possible.

optimized robot) situations can eventually be compared, to ensure
the benefit provided by the robot.

The paper is organized as follows. Section 2 describes the whole
methodology (the four components). Section 3 presents an applica-
tion (protocol and results) of the proposed method, which purpose
is the optimization of the morphology of a collaborative robot for a
drilling activity. The current limitations of the proposed method are
discussed in section 4.

2. Method

In digital human modeling, the human body can be represented
with different level of detail (rigid bodies, muscles...). The cho-
sen model, however, affects both the biomechanical quantities mea-
sured on the model — hence the formulation of ergonomic indicators
— and the controller generating the DHM motion (definition of the
actuation variables). In this work, the human body is represented
with rigid bodies and does not include muscle actuation; each joint
is controlled by a single actuator. Even though muscle-related quan-
tities cannot be estimated with such a model, numerous other quan-
tities can be measured to represent the biomechanical demands that
occur during whole-body activities (e.g. joint loads, joint dynam-
ics, mechanical energy...). Besides, given the high actuation re-
dundancy of the human musculoskeletal system, computing muscle
forces requires to solve the muscle recruitment problem (i.e. which
muscles should be activated — among the infinity of possible activa-
tion patterns — to perform a given motion). While musculoskeletal
models have proved valid and insightful in specific cases, no general
criterion has been established yet for the muscle recruitment prob-
lem. The realism of the muscle-related measurements can therefore
not be ensured in all possible whole-body situations [17, 20, 21, 22].
The questionable gain of information and the significant computa-
tional cost then reduces the interest of musculoskeletal models in
the current context.

2.1. Ergonomic indicators for collaborative robotics

Ergonomic indicators aim at quantifying exhaustively and con-
cisely the physical demands endured by a worker when executing
various manual activities, with or without a collaborative robot.
Such indicators should take into account the main MSDs risk
factors considered in standard ergonomic assessments (posture,
force...), but also phenomena that are usually left aside, such as
dynamic demands.

In standard ergonomic assessments, risk factors of different na-
ture are often combined together to form a single and compact er-
gonomic score. Though the combination of several MSDs factors
does increase the risk, the way these various factors interact is, how-
ever, not well-established in general[4]. The different kinds of de-
mands are therefore represented by separate indicators here, so that
the formulation of the indicators is not task-dependent. The pro-
posed ergonomic indicators are classified into two families — con-
straint oriented indicators and goal oriented indicators — detailed
hereafter.

2.1.1. Constraint oriented indicators

Constraint oriented indicators are local joint measurements — po-
sition, velocity, acceleration, torque and power — which directly rep-
resent the relative level of joint demands'. For each one of these
five quantities, a global indicator / is obtained for the legs, the
right arm, the left arm, and the back (plus head), by summing the
squared contributions of every joint in the considered limb (simi-
larly to [24]). Grouping several joints in one indicator decreases
the number of indicators — and thereby the complexity of the er-
gonomic analysis — while accounting for the situation of the whole
body (the evaluation cannot be limited to the joints initially affected
by MSDs since an ill-adapted robot may relocate the MSDs risk to

ISee [23] for a detailed study and validation of some of these indicators.



other joints). The different limbs of the body can, however, per-
form very different tasks simultaneously, hence separate indicators
for each limb.

The position and torque of each joint are normalized by average
physiological limit values before the summing [21, 25]; the capac-
ities of the normalized joints are then all equivalent, rendering the
summing more meaningful. For velocity, acceleration, and power,
however, joint physiological limits are not well-documented in the
literature and the normalization is impossible for now.

2.1.2. Goal oriented indicators

Goal oriented indicators are indirect images of the biomechani-
cal demands endured by a worker; they quantify the ability to com-
fortably perform certain actions (e.g. balance, force exertion). Goal
oriented indicators are very compact: one indicator accounts for the
whole-body situation.

Balance. Evaluating the balance quality gives an insight into the
effort needed to maintain the posture. Unstable balance indeed re-
quires higher muscular effort since the posture must always be cor-
rected to prevent falling. Balance is quantified through two indica-
tors. Balance stability margin represents the capacity to withstand
external disturbances; it is evaluated by the sum of the square dis-
tances between the Center of Pressure (CoP) and the base of support
boundaries [26]. Dynamic balance evaluates the dynamic quality of
the balance with the inverse? of the time before the CoP reaches the
base of support boundary, assuming its dynamic remains the same.

Force/Movement generation. The ability to generate forces and
movements is evaluated with manipulability measures [27], which
are global images of the joint demands needed to perform a mo-
tion/force [28]. This work focuses on skilled technical gestures
in which the worker knows the trajectories/forces to follow/exert,
therefore directional measures are used; the ability to produce end-
effector Cartesian force (resp. velocity) in a given direction is eval-
uated with the inverse? of the hand(s) force (resp. velocity) trans-
mission ratio [29]. The transmission ratio is calculated with the
dynamic manipulability [30] to account for the dynamic effects and
the non-homogeneity of the human joint capacities.

Vision. Estimating the ability to easily move one’s head in various
directions gives an insight into the amount of postural change re-
quired to follow a visual target (workers tend to look at what they
are doing when performing manual activities). The rotational dex-
terity of the head [27] is therefore used as a vision-related indicator.

Energy. The whole-body kinetic energy is a global measure of hu-
man energetic performance, since it is directly associated with the
power consumed during an movement [31].

2.1.3. Main features

The aforementioned ergonomic indicators are summarized in Ta-
ble 1. They are relative indicators, i.e. they enable to quantitatively
compare several situations and identify the most demanding one,
but they do not assess an absolute level of risk of developing MSDs.

