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Enrichment and coupling of the �nite element
and meshless methods

Antonio Huerta and Sonia Fernández-Méndez

Departament de Matem�atica Aplicada III; E.T.S. de Ingenieros de Caminos; Canales y Puertos;
Universitat Polit�ecnica de Catalunya; Campus Nord; E-08034 Barcelona; Spain

A mixed hierarchical approximation based on �nite elements and meshless methods is presented. Two cases
are considered. The �rst one couples regions where �nite elements or meshless methods are used to interpolate:
continuity and consistency is preserved. The second one enriches a �nite element mesh with particles. Thus,
there is no need to remesh in adaptive re�nement processes. In both cases the same formulation is used,
convergence is studied and examples are shown. 

KEY WORDS: adaptivity; h-p re�nement; �nite element method; meshless method; mixed interpolation;
convergence

1. INTRODUCTION

Meshless or particle methods such as reproducing kernel particle methods (RKPM) [1; 2] element-
free Galerkin (EFG) [3–8] or smooth particle hydrodynamics (SPH) [9; 10] among others (see
[11; 12] for a general presentation), have nowadays proven their applicability in computational
mechanics. They do not require to generate a mesh (a connectivity matrix) and thus, they are
specially suited for certain problems, for instance adaptive re�nement computations or discontinu-
ous �eld problems (i.e. crack propagation problems [6]). Moreover, the interpolation functions in
meshless methods are particularly attractive in the presence of high gradients, concentrated forces,
and large deformations. However, particle methods su�er from an important computational cost
that reduces their range of practical (engineering) applicability.
On the other hand, from a practical point of view, �nite elements are less costly, implement

Dirichlet boundary conditions in a simple way (no need for Lagrange multipliers), and, above all,
they are widely used and trusted by practitioners. However, the relative cost of the mesh generation
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process is, for some problems, very large. In particular, the cost of remeshing in adaptive re�nement
problems is clearly not negligible.
Several authors have already proposed to use mixed �nite elements and meshless interpolations.

The objective is always to use the advantages of each method. Belytschko et al. [5] already
show how to couple �nite elements near the Dirichlet boundaries and element-free Galerkin in
the interior of the computational domain. This simpli�es considerably the prescription of essential
boundary conditions. They do a mixed interpolation in the transition region: area where both �nite
elements and particles have an in�uence. This mixed interpolation requires the substitution of
�nite element nodes by particles and the de�nition of ramp functions. Thus, the transition is of
the size of one �nite element and the interpolation is linear. With the same objectives, Hegen
[13] couples the �nite element domain and the meshless region with Lagrange multipliers. Here
a new formulation is proposed. It follows the ideas of Belytschko et al. [5], generalizes them for
any order of interpolation, suppresses the ramp functions, and does not require the substitution
of nodes by particles. That is, as many particles as needed can be added where they are needed
independently of the adjacent �nite element mesh. This is done preserving the continuity of the
solution and enforcing uniform consistency for the mixed interpolation.
Liu et al. [14] proposed a mixed interpolation with other goals and di�erent formulations. They

suggest to enrich the �nite element approximation with particle methods. In fact, the following
adaptive process seems attractive: (1) compute an approximation with a coarse �nite element mesh,
(2) do an a posteriori error estimation and (3) improve the solution with particles without any
remeshing process. Meshless methods are ideal for such a procedure.
In this paper we present a uni�ed and general formulation for mixed interpolations in both

cases (coupling and enrichment). The formulation is developed for the EFG method. However, its
generalization to other particle methods is straightforward.
In the following sections the formulation is developed, the applicability conditions are discussed

and the convergence properties are presented. Finally, several examples are presented to illustrate
the advantages of such a mixed approximation.

2. FUNDAMENTALS OF MESHLESS APPROXIMATIONS

This section will not be devoted to develop or discuss meshless methods in detail or their relation
with moving least-squares (MLS) interpolants. There are well-known references with excellent
presentations of meshless methods, see for instance [11; 12; 15; 16]. Here some basic notions will
be recalled in order to introduce the notation and the approach employed in the following sections.
Meshless methods, or particle methods, are based in a functional interpolation of the form

u(x) � u�(x) = ∑
j∈I�

u(xj)N
�
j (x) (1)

given a number of particles {xj}j∈I� in the domain �; �⊂Rn. The interpolation functions, N�j (x),
must be determined in a proper manner. In reproducing kernel particle methods [1; 2] (RKPM) the
interpolation functions are obtained in the framework of the MLS interpolation. The element-free
Galerkin method [3–8] (EFG) can be viewed as a particular case of the previous formulation [16].
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Let us recall, in the context of the EFG method, how the interpolation (shape) functions are
obtained. They are de�ned as

N�j (x) = P
T(xj) Q(x) �

(
x − xj
�

)
(2)

where PT(x) = {p0(x); p2(x); : : : ; pl(x)} includes a complete basis of the subspace of polynomials
of degree m and the vector Q(x) in Rl+1 is unknown. In one dimension, it is usual that pi(x)
coincides with the monomials xi, and, in this particular case, l = m.
The function �(x) is a weighting function (positive, even and with compact support) which

characterizes the meshless method. For instance, if �(x) is continuous together with its �rst k
derivatives, the interpolation is also continuous together with its �rst k derivatives. In RKPM,
�(x) is directly related to the window function of the reproducing kernel. In (2) the weighting
function has been translated, centred in xj, and its support scaled by the dilation parameter �.
The unknown vector Q(x) is determined imposing the so-called reproducibility or consistency

condition. It is, in fact, the MLS condition. This reproducibility condition imposes that u�(x)
de�ned in (1) interpolates exactly polynomials of degree less or equal to m, i.e.

