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ABSTRACT

Context. High-contrast hybrid coronagraphs, which combine an external occulter and a Lyot-style coronagraph became a reality in
recent years, despite the lack of analytic and numerical end-to-end performance studies. The solar coronagraph ASPIICS which will
fly on the future ESA Formation Flying mission Proba-3 is a good example of such a hybrid coronograph.
Aims. We aim to provide a numerical model to compute theoretical performance of the hybrid externally occulted Lyot-style coro-
nagraph, which we then aim to compare to the performance of the classical Lyot coronagraph and the externally occulted solar
coronagraph. We will provide the level and intensity distribution of the stray light, when the Sun is considered as an extended source.
We also investigate the effect of different sizes for the internal occulter and Lyot stop.
Methods. First, we have built on a recently published approach, to express the diffracted wave front from Fresnel diffraction produced
by an external occulter at the entrance aperture of the coronagraph. Second, we computed the coherent propagation of the wave front
coming from a given point of the Sun through the instrument. This is performed in three steps: from the aperture to the image of the
external occulter, where the internal occulter is set, from this plane to the image of the entrance aperture, where the Lyot stop is set,
and from there to the final image plane. Making use of the axis-symmetry, we considered wave fronts originating from one radius of
the Sun and we circularly average the intensities. Our numerical computation used the parameters of ASPIICS.
Results. The hybrid externally occulted Lyot coronagraph rejects sunlight below 10−8B� from 1.3R� - in the particular configuration
of ASPIICS. The Lyot coronagraph effectively complements the external occultation. We show that reducing the Lyot stop allows a
clear gain in rejection, being even better than oversizing the internal occulter, that tends to exclude observations very close to the solar
limb. As an illustration, we provide a graph that allows us to estimate performance as a function of the internal occulter and Lyot stop
sizes.
Conclusions. Our work consists of a methodological approach to compute the end-to-end performance for solar coronagraph.

Key words. Sun: corona - Instrumentation: high angular resolution - Method: analytic

1. Introduction

The Sun’s corona consists of a fully ionized plasma, with a
strong magnetic field. Its physical structure and dynamics are
governed by multiple processes, theoretical models of which
still need to be assessed and investigated. Indeed, its properties,
such as density of the plasma, temperature, and magnetic field
structures, are far more complex than any other planet magne-
tosphere, as described by Aschwanden (2005). Coronal mass
ejections (CMEs), heating processes operating in the corona, and
even solar wind interaction and acceleration are still not per-
fectly understood. The active study of the corona of the Sun
needs both simultaneous and complementary multi-wavelength
observations. A very high angular resolution, of the order of the
arcsecond, is required to constrain the finest coronal structures
(Zhukov et al. 2000; Peter et al. 1965), as well as sporadic
events such as CMEs.

Observing the solar corona in white light requires perfect
eclipse conditions, because the coronal brightness in this spec-
tral band is much fainter than the halo of diffraction produced

by the Sun, typically from 10−6B� to 10−10B�, where B� is
the mean solar brightness (Allen 2005). By creating artificial
eclipses, the first Lyot solar coronagraph was a breakthrough
for the study of the solar corona (Lyot 1939; Dollfus 1983).
The development of the external occultation technique (Evans
1948) coupled with advanced stray light rejection concepts, such
as toothed or multiple discs (Newkirk & Bohlin 1965; Purcell
& Koomen 1962), and the advent of space-borne instruments
considerably improved the performance of solar coronagraphs,
as described in the review paper by Koutchmy (1988). The solar
coronagraph LASCO C2 (Large Angle Spectroscopic Corona-
graph) of the Solar and Heliospheric Observatory mission can
be held as a representative and successful example. This instru-
ment combined an external occulter made of multiple discs and
a Lyot-style solar coronagraph to achieve a sufficient rejection of
residual diffracted sunlight, and managed to observe the corona
in white light beyond 1.5R�, where R� is the radius of the Sun,
with a resolution of 11.4arcsec per pixel (Brueckner et al. 1995).
However, historically, observing the solar corona very close to
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the solar limb, where instrumentally scattered sunlight usually
predominates, has never been successful without an eclipse of
the Sun by the Moon.

The development of Formation Flying space missions will
pave the way for new advanced concepts of space instrumenta-
tion by virtually enlarging instruments to unprecedented size, es-
pecially in coronagraphy. The solar coronagraph ASPIICS (As-
sociation de Satellites Pour l’Imagerie et l’Interférométrie de la
Couronne Solaire) described in Lamy et al. (2010) and Renotte
et al. (2015) takes advantage of the future ESA Formation Fly-
ing mission Proba-3, and is split between two spacecraft. The
concept of the optical design, detailed in Galy (2015), is similar
to SOHO LASCO C2. Its 1.42m diameter external occulting disc
is mounted on the Occulter Spacecraft while the Lyot-style solar
coronagraph of 50mm diameter aperture is carried by the Coron-
agraph Spacecraft positioned 144m behind. Its theoretical angu-
lar resolution is 2.77arcsec - with Rayleigh criterion at 550nm.
Such a large size is new in the domain of solar coronagraphy and
is the main feature of ASPIICS. The hybrid coronagraph is ex-
pected to be able to observe the solar corona in white light from
1.08R� (1036arcsec) to 3R� (2880arcsec) (Lamy et al. 2010),
revealing fine scale structures very close to the solar limb.

As already mentioned, solar coronagraphy is mainly con-
strained by the halo of diffraction from the direct sunlight, which
limits any observations and drives the performance. Sensitive
analysis of this particular stray light is rather complex as it in-
cludes an extended light source - the Sun - which makes such
a work much more difficult than considering one single point
source, as is done in the particular domain of exoplanet coro-
nagraphy where numerous analytic studies have been done -
see for instance (Cash 2006; Vanderbei et al. 2007; Flamary
et al. 2014). In solar coronagraphy, only a few numerical and
analytical studies of rejection performance have been published
(Lenskii 1981; Aime et al. 2002; Aime 2007, 2013). We also
note that the purely analytical studies of Ferrari (2007) and Fer-
rari et al. (2010) come with the drawback that the Lyot stop must
equal the entrance pupil and cannot be reduced. There are also
some experimental approaches, such as the works described in
Fort et al. (1978), Bout et al. (2000), Venêt et al. (2010) and
Landini et al. (2010). In contrast, extensive and complete an-
alytic and numerical analysis appears nowadays mandatory, for
modern advanced high-contrast instrumentation. We address this
need by presenting here a general study on the performance of
solar coronagraphic systems. We compute the global response of
the hybrid externally occulted Lyot coronagraph, that we com-
pare to the classical Lyot coronagraph and the external solar
coronagraph. We also investigate the impact of the size of the
Lyot mask and the stop on stray light rejection.

The paper is organized as follows. The model and the frame-
work adopted for this study are given in Sect. 2. The mathemati-
cal wave propagation into the Lyot-style coronagraph is derived
in Sect. 3, standing as a new computation. The comparison of
the response of the different coronagraphic systems and further
analysis on sizing both Lyot mask and stop are discussed in Sect.
4. Conclusions are given in Sect. 5.

2. Model of the coronagraph

2.1. Presentation of the model

The classical Lyot coronagraph is made of four key planes rep-
resenting the instrument. In a previous theoretical study of this
system by Aime et al. (2002), these planes are denoted as A
(entrance aperture), B (focal plane), C (image of the entrance

Table 1. Key planes of the coronagraphic systems.

Plane Description
O External occulter plane
A Aperture of the telescope
B Focal plane of the telescope
O’ Image of plane O made by the telescope
C Image of plane A
D Final focal plane

Table 2. Definition of the four imaging systems.