2So that all ergonomic indicators should be minimized to improve the er-
gonomic situation.
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Table 1: Ergonomic indicators for evaluating biomechanical demands in man-
ual activities. RA stands for right arm, LA for left arm, B for back and L for
legs. Nj is the number of joints in the considered body-part (RA, LA, B or L),
g: the angle of joint i, ¢"** the joint limit, q;'e””‘“] the neutral joint position,
g; the joint velocity, ¢; the joint acceleration, 7; the joint torque and 7} the
joint torque capacity, which decreases with fatigue according to the evolution
law proposed by Ma ef al. [32]. v is the generalized velocity, M = M(q) the
generalized inertia matrix (the dependence on joint configuration q is dropped
in the formulae for the sake of legibility), J = J(q) the Jacobian matrix of the
considered end-effector, u the task direction of interest, and L = diag('r,’.””")
contains the joint torque capacities. oy, (resp. 0 uqyx) is the smaller (resp. big-
ger) singular value of J% M~'L, with J" = J! (q) the rotational part of the
head Jacobian matrix. N} is the number of base of support boundaries, and d;
the distance between the CoP current position and the ith boundary of the base
of support. vcep is the CoP current velocity, and d the distance between the
CoP current position and the base of support boundary along the direction of

VCoP-

Besides, all these indicators are instantaneous quantities, i.e. they
can be measured at each moment of the activity. If the time evolu-
tion of the indicators may be interesting, the purpose here is to sum-
marize the whole ergonomic situation with only a limited number of
values, to facilitate the comparison of the overall ergonomic perfor-
mance of different collaborative robots. The instantaneous values
of each indicator are therefore time-integrated, so that the whole
activity is represented with one single scalar value per indicator.

2.2. Simulation of co-manipulation activities

In order to numerically evaluate the ergonomic indicators defined
in section 2.1, the considered activity must be simulated with a dy-
namic autonomous DHM, possibly interacting with a collaborative
robot. The simulation is run in a dynamic simulation framework
based on a physics engine to ensure the physical consistency of the
resulting motion and forces.



2.2.1. DHM control

The DHM motion is computed by solving an optimization prob-
lem to find the actuation variables (joint torques, accelerations and
contact forces) which enable to follow some objectives at best (e.g.
hand trajectory, center of mass acceleration), while respecting phys-
ical constraints. Unlike analytical control techniques [33, 34], opti-
mization techniques [35, 36, 37] allow to solve the human kinematic
redundancy while explicitly considering both equality and inequal-
ity constraints. The biomechanical limits (i.e. joint and actuations
limits) are thus guaranteed to be respected. The actuation variables
are computed with the linear quadratic programming (LQP) con-
troller framework developed by Salini et al. [38]. The control prob-
lem is formulated as follows:

argmin w; T;(X)
en Z

M(q)v+C(q,v) +glq) =S 7~ Z Ja@wg (D
S.t. J
GX <h

where 7 is the joint torques, w,,; the contact wrench of the j-h con-
tact point, q the generalized coordinates of the system, v the gen-
eralized velocity concatenating the free-floating base twist and the
joint velocities q, and X = (v7, w.”,¥)7. The equality constraint
is the equation of motion; M is the inertia matrix of the system, C
the vector of centrifugal and Coriolis forces, g the vector of grav-
ity forces, S the actuation selection matrix due to the free-floating
base, and J! the Jacobian of contacts. The inequality constraint
includes the bounds on the joint positions, velocities, and torques
(all formulated in 7 and ), and the contact existence conditions for
each contact point according to the Coulomb friction model:

Ce,we; <0 V)

o . 2
Je,(@Qv+Je,(v,qv=0 Vj

where C,; is the linearized friction cone of the j-th contact point.

The objective function is a weighted sum of tasks 7; (weights
w;) representing the squared error between a desired acceleration or
wrench and the system acceleration/wrench. The solution is then
a compromise between the different tasks, based on their relative
importance. The following tasks are defined:

e QOperational space acceleration T + Jiv — X:‘ I
e Joint space acceleration g - "I

e QOperational space wrench [Iwi — w} II?

e Joint torque I - 7*II”

where X; is the Cartesian acceleration of body i, and w; the wrench
associated with body i. The superscript * refers to the desired accel-
eration/force. The desired acceleration is defined by a proportional
derivative control:

it =+ K, - 1) + K, (22 - 2) ©)

where z stands for X or q, and K, and K, are the proportional and
derivative gains. The superscript ¢°“ indicates the position, velocity
and acceleration wanted for the body or joint (reference trajectory).
7" and w;" are respectively the desired joint torque vector and de-
sired wrench at contact point i. They constitute a specification for
the tasks to be performed and thus an input for the controller. They
must be specified by the user.
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Figure 4: Tasks used in the LQP controller for simulating manual activities with
an autonomous DHM (left) or for dynamically replaying human motion (right).

2.2.2. Animation modes

The DHM controller presented above is generic and can be used
either with motion capture data (replay mode) or with high level
tasks descriptions (autonomous mode) (e.g. target to reach, place
to go)> . In both cases, the DHM balance is managed with a high
weight center of mass acceleration task, which reference is com-
puted using a Zero Moment Point preview control [40]. Low weight
joint acceleration tasks (postural task) and joint torque tasks are
used respectively to define a natural reference posture (standing,
arms along the body), and to prevent useless effort.

In autonomous mode, only the body parts that are directly needed
to perform the activity — generally one or both hands and the head
— are explicitly controlled with an operational acceleration and/or
force task (Fig. 4). The reference trajectory for the hand task (ma-
nipulation task) results from an interpolation between the start and
end points specified by the used. The head is controlled with an
orientation task, so that the DHM looks at what it is doing (gazing
task). In replay mode, on the contrary, the recorded Cartesian po-
sitions of markers positioned on the body of a human subject are
mapped onto the DHM. An operational acceleration task is created
for each marker, and the reference trajectory is the recorded marker
trajectory.

The exact values of the tasks weights are manually tuned through
trial and error. Though time consuming in the first place, the tuning
process does not need to be repeated; the weights obtained are gen-
eral enough to be used for successfully simulating many different
activities.