P(x) =
∑
j∈I�

P(xj)N
�
j (x) (3)

For computational purposes, it is usual and preferable [16] to centre in xj and scale with � also
the polynomials involved in previous expressions. Thus, another expression for the shape functions
is employed:

N�j (x) = P
T
(
x − xj
�

)
Q(x) �

(
x − xj
�

)
(4)

which is similar to (2). The consistency condition becomes in this case

P(0) =
∑
j∈I�

P
(
x − xj
�

)
N�j (x) (5)

which is equivalent to condition (3) when � is constant everywhere. After substitution of (4) into
(5) the usual linear system of equations, that determines Q(x), is obtained

M(x) Q(x) = P(0) (6)

with

M(x) =
∑
j∈I�

P
(
x − xj
�

)
PT

(
x − xj
�

)
�
(
x − xj
�

)
(7)

Notice that for each x in Rn the previous sum only involves those particles whose support—the
support of the weighting function �—includes x.
Section 3.2 presents a discussion on the necessary conditions for M(x) to be positive de�nite,

namely, the requirements on the particle distribution and the value of the dilation parameter. This
will allow to compute the vector Q at each point and thus determine the shape functions, N�j (x).
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Remark 1. The consistency conditions (3) and (5) are equivalent if the dilation parameter �
is constant. When the dilation parameter varies at each particle another de�nition of the shape
functions is recommended,

N�j (x) = P
T
(
x − xj
�

)
Q(x) �

(
x − xj
�j

)

where �j is the dilation parameter associated to particle xj, and a constant � is employed in the
scaling of the polynomials P. Note that expression (4) is not directly generalized. The constant
value � is typically chosen as the mean value of all the �j. The consistency condition in this case
is also (5). It also imposes the reproducibility of the polynomials P.

Remark 2. The dilation parameter � characterizes the support of the shape functions N�i (x).
In fact, it plays a role similar to the element size in the �nite element method. An h-re�nement
in �nite elements can be produced in meshless methods decreasing the value of � (this usually
implies an increase in the number of particles). Liu et al. [16] proved convergence of the RKPM
and, in particular, of EFG. The a priori bound is very similar to the bound in �nite elements. The
parameter � plays the role of h, and m (the order of consistency) plays the role of the degree of
the interpolation polynomials in the �nite element mesh.

Remark 3. Convergence properties depend on m and �. They do not depend on the distance
between particles because usually [10; 16] this distance is proportional to �, i.e. the ratio between
the particle distance over the dilation parameter is of order one.

3. A HIERARCHICAL MIXED APPROXIMATION: FINITE ELEMENTS WITH EFG

Suppose, as discussed in the introduction, that the interpolation of u(x) in �; �⊂Rn, is done
with both �nite elements and EFG. The domain must include a set of nodes {xi}i∈I h with their
associated shape functions Nhi (x), that are going to take care of the �nite element contribution,
uh(x), to u(x), namely,

uh(x) =
∑
i∈I h

u(xi)Nhi (x) (8)

There is also a set of particles {xj}j∈I� with their associated interpolation functions N�j (x), that
are going to take care of the meshless contribution,

u�(x) =
∑
j∈I�

u(xj)N
�
j (x) (9)

In the more general case, the domain � is the union of two non-disjoint subdomains, � = �h∪��,
where �h denotes the subdomain where the Nhi have an in�uence in the approximation,

�h = {x ∈ � |∃i ∈ I h; N hi (x) �= 0}
and where �� is the subdomain where at least one N�j is non-zero,

�� = {x ∈ � |∃j ∈ I�; N�j (x) �= 0}
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Figure 1. Coupled �nite element and element-free
Galerkin.

Figure 2. Finite element enrichment with element-
free Galerkin.

In the region where only �nite elements are present, �h\��, a standard, and thus consistent, �nite
element approximation is considered:

u(x) � uh(x)
In the region where only particles have an in�uence, ��\�h, the standard, and thus consistent,
EFG approximation is considered:

u(x) � u�(x)
However, in the area where both interpolations have an in�uence, �̃ := �h ∩ ��, a mixed inter-
polation must be de�ned

u(x) � uh(x) + u�(x) (10)

