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INTRODUCTION

Meshless or particle methods such as reproducing kernel particle methods (RKPM) [1; 2] elementfree Galerkin (EFG) [START_REF] Belytschko | Element-free Galerkin methods[END_REF][START_REF] Belytschko | Element-free Galerkin methods for dynamic fracture in concrete[END_REF][START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF][START_REF] Belytschko | Dynamic fracture using element-free galerkin methods[END_REF][START_REF] Lu | A new implementation of the element free Galerkin method[END_REF][START_REF] Organ | Continuous meshless approximations for nonconvex bodies by di raction and transparency[END_REF] or smooth particle hydrodynamics (SPH) [9; 10] among others (see [11; 12] for a general presentation), have nowadays proven their applicability in computational mechanics. They do not require to generate a mesh (a connectivity matrix) and thus, they are specially suited for certain problems, for instance adaptive reÿnement computations or discontinuous ÿeld problems (i.e. crack propagation problems [START_REF] Belytschko | Dynamic fracture using element-free galerkin methods[END_REF]). Moreover, the interpolation functions in meshless methods are particularly attractive in the presence of high gradients, concentrated forces, and large deformations. However, particle methods su er from an important computational cost that reduces their range of practical (engineering) applicability.

On the other hand, from a practical point of view, ÿnite elements are less costly, implement Dirichlet boundary conditions in a simple way (no need for Lagrange multipliers), and, above all, they are widely used and trusted by practitioners. However, the relative cost of the mesh generation process is, for some problems, very large. In particular, the cost of remeshing in adaptive reÿnement problems is clearly not negligible.

Several authors have already proposed to use mixed ÿnite elements and meshless interpolations. The objective is always to use the advantages of each method. Belytschko et al. [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF] already show how to couple ÿnite elements near the Dirichlet boundaries and element-free Galerkin in the interior of the computational domain. This simpliÿes considerably the prescription of essential boundary conditions. They do a mixed interpolation in the transition region: area where both ÿnite elements and particles have an in uence. This mixed interpolation requires the substitution of ÿnite element nodes by particles and the deÿnition of ramp functions. Thus, the transition is of the size of one ÿnite element and the interpolation is linear. With the same objectives, Hegen [START_REF] Hegen | Element free Galerkin methods in combination with ÿnite element approaches[END_REF] couples the ÿnite element domain and the meshless region with Lagrange multipliers. Here a new formulation is proposed. It follows the ideas of Belytschko et al. [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF], generalizes them for any order of interpolation, suppresses the ramp functions, and does not require the substitution of nodes by particles. That is, as many particles as needed can be added where they are needed independently of the adjacent ÿnite element mesh. This is done preserving the continuity of the solution and enforcing uniform consistency for the mixed interpolation.

Liu et al. [START_REF] Liu | Enrichment of the ÿnite element method with reproducing Kernel particle method[END_REF] proposed a mixed interpolation with other goals and di erent formulations. They suggest to enrich the ÿnite element approximation with particle methods. In fact, the following adaptive process seems attractive: (1) compute an approximation with a coarse ÿnite element mesh, (2) do an a posteriori error estimation and (3) improve the solution with particles without any remeshing process. Meshless methods are ideal for such a procedure.

In this paper we present a uniÿed and general formulation for mixed interpolations in both cases (coupling and enrichment). The formulation is developed for the EFG method. However, its generalization to other particle methods is straightforward.

In the following sections the formulation is developed, the applicability conditions are discussed and the convergence properties are presented. Finally, several examples are presented to illustrate the advantages of such a mixed approximation.

FUNDAMENTALS OF MESHLESS APPROXIMATIONS

This section will not be devoted to develop or discuss meshless methods in detail or their relation with moving least-squares (MLS) interpolants. There are well-known references with excellent presentations of meshless methods, see for instance [11; 12; 15; 16]. Here some basic notions will be recalled in order to introduce the notation and the approach employed in the following sections.

Meshless methods, or particle methods, are based in a functional interpolation of the form

u(x) u (x) = j∈I u(x j )N j (x) (1) 
given a number of particles {x j } j∈I in the domain ; ⊂ R n . The interpolation functions, N j (x), must be determined in a proper manner. In reproducing kernel particle methods [1; 2] (RKPM) the interpolation functions are obtained in the framework of the MLS interpolation. The element-free Galerkin method [START_REF] Belytschko | Element-free Galerkin methods[END_REF][START_REF] Belytschko | Element-free Galerkin methods for dynamic fracture in concrete[END_REF][START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF][START_REF] Belytschko | Dynamic fracture using element-free galerkin methods[END_REF][START_REF] Lu | A new implementation of the element free Galerkin method[END_REF][START_REF] Organ | Continuous meshless approximations for nonconvex bodies by di raction and transparency[END_REF] (EFG) can be viewed as a particular case of the previous formulation [START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF].