2.2.3. Robot simulation

This work focuses on collaborative robots which provide strength
amplification and are manipulated by the end-effector only (parallel
co-manipulation). The simulation method presented in this section
is dedicated to such systems specifically.

3See [39] for a detailed description of the tasks included in the controller
in autonomous and replay modes https://hal.archives-ouvertes.fr/
tel-01171482v1/document.
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DHM grasp. The DHM fingers are not articulated because grasp-
ing requires a complex control of the fingers which is beyond the
scope of this work. The human grasp is therefore represented by a 6
DoFs spring-damper system between the DHM palm and the robot
end-effector.

Control law. Strength amplification consists in controlling the
robot so that the force it exerts on the manipulated tool (or envi-
ronment) is an amplified image of the force applied by the worker
onto the robot*. Additionally, the weight of the robot and the vis-
cous friction effects are compensated. The inertial effects, on the
contrary, are not compensated because such compensation is hard
to implement on real robots due to the difficulty/cost to properly
measure joint accelerations. The global strength amplification con-
trol law is:

Tr=a ‘,eTgyr Fyh + gr(qr) + qu (4)

where 7, is the vector of robot joint torques, q, the robot joint an-
gles, q, the joint velocities, g, the vector of gravity forces, B the
matrix of viscous friction coefficients, J,,, the Jacobian matrix of
the robot end-effector, Fyy, the force applied by the DHM on the
robot end-effector, and a the amplification coefficient.

2.3. Sensitivity analysis of the ergonomic performance

The simulation framework described in section 2.2 enables to
measure multiple ergonomic indicators defined in section 2.1.
These measurements are, however, not directly useful for the design
of collaborative robots. Comparing the overall ergonomic perfor-
mance of different collaborative robots based on all the ergonomic
indicators is indeed not straightforward, because each indicator has
a different biomechanical meaning and different indicators may lead
to different conclusions. Moreover, the values of the ergonomic in-
dicators per se do not provide any information on how to improve
the robot design, i.e. which parameters should mainly be modified
to enhance the overall ergonomic performance. To answer these
questions, the most informative indicators and their dependence on
the robot parameters must be identified. In most cases, however, no
straightforward analytical relation between robot parameters and er-
gonomic indicators can be established. A statistical sensitivity anal-
ysis is therefore conducted [41]. This section presents an extended
version of the work presented at the IEEE-RAS Humanoids 2014
conference [42].

2.3.1. Method overview

Statistical sensitivity analyses rely on the numerical evaluation of
the output (ergonomic indicators here) for numerous values of the
input parameters, thus requiring a large number of trials. Having
a real subject execute the activity in each situation would be too
time consuming, therefore the activity is rather simulated with an
autonomous DHM. The whole process for analyzing the relevance
of ergonomic indicators regarding the comparison of collaborative
robots and the influence of the robot parameters can be summarized
as follows (Fig. 5):

1. Define the robot parameters which can be altered.
2. Select — among all the possible combinations of parameters
values — those that should be tested.

4 In the simulation the interaction force is estimated with the spring-damper
system representing the human grasp; on real robots, a force sensor is embed-
ded on the user handle.
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Figure 5: Flow chart of the method for identifying informative ergonomic indi-
cators and influential parameters.

3. Simulate the activity with an autonomous DHM for each se-
lected combination of parameters values, to measure the er-
gonomic indicators.

4. Compute sensitivity measures for the ergonomic indicators
based on their values in all the tested cases.

Steps 1, 2 and 4 are detailed in the following sections. The simula-
tion step 3 is performed with the autonomous DHM as described in
section 2.2.

2.3.2. Parameters selection

The sensitivity analysis aims at estimating — for a given activ-
ity — how much each parameter of a collaborative robot affects the
ergonomic situation. In early stages of a robot design process, how-
ever, the number of possible designs — and hence the list of possible
parameters — is infinite and there is a priori no reason to choose one
over another. In order to be generic, real robot designs are therefore
not used. Instead, a robot is modeled by its positive and negative
effects on the worker — each effects corresponding to one parameter.

Robot parametrization. In this work, robots are manipulated by the
end-effector only (parallel co-manipulation), so the robot is simu-
lated by a 6 DoFs mass-spring-damper system attached to the DHM
hand (Fig. 6). The mass (M,), stiftness (K,) and damping (B,) pa-
rameters represent the equivalent dynamics of the robot at the end-
effector. The possible geometric interferences between the robot
and the DHM are simulated without making hypotheses on the
robot design, by limiting the DHM movements (limiting the joints
range of motion) and modifying its posture (e.g. feet position, joint
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Figure 6: Abstraction of a collaborative robot by a mass-spring-damper system
attached to the DHM hand and geometric constraints on the DHM motions
(only some examples of constraints are displayed here).

reference position). External forces are applied on the mass-spring-
damper system to simulate the robot actuation (F,p.), @ being the
strength amplification coefficient (Eq. 4). Table 2 gives a concrete
example of robot parameters that can be used (these parameters can
however be adjusted depending on the activity that is studied).

Parameters space exploration. The robot parameters taking con-
tinuous values, they must be discretized to form the different com-
binations of parameters values to test. But the computational cost
of a simulation — though variable — is always expensive (greater or
equal than real-time). The number of combinations tested is there-
fore limited and the values of the parameters must be carefully se-
lected.

Optimizing the exploration of the parameters space requires a
compromise between the number of trials and the precision of the
resulting information [41]. In this work, the analysis aims at quan-
titatively estimating the influence of each robot parameter on the
ergonomic indicators, to identify which parameters should mainly
be tuned. The computation of Sobol indices — which relies on
the decomposition of the ergonomic indicators variance (functional
ANOVA decomposition) — is then appropriate [43, 44, 45]. Sobol
indices allow a fine ranking of the influence of the different param-
eters, without requiring specific hypotheses on the ergonomic indi-
cators. Furthermore, their interpretation is quite straightforward —
each index measures the percentage of variance of an indicator that
is explained by the corresponding parameter(s). Only the first order
indices S; (influence of the parameter X; alone, with no interaction)
and the total indices S r, (influence of X; , including all interactions
with other parameters) are considered in this work, because they
give information on the i-th parameter independently from other
parameters. A high §; means that X; alone strongly affects the indi-
cator, whereas a small S 7, means that X; has very little influence on
the indicator, even through interactions.