The objective now is to develop a mixed functional interpolation, such as (10), with the desired
consistency in �̃, without any modi�cation of the �nite element shape functions Nhi and such that
u�(x) is hierarchical. That is, an EFG contribution which should be zero at the �nite element
nodes, must be added to the standard �nite element interpolation. Obviously, such a contribution
must verify consistency conditions similar to those of standard meshless methods [2; 3; 16].
In the following sections this mixed interpolation is developed and discussed. In particular, the

admissible particle distribution is detailed. Moreover, a priori convergence is studied when the
number of particles is increased, when the number of nodes is increased, and when both particles
and nodes are increased.
Moreover, two cases will be considered with the same formulation. The �rst one (coupled �nite

element and element-free Galerkin) requires that �h �= � and �� �= �. That is, in a region of
� only �nite elements will be used, in another region only EFG are employed, and �nally in a
mixed area, �̃, the solution is approximated using (10). In the second case, � = �h and �̃ = ��.
That is, there is a complete �nite element basis all over �. Only in a reduced area, �̃, particles
are added to improve the interpolation (�nite element enrichment with element-free Galerkin).
Both situations are depicted in Figures 1 and 2, and developed in Sections 4 and 5.

3.1. Evaluation of the meshless shape functions N�j

In �̃ the expression of the interpolation function is obtained after substitution of (8) and (9) into
(10), namely

u(x) � ∑
i∈I h

u(xi)Nhi (x) +
∑
j∈I�

u(xj)N
�
j (x) (11)
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where N�(x) is de�ned, as previously, in (4), and, as before, the vector of unknown functions,
Q(x), is determined using the consistency condition. Now the reproducibility conditions impose
that (11) must interpolate exactly a complete basis of polynomials of order less or equal to m.
That is,

P(0) =
∑
j∈I�

P
(
x − xj
�

)
N�j (x) +

∑
i∈I h

P
(
x − xi
�

)
Nhi (x) (12)

which is the natural extension of (5). Note that Equation (12) can, if � is constant everywhere,
be rewritten as

P(x) =
∑
j∈I�

P(xj)N
�
j (x) +

∑
i∈I h

P(xi)Nhi (x) (13)

which shows more clearly the desired reproducibility condition. The linear system of equations
that determines Q is obtained once the de�nition of N�(x), Equation (4), is substituted in (12),

M(x) Q(x) = P(0)− ∑
i∈I h

P
(
x − xi
�

)
Nhi (x) (14)

The least-squares matrix is identical to the matrix employed in the standard EFG method,
Equation (7), namely

M(x) =
∑
j∈I�

P
(
x − xj
�

)
PT

(
x − xj
�

)
�
(
x − xj
�

)

Remark 4. The particle shape functions N�j are hierarchical. Note that at any node xk ; k ∈ I h,
the right-hand side of (14) is zero

P(0)− ∑
i∈I h

P
(
xk − xi
�

)
Nhi (xk) = P(0)−

∑
i∈I h

P
(
xk − xi
�

)
�ik = 0

Thus, the solution of (14) is trivial, Q(xk) = 0. And therefore, from the de�nition of the particle
shape functions, (4), it is easy to verify that the N�j (x) are hierarchical, i.e. N

�
j (xk) = 0 ∀j ∈

I �; k ∈ I h.

3.2. Admissible particle distribution

As in standard EFG, matrix M(x) must be regular (invertible) everywhere, i.e. at each point
x ∈ �̃. Only the right-hand side of (14) di�ers from the EFG system of equations (6). Thus, as in
EFG, the number of particles, their position and their related dilation parameters cannot be taken
arbitrarily. In Liu et al. [16] there is an excellent de�nition of the admissible particle distribution.
Here some essential details are recalled in order to discuss the validity of the mixed approximation.
At a point x∗ ∈ �̃, matrix M(x∗) can be viewed as a Gram matrix de�ned with the discrete

scalar product

〈f; g〉x∗ =
∑
j∈I�

f
(
x∗ − xj
�

)
g
(
x∗ − xj
�

)
�
(
x∗ − xj
�

)
(15)
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Figure 3. Substitution of a �nite element node by one particle. Non-admissible distribution.

Figure 4. Substitution of a �nite element node by two particles. Admissible distribution.

Figure 5. Non-admissible distribution. �̃ is under the in�uence of only one particle.

and with the linear independent polynomials in P(x). If the scalar product, 〈· ; ·〉x∗ , is degenerated
the matrix M(x∗) is singular. For instance, every point x∗ ∈ �̃ must lie in the area of in�uence
of, at least, l+ 1 = dim(M) particles. That is, the following condition is necessary:

card
{
xj| j ∈ I�; �

(
x∗ − xj
�

)
�= 0

}
¿ dim(M) = l+ 1

Moreover, the location of those particles is not arbitrary. In a n-dimensional space, i.e. x∗ ∈ Rn,
the n + 1 particles needed for a linear interpolation must describe a non-degenerated n-simplex.
For instance, in two dimensions (n = 2); x∗ must belong to the support of at least three shape
functions associated to particles not aligned; or in three dimensions (n = 3); x∗ must belong to
the support of at least four functions with particles not coplanar.
These restrictions are also valid for possible distributions of particles in a mixed interpolation.