Name of the system Combination of planes
SØ Raw telescope A + B
SL Classical Lyot coronagraph A + B + C + D
SE External solar coronagraph O + A + B

SEL
Hybrid externally occulted O + A + O′ + C + DLyot solar coronagraph

aperture) and D (final focal plane). By adding an external occul-
ter, two additional planes must be introduced. On one hand, the
external occulter is positioned in plane O at a finite distance from
the entrance aperture of the telescope. On the other hand, plane
O’ denotes the image of the external occulter made by the tele-
scope. It is located further behind the focal plane. In our model,
we assume that the primary objective (L1) coincides with the
pupil in plane A. Table 1 recalls the names and descriptions of all
the planes, also illustrated in Fig. 1. The light encounters these
successive planes in the order O, A, B, O’, C and D. As de-
scribed previously, our work is focused on three different coron-
agraphic systems plus the related reference imaging system. Fig-
ure 1 presents a schematic illustration of the four systems named
as follows. SØ denotes the raw telescope used as a reference,
consisting of plane A and plane B - Fig. 1a. SL is the classical
Lyot coronagraph, consisting of plane A, the Lyot mask in plane
B, and the Lyot stop in plane C - Fig. 1a. SE is the externally oc-
culted solar coronagraph, consisting of the external occulter in
plane O, and ending at the focal plane B - Fig. 1b. SEL denotes
the hybrid externally occulted Lyot solar coronagraph composed
of the external occulter in plane O, an internal occulter and the
second objective (L2) in plane O’, and the Lyot stop in plane C
- Fig. 1b. We note that we distinguish the Lyot mask, denoting
the occulting disc set in plane B, and the internal occulter, being
in plane O’ of the hybrid coronagraphic system S EL. The four
systems SØ, SL, SE and SEL include the same circular entrance
aperture in plane A. Table 2 summarizes the description of the
four systems.

Our model is generic, and provides a methodological study
on performance of such coronagraphic systems when considered
as perfect. In order to have a realistic set-up, we have used the pa-
rameters of ASPIICS coronagraph (Lamy et al. 2010; Renotte et
al. 2015) for the numerical computation. The external occulting
disc of radius R = 710mm is located at z0 = 144.348m before
the 50mm diameter entrance aperture. The telescope consists of
a converging lens of focal length f = 330.385mm. The Sun is as-
sumed to be at infinity. Its angular radius is R� = 0.0046542rad
as seen from the centre of the aperture, so ∼ 960arcsec. The an-
gular radius of the external occulter is 1.0568R�, as viewed from
the centre of the entrance aperture. Table 3 summarizes the nu-
merical parameters.

The radius of the Lyot mask set in plane B will be given in
solar units R�, since this plane is the conjugate of the solar disc.
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Fig. 1. Schematic representation of the four imaging systems. (a) The classical Lyot coronagraph SL made of planes A, B, C and D. The raw
telescope SØ ends at focal plane B. (b) The hybrid externally occulted Lyot solar coronagraph SEL made of planes O, A, O’, C and D. The
externally occulted solar coronagraph SE ends at focal plane B. Figures not to scale.

However, the internal occulter is set in plane O’ which is the
conjugate image of plane O. We will thus speak in terms of units
of external occulter image. A simple proportional relationship
applies here to convert this particular unit system to solar units,
or metric units if needed. In plane O’, the image of the external
occulter radius R corresponds to 1.0568R�, so to 1.629mm. We
emphasize that using solar unit has no real meaning in plane O’,
since it is not conjugated with the Sun. Finally, as plane C is the
conjugate image of plane A, the dimension of the Lyot stop will
be given in units of the image of the entrance pupil, meaning that
a Lyot stop of 1.00 has the exact same size as the image of the
radius of the pupil in plane C, so it corresponds to Rp = 25mm.

2.2. Analytic and numerical framework

All the planes previously defined are assumed to be perfectly
parallel and perpendicular to the optical axis, so that the ge-
ometry is axis-symmetric. We note that our model is general
enough to cover transverse off-sets, but this would require fur-
ther computations that are left to future works. To each plane we
set a (r, θ, z) cylindrical coordinate system. The z-axis refers to
the optical axis, oriented positively towards the detection plane.

The corresponding Cartesian coordinate system (x, y, z) is de-
fined by x = r cos θ and y = r sin θ. In the remainder of the
article, we will sometimes use both coordinates simultaneously,
because this slight abuse of notation allows more compact and
readable equations. To provide a better understanding, we will
use as subscript the letter O, A, B, O’, C or D referring to the
corresponding plane for every quantity.

To model the perfect sharp-edged disc, the transmission in
plane O is a radial gate function τ(r) = 0 if r ≤ R and τ(r) = 1
else. The Lyot mask (internal occulter) in plane B (plane O’) is
similarly modelled. The entrance pupil in plane A is a perfect
circular aperture of radius Rp = 25mm.

Our study uses monochromatic light, here λ = 550nm. We
have adopted a Fresnel regime to describe diffraction induced by
the external occulter, as suggested by the large value of Fresnel
numberN f = R2/λz0 = 6350 (Born & Wolf 2006). The analytic
propagation of wave front is based on paraxial Fourier optics for-
malism (Goodman 2005). Under this assumption, Fresnel free-
space propagation of a wave front Ψ0 (x, y) over a distance z is
written as convolution product. The complex amplitude Ψz (x, y)
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Table 3. Parameters for the numerical study - from ASPIICS configu-
ration. See text for details.

Parameter Value
Wavelength λ = 550nm
Angular radius of the Sun R� = 0.0046542rad

= 960arcsec
Distance to the Sun ∞ (1 Astronomical Unit)
Radius of the external occulter R = 710mm
Distance plane O - plane A z0 = 144.348m
Radius of the pupil Rp = 25mm
Focal length of the telescope f = 330.385mm

of the propagated wave front at distance z is

Ψz (x, y) = Ψ0 (x, y) ~
1

iλz
exp

(
iπ

x2 + y2

λz

)
=
ϕz(r)
iλz
× Fλz

[
Ψ0 (x, y) × ϕz(r)

]
, (1)

where ϕz(r) = exp(iπr2/λz), and r =
√

x2 + y2 is the transverse
radius in cylindrical coordinates. Fλz denotes the 2D Fourier
transformation with spatial frequencies u = x/λz and v = y/λz.
Equation (1) is the so-called Fourier-Fresnel transformation of
the function Ψ0 (x, y), where the phase term exp(2iπz/λ) for the
longitudinal propagation has voluntary been omitted. Moreover,
in the Fourier formalism, a converging lens of focal length f is
modelled by the quadratic phase factor ϕ− f (r) = exp(−iπr2/λ f ).
Propagating through a lens consists of multiplying the complex
amplitude of the incoming wave front by ϕ− f (r). A well known
result is the propagation to the focal plane of a lens, that is, z = f
in Eq. (1). In this case, the two quadratic phase factors ϕ− f (r) and
ϕ+ f (r) cancel each other out. Consequently, the wave in the fo-
cal plane is directly proportional to the Fourier transformation
of the incoming wave at its entrance, to a scale factor λ f and a
quadratic term ϕ f (r) that is canceled when computing the inten-
sity.

The Sun is modelled by a collection of incoherent point
sources. The global response of any system is given by the inco-
herent sum of their respective elementary intensities. Every point
source is identified by a set of angular coordinates (α, β) on the
sky, with

√
α2 + β2 ≤ R�. As it will be discussed in Sec. 4.1,

the number of point sources needs to be carefully fixed to meet
Shannon criteria for the numerical sampling of the Sun. To pro-
vide a better understanding, we will also use as subscripts the co-
ordinates (α, β) to refer to a precise point source for every quan-
tity. As the Sun is at infinity, the light coming from every point
source is modelled by tilted planar wave, whose unitary complex
amplitude is written as Ψ�,α,β (x, y) = exp(−2iπ/λ(αx + βy)).