The extended FAST (Fourier amplitude sensitivity testing) spec-
tral method is used for choosing the appropriate parameters values
to test (within user-defined bounds) and for computing Sobol in-
dices [46]. The FAST exploration method is indeed a good com-
promise between the comprehensiveness of the space exploration
and the number of trials.

2.3.3. Ergonomic indicators analysis
Once the simulations are performed for all the selected combi-
nations of parameters values, Sobol indices can be computed. But

Sobol indices only address single-output models, whereas there are
multiple outputs here corresponding to multiple indicators. Even
though Sobol indices can be computed separately for each indica-
tor, no global sensitivity index can be obtained for a parameter by
aggregating indices relative to different indicators — the comparison
of indices referring to different indicators being meaningless. Be-
sides, Sobol indices do not help reducing the number of ergonomic
indicators to facilitating the comparison of different collaborative
robots. The most informative ergonomic indicators must therefore
first be identified.

The purpose of this work is not to assess the absolute level of
MSDs risks, but to compare collaborative robots. In this context,
the relevance of an indicator is not related to its value, but to its
variations when the activity is performed with different robots; if
the value of an indicator remains unchanged whichever the robot
that is used, this indicator is not useful to compare different robots.
The most informative indicators are therefore the ones that best ex-
plain the disparity of the results when the activity is performed with
various robots.

Ranking. The problem of reducing the number of indicators to
keep only the ones that best explain the disparity is addressed by
Campbell et al. [47] and Lamboni et al. [48] in the context of
sensitivity analysis for multiple-output models. They propose to
decompose the model outputs in a well-chosen basis before apply-
ing sensitivity analysis to the most informative components indi-
vidually, which comes down to a dimensionality reduction prob-
lem. Standard dimensionality reduction methods, however, cannot
be used here, because they form composite variables (i.e. com-
binations of the initial variables). The ergonomic indicators hav-
ing different physical meanings, aggregations of various indicators
would be meaningless. Moreover, composite variables cannot be
used to estimate the global influence of the robot parameters, since
the influence of a parameter is likely different from one ergonomic
indicator to another. The importance of each ergonomic indicator
is therefore represented directly by its variance. The indicators are
thus ranked, and the most informative ones (those with the highest
variance) are easily identified.

Scaling. Before computing their variance, the indicators must be
scaled because they have non-homogeneous units, hence different
orders of magnitude. Scaling each indicator with a physiological
limit value would be ergonomically meaningful, but some indica-
tors do not have well-defined limits (e.g. kinetic energy), and even
the existing ones may be hard to find (e.g. joint acceleration). The
order of magnitude (used for the scaling) of an indicator is therefore
estimated by measuring the indicator in many different situations
with DHM simulations, and taking the average value. Activities
of many different kinds (e.g. walking, reaching, pushing, carrying)
are performed in many different ways, so the range of values of each
indicator is assumed to be covered quite exhaustively®.

Selection. Once the ergonomic indicators are ranked according to
their variance, a Scree test [49] is performed to decide the number
of indicators that are kept; the objective is to limit the number of
indicators, while sufficiently accounting for the global ergonomic

3The activities used for estimating the indicators order of magnitude are
detailed in [42]. A video is available here: http://pages.isir.upmc.fr/
~padois/website/fichiers/videos/maurice_humanoids_2014.mp4
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performance of the activity. Sobol indices are then computed sepa-
rately for each one of the selected indicators. The indices relative to
different indicators still cannot be compared, but the overall number
of indices is reduced, making the interpretation of the results easier
for the user.

2.4. Evolutionary design of a collaborative robot

The evaluation framework presented in the previous sections en-
ables to rank robot candidates with respect to their ergonomic per-
formance, and to identify which design parameters are crucial for
improving this performance. Designing and modifying test can-
didates is, however, left to the robot designer, who has to rely on
his/her experience (potentially limited since collaborative robotics
is a rather new approach) and preliminary studies. This process is
both time and resource intensive. To circumvent these problems,
optimization techniques are used to guide robots design.

Robots are optimized by coupling an evolutionary algorithm
(EA) software [50] with the collaborative robot evaluation frame-
work presented previously. The EA is used for exploring the space
of robot designs — i.e. providing robot candidates to evaluate —
while the simulation tool is used to numerically evaluate the var-
ious objectives for each robot candidate (Fig. 7) (here the full robot
structure — and not its abstraction — is included in the simulation
and interacts with the DHM). EAs are well-suited to address the
problem of optimal robot design because they enable optimization
over vast and non-continuous search spaces and can handle multi-
objectives problems [51]. Optimal collaborative robot design is in-
deed a multi-objective problem: the robot must be optimized re-
garding both the task and the worker, and potentially other aspects
such as the cost or complexity of the structure. Moreover, these gen-
eral objectives are often divided into several specific objectives; the
worker-oriented objective, for instance, is evaluated through multi-
ple ergonomic indicators.

The EA used here is the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [52] — based on the Pareto optimality prin-
ciple — because it efficiently addresses convergence and diversity
of the solutions, the two main features that allow to approach the
Pareto-optimal front at best. Though NSGA-II (and multi-objective
EAs in general) is designed to solve multi-objective problems, the
number of objectives affects the convergence of the optimization;
the number of conflicting® objectives should generally be limited
to three [53]. The ergonomic indicators analysis presented in sec-
tion 2.3 is therefore used beforehand to select a small number of
relevant worker-oriented objectives.