For instance, in a one-dimensional domain with an order one consistency (linear interpolation)
a �nite element node cannot be replaced by a single particle, see Figure 3. Two particles, with
dilation parameters large enough, are needed in order to ensure that everywhere in �̃ the scalar
product, (15), does not degenerate. Figures 3 and 4 depict these situations. For each particle, its
corresponding weighting function �((x − xi)=�) is plotted.
Figure 5 also shows a non admissible distribution of particles. In the region where both particle

and �nite element interpolations have an in�uence, �̃, there are not enough particles (only one is
present) to ensure the regularity of M(x). An obvious solution for this problem, maintaining the
same particle distribution, is to chose a dilation parameter large enough, see Figure 6.

Remark 5. The shape functions N�j are hierarchical. Thus, in one dimension, the weighting
functions �((x − xi)=�) can be truncated outside �� and continuity of N

�
j (x) is preserved, see
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Figure 6. Approximation functions before and after imposing the consistency condition of order one.

Figures 4 and 6. This property cannot be generalized to higher dimensions. In fact Sections 4 and 5
discuss this issue.

Remark 6. As previously indicated for EFG, the interpolation functions could be de�ned using
(2) instead of (4). Thus, the scalar product needed to de�ne M(x∗) is now

〈f; g〉x∗ =
∑
j∈I�

f(xj)g(xj)�
(
x∗ − xj
�

)
(16)

instead of (15). However, it is preferable to scale the polynomials P(x) as done previously, see
(4) and (15), because Gram matrices, such as M(x∗), are easily ill-conditioned, specially with the
trivial basis of polynomials. In general, with the translation to x∗ and the scaling with �, Gram
matrices have lower condition numbers.

Remark 7. The aforementioned conditions for matrix M(x) ensure its regularity. However, these
conditions do not imply the solvability of the discrete variational problem. The ‘sti�ness’ matrix
for the global problem may be singular if a quadrature not accurate enough is employed. Moreover,
as discussed in Section 5, Remark 9, when particles are added as an enrichment of �nite elements,
the shape functions associated to particles, N�, are not linearly independent.

4. COUPLED FINITE ELEMENT AND ELEMENT-FREE GALERKIN

In this section, a new formulation, which generalizes the coupled formulation proposed by Be-
lytschko et al. [5], is presented. This coupling between �nite elements and EFG maintains both
continuity and consistency everywhere, in particular, in the transition area. The major di�erences
with the previously cited reference [5] are: (1) there is no need to replace nodes by particles, and
(2) no ramp functions must be de�ned.
In fact, the generalization proposed here can be used for any order of consistency (it can go

beyond linear elements and order one consistency). Moreover, this method allows to introduce as
many particles as desired in the last element that de�nes the transition area, see Figures 7 and 8.
The computational domain � is divided into three non-disjoint regions: one where �nite elements

have an in�uence, �h, another where particles have an in�uence, ��, and �nally, one region, �̃,
for the transition. In the latter, both particles and nodes de�ne the interpolation, see Figure 1. Such
a situation may be of interest if a computation with �nite elements of degree p needs to be re�ned
in a region �� without remeshing. The nodes of the original �nite element mesh are removed in
�� but as many particles as needed are added in that region (see the crack propagation examples
in the papers by Belytschko and co-workers [4–6, 8]).
It is important to notice that the approximation uh + u� is continuous everywhere in � if the

following conditions are met. First, the same order of consistency is imposed all over � (i.e.
for both �nite elements and particles), namely, m = p. And second, the domain of in�uence of
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Figure 7. Coupled approximation functions with consistency of order one and two particles
in the transition region �̃.

Figure 8. Coupled approximation functions with consistency of order two and two di�erent
distribution of particles.

particles, ��, coincides exactly with the region where �nite elements do not have a complete
basis. That is, no particles are added in ‘complete’ �nite elements (i.e. elements where no node
has been suppressed). Moreover, weighting functions � are chopped o� in those ‘complete’ �nite
elements, see Figure 6. In other words, �� is the union of elements where at least one node has
been removed.
The approximation uh + u� is continuous as long as the shape functions N�j are continuous. In

spite of chopping o� the weighting functions outside �� the approximation maintains its regularity.
This is due to the fact that N�j (x) = 0 over �

h ∩ @��, with absolute independence of the fact that
�((x − xj)=�) �= 0 over �h ∩ @��.
In �h\�� the �nite element interpolation is complete and of order m. In particular, over �h∩@��

polynomials of degree less or equal to m are interpolated exactly. Thus, it is easy to verify that

P(0)− ∑
i∈I h

P
(
x − xi
�

)
Nhi (x) = 0 over �h ∩ @��

Recalling (14), the previous equation implies that Q(x) = 0, and consequently, N�j (x) = 0 for
x ∈ �h ∩ @��, see Equation (4). Note that the previous rationale is independent of the spatial
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Figure 9. Convergence of FEM and coupled FEM-EFG for a distribution of elements and
particles shown in Figure 6.

dimensions. Thus, in 1D, 2D or 3D, the shape functions N�j are continuous independently of the
truncation of the weighting functions �((x − xj)=�), see Figure 6.
Remark 8. In ��\�h �nite elements have no in�uence,

P(0)− ∑
i∈I h

P
(
x − xi
�

)
Nhi (x) = P(0)

In this region, shape functions N�j are identical to the standard EFG ones.