We use the center-to-limb variation of the Sun B(α, β) from
Hamme (1993), given in Eq. (2), to model the non-uniformity
of the viewed brightness of the solar disc. This choice has been
driven by the need to have a representative limb-darkening func-
tion for the specific wavelength λ = 550nm.

B(ρ)=1−0.762
(
1−

√
1 − ρ2

)
−0.232

(
1−ρ2

)
log

(√
1−ρ2

)
, (2)

where ρ =
√
α2 + β2/R� is the angular radial coordinate on the

solar disc, expressed in solar units.

2.3. Fresnel diffraction by the external occulter

Fresnel diffraction produced by a sharp-edged disc has already
been described by Aime (2013) (his Eq. (5)). We will briefly
recapitulate the main results of interest. The tilted planar wave
front Ψ�,α,β (x, y) coming from the point source at (α, β) arrives
onto the occulter in plane O, and then propagates in free-space.
Related complex amplitude ΨA,α,β of the wave front arriving on
plane A is thus written as a Fourier-Fresnel transformation.

ΨA,α,β (x, y) =
[
Ψ�,α,β (x, y) × τ

]
~

1
iλz0

exp
(
iπ

x2 + y2

λz0

)
= Tα,β(x, y) × Γα,β × ΨA,0,0 (x + αz0, y + βz0), (3)

where

Tα,β(x, y) = exp
(
−2iπ

αx + βy
λ

)
(Tilt)

Γα,β = exp
(
−iπ

(α2 + β2)z0

λ

)
(Offset)

ΨA,0,0 (x, y) = 1−
1

iλz0

∫ ∫
η2+ξ2≤R2

exp
(
iπ

(x − ξ)2+(y − η)2

λz0

)
dξdη, (4)

with ξ, η the Cartesian variables for integration over the occult-
ing disc. As a result, an off-axis point source produces the same
complex amplitude as the on-axis point source - ΨA,0,0 - but
shifted of the quantity (z0 × α, z0 × β) towards negative (x, y) di-
rections. The constant phase term Γα,β accounts for the offset of
position, and the original tilt Tα,β of the wave is conserved. Let us
now consider the particular case of the on-axis point source. Tak-
ing advantage of the cylindrical symmetry, we naturally change
for polar coordinates (r, θ). Equation (4) is then written as a ra-
dial Hankel transformation:

ΨA,0,0 (r) = 1 −
ϕz0 (r)
iλz0

∫ R

0
2πρ exp

(
iπ
ρ2

λz0

)
J0

(
2π

rρ
λz0

)
dρ, (5)

where ρ is the radial variable for integration over the disc, r is the
transverse radial coordinate on plane A, ϕz0 (r) = exp(iπr2/λz0)
and J0(r) is the Bessel function of the first kind. Equation (5)
is the exact analytic expression of Fresnel diffraction in the par-
ticular case of the on-axis point source. The computation of the
Hankel transformation ΨA,0,0 (r) (Eq. (4)) remains a delicate op-
eration, as described by Lemoine (1994). We chose to use NInte-
grate in Mathematica (Wolfram 2012), since it has been proved
to give sufficient numerical precision (Aime 2013). An analytic
expression using the Lommel series can alternatively be used. In
Fig. 2 (curve (a)), we plot Fresnel diffraction pattern |ΨA,0,0 (r)|2,
known as the bright spot of Arago, for the 710mm diameter disc
at the distance z0 = 144.348m, in a logarithmic scale. The dis-
tance between the first zeroes of the Arago spot is approximately
1.53λz0/2R, being 171µm in our case. Using an analogy to Shan-
non’s criteria, the radial sampling must be much tighter than half
of this value. We voluntary chose to over-sample at 0.1µm, for
better 2D-interpolation. In Fig. 2, we also show the central spot
in linear scale (curve (b)), whose peak intensity is 1 for r = 0
as expected, and the transition zone between shadow and light
(curve (c)). We note that the intensity decreases below 10−4 for
larger values of r.
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Fig. 2. Fresnel diffraction pattern
∣∣∣ΨA,0,0 (r)

∣∣∣2 for unitary on-axis point
source at infinity, for the 710mm radius occulting disc at z0 =
144.348m. (a) Full range, in logarithmic scale. (b) Zoom in the Arago
bright spot in the central region [0, 500µm], in linear scale. (c) Transi-
tion region between shadow and light around 710mm, in linear scale.

3. Propagation through the coronagraph

The propagation of every wave front consists in a coherent pro-
cess through each successive plane of the coronagraph. We suc-
cessively derive ΨB, ΨO′ , ΨC , and finally ΨD, for each system
SØ, SL, SE , or SEL. However, the observed response is the result
of the incoherent summation of every elementary intensity. So,
let us consider one point source located at (α, β) on the solar disc.
In this section, we will voluntary omit the subscripts (α, β) for a
better readability, and we will preferably use polar coordinates
(r, θ) rather than the Cartesian coordinates (x, y).

3.1. Classical Lyot coronagraph

As already described, the classical Lyot coronagraph SL is mod-
elled by planes A, B, C and D (Aime et al. 2002), and does not
include the external occulter. At the entrance aperture, ΨA corre-
sponds then to a simple tilted planar wave front. Here, the coro-
nagraph acts as a mere imaging system, adding the Lyot mask
in the focal plane. Using the approach of Fourier formalism de-
scribed in Sec. 2.2, the propagation process through the whole
instrument consists in scaled Fourier transformations between
each of the successive planes, that is, from A to B, from B to C
and from C to D. The images are of different sizes, depending on
the lenses used for imaging, but these variations in size do not
affect the result. In terms of Fourier analysis, the Lyot mask in
B behaves as a high-pass filter and the Lyot stop in C behaves
as a low-pass filter. It is the conjugate effect of these two masks

that makes the Lyot coronagraph efficient for the rejection of the
direct sunlight where we want to observe the corona.

We name P(r),M(r) and L(r) the radial transmission func-
tions of the entrance pupil in A, the Lyot mask in B and the Lyot
stop in C respectively. The wave front ΨB in the focal plane of
the objective L1 results of a Fourier transformation, as described
in Sec. 2.2.

ΨB(r, θ) =
ϕ f (r)
iλ f

× Ψ̃B(r, θ), (6)

where Ψ̃B(r, θ) = Fλ f [ΨA(r, θ) × P(r)]. Therefore, the intensity
in plane B is merely proportional to the Fourier transformation
of ΨA(r, θ)×P(r). The wave front in plane B encounters the Lyot
mask M(r) and the second objective L2 of focal f2. Plane C is
the image of the entrance aperture that is located at a distance
d = f × f2/( f − f2) from plane B, as given by the relation of
conjugation for lens. Writing a Fourier-Fresnel transformation of
ΨB over the distance d, the three quadratic phase factors ϕ f (r),
ϕ− f2 (r), and ϕd(r) cancel each other out.

ΨC(r, θ) =
ϕd(r)
iλd

× Fλd

[
ΨB(r, θ) ×M(r) × ϕ− f2 (r) × ϕd(r)

]
=
−ϕd(r)
λ2 f d

× Ψ̃C(r, θ), (7)

where Ψ̃C(r, θ) = Fλd

[
Ψ̃B(r, θ) ×M(r)

]
. Again, the intensity

in plane C is proportional to the Fourier transformation of
Ψ̃B (r, θ)×M(r) (Aime et al. 2002). Based on the same principle,
the wave front in plane D is obtained by performing a Fourier
transformation of Ψ̃C(r, θ)×L(r), corresponding to the image on
the focal plane of the whole imaging system.