3. Results

The whole method for guiding the design of collaborative robots
presented in section 2 is applied to a real activity. The motion of a
human subject performing the considered activity is recorded and
replayed, to evaluate the initial situation as a baseline. Autonomous
DHM simulations are then run to perform the sensitivity analysis.
The indicators which best summarize the overall ergonomic perfor-
mance of the considered activity are thereby selected, and the robot
parameters which should be tuned to enhance this performance are
identified. Optimal values of these parameters — with respect to the

5Two objectives are conflicting when it is impossible to satisfy both of them
simultaneously.
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Figure 7: Framework for the optimization of collaborative robot design: XDE-
Sferes, coupling (a single generation loop is represented). The genetic opera-
tions are performed by the Sferes,, software [54], which provides a population
of robot candidates to evaluate. For each candidate, the objectives are measured
through a DHM simulation. To limit the number of objectives, only the most in-
formative ergonomic indicators are included in the worker-oriented objectives.

relevant indicators — are computed using the EA framework. The
activity performed with the optimized robot is then compared to the
initial (non-assisted) situation.

3.1. Acquisition of the initial situation

3.1.1. Task description

An industrial manual task requiring significant effort is used as
a test case. The activity consists in drilling six holes consecu-
tively in a vertical slab of autoclaved aerated concrete (dimensions:
30 x 60 cm) with a portable electric drill. The locations of the holes
are imposed and depicted on Fig. 8. The drill weighs 2.1kg. The
average normal force needed to drill a hole is about 40 N. The task
duration is not constrained, but it takes about 1 min to perform the
whole activity (take the drill, drill the six holes, put the drill down).
In the experiment, the drill is held with the right hand only. The
subject chooses his feet position but is not allowed to move them
during the trial.

3.1.2. Motion capture set-up

The subject’s motion is recorded with a CodaMotion’ system at
100 Hz. The subject is equipped with 25 markers spread all over his
body. A 6 axes ATI force sensor® is embedded in the drill handle to
measure the drilling forces (Fig. 8). The recorded data are filtered
with a zero-phase 10 Hz low pass 4th order Butterworth filter.

3.1.3. Motion replay

The motion recorded on the human subject is replayed with a
DHM?, using the dynamic replay method described in section 2.2.
The simulation is run in the physics-engine based simulation frame-
work XDE developed by CEA-LIST [55]. The XDE DHM consists
of 21 rigid bodies linked together by 20 compound joints, for a
grand total of 45 degrees of freedom (DoFs) plus 6 DoFs for the
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www.codamotion.com
www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma

9A video is available here: https://www.youtube.com/watch?v=
uapVyniMOTO
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Figure 8: Force and motion capture instrumentation for the drilling activity. A
commercial drill has been modified to embed a force sensor. The red circles on
the slab represent the drilling points.

free-floating base. Each DoF is a revolute joint controlled by a
single actuator. Given a subject’s stature and mass, the DHM is
automatically scaled according to average anthropometric coeffi-
cients'?, and each body segment is further manually modified to
match the subject morphology when needed.

The replayed motion enables the measurements of the ergonomic
indicators in the initial situation. But the technical part of the ges-
ture (i.e. the profiles of the tool trajectory and of the drilling force)
is also needed to animate the autonomous DHM for the sensitivity

analysis simulations'!.

3.2. Sensitivity analysis

3.2.1. Simulations

The drilling activity is simulated in the XDE framework, with
the autonomous DHM; only the right hand trajectory and force are
explicitly specified through a Cartesian acceleration/force task in
the DHM controller (plus balance, postural and effort minimization
tasks). The hand trajectory and drilling force profile recorded on the
human subject serve as reference trajectory/force for the hand tasks.
The DHM feet do not move during a simulation (i.e. no automatic
stepping), except if the dynamic balance cannot be maintained and
the DHM falls. The drill weight is not included in the simulation
because it is supported by the collaborative robot. The abstraction
of the collaborative robot (section 2.3.2) provides strength amplifi-
cation during drilling.

3.2.2. Input parameters

The input parameters of the sensitivity analysis represent the di-
versity of potential collaborative robots. In this experiment, only the
mass of the robot abstraction (mass-spring-damper system) varies,
while the stiffness and damping are kept constant to limit the num-
ber of parameters. The geometric interference between the robot
and the worker is represented by constraints on the right arm and

105egments lengths: http://www.openlab.psu.edu/tools/
calculators/proportionalityConstant, segments masses:
http://biomech.ftvs.cuni.cz/pbpk/kompendium/biomechanika/
geometrie_hmotnost_vypocet_en

"'The acquisition of the technical gesture in itself only requires markers on
the tool or the subject’s hand and the drilling force.

Parameter Min. | Max.
DHM stature () 1.65 1.80
DHM BMI (kg.m™?) 21.0 27.0
angle pelvis - normal to stab (°) -30 30
offset distance pelvis - center of stab (m) | -0.3 0
upper body reference positions (°) 0,0, ) 15,45,
0,0 | 45,135
upper body joint limits 0.3 1.0
robot mass (kg) 2 10
amplification coefficient 1 3

Table 2: Drilling activity parameters definition and limit values. The pelvis
position is given in polar coordinates with respect to the center of the stab. The
offset for the pelvis-stab distance is added to the DHM arm length to define
the real pelvis-stab distance. The upper-body joint limits are specified as ratio
of the regular joint limits and applied to each joint of the back and right arm.
The reference positions of the upper-body joints are only modified for the back
flexion, shoulder flexion, shoulder abduction, elbow flexion; they are given in
the same order and relative to the reference posture (upright, arms along the
body). The reference positions of the four joints are not independent to limit
the number of parameter.

back (because the robot is manipulated with the right hand) joint
limits and joint reference positions, and on the pelvis distance and
orientation. The strength amplification coefficient is also included
in the parameters. Parameters representing the diversity of workers
are added to ensure that the human features do not have a strong
impact on the ergonomic situation (otherwise, the robot should in-
clude some adjustable parts to adapt to specific workers’ morpholo-
gies). The worker is defined by his/her stature and body mass index
(BMI). The numerical upper and lower bounds of the input param-
eters are given in Table 2.