4.1. Convergence analysis

It is easy to verify that the mixed interpolation proposed preserves the convergence rate of FEM
and EFG. Function

u(x) = x4 + 2x3 is interpolated for x ∈ �� = [−1; 1]
The three regions of in�uence of �nite elements, particles and the mixed interpolation are: �h =
[−h; 1], �� = [−1; 0] and �̃ = [−h; 0], where h is the size of �nite elements, see Figure 6.
Figure 9 shows the convergence rate—logarithm of the error in L2([−1; 1]) versus the total

number of degrees of freedom—in two cases: standard linear �nite elements and a coupled �nite
element-EFG approximation of order one. With this distribution of particles and with consistency
of order one, this approach gives the same results as the one proposed by Belytschko et al. [5].
Similar conclusions can be drawn with other distributions of particles and order of consistency,
see in the same �gure the convergence results obtained with m = 2 and a particle distribution of
Figure 8.
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5. FINITE ELEMENT ENRICHMENT WITH ELEMENT-FREE GALERKIN

A �nite element approximation can be improved (enriched) without any need of remeshing by
adding particles. Particle methods have demonstrated their advantages in adaptive computations
and their suitability to capture large gradients, concentrated loads and large deformations. Thus,
enrichment of �nite elements with meshless methods of the desired order seems an attractive option
in these problems.
In this case, the region �̃ where particles are added also maintains the original complete �nite

element interpolation, see Figure 2. In �̃, the consistency of the mixed interpolation m must be
larger than the order of the �nite element interpolation p. If consistency is set equal to p, �nite
elements can reproduce exactly polynomials up to degree p, thus

P(0)− ∑
i∈I h

P
(
x − xi
�

)
Nhi (x) = 0 ∀x ∈ �̃

and the solution of (14) is the trivial one, Q = 0. Consequently, the interpolation functions related
to the particles N�j are identically zero everywhere. Thus P(x) must include at least one polynomial
not reproducible by the �nite element interpolation, i.e. m ¿ p.
As previously seen in Section 3 the shape functions N�j are hierarchical. Thus, the interpo-

lation is continuous in one-dimensional problems irrespective of the truncation of the weighting
functions, �(x) outside �̃. In higher dimensions, continuity is not preserved as soon as the order
of consistency is not constant and uniform everywhere in �. In fact, the increase in consistency
just mentioned in �̃ will induce discontinuities in the approximation along @�̃: functions N�j are
hierarchical but do not go to zero everywhere on @�̃. If the approximation must be continuous
a region surrounding �̃ must be de�ned in which the interpolation functions N�j go to zero with
continuity. However, if @�̃ coincides with an area where �nite elements capture accurately the
solution, those discontinuities due to the enrichment are going to be small.

Remark 9. Linear elements in 1D reproduce exactly polynomials of degree less or equal to one.
In this case the �rst two equations of the system of Equations (14) are the consistency conditions:

∑
j∈I�

N�j (x) = 0

∑
j∈I�

xjN
�
j (x) = 0

which correspond to the �rst two equations in (13). This implies that all the interpolation functions
N�j must verify these relations and, thus, they are no longer linearly independent. If every inter-
polation function is used in the resolution of the boundary value problem, the ‘sti�ness’ matrix
would be singular (two of its eigenvalues are zero). Thus, once the shape functions are evaluated,
i.e. after (14) is solved, two of those interpolation functions are eliminated. Then, a linear set
of interpolation functions is recovered and the ‘sti�ness’ matrix remains regular. In general, it is
necessary to suppress a N�j (i.e. a particle) of the interpolation set for each polynomial in P(x)
that �nite elements are able to capture exactly.
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Figure 10. Convergence for a mesh and meshless re�nement: constant h=� and h→ 0.

Figure 11. Convergence for a mesh re�nement: constant � and h→ 0.

5.1. Convergence analysis

A parametric analysis of convergence rates for this proposed method is shown next. The same
function used previously is also used here,

u(x) = x4 + 2x3; x ∈ �� = [−1; 1]
with particles and �nite elements everywhere. Finite elements are enriched everywhere adding
particles and increasing the order of consistency. As before, p is the degree of the �nite element
interpolation, and m is the order of consistency obtained with the added particles. The increment
of consistency q is de�ned as

q := m− p
The error is evaluated in the L2(�) norm. In Figure 10 the logarithm of the error is plotted

against the logarithm of the number of degrees of freedom for di�erent values of p and q.
Here, both �nite element and meshless approximations are re�ned simultaneously (maintaining
h=� constant). Note that the order of the method is O(hm+1). It is the same order that can be
obtained with standard �nite elements of degree m = p+ q, or standard EFG with consistency of
order m.
Figure 11 shows convergence results when the number of particles is kept constant but elements

are re�ned. The order of the method is O(hp+1) (identical to the order of �nite elements alone)
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Figure 12. Convergence for a meshless re�nement: constant h and �→ 0.

Figure 13. Function u(x) de�ned in (17).

if the constant � is large (four particles in �). However, when the number of particles increases
(256 particles in �), i.e. small �, the order becomes O(hm+1). Thus, if the density of particles is
large, a re�nement in �nite elements of degree p induces an order of convergence similar to �nite
elements of degree m = p+ q.
Finally, Figure 12 shows the rate of convergence when re�nement is only based on particles.