ΨD(r, θ) =
ϕ f (r)
iλ f

× Fλ f

[
Ψ̃C(r, θ) × L(r)

]
. (8)

The wave propagation for the reference telescope SØ is lim-
ited to the first propagation to plane B as described in Eq. (6). We
also applied this analytic formulation to the external solar coro-
nagraph SE by considering Fresnel diffraction for the complex
amplitude ΨA at the entrance aperture, given by Eq. (3).

3.2. Hybrid externally occulted Lyot solar coronagraph

Let us now consider the hybrid coronagraph SEL. This system
varies from the classical Lyot coronagraph SL, since it has the
internal occulter in plane O’. Plane B has no more actual inter-
est in this particular case and shall be skipped. Moreover, ΨA
consists now of Fresnel diffracted wave front as given in Eq. (3),
because of the external occulter in plane O. We directly write the
Fourier-Fresnel propagation over the distance z1 = z0 f /(z0 − f )
between planes A and O’. The wave front ΨO′ in plane O’ is then
expressed as

ΨO′ (r, θ) =
ϕz1 (r)
iλz1

× Fλz1

[
ΨA(r, θ) × P(r) × ϕ− f (r) × ϕz1 (r)

]
ΨO′ (r, θ) =

ϕz1 (r)
iλz1

× Ψ̃O′ (r, θ), (9)

where Ψ̃O′ (r, θ) = Fλz1

[
ΨA(r, θ) × P(r) × ϕ−z0 (r)

]
. The main dif-

ference between Ψ̃B in Eq. (6) and Ψ̃O′ in Eq. (9) is the quadratic
phase factor ϕ−z0 (r) = exp(−iπr2/λz0). It can be interpreted as
a virtual converging lens of focal length z0 which rejects the
external occulter at infinity. Consequently, the image of plane
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O made by the primary objective is now moved into the focal
plane, and so it is computed as a simple Fourier transforma-
tion, as previously. This reasoning makes the computations much
more convenient than first considering the wave in plane B and
then propagating it to O’ using Fresnel propagation over the dis-
tance f 2/(z0 − f ).

Then, the wave front in plane O’ encounters the internal
occulter M(r) and the second objective L2. Here, we can di-
rectly apply Eq. (7) to derive the complex amplitude of the
wave front in plane C, where the distance d becomes now to
d = z1 × f2/(z1 − f2). However, the quadratic phase factor ϕ−z0 (r)
remains. Since we want to obtain in plane C the exact image of
the pupil, we have to get rid of this unwanted factor. This is sim-
ply obtained by multiplying the complex amplitude in plane C
by ϕ+z0 (r), which corresponds to a diverging lens of focal z0 that
compensates the first virtual converging lens.

ΨC(r, θ) =
−ϕd(r)
λ2z1d

× Ψ̃C(r, θ) × ϕ+z0 (r), (10)

where Ψ̃C(r, θ) = Fλd2

[
Ψ̃O′ (r, θ) ×M(r)

]
. Finally, the wave front

in plane D is given by Equation (8).

3.3. Observed intensities

The total intensity IK on plane K ∈ {A, B,O′,C,D} is the in-
coherent sum of the elementary intensities due to every points
source describing the whole solar disc. From here, the complex
amplitude ΨK ,α,β (r, θ) will be written as a function of four vari-
ables ΨK (α, β, r, θ), to clarify the integration process. Taking into
account the center-to-limb darkening function B(α, β), the inte-
grated intensity due to the whole solar disc is

IK (r, θ) =

∫∫
B(α, β) × |ΨK (α, β, r, θ)|2 dαdβ, (11)

where K ∈ {A, B,O′,C,D}. This Fredholm integral of the
first kind cannot be computed as a mere convolution since
ΨK (α, β, r, θ) is not shift invariant with respect to (α, β). So a
2D numerical summation must be performed, and the integral
in Eq. (11) shall be transformed into a finite sum, using discrete
values αk and βl for α and β. We emphasize that for each αk
and βl we obtain a elementary 2D image. The required number
of sampling points on the solar disc, that is, k and l, can be de-
rived using Shannon criteria of the interpolation formula. The
sampling must be tighter than 0.5λ/Dp radian, with Dp = 2Rp
the diameter of the entrance pupil. This corresponds to an upper
limit of 1.13arcsec in our case, being a minimum of 1692 points
in a solar diameter, or about 2.25 millions points on the whole
solar disc. For the general Fredholm integral, the derivation of
the required number of samples is not so straightforward, but the
result is the same due to the inherent nature of band limited im-
ages. The computation of the final observed intensity in plane D
therefore requires three times as much 2D Fast Fourier Transfor-
mations as the number of sampling points on the solar disc - 6.75
million.

At this stage, we can actually take advantage of the axis-
symmetry of the system. We remind the reader that it assumes
that the Sun and every remarkable planes are parallel and aligned
to the optical axis. In Eq. (11), we now replace solar angular co-
ordinates (α, β) by (ρ, θs), with α = ρ cos θs and β = ρ sin θs,
meaning having ρ ∈ [0,R�] and θs ∈ [0, 2π]. The assumed sym-
metry makes the 2D image of one point source |ΨK (ρ, θs, r, θ)|2
in plane K rotate identically with respect to the point source on
the solar disc, that is, θs. In other words, it only depends on the

relative angular difference φ = θ−θs. As a result, integrating over
the solar polar angle θs is equivalent to circularly integrating on
the 2D image plane, so over θ. Moreover, the solar brightness
is a radial function, so B(α, β) = B(ρ). By substituting θ by φ,
the integrated intensity given in Eq. (11) becomes the following
radial function

IK (r) =

∫ 2π

0

[∫ R�

0
B(ρ) × |ΨK (ρ, θs, r, φ + θs) |2 ρdρ

]
dφ. (12)

From a numerical point of view, it is much more convenient
to compute this last integral than the rough full two-dimension
summation. In Eq. (12), θs can arbitrarily be fixed to 0, since
the integration is performed over 2π, so we choose α = ρ and
β = 0. This means that we only need to propagate the wave fronts
coming from the point sources of one elementary radius of the
Sun. The integration is thus performed as a weighted numerical
summation of two-dimension images, using discrete values ρk to
sample the solar radius, using the sampling requirement defined
above, followed by a circular average of the result.

4. Analysis and discussion

4.1. Numerical implementation

We now present the results of the complete computation of the
observed intensities IK (r) on each plane K ∈ {A, B,O′,C,D},
accordingly for each configuration SØ, SL, SE and SEL. Using
the complex amplitude ΨA computed with Mathematica, the
wave front is linearly interpolated and the propagation is per-
formed with Matlab 2D Fast Fourier transformation combined
with the re-centering routine fftshift when necessary. In ad-
dition to this paper, we provide a dedicated Matlab/Octave tool-
box, whose content will be continuously updated, for the sake of
reproducible research. This package can be found at the follow-
ing link: https://github.com/rrougeot/FourierOptics.