Let us recall, in the context of the EFG method, how the interpolation (shape) functions are obtained. They are deÿned as

N j (x) = P T (x j ) Q(x) x -x j (2) 
where P T (x) = {p 0 (x); p 2 (x); : : : ; p l (x)} includes a complete basis of the subspace of polynomials of degree m and the vector Q(x) in R l+1 is unknown. In one dimension, it is usual that p i (x) coincides with the monomials x i , and, in this particular case, l = m. The function (x) is a weighting function (positive, even and with compact support) which characterizes the meshless method. For instance, if (x) is continuous together with its ÿrst k derivatives, the interpolation is also continuous together with its ÿrst k derivatives. In RKPM, (x) is directly related to the window function of the reproducing kernel. In (2) the weighting function has been translated, centred in x j , and its support scaled by the dilation parameter .

The unknown vector Q(x) is determined imposing the so-called reproducibility or consistency condition. It is, in fact, the MLS condition. This reproducibility condition imposes that u (x) deÿned in (1) interpolates exactly polynomials of degree less or equal to m, i.e.

P(x)

= j∈I P(x j )N j (x) (3) 
For computational purposes, it is usual and preferable [START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF] to centre in x j and scale with also the polynomials involved in previous expressions. Thus, another expression for the shape functions is employed:

N j (x) = P T x -x j Q(x) x -x j (4) 
which is similar to [START_REF] Liu | Reproducing kernel particle methods[END_REF]. The consistency condition becomes in this case

P(0) = j∈I P x -x j N j (x) (5) 
which is equivalent to condition (3) when is constant everywhere. After substitution of (4) into (5) the usual linear system of equations, that determines Q(x), is obtained

M(x) Q(x) = P(0) (6) 
with

M(x) = j∈I P x -x j P T x -x j x -x j (7) 
Notice that for each x in R n the previous sum only involves those particles whose support-the support of the weighting function -includes x. Section 3.2 presents a discussion on the necessary conditions for M(x) to be positive deÿnite, namely, the requirements on the particle distribution and the value of the dilation parameter. This will allow to compute the vector Q at each point and thus determine the shape functions, N j (x).

Remark 1. The consistency conditions (3) and ( 5) are equivalent if the dilation parameter is constant. When the dilation parameter varies at each particle another deÿnition of the shape functions is recommended,

N j (x) = P T x -x j Q(x)
xx j j where j is the dilation parameter associated to particle x j , and a constant is employed in the scaling of the polynomials P. Note that expression (4) is not directly generalized. The constant value is typically chosen as the mean value of all the j . The consistency condition in this case is also [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF]. It also imposes the reproducibility of the polynomials P.

Remark 2. The dilation parameter characterizes the support of the shape functions N i (x). In fact, it plays a role similar to the element size in the ÿnite element method. An h-reÿnement in ÿnite elements can be produced in meshless methods decreasing the value of (this usually implies an increase in the number of particles). Liu et al. [START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF] proved convergence of the RKPM and, in particular, of EFG. The a priori bound is very similar to the bound in ÿnite elements. The parameter plays the role of h, and m (the order of consistency) plays the role of the degree of the interpolation polynomials in the ÿnite element mesh. Remark 3. Convergence properties depend on m and . They do not depend on the distance between particles because usually [10; 16] this distance is proportional to , i.e. the ratio between the particle distance over the dilation parameter is of order one.

A HIERARCHICAL MIXED APPROXIMATION: FINITE ELEMENTS WITH EFG

Suppose, as discussed in the introduction, that the interpolation of u(x) in ; ⊂ R n , is done with both ÿnite elements and EFG. The domain must include a set of nodes {x i } i∈I h with their associated shape functions N h i (x), that are going to take care of the ÿnite element contribution, u h (x), to u(x), namely,

u h (x) = i∈I h u(x i )N h i (x) (8) 
There is also a set of particles {x j } j∈I with their associated interpolation functions N j (x), that are going to take care of the meshless contribution,

u (x) = j∈I u(x j )N j (x) (9) 
In the more general case, the domain is the union of two non-disjoint subdomains, = h ∪ , where h denotes the subdomain where the N h i have an in uence in the approximation,

h = {x ∈ |∃i ∈ I h ; N h i (x) = 0}
and where is the subdomain where at least one N j is non-zero, In the region where only ÿnite elements are present, h \ , a standard, and thus consistent, ÿnite element approximation is considered:

= {x ∈ |∃j ∈ I ; N j (x) = 0}
u(x) u h (x)
In the region where only particles have an in uence, \ h , the standard, and thus consistent, EFG approximation is considered:

u(x) u (x)
However, in the area where both interpolations have an in uence, ˜ := h ∩ , a mixed interpolation must be deÿned

u(x) u h (x) + u (x) (10) 
The objective now is to develop a mixed functional interpolation, such as [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF], with the desired consistency in ˜ , without any modiÿcation of the ÿnite element shape functions N h i and such that u (x) is hierarchical. That is, an EFG contribution which should be zero at the ÿnite element nodes, must be added to the standard ÿnite element interpolation. Obviously, such a contribution must verify consistency conditions similar to those of standard meshless methods [2; 3; 16].