That is, the �nite element mesh is kept constant. If the element size, h, is small, the order observed
is O(�q), but when the element size is large (four elements is �) the mixed approximation does
not converge as � goes to zero.

Remark 10. Note that this convergence rates are also obtained with functions other than poly-
nomials. In particular, similar results are obtained with the following function:

u(x) = sin ( 76�(x + 1)) cos
3( 356 �(x + 1)) (17)

which is plotted in Figure 13.

In fact, this convergence analysis can further be exploited. An a priori error estimate can be
obtained for the mixed approximation proposed in this section.
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Theorem 1. Let m be the order of consistency of the mixed approximation uh + u�; such that
m = p+ q; where p is the order of the �nite element approximation; uh; and q ¿ 0 is the order
increment due to u�. Suppose the following regularity conditions hold for the exact solution; u;
and the weighting function; �: u ∈ Cm+1( ��) and � ∈ C0( ��); where � is bounded and @� is
smooth. Finally; assume that the element size is small enough; i.e.

h
�
6 min

p+16r6m

(
r

p+ 1

)−1=(r−(p+1))

Then;

‖u− (uh + u�)‖L∞6hp+1 [C1hq + C2�q] |u|Wm+1∞ (18)

where C1 and C2 are independent of the �nite element size; h; and the dilation parameter; �; of
the meshless approximation.

Note that on the left-hand side of the inequality the standard in�nite norm over � is used,
whereas on the right-hand side the seminorm |·|Wm+1∞ is employed. For the sake of clarity, multi-
index notation is introduced: given the n-tuple � = (�1; �2; : : : ; �n) ∈ Nn and the non-negative
integer |�| := �1 + �2 + · · ·+ �n then, by de�nition,

|u|Wm+1∞ =
∑

|�|=m+1
max
x∈ ��

∣∣∣∣ @|�|u
@x�11 @x

�2
2 : : : @x

�n
n

∣∣∣∣
It is important to remark that the error bound in (18) coincides with the convergence results

shown in Figures 10–12. That is, when both h and � decrease simultaneously, the order of con-
vergence is p+ q+ 1 = m+ 1. When h goes to zero while � is kept constant, the order is either
p+ 1 if C1hq ¡ C2�q or m+ 1 when C1hq�C2�q. And �nally, convergence is ensured at a rate
of q when � goes to zero provided that C1hq�C2�q.
The previous theorem introduces a restriction on the element size which can be relaxed at a

prize of obtaining a new error bound not as sharp.

Theorem 2. Under the same assumptions of Theorem 1 but with no restriction on the element
size; the a priori error bound becomes

‖u− (uh + u�)‖L∞6hp+1[C1hq + C2�1]|u|Wm+1∞

See Reference [17] for a detailed proof of the previous theorems. Moreover, following the ideas
exposed in Liu et al. [16] Theorem 1 can be extended to the standard form in �nite element
analysis, see the proof in Reference [18].

Theorem 3. Let m be the order of consistency of the mixed approximation uh + u�; such that
m = p+ q; where p is the order of the �nite element approximation; uh; and q ¿ 0 is the order
increment due to u�. Given k such that 06k6p; suppose the following regularity conditions hold
for the exact solution; u; and the weighting function; �: u ∈ Cm+1( ��) and � ∈ Ck( ��); where
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� is bounded and @� is smooth. Finally; assume that the element size is small enough; i.e.

h
�
6 min

06s6k
p+16r6m

(
�s;p+1
�s;r

)1=(r−(p+1))

where

�s;r :=
r!

(r − s)!
s∑

l=max{s−r+p+1;0}

(
s
l

)(
r − s

p+ 1− l
)

Then;

‖u− (uh + u�)‖Wk∞6h
p+1−k [C1hq + C2�q]|u|Wm+1∞ (19)

where C1 and C2 are independent of the �nite element size; h; and the dilation parameter; �; of
the meshless approximation.

The standard de�nition of the norm ‖ · ‖Wk∞ is used, namely

‖u‖Wk∞ =
k∑
s=0

|u|Ws∞ =
k∑
s=0

∑
|�|=s

max
x∈ ��

∣∣∣∣ @|�|u
@x�11 @x

�2
2 : : : @x

�n
n

∣∣∣∣

6. NUMERICAL EXAMPLES

6.1. Coupled EFG-FEM

In this section a coupled FE-EFG approximation is employed with a simple example, the interpo-
lation of u(x) = sin(�x) in � = [−1; 1]. Linear elements are employed (p = 1) and the nodes in
�� = [−1; 0) are replaced by particles. Consistency of order one is enforced everywhere.
Figure 14 shows, on the left, the interpolation functions. The shape functions, N�, associated

to particles, denoted by asterisks, are plotted with a solid line. The �nite element interpolation
functions, Nh, are depicted with dashed lines and the position of the nodes by circles. The transition
region �̃ is [−0:25; 0]. Figure 14 also shows, on the right, the result of such an interpolation. The
approximation uh+ u� is plotted with a solid line and the error, u− (uh+ u�), with a dashed line.
It is important to notice the special pro�le adopted by the shape function associated to the �rst
particle (particle at x = −0:25): on the left it is similar to the particle positioned at the boundary
of the domain, while in �̃ it looks like a standard linear �nite element interpolation function.
In this case the approximation is similar to the one proposed in Reference [5]. However, here