A difficult and sensitive parameter in this numerical study is
the choice of the sampling in each plane. Indeed, as discussed in
Soummer et al. (2007), in successive planes (A to B or A to O’,
B to C or O’ to C, and C to D), the sampling requirements are op-
posite. This problem is known as the two-fold sampling require-
ment. The point of view which has been adopted in the present
work is somewhat empirical. We imposed the same number of
points in the occulter image in plane O’ and in the telescope
aperture in plane A. We note that this a priori is sensible since
it provide a similar resolution in all planes, but other sampling
strategies might be of interest. The telescope aperture is padded
inside an array of N × N points, and np < N points are used in
the radius Rp of the aperture. The spatial sampling in plane A is
thus sA = Rp/np, for a total spatial field FA = N × Rp/np. Due
to the properties of Fourier spatial frequencies, the field FA in
plane A produces a sampling sO′ = λd/FA in plane O’, where
d = z0 f /(z0 − f ) is the distance between plane A and plane O’.
Moreover, the size of the image of the external occulter radius
is R × d/z0. Therefore, the corresponding number of points nr in
plane O’ is nr = Rd/z0sO′ . By imposing nr = np, we obtain:

nr =

√
R × Rp × N

z0 × λ
∼ 14.9525

√
N. (13)

For numerical reasons, N should preferably be a power of two,
and at least 4096 points are required for a correct sampling of the
image to respect Shannon criterion. Of course, the larger N the
better the result due to zero-padding effect, being a compromise
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between computation time and precision.
The results of computation reported in this paper have been

made using a machine with two 14 core Intel Xeon processors
and 512GB of RAM, using N = 213 = 8192, giving np = 1353,
which corresponds to a sampling of 18.5µm and a spatial field
of 15.6cm in plane A. We chose to over-sample the solar radius
by setting 1000 point sources rather than 846. Each step in the
numerical computation has been verified in particular with point
sources. We used a Lyot mask or internal occulter of 1.065R�
radius and a Lyot stop sizing 0.99 times the entrance aperture
image, to illustrate the numerical study. Despite the fact that the
size of the Lyot stop is only scaled to the size of the entrance
aperture, we warn the reader that the results strongly depend on
the value of Rp.

4.2. Impulse response in the Lyot coronagraph

We investigate the impulse response originating from one point
source in both plane B and O’, while adding the external occul-
ter in plane O. We first analyzed the on-axis point source. In this
case, the response is symmetric, and the image is a bright cir-
cle which perfectly fits the image of the external occulter edge.
In plane O’, this circle is very thin, as illustrated in Fig. 3. The
intensity is focused as if the edge of the external occulter emits
light as a real object. The response in plane B consists in a larger
blurred circle, as expected. Second, we analyzed the response
from the off-axis point source at α = 768arcsec, i.e. 0.8R�. Fig-
ure 4 shows the two-dimension intensities in both plane B (plots
(a) and (b)) and O’ (plots (c) and (d)). The shift of the Arago
spot produces strongly asymmetric light pattern, while the on-
axis case was perfectly symmetric. The sharpness and the fine
scale structure of the diffraction features, as shown in plots (b)
and (d) in Fig. 4, for plane B and O’ respectively, prove the need
of a very high sampling on both planes. A very dominant point
is that the light pattern in plane B tends to be spread perpen-
dicularly to the local edge of the image of the external occulter.
On the contrary, plane O’ shows a diffracted light pattern fitting
locally the image of the external occulter.

4.3. Response of the different coronagraphic systems

4.3.1. Intensity in plane A

The rejection from the external occulter can first be assessed by
computing the intensity IA(r) at the entrance aperture of the tele-
scope. In Fig. 5, we plot the penumbra profile of diffracted light
and its corresponding geometrical umbra profile. The horizontal
axis represents the radial coordinate in mm, starting at the center
of the umbra cone. The occulter disc is 1.0568 larger than the
solar stenope image, which corresponds to a geometrical umbra
of R − z0 tan R� = 38mm radius, and the intensity is equal to the
full solar irradiance beyond R + z0 tan R� = 1382mm. Because
of diffraction, the scattered light remains at a level of 10−4B� at
the center of the umbra cone, as a flat plateau. The external oc-
cultation has therefore reduced direct sunlight by four orders of
magnitude at the entrance aperture, which is a first significant ad-
vantage for both externally occulted systems SE and SEL. Here,
apodization techniques (Aime 2013) or more complex shapes
of occulter (Bout et al. 2000) may improve the performance. In
Appendix A, variations of the distance z0 are investigated, and
we provide a plot illustrating different penumbra profile.

4.3.2. Intensity in plane B

Figure 6 shows the radial intensities IB(r) in plane B, limited
to 3.2R�, in logarithmic scale. Here, the image of the Sun (blue
curve) is perfectly focused, and is used as a reference for normal-
ization. This consists of the global response of the raw telescope
SØ. The center-to-limb variation is apparent as a slight decrease
in the range 0 − 1R�. Sunlight falls abruptly to 10−3B� at 1R�,
then extends as a large tail of residual light brighter than 10−5B�.
This comes from the summation of the Airy rings at large ra-
dius. The diffracted light pattern produced by the external occul-
ter consists of a bell-like curve out-of-focus, as expected, since
the focal plane is not the conjugate image plane of the external
occulter. The width of this peak is function of the size of the en-
trance aperture, like the Airy radius. We note that the peak is not
symmetric, and reaches a maximum of 10−3B� around 1.05R�.
This last curve models the response of the externally occulted
solar coronagraph SE .

4.3.3. Intensity in plane O’

Similarly, Figure 7 shows the radial intensities IO′ (r) in plane
O’ in logarithmic scale, using the same scaled axis as Figure 6
for a purpose of comparison. We remind the reader that using
solar units here has no real meaning, since plane O’ is not con-
jugated with the Sun as discussed in Sec. 2.1. The image of the
Sun is very similar to the one in the focal plane - Fig. 6, but is
slightly out-of-focus here, as it is at d − f = 0.758mm ahead.
The drop to 10−3B� is consequently smoother. The large tail of
residual light is still present. The diffracted light by the external
occulter is now focused in a very narrow peak of 10−2B� am-
plitude, located at the exact angular position of the edge of the
external occulter image, i.e. 1.0568R� or 1.629mm. This feature
is expected because plane O’ is the conjugate image plane of the
external occulter.

4.3.4. Residual light

Before inspecting the observed intensity in plane C and plane D,
it is interesting to look at the integrated residual light on both
planes B and O’. In the classical Lyot coronagraph SL, the Lyot
mask is set in the focal plane and blocks the direct focused sun-
light (Fig. 6). A relatively large amount of residual light yet prop-
agates further inside the instrument. In the case of the hybrid
externally occulted Lyot coronagraph SEL, the internal occulter
blocks the diffracted light fringe (Fig. 7), and its dimension gov-
erns the rejection. For comparison, we looked at the integrated
residual light denoted as

L(r) =

∫ 2π

0
dθ

∫ r

r
IK (r)rdr, (14)

where K ∈ B,O′, and with the numerical upper limit r = 3.2R�.
We analyzed the three following cases:

LØ,B (r) the residual light in plane K = B without the external
occulter

LE,B (r) the residual light in plane K = B including the external
occulter

LE,O′ (r) the residual light in plane K = O′ including the exter-
nal occulter

We superimposed the three normalized integrated residual light
curves LØ,B(r), LE,B (r), and LE,O′ (r) onto Fig. 8. The curve
LØ,B(r) is used for normalization and provides the amount of
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Fig. 3. Two-dimension observed intensity in plane O’ of diffracted wave front originating from the on-axis point source at the center of the Sun, in
logarithmic scale. (a) Full field. (b) Zoomed in region of interest around 1.08R�.

residual light that is not blocked for a given Lyot mask of ra-
dius r in the classical Lyot coronagraph SL. When adding the
external occulter, the residual light is already reduced by a fac-
tor 10−4 ∼ IA(0), and there is an appreciable difference between
planes B and O’. The integrated residual light decreases rela-
tively slowly in plane B, from 10−4B� at r = 1.02R� and loosing
two orders of magnitude over 0.1R�. In plane O’, the decrease
is very abrupt, from 10−4B� at r = 1.06R� and loosing two or-
ders of magnitude over 0.06R�. As a conclusion, this shows that
the internal occulter will filter out a larger amount of diffracted
sunlight by being set in plane O’ rather than plane B, for a given
size. We provide a definitive confirmation of this last statement
in Appendix B, by looking at the final response in plane D.