The R software sensitivity toolbox'? is used to select the parame-
ters values — within the user-defined bounds — that need to be tested
for the extended FAST analysis. The sample size and set of fre-
quencies are chosen according to the recommendations of Saltelli
et al. [46]. They result in a grand total of 8008 simulations. One
simulation takes approximately 2 min (real time: 75 s) on one core
of a 2.4 GHz Intel R CoreTM i7 laptop, and the simulations can be
parallelized.

3.2.3. Results

The 26 ergonomic indicators defined in section 2.1 are analyzed.
The velocity and force transmission ratio are computed for the right
hand, in the motion direction and in the drilling direction respec-
tively.

Relevant ergonomic indicators. Table 3 presents the five er-
gonomic indicators — out of 26 in the initial list — that are identified
as relevant according to the sensitivity analysis. The five indicators
together represent 81 % of the total variance information, therefore
only little information is lost by not taking into the other indicators.
The selection of the upper-body torque and position indicators is
consistent with the physical demands of the drilling activity (exert-
ing a significant force with the right hand while covering a quite
extended area). The absence of any velocity or acceleration indi-
cators is consistent with the fact that the drilling activity does not

http://www.r-project.org
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Relevant ergonomic indicators
Legs Right Arm Back FTR drilling Right Arm
position torque torque direction position
31% 19 % 14 % 10 % 7 %
103 0.42
DHM stature 0.03 0.52
1073 0.05 0.02 10°°
DHM BMI 0.02 0.06 0.03 0.02
Pelvis 1077 0.01
" orientation 0.01 0.03
§ Pelvis distance 1073 1074 0.01 0.02 0.03
g 0.01 0.02 0.02 0.03
8 Upper body 0.60 0.56 0.08
£ ref. position 0.73 0.69 0.10 0.42
Upper body 0.01 0.06 1073 0.28
joint limits 0.03 0.10 0.02 0.43
Robot mass 1074 1076 10°° 10°¢ 10°°
1073 1073 1073 1073 0.02
Amplification 1077 0.46 10°° 1077 10°°
coefficient 1073 0.49 1073 1073 0.02

Table 3: Sobol indices for all five ergonomic indicators identified as relevant for the drilling activity. For each parameter and indicator, the upper value is the first
order index, the lower value is the total index. The ergonomic indicators are presented in decreasing order of importance (decreasing variance) from left to right: the
percentages below their names correspond to the percentage of the total variance they explain. FTR stands for force transmission ratio. Numbers are colored from

blue (minimum) to red (maximum), to facilitate the reading.

require fast motions. The presence of the legs joint position indica-
tor as the most discriminating indicator is, however, less expected.

Indicator-Parameter dependence. Some parameter-indicator rela-
tions represented by Sobol indices in Table 3 are strongly expected
and confirm the consistency of the proposed analysis (e.g. influence
of the strength amplification coefficient on the right arm torque in-
dicator, influence of the upper-body geometric parameters on the
right arm position indicator). Other relations, however, are less
straightforward and could not easily be guessed without the sen-
sitivity analysis (e.g. predominant influence of the upper-body ge-
ometric parameters on the legs position indicator, absence of in-
fluence of the strength amplification coefficient on the back torque
indicator).

Conclusion regarding robot design. The results of the sensitivity
analysis highlights two global trends. Firstly, the robot mass does
not significantly affect the overall ergonomic performance, since it
has no influence on any of the selected indicators. When designing
a collaborative robot for the drilling activity, the robot mass is there-
fore not a critical parameter (from an ergonomic point of view).
Secondly, all the selected indicators are significantly affected by at
least one of the parameters representing the geometric interference
between the robot and the worker. In the drilling activity, the mor-
phology of the robot is therefore critical to the ergonomic benefit
provided by the robot.

3.3. Evolutionary design of a robot morphology

The efficiency of a collaborative robot being highly task-
dependent, designing a robot specifically for a given activity is
often preferable to using a generic robot. Designing a dedicated
robot from scratch is, however, costly and therefore not accessible
to small companies. An intermediate solution is to use a generic
platform including modifiable elements.
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Figure 9: DHM simulation of the drilling task, assisted by a 7 DoFs Kuka
LWR-like robot with adjustable segments lengths L;, and providing strength
amplification.

3.3.1. Optimization variables

A generic 7 DoFs architecture (similar to a Kuka-LWR) with
variable lengths for the first five segments is used (Fig. 9); the robot
is manipulated by a user handle mounted on the end-effector. The
control law of the robot is not optimized (to limit the complexity
of the problem and hence the convergence time), so all robot can-
didates use the same strength amplification control law with @ = 2
(Eq. 4). The optimization therefore aims at finding optimal values
for the segments lengths and for the position and orientation of the
robot base!3.

3Unlike the sensitivity analysis where an abstraction of the robot is used,
the drilling activity is simulated here with the full robots candidates.



Though the physical features of the worker do affect the er-
gonomic performances (Table 3), only one average human mor-
phology is used in the optimization because the purpose is only to
make a proof of concept.

3.3.2. Objectives

According to the results of the sensitivity analysis (Table 3), five
ergonomic indicators are relevant to assess the drilling task; the op-
timization should therefore include five worker-oriented objectives
(one for each relevant indicator). The right hand FTR is however
removed to decrease the number of objectives in the optimization.
Indeed, the FTR is mainly affected by parameters which are con-
stant in the present optimization. The right arm and the back torque
indicators are gathered into one single indicator, called upper-body
torque indicator. Indeed, apart from the strength amplification co-
efficient which is constant here, the most influential parameters are
the same (with similar parameter/indicator trends) for both indica-
tors. A total of three ergonomic indicators (or worker-oriented ob-
jectives) are therefore included in the optimization.