there is no need to de�ne any ramp function. Moreover, the same formulation can be employed
with a particles distribution such that the transition region �̃ includes more than one particle.
For instance, Figure 15 shows both the shape functions and the interpolation with its associated
error for a di�erent distribution of particles. In particular, now the transition region includes three
particles (one on its boundary and two in the interior of �̃). The larger number of particles (with
their associated smaller dilation parameter) induces a better approximation in �� = [−1; 0].
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Figure 14. Approximation functions—4 particles and 5 nodes—(left) and interpolation result, u� + uh, with
error distribution (right).

Figure 15. Approximation functions—12 particles and 5 nodes—(left) and interpolation result, u� + uh, with
error distribution (right).

6.2. Coupled and enriched EFG-FEM

Coupling and enrichment can be employed together. In this case, particles are added and element
removed without any particular restriction. Function u(x) = sin(2�x) in �� = [−1; 1] is interpolated.
As shown in Figure 16 four di�erent regions are present: in [−1;−0:5] only particles have an
in�uence, in [−0:5; 0] particles and a non-complete basis of �nite elements are present, in [0; 0:5]
both particles and complete �nite elements are used, �nally, in [0:5; 1] only �nite elements have an
in�uence. Consistency is not uniform in this case, in ��\�� = [0:5; 1] the �nite element interpolation
controls the order of consistency, m = p = 1. But in the meshless area of in�uence, i.e. �� =
[−1; 0:5], the order of consistency required is m = 2.
Figure 17 shows the interpolation results obtained with the particle distribution of Figure 16.

Six particles and �ve nodes have been used, their associated shape functions are shown in
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Figure 16. Approximation functions: 6 particles and 5 nodes.

Figure 17. Mixed interpolation with 6 particles and 5 nodes.

Table I. Measures of error for 6 particles and 5 nodes.

[−1;−0:5] [−0:5; 0] [0,0.5] [0.5,1]

Error in L2 norm 0.059 0.098 0.073 0.107
Error in L∞ norm 0.124 0.194 0.160 0.209
DOF EFG+FEM 2+0 2+1 2+3 0+3
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Figure 18. Mixed interpolation with 11 particles and 5 nodes.

Table II. Measures of error for 11 particles and 5 nodes.

[−1;−0:5] [−0:5; 0] [0,0.5] [0.5,1]

Error in L2 norm 0.015 0.027 0.036 0.107
Error in L∞ norm 0.048 0.052 0.088 0.209
DOF EFG+MEF 4+0 3+1 3+3 0+3

Figure 16. It is important to note that, as expected, the interpolation functions are hierarchical.
The error in each region can be found in Table I.
In [0.5,1] linear �nite elements induce the larger error. In [0,0.5] the error is reduced with an

‘h-p re�nement’: particles are added and the order of consistency is increased. In both regions
the �nite element interpolation is complete. The price, in the number of degrees of freedom, is
considerable. Similar results are obtained if the number of particles is increased. Figure 18 shows
the results with the same �nite element mesh, the same orders of consistency and 11 particles.
The dilation parameter � is reduced by a half. The error measures can be found in Table II.
This example also shows the in�uence of a coarse �nite element mesh when the number of

particles is increased. This point was already discussed in the error analysis. In [−1;−0:5] and
in [0; 0:5] the distribution of particles is similar. In the former the precision is higher albeit that
the number of degrees of freedom is lower than in the other region. In the latter the complete
�nite element interpolation introduces extra degrees of freedom but the error does not decrease.
As previously noted, see Section 5, if the �nite element mesh is too coarse an increase in the
number of particles does not reduce the error.
If the �nite element mesh is enriched with meshless approximations, the coe�cients associated

to the �nite element shape functions maintain their physical meaning. The meshless shape functions
are hierarchical. However, convergence can only be achieved on a coarse mesh if the order of
consistency is increased, i.e. adding more particles without any increase in m does not su�ce.

18



6.3. Finite element enrichment with EFG in a 2D scalar problem

The Poisson equation with Neumann and Dirichlet boundary conditions is solved next. The problem
statement is

	u = −f; � = (0; 1)× (0; 1)
∇u · n = q0; 
n = �� ∩ {y = 0}

u = u0; 
d = @�\
n
where n is the outward unit normal vector. The source term, f, and the boundary conditions, q0
and u0, are chosen such that u(x) = e−(6(x+y−1))

2
is the solution. Plate 1 depicts this solution (left)

and a cross-section on the plane y = x. Essential boundary conditions are imposed using Lagrange
multipliers which are interpolated using the C0 �nite element interpolation functions along the
boundary.
Plates 2 and 3 show the �nite element mesh, the solution and the error distribution. An 8 × 8

quadrilateral mesh with bilinear �nite elements (Q1) has been used. The error is larger along the
diagonal x + y = 1 and the error measure in the maximum norm (L∞ norm) is 0:1707.
In order to improve the approximation, the �nite element mesh is enriched adding particles

and imposing an order of consistency m = 2. Plate 4 shows the �nite element mesh and the
distributions of particles. The error of the mixed approximation is also plotted in the same �gure
and with the same scale used in Plate 2. In fact the measure in the maximum norm is now: 0:0204.
Finally, Plate 5 presents the mixed approximation. The �nite element approximation, uh (top),

is improved by a particle contribution, u� (centre), which induces the �nal mixed approximation,
uh + u� (bottom).