4.3.5. Intensities in plane C

In Fig. 9 we present the radial intensities IC(r) in plane C in log-
arithmic scale. The transverse radius is given in units of entrance
aperture image, meaning that a radius of one corresponds to the
image of Rp = 25mm. A 1.065R� Lyot mask and an internal
occulter of equivalent angular size have been used here, for the
systems SL and SEL respectively. We normalized the intensities
using the exact image of the entrance pupil. The classical Lyot
coronagraph SL shows a narrow peak at r = 1, being the exact
position of the image of the pupil edge. This 10−1B� fringe is
produced by the diffraction of sunlight by the entrance aperture.
A similar feature is observed in the case of the hybrid externally
occulted Lyot coronagraph SEL. The diffraction fringe is how-
ever much less bright, reaching about 10−4B�, due to the exter-
nal occultation beforehand. The role of the Lyot stop is to block
this diffracted light peak.

4.3.6. Intensities in plane D

Finally, in Fig. 10 we give the final response of the four imaging
systems, in logarithmic scale, using the same occulting masks
of 1.065R� in planes B and O’, and a Lyot stop of 0.99 times
the image of the pupil - 24.75mm in 1:1-scale. We superim-
posed the four observed intensities, meaning IB(r) for the ref-
erence telescope SØ and for the external coronagraph SE , and
ID(r) for the classical Lyot coronagraph SL and for the hybrid

coronagraphic system SEL. The reference image of the Sun in
plane B is used as a reference for normalization. Both systems
SL and SE show a relatively bright (10−3B�) diffraction fringe
located around 1.065R�, while the hybrid coronagraphic system
SEL already rejects sunlight below 10−5B�. Outside 1.5R�, the
three systems SL, SE and SEL reject below 10−6B�, 10−7B� and
10−8B� respectively. As for now, this analysis has proved the
efficiency of combining external occultation with an internally
occulted Lyot-style coronagraph, compared to the classical Lyot
coronagraph, with a gain of at least two orders of magnitude.

4.4. Sizing the internal occulter and the Lyot stop

We now consider the hybrid externally occulted Lyot corona-
graph SEL only. We investigated the impact of sizing the inter-
nal occulter on the observed intensity in plane D, while keeping
the external occultation ratio R/z0 constant. We looked at radii
of 1.005, 1.01, 1.02, 1.03 and 1.04 times the external occulter
image. They respectively correspond, in angular units (metric
units), to 1.0621R� (1.637mm), 1.0674R� (1.645mm), 1.0779R�
(1.662mm), 1.0885R� (1.678mm) and 1.0991R� (1.694mm). We
superimpose onto Fig. 11 the radial cuts of intensities ID(r), in
logarithmic scale, using a Lyot stop of 0.99 (plot (a)) and one
of 0.96 (plot (b)) entrance pupil image. The plot is given in the
range 0.5 − 2R� to zoom in the diffraction fringe area.

In a similar way, we analyzed the effect of sizing the Lyot
stop, keeping a fixed internal occulter. In Fig. 12, we compare
the radial cuts of final intensities ID(r), in logarithmic scale, us-
ing an internal occulter of 1.01 (plot (a)) and one of 1.03 external
occulter image (plot (b)). We investigated the following sizes of
Lyot stop: 1.00, 0.99, 0.98, 0.96, and 0.92 entrance pupil image.
The interested reader will find in Appendix C the same study for
the classical Lyot coronagraph.

These plots give an intuition of the behaviour of the result.
Indeed, we show here that the Lyot stop mainly acts over the
diffracted light in the range 1.2− 3R�, and does not significantly
impact the main diffraction feature. As shown in Fig. 12, reduc-
ing the radius of the Lyot stop from 1.00 to 0.99 already gives
appreciable improvement on the rejection, of about one order
of magnitude. In parallel, increasing the size of the internal oc-
culter mainly contributes to reducing the level of residual sun-
light around the edge of the external occulter image - Fig. 11.
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Fig. 4. Two-dimension observed intensities of diffracted wave front originating from the off-axis point source at α = 768arcsec, in logarithmic
scale. (a) IB(x, y) in plane B. (b) IB(x, y) enlarged in region of interest around 1.08R�. (c) IO′ (x, y) in plane O’. (d) IO′ (x, y) zoomed in region of
interest around 1.08R�.

We observe an improvement of two orders of magnitude from
1.005 to 1.02 external occulter image. However, it seems that
the performance in rejection in the range 1.5 − 3.2R� is more
impacted by the size of the Lyot stop than the internal occul-
ter. It is also interesting to observe that the position of diffraction
peak matches the position of the image of the internal occulter in
plane D. So, when increasing the size of the occulting mask, the
peak of diffraction translates accordingly. As a result, the resid-
ual diffracted sunlight keeps contaminating the inner region of
the field of view.

It is of course the combined effect of the internal occulter and
the Lyot stop that makes the performance of the coronagraph.
Figure 13 illustrates this point as we have plotted the residual
diffracted sunlight level observed at 1.3R�, versus the radius of
the internal occulter and versus the radius of the Lyot stop. At
that stage, one can already get an idea of possible theoretical
performance (for an ideal and perfect instrument), of such a hy-
brid externally occulted Lyot solar coronagraph - in this partic-
ular configuration. At least, rejecting diffracted sunlight below
10−8B� at 1.3R� using a 1.065R� internal occulter looks feasi-
ble, but this shall be considered as a theoretical lower limit.

4.5. Analysis of the vignetting

Finally, we discuss the vignetting induced by both external and
internal occulters since it is a characteristic feature in coronagra-
phy. A dedicated analytic study of issues with external occul-
tation can be found in Raja Bayanna et al. (2011). This vi-
gnetting affects the transition region where the coronograph re-
moves the direct light from the solar disc and transmits that of
the solar corona. In our present study, we take advantage of our
model of light wave propagation to estimate the vignetting com-
ing from off-axis point sources outside the solar disc, that is,
ρ =

√
α2 + β2 > R�. Again, the complex amplitude ΨA,α,β in-

coming into the entrance aperture is given by Eq.(3). It is inter-
esting to understand the consequences of the external occulta-
tion. We remind the reader that the figure of the Arago bright
spot in plane A, plotted in Fig. 2, is shifted of the quantity
(z0 × α, z0 × β) towards negative (x, y) directions. The transi-
tion between the shadow region and the high-intensity plateau
is located around R = 710mm from the centre of the spot.
Denoting ρ0% = (R − Rp)/z0 = 1.0196R� = 979arcsec and
ρ100% = (R + Rp)/z0 = 1.094R� = 1050arcsec, we can roughly
say that
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Fig. 5. Intensity IA(r) in plane A, in logarithmic scale. The intensity is
normalized to the mean solar brightness. Red: radial profile of diffracted
light produced by the external occulter. Black dashed: related geomet-
rical profile. (a) Penumbra profile in full range. (b) Enlargement in
[0mm; 100mm] corresponding to the umbra region.
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Fig. 6. Observed intensities IB(r) in plane B, in logarithmic scale. The
transverse radius is given in solar units. The intensities are normalized
to the mean solar brightness. Blue: raw image of the Sun in plane B.
Red: diffracted sunlight by the external occulter. Vertical line: 1.065R�
radius Lyot mask.