The quality of the drilling task execution (task-oriented objec-
tive) is evaluated with the maximal position error of the drill ex-
tremity during the drilling phases (one objective). No additional
objective is used.

Due to the high number of objectives (four), the probability of a
robot belonging to the Pareto front is high, except if a very large
population size is used. The population size is, however, con-
strained by the computation time. Having most of the population
in the Pareto front — at least early in the optimization — is not desir-
able because it turns the EA into a random search algorithm. The
fitness (objective) values are therefore discretized to limit the num-
ber of robots in the Pareto front.

3.3.3. Evolutionary algorithm parameters

The population size and the number of generations in the EA
result from a compromise between the computation time and the
convergence of the solution. A population of 100 individuals and
200 generations are used. One generation is entirely evaluated in
about 1 hour on a four-core, 2.4 GHz Intel R CoreTM i7 laptop'*.

3.3.4. Results

The evolution of the four objectives is studied to evaluate the
capability of the optimization to find suitable robot morphologies.
The optimized robots are then compared with the non-assisted situ-
ation to estimate the ergonomic benefit brought by the robot.

Evolution of the objectives. The evolution of the four objectives is
displayed in Fig. 10 for the whole population. The mean value of
each objective decreases over generations, showing that the overall
performance of the robots in the population do improve. Except for
the upper-body torque indicator, the objectives minimal values stop
evolving almost immediately. The convergence of the objectives
maximal values, on the contrary, takes between 100 and 150 gener-
ations, especially for the three ergonomic indicators. It is therefore
easy to find a robot which performs well on one objective, but find-
ing a robot which matches all four objectives is much harder, hence
the usefulness of the optimization.

14The overall optimization time could however be significantly reduced if a
computer with more cores were used because the optimization framework is
implemented so that several XDE simulations can be run simultaneously.
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Figure 10: Evolution of the minimal, average and maximal values of the four
objectives over generations (all the robots in the population are included).
The discretized fitness values (no units) — and not the ergonomic indica-
tors/trajectory error values — are plotted.

(a) No robot (b) Robot R, (c) Robot R,

Figure 11: Snapshot of the DHM performing the drilling activity without as-
sistance and with the assistance of two near-optimal collaborative robots. The
colored spheres represent the instantaneous level of joint effort.

Comparison with the reference situation. During the optimization,
the situation with the robot is never compared with the non-assisted
situation. Though the robot performances are optimized, there is
no certainty that the use of the robot is indeed beneficial. The five
ergonomic indicators relevant for the drilling activity (Table 3) are
therefore measured in the reference situation (no robot) and with the
assistance of two near-optimal robots chosen within the Pareto front
of the last generation to represent different solutions (Fig. 11). To
make the situations comparable — and as a first validation — all three
situations are evaluated with the autonomous DHM (the exact same
DHM controller is used)'3. The results are displayed in Table 4.
Out of the five relevant indicators, two are significantly improved
by both robots (force-related indicators, expected since the robots

I5A video of the three simulations is available here https://www.
youtube.com/watch?v=8fkT6FSH4e0
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No robot Ry R,
Right arm position 90 105 125
Legs position 15 25 18
Right arm torque 125 _II
Back torque 75 43 38
FTR drilling 130 105 112

Table 4: Values of the five relevant ergonomic indicators without assistance (No
robot) and with the assistance of two near-optimal robots (R; and R;). For each
indicator, the value displayed is the percentage of the indicator reference value
(used for the scaling), so that the comparison is more meaningful (the reference
value gives an insight into the average order of magnitude of the indicator,
however it does not provide any indication on the absolute level of risk). The
indicators in red are worsened by the robot, those in green are improved.

provide strength amplification), two remain mostly unchanged, and
one is worsened. Despite the degradation in the right arm position
indicator, the comparatively significant improvements in the torque
and power indicators demonstrate the benefit of the robots. The two
near-optimal robots nevertheless show antagonistic performances
(e.g. Ry is better for the right arm torque but worse for the right
arm position), so it is hard to say which one is overall the best (even
more when all robots in the Pareto front are considered). The choice
between different near-optimal robots is then left to the designer or
ergonomist, according to his/her main concerns. The optimization
is nevertheless useful, since it performs a pre-selection of the best
performing robots. Moreover, the purpose of the optimization is not
to replace the designer, but to provide him/her with interesting pre-
liminary designs to be worked on, for further improving the robot
performances.

4. Discussion

The physically consistent results and the improvement of the
robots performances obtained through the optimization demonstrate
the usefulness of the proposed method. Its application within the
design process of collaborative robots for industrial tasks should,
however, be considered carefully because of some current limita-
tions which are discussed thereafter.

4.1. Limitations of the ergonomic indicators

Though the ergonomic indicators defined in section 2.1 cover a
wide range of MSDs risk factors, the repetitiveness factor is omit-
ted. Yet, repetitiveness belongs to the main MSDs risk factors [2].
The comparison of different collaborative robots is therefore con-
ducted on a single work cycle, and the robot which most decreases
the physical demands on one work cycle is assumed to the best
overall. But this hypothesis is only valid if the robots do not sig-
nificantly affect the work rate; this restricts the range of possible
applications of the proposed assessment method.

The other time-related risk factor — the duration factor — is taken
into account through the time integral value of each ergonomic in-
dicator. This solution comes down to measuring the time spent in
different danger zones, each zone being weighed by a danger co-
efficient equal to the value of the instantaneous demand. But the
relation between the time spent in a zone and the risk is very likely
not linear. For instance, the same final value can result either from a
medium demand all along the task, or from an alternation of strong
and light demands. Yet both situations do not have the same biome-
chanical consequences.
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Taking into account the time-frequency aspect of the gesture in
the ergonomic evaluation would enable a more accurate assessment,
as well as the possibility to extend the possible applications. How-
ever, it requires to understand how these time factors affect the hu-
man physical capacities, which is closely related to the open prob-
lem of fatigue modeling.