6.4. Finite element enrichment with EFG in non-linear computational mechanics

This example reproduces the �nite element enrichment with EFG in a nonlinear computational
problem. A rectangular specimen with an imperfection is loaded, see References [19; 20]. It has
two axes of symmetry, a bilinear elastoplastic material is considered, and plane strain conditions
are assumed. Figure 19 presents the problem statement with the material properties.
This problem has been solved with standard eight-noded quadrilateral elements. Moreover, an

adaptive error analysis [20; 21] has been conducted up to convergence. The �nal mesh and its
equivalent inelastic strain distribution is shown in Plate 6 (left). This mesh has 2022 d.o.f. and a
relative error (measured in energy norm) of 0.18 per cent.
The same example has also been solved with element-free Galerkin. In order to obtain compa-

rable results, the distribution of particles coincides with the distribution of nodes in the previous
�nite element mesh; and consistency of order two is required. Thus, the number of degrees of
freedom (d.o.f.) is also 2022. Plate 6 (right) shows the distribution of particles and inelastic strains.
Results degrade drastically if a coarse mesh of quadrilateral bilinear �nite elements (308 d.o.f.) is

employed, see Plate 7. However, when particles are added (308+906=1214 d.o.f.) and the order of
consistency is increased (m = 2), the correct distribution of inelastic strains is recovered, see Plate
7. Note that, the �nal �nite element mesh in Plate 6 (left) was obtained after an iterative process
which needed for each iteration the generation of a new mesh. In this �nal example, Plate 7,
the original mesh is maintained and particles are added where they are needed.
Finally, Figure 20 shows the evolution of the inelastic strains along the direction (A-A′) for

every con�guration studied. Section (A-A′) is plotted in Figure 19.
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Figure 19. Problem statement: rectangular specimen with one centred imperfection.

Figure 20. Force versus displacement (left) and evolution of the equivalent inelastic strain along (A-A′)
for each approximation (right).

7. CONCLUSIONS

This paper develops a mixed interpolation, it is based on �nite element and meshless methods.
In fact, it is an extension of previous published papers by Liu, Belytschko and coworkers [5; 14; 16]
with a uni�ed formulation generalizable to any spatial order (p or m) and with its corresponding
convergence analysis. Two di�erent cases have been studied: coupled �nite elements with EFG,
p = m, or enrichment of �nite elements with EFG, m¿p. For the sake of clarity, EFG has been
used as the meshless method. However, generalization to RKPM is straightforward.
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Plate 1. Analytical solution and section along y = x.

Plate 2. Finite element mesh and error distribution.
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Plate 3. Approximation with 8 x 8 Q1 finite elements.

Plate 4. Finite element mesh enriched with particles and error distribution of the mixed approximation.
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Plate 5. Finite element contribution uh, enrichment with EFG uρ and mixed approximation uh + uρ.

23



Plate 6. Final mesh with its corresponding equivalent inelastic strain for a standard finite element (8 noded elements) computation (left)
and distribution of particles with its inelastic strain distribution for EFG (right). 

Plate 7. Coarse finite element mesh (Q1 elements) with its corresponding equivalent inelastic strain (left) and mixed interpolation with
its equivalent inelastic strain distribution (right). 
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The �rst case allows to implement Dirichlet boundary conditions in a standard �nite element
context. In fact, this was proposed by Belytschko et al. [5] and here a simple generalization avoids
the use of any ramp function and the need of substituting nodes per particles. That is, particles can
be added arbitrarily in the region of the computational domain where the �nite element interpolation
is not complete. This ensures continuity of the solution (no coupling via Lagrange multipliers is
imposed) and also enforces a uniform order of consistency (and thus of convergence) everywhere
in the computational domain. The convergence properties of the mixed approximation are similar
to those of the �nite element method or element-free Galerkin.
The second case, enrichment of �nite elements with EFG, allows to improve the accuracy of

�nite elements where needed in an adaptive process without any remeshing. The a priori error
bounds of this formulation are illustrated with numerical examples and stated in a formal setting.
They indicate that both the element size, h, and the dilation parameter, �, in�uence the convergence,
as well as the order of the �nite element interpolation, p, and the increase of order of consistency,
q, due to the added particles. Moreover, the a priori bound shows that h, h-p or �-q re�nements
will induce convergence but � re�nement on its own will fail to decrease arbitrarily the error of
the approximation. That is, convergence cannot be attained by simply adding particles and thus
reducing the dilation parameter, an increase in the order of consistency is needed.
Both cases are illustrated with several examples. They show the applicability of the proposed

formulation in standard linear and non-linear boundary value problems.
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