ρ ≤ ρ0% only faint diffracted light from the shadow region will
enter the entrance pupil, corresponding to the occulted region
of the sky.

ρ0% ≤ α ≤ ρ100% the high-intensity plateau is partially captured
by the entrance pupil. This region of the sky is partially vi-
gnetted.

α ≥ ρ100% The part of the wave front that enters into the entrance
pupil is poorly affected by the external occulter and can be
approximated by a planar tilted wave front. There is no vi-
gnetting.

The complete vignetting function of the coronagraph has been
inspected by propagating the wave front from unitary amplitude
point sources in the range ρ0% ≤ α ≤ ρ100%, and β = 0. In Fig.
14 we plot the two-dimension observed intensities in plane D
for the externally hybrid external Lyot coronagraph SEL, using
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Fig. 7. Observed intensities IO′ (r) in plane O’, in logarithmic scale. The
transverse radius is given in solar units. The intensities are normalized
to the mean solar brightness. Blue: raw image of the Sun in plane O’.
Red: diffracted sunlight by the external occulter. Vertical line: 1.065R�
radius internal occulter.
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Fig. 8. Integrated residual light L(r), as given in Eq.(14), in logarithmic
scale, and normalized. Enlargement in the range [0.8R�, 1.4R�]. Black:
LØ,B. Blue: LE,B. Red: LE,O’.

a 1.065R� internal occulter and a 0.99 Lyot stop. Plot (a) repre-
sents the impulse responses when there is no external nor internal
occulters. In that case, we observed perfect Airy patterns. Plot
(b) illustrates the actual response of the coronagraphic system,
i.e. with both occulters. We can see in Fig. 14 the strong nonlin-
ear perturbation of the inner corona, in addition to the attenuation
of the intensity. The image reconstruction in this region will be
a delicate problem of inversion in a Fredholm regime. Beyond
ρ100%, we find again a perfect Airy pattern, as expected.

5. Conclusions

We have presented a dedicated analytic and numerical analysis
of the theoretical rejection performance of the classical Lyot
coronagraph, the externally occulted solar coronagraph, and
the hybrid externally occulted Lyot coronagraph. We first
computed Fresnel diffraction produced by the external occulter,
and second the coherent propagation of the wave fronts through
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Fig. 9. Observed intensities IC(r) in plane C, in logarithmic scale. The
transverse radius is given in unit of image of the entrance pupil. The
intensities are normalized to the mean solar brightness. Blue: system
SL. Red: system SEL. Vertical line: Lyot stop of 0.99 times the image of
the entrance pupil.

0 0.5 1 1.5 2 2.5 3

Radius (R⊙)

-10

-8

-6

-4

-2

0

In
te
n
si
ty

(l
og

)

SØ

SE

SL

SEL

Fig. 10. Observed intensities as final response in the focal plane, in log-
arithmic scale. The transverse radius is given in solar units. The intensi-
ties are normalized to the mean solar brightness. Black: system SØ given
by IB(r) in plane B. Blue: system SL given by ID(r) in plane D. Black:
system SE given by IB(r) in plane B. Red: system SEL given by ID(r) in
plane D.

the instrument. Here, our results applies to the geometry of
ASPIICS coronagraph. We provide the observed intensity of
residual sunlight in the final focal plane, that may contaminate
the observation of the solar corona in white light, especially
close to the solar limb. Using a Lyot mask of 1.065R� radius and
a Lyot stop being 0.99 times the image of the entrance aperture
radius, we showed that the perfect classical Lyot coronagraph
manages to reject below 10−6B� from 1.3R�. The externally
occulted solar coronagraph provides a better performance,
with a gain of one order of magnitude outside the diffraction
peak intensity. Finally, the hybrid externally occulted Lyot
coronagraph improves the global performance by rejecting
diffracted sunlight below 10−8B� from 1.3R�. We also refined
our study to exhibit the coupled effects of sizing both internal
occulter and Lyot stop, in the case of the hybrid coronagraphic

system. Oversizing the mask allows us to decrease the intensity
of the diffraction peak intensity located around the image of the
external occulter, and reducing the radius of the Lyot stop allows
to globally reduce the residual sunlight. As a concrete result,
we have provided in Fig. 13 a graph estimating the rejection at
1.3R�, as a function of both sizes of the internal occulter and
Lyot stop.

Rather than investigating whether the hybrid externally
occulted Lyot solar coronagraph could meet any requirements
in stray light rejection, our work claims to be a methodological
model in order to estimate the end-to-end performance of such
instruments. Solar astronomy will benefit from it to identify any
benchmark for ongoing or future activities. However, we would
like to emphasize that the given results remain a lower bound. In
practice, performance would be degraded by any other sources
of stray light and scattering.

As future activities, one can investigate in the nature of
the external occulting disc itself. Radially apodized external
occulters have already been analytically proved by Aime (2013)
to be more efficient than the sharp-edged disc, in the context
of solar coronagraphy. In an experimental approach, Bout et
al. (2000) and Landini et al. (2010) investigated 3D-shaped
occulters which deviate from a simple radial apodization.
Model validation against experimental results would be very
interesting and instructive. However, the main difficulty stands
in the two-dimensional representation of such complex external
occulter shapes and computing the Fresnel diffraction, as it has
been recently investigated by Sirbu et al. (2016), in addition to
the extend source that is represented by the Sun.

Matlab/Octave toolbox: https://github.com/rrougeot/FourierOptics.

Acknowledgements We would like to thank the European Space
Agency and Proba-3 project for having supported this activity.

References
Aime, C., Soummer, R., & Ferrari, A. 2002, A&A, 389, 334
Aime, C. 2007, A&A, 467, 317
Aime, C. 2013, A&A, 558, 138
Cox, A.N. 2000, Allen’s astrophysical quantities
Aschwanden, M.J. 2005, Physics of the Solar Corona. An Introduction with

Problems and Solutions (2nd edition)
Born, M., & Wolf, E. 2006 Principles of Optics, 7th edn.(Cambridge University

Press), 484
Bout, M., Lamy, P., Maucherat, A., Colin, C. & Llebaria, A. 2000, Appl. Opt.,

39, 22
Brueckner, G.E. Howard, R.A., & Koomen, M.J. et al. 1995, Solar Phys., 162,

357
Cash, W. 2006, Nature, 442, 51
Dollfus, A. 1983, L’Astronomie, 97, 107-129
Evans, J.W. 1948, Science Sci. Rev., 47, 95
Ferrari, A. 2007, ApJ, 657, 1201
Ferrari, A., Aime, C., & Soummer, R. 2010, ApJ, 708, 218
Flamary, R., & Aime, C. 2014, A&A, 569, A28
Fort, B., Morel, C., & Spaak, G. 1978, Astron. Astrophys. 63, 243
Galy, C. 2015, SPIE, vol. 9604, 96040B
Goodman, J. W. 2005, Introduction to Fourier Optics (Roberts and Company

Publishers)
Hamme, V. 1993, Astron. J., 106, 5
Koutchmy, S. 1988, Science Sci. Rev., 47, 95
Landini, F. et al. 2010, SPIE, vol. 7735, 77354D
Lemoine, D. 1994, J. Chem. Phys., 101, 3936
Lenskii, A.V. 1981, Astron. Zh., 58, 648
Lamy, P., Damé, L., Vivès, S., & Zukhov, A. 2010, SPIE, 7731, 18
Lyot, B. 1939, MNRAS, 99, 580
Newkirk, G., Jr. & Bohlin, D. 1965, Ann. Astrophys. 28, 234
Peter, H., Bingert, S., Klimchuk, J.A., De Forest, C., Cirtain, J.W., Golub, L.,