4.2. Limitations of the optimization

The proposed optimization does improve the performances of the
robots, compared to random robots in the initial population. How-
ever, the optimization process is useful only if it outperforms the
results a robot designer could achieve (i.e. does the optimization
provide robots with better or similar performances, in less or com-
parable time). The answer to this question is not straightforward
— neither in general nor for the drilling activity in particular — but
several elements must be underlined. Firstly, given the small num-
ber of task-related and environment-related constraints and the high
number of DoFs of the robot, the drilling activity is not strongly
constrained; a good solution would be much less intuitive in a clut-
tered environment where the optimization may be more useful [56].
The success of the optimization in a cluttered environment, how-
ever, strongly depends on the autonomy of the DHM for solving
complex problems(e.g. anticipating and avoiding collisions while
still reaching the task target); this autonomy is currently limited
(see section 4.3). Secondly, the performances of the optimization
could be improved by tuning the parameters of the evolutionary al-
gorithm. The values used in this work are based on general recom-
mendations, but no comparative studies have been carried out. The
tuning of the parameters should nevertheless not be task-dependent,
since the purpose is to provide a generic tool and not to address one
specific task.

4.3. Limitations of the DHM

Musculoskeletal model. Unlike the muscular actuation of the hu-
man body, the actuation of the DHM (in this work) is at joint level
only (joint torques), and each DoF is controlled by a single actu-
ator. The biomechanical quantities measured with such a model
are therefore less detailed than what could be achieved with a mus-
culoskeletal model. The DHM joint torques, in particular, do not
fully represent the overall physical effort exerted by a person. Due
to the redundancy of the human actuation, different combinations
of muscle forces can result in a same joint torque. Internal mus-
cle forces (i.e. forces which do not generate any joint torque) can
thus be generated by a person, but they do not have any equiva-
lent in the DHM model and are therefore not taken into account in
the evaluation. Such forces occur during the simultaneous contrac-
tion of antagonistic muscles (co-contraction phenomenon) and aim
at increasing the joint impedance to withstand perturbations arising
from limb dynamics or due to external loads [57]. Though espe-
cially important in motions requiring high accuracy, co-contraction
occurs in all motions to stabilize the joints and protect joint struc-
tures. Not taking co-contraction forces into account therefore leads
to an under-estimation of the real human effort. Nevertheless, when
comparing several collaborative robots, one can assume that the
smaller the effort required to perform the task (not including the co-
contraction), the smaller the co-contraction. External efforts (forces
to apply on the robot or environment) and gravity-induced efforts
(efforts required to maintain a posture) indeed represent a perturba-
tion to the position or force accuracy; if the perturbation is smaller,
the stiffness required to resist it is also smaller. A robot which is



the best regarding the joint torque indicator without considering the
co-contraction is therefore likely to be also the best when including
co-contraction.

DHM control. Since the sensitivity analysis and the optimization
are both based on DHM simulations, the biomechanical reliability
of the results strongly depends on the realism of the autonomous
DHM motion. The question of feet — as well as other contacts —
placement is essential, since the activities addressed by collabora-
tive robotics often require significant efforts and thus engage the
whole-body. Besides, workers may adapt their feet position dur-
ing the task, if the robot hinders their gestures. Conversely, the
DHM currently lacks autonomy regarding contact placement: the
feet positions are entirely set by the user and are therefore not nec-
essarily well-adapted to the task (the DHM can walk or step, but the
stepping time and place must be specified beforehand). Solutions
for automatic online feet adaptation [58] and for optimal contact
placement when significant external forces are at play [59] do exist,
but they only partly address the problem. The anticipated (i.e. not
purely reactive) optimal placement of contacts indeed requires com-
plex planning methods [60], which for now are too computationally
expensive to be used in the current context. More generally, sim-
ulating highly realistic human motions requires to understand the
psychophysical principles that voluntary movements obey. Many
studies have been conducted to establish mathematical formulae of
these principles, especially for reaching motions (Fitt’s law, mini-
mum jerk principle,...). De Magistris et al. [19] have successfully
implemented some of them within the XDE framework, and adding
these features in the controller used in this work is a direction for
future work. However, these improvements are currently limited to
reaching motions because the driving principles are not yet known
for all kinds of motions.

Nevertheless, if the results of the sensitivity analysis and opti-
mization presented in this paper are affected by the DHM limita-
tions, the method in itself is independent from the DHM control.
Thus in the near future an improved control law could be used to
animate the DHM, while the analysis and optimization methods re-
main the same.

5. Conclusion

This paper presents a generic method for performing detailed er-
gonomic comparisons of collaborative robots and its application to
the optimal design of such robots. The whole method is based on
DHM simulations and therefore requires only little input data (in
particular, no extensive motion capture experiments are needed).
For each new activity, ergonomic indicators relevant for robots
comparison are automatically selected among about 30 generic in-
dicators, using a sensitivity analysis. Critical design parameters of
the robot are identified, and then optimized with an evolutionary al-
gorithm. The whole method is applied to the optimization of a robot
morphology to assist a drilling activity. The results of the sensitivity
analysis are mostly in accordance with intuitive ergonomic consid-
erations, but they also highlight and quantify less straightforward
phenomena. Overall, the enhanced performances of the robots ob-
tained through the optimization demonstrate the usefulness of the
proposed approach for easily providing well-performing prelimi-
nary robot designs.

Finally, though the framework presented in this work specifically
addresses the collaborative robots providing strength amplification,
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it could easily be adapted for other kinds of collaborative robots,
assistive devices, or more generally workstations. Besides, other
applications of the sensitivity analysis could be envisaged, such
as identifying ergonomically critical phases in complex activities
(i.e. phases in which modifications of the robot/workstation have
the biggest consequences).
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