Winebarger, A.R., Kobayashi, K., & Korreck, K.E. 2013, A&A, 556, A104

Article number, page 11 of 16



A&A proofs: manuscript no. Tex_file

0.5 1 1.5 2

Radius (R⊙)

-10

-9

-8

-7

-6

-5

In
te

n
si

ty
(l
o
g
)

Increasing internal occulter

(a)

0.5 1 1.5 2

Radius (R⊙)

-11

-10

-9

-8

-7

-6

-5

In
te

n
si

ty
(l
o
g
)

Increasing internal occulter

(b)

Fig. 11. Radial cuts ID(r) for internal occulters of 1.005, 1.01, 1.02, 1.03 and 1.04 external occulter image, in logarithmic scale. (a) Fixed Lyot
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[0.5R�, 2R�]. The intensities are normalized to the mean solar brightness.
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normalized to the mean solar brightness.
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ternally occulted Lyot coronagraph SEL, in logarithmic scale. The hori-
zontal axis represents the radius of the internal occulter set in O’, in R�
units. The vertical axis represents the radius of the Lyot stop set in plane
C, in millimeters units - 1: scale with respect to plane A.
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Fig. 14. Impulse response from unitary point sources in plane D, in
logarithmic scale. The angular coordinates of the point sources are β = 0
and, from left to right, α = 0.995R�, α = 1.010R�, α = 1.025R�,
α = 1.040R�, α = 1.055R�, α = 1.070R�, α = 1.085R�, α = 1.100R�,
α = 1.115R� and α = 1.130R�. (a): reference system without external
and internal occulters. (b): complete system SEL. The two vertical lines
represent the limit of the fully vignetted zone ρ0% and the limit of the
fully unvignetted zone ρ100%.
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Fig. A.1. Intensity IA(r) on plane A in a logarithmic scale. The intensity
is normalized to the mean solar brightness. From top to bottom: z0 =
1m, 10m, 50m, 100m, 144.348m and 200m. The red curve corresponds
to ASPIICS nominal geometry.

Table A.1. Distance z0 between the external occulter and plane A,
stenope image radius of the Sun in plane O and geometrical radius of
the umbra.

z0 Solar stenope image Geometrical umbra
1 m 4.65 mm 705 mm
10 m 46.5 mm 633 mm
50 m 233 mm 477 mm
100 m 465 mm 240 mm
144.348 m 672 mm 38 mm
200 m 931 mm No umbra

Appendix A: Study of the penumbra cone by
varying the distance z0

The shape of the umbra cone is intimately linked to the distance
z0 between the external occulter and the telescope. In the context
of Proba-3 Formation Flying mission, this is of particular inter-
est, since the inter spacecraft distance separated the coronagraph
and the occulter may vary. We computed the Fresnel diffrac-
tion pattern (Eq.(5)) and the penumbra profile IA(r) in plane A
(Eq.(12)) for different values of z0, while keeping a constant ra-
dius R for the external occulter.

In Fig. A.1, we give the radial penumbra profile of diffracted
sunlight in logarithmic scale at z0 = 1m, 10m, 50m, 100m,
144.348m and 200m. First of all, we must state that Fresnel
diffraction theory usually requires small angles approximation,
which may not be the case at small z0. The smaller z0, the smaller
the stenope image of the Sun in plane O, computed as z0 tan R�,
as given in Table A.1. From z0 ≤ 50m, we observe that the
penumbra is bell-shaped in the central region. This comes from
the two-dimension convolution of this stenope image with the
Arago bright spot in plane A. At larger z0, this feature vanishes
and we obtain a smooth penumbra profile. We notice that the
umbra is about 2, 5 darker at z0 = 100m than 144.348m, as plane
A is then closer to the occulter. The geometrical umbra is re-
duced to a point at z0 = 152.55m, and the so-called ante-umbra
region extends behind, where the external occulter cannot mask
the whole solar disc any more. This last case is illustrated by
z0 = 200m in Fig. A.1.
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Fig. B.1. Observed intensities in the focal plane, in logarithmic scale.
The transverse radius is given in solar units. The intensities are normal-
ized to the mean solar brightness. Blue: system SØ given by IB(r) in
plane B, as reference. Black: deviation from system SEL, with the inter-
nal occulter set in plane B, given by ID(r) in plane D. Red: system SEL,
with the internal occulter set in plane O’, given by ID(r) in plane D.

Appendix B: Comparing planes B and O’ for the
internal occulter in system SEL

This Appendix completes the discussion in Sec. 4.3.4 about the
position of the internal occulter in the hybrid externally occulted
Lyot coronagraph SEL. We investigate the case where the inter-
nal occulter is set in plane B instead of plane O’. In Figure B.1,
we compare the final observed intensities ID(r) in plane D be-
tween the system SEL and its deviation (both plotted in the fig-
ure) which has the internal occulter set in plane B. The results
are normalized to the reference system SØ (also plotted). In both
cases, the internal occulter has a radius of 1.065R� and the Lyot
stop sizes 0.99 times the image of the entrance pupil in plane C.

Of course, setting the internal occulter in plane O’ instead
of plane B is much more efficient about stray light rejection, as
already discussed in Sec. 4.3.4. We observe an average gain in
performance of one order of magnitude. The diffraction peak in-
tensity around 1.06R� is even two orders of magnitude lower.

Appendix C: Reducing the Lyot stop for the
classical Lyot coronagraph

We report in this appendix the impact of reducing the Lyot stop
for the classical Lyot coronagraph SL. The approach is the same
as the one presented in Sec. 4.4. We computed the global re-
sponse in the final focal plane by varying the radius of the Lyot
stop, from 1.00 to 0.96 times the image of the entrance pupil,
and using a fixed 1.065R� Lyot mask set in plane B. Figure C.1
shows the results ID(r). The reader can clearly appreciate the
gain of reducing the Lyot stop. We also investigated the case
without Lyot stop in plane C, that is, an infinite radius. We ob-
serve no rejection in this last case, and plane D corresponds to
the exact image of plane B.

Article number, page 14 of 16



R. Rougeot et al.: Performance of the hybrid externally occulted Lyot solar coronagraph

0 0.5 1 1.5 2 2.5 3 3.5

Radius (R⊙)

-8

-6

-4

-2

0

In
te

n
si
ty

(l
og

)

∞

1.00

0.960

0.998

0.994

0.980

Fig. C.1. Radial cuts ID(r) for the classical Lyot coronagraph SL, in log-
arithmic scale. The transverse radius is given in solar units. Intensities
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Appendix D: Two-dimension intensities

In this appendix, we report the two-dimension image of the global response for the four different imaging systems studied. In Fig.
D.1 we plotted IB(x, y) in plane B for the raw telescope SØ and the external coronagraph SE , and ID(x, y) in plane D for the classical
Lyot coronagraph SL and the hybrid externally occulted Lyot coronagraph SEL. A 1.065R� radius Lyot mask or internal internal and
a 0.99 radius Lyot stop have been used for the computation. The same colour logarithmic scale has been set to every plots for a
purpose of direct comparisons.
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Fig. D.1. Two-dimension final response as observed intensities in the detection plane, in logarithmic scale. The intensities are normalized to the
mean solar brightness. (a): IB(x, y) for system SØ. (b): IB(x, y) for system SE . (c): ID(x, y) for system SL. (d): ID(x, y) for system SEL.
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