In the following sections this mixed interpolation is developed and discussed. In particular, the admissible particle distribution is detailed. Moreover, a priori convergence is studied when the number of particles is increased, when the number of nodes is increased, and when both particles and nodes are increased.

Moreover, two cases will be considered with the same formulation. The ÿrst one (coupled ÿnite element and element-free Galerkin) requires that h = and = . That is, in a region of only ÿnite elements will be used, in another region only EFG are employed, and ÿnally in a mixed area, ˜ , the solution is approximated using [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF]. In the second case, = h and ˜ = . That is, there is a complete ÿnite element basis all over . Only in a reduced area, ˜ , particles are added to improve the interpolation (ÿnite element enrichment with element-free Galerkin). Both situations are depicted in Figures 1 and2, and developed in Sections 4 and 5.

Evaluation of the meshless shape functions N j

In ˜ the expression of the interpolation function is obtained after substitution of ( 8) and ( 9) into (10), namely

u(x) i∈I h u(x i )N h i (x) + j∈I u(x j )N j (x) (11) 
where N (x) is deÿned, as previously, in (4), and, as before, the vector of unknown functions, Q(x), is determined using the consistency condition. Now the reproducibility conditions impose that (11) must interpolate exactly a complete basis of polynomials of order less or equal to m. That is,

P(0) = j∈I P x -x j N j (x) + i∈I h P x -x i N h i (x) (12) 
which is the natural extension of [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF]. Note that Equation ( 12) can, if is constant everywhere, be rewritten as

P(x) = j∈I P(x j )N j (x) + i∈I h P(x i )N h i (x) (13) 
which shows more clearly the desired reproducibility condition. The linear system of equations that determines Q is obtained once the deÿnition of N (x), Equation ( 4), is substituted in [START_REF] Liu | Overview and applications of the reproducing Kernel particle methods[END_REF],

M(x) Q(x) = P(0) - i∈I h P x -x i N h i (x) (14) 
The least-squares matrix is identical to the matrix employed in the standard EFG method, Equation ( 7), namely

M(x) = j∈I P x -x j P T x -x j x -x j
Remark 4. The particle shape functions N j are hierarchical. Note that at any node x k ; k ∈ I h , the right-hand side of ( 14) is zero

P(0) - i∈I h P x k -x i N h i (x k ) = P(0) - i∈I h P x k -x i ik = 0
Thus, the solution of ( 14) is trivial, Q(x k ) = 0. And therefore, from the deÿnition of the particle shape functions, (4), it is easy to verify that the N j (x) are hierarchical, i.e. N j (x k ) = 0 ∀j ∈ I ; k ∈ I h .

Admissible particle distribution

As in standard EFG, matrix M(x) must be regular (invertible) everywhere, i.e. at each point x ∈ ˜ . Only the right-hand side of ( 14) di ers from the EFG system of equations [START_REF] Belytschko | Dynamic fracture using element-free galerkin methods[END_REF]. Thus, as in EFG, the number of particles, their position and their related dilation parameters cannot be taken arbitrarily. In Liu et al. [START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF] there is an excellent deÿnition of the admissible particle distribution.

Here some essential details are recalled in order to discuss the validity of the mixed approximation. At a point x * ∈ ˜ , matrix M(x * ) can be viewed as a Gram matrix deÿned with the discrete scalar product and with the linear independent polynomials in P(x). If the scalar product, • ; • x * , is degenerated the matrix M(x * ) is singular. For instance, every point x * ∈ ˜ must lie in the area of in uence of, at least, l + 1 = dim(M) particles. That is, the following condition is necessary:

f; g x * = j∈I f x * -x j g x * -x j x * -x j (15) 
card x j | j ∈ I ; x * -x j = 0 ¿ dim(M) = l + 1
Moreover, the location of those particles is not arbitrary. In a n-dimensional space, i.e. x * ∈ R n , the n + 1 particles needed for a linear interpolation must describe a non-degenerated n-simplex.

For instance, in two dimensions (n = 2); x * must belong to the support of at least three shape functions associated to particles not aligned; or in three dimensions (n = 3); x * must belong to the support of at least four functions with particles not coplanar. These restrictions are also valid for possible distributions of particles in a mixed interpolation. For instance, in a one-dimensional domain with an order one consistency (linear interpolation) a ÿnite element node cannot be replaced by a single particle, see Figure 3. Two particles, with dilation parameters large enough, are needed in order to ensure that everywhere in ˜ the scalar product, [START_REF] Liu | Meshless methods[END_REF], does not degenerate. Figures 3 and4 depict these situations. For each particle, its corresponding weighting function ((xx i )= ) is plotted.

Figure 5 also shows a non admissible distribution of particles. In the region where both particle and ÿnite element interpolations have an in uence, ˜ , there are not enough particles (only one is present) to ensure the regularity of M(x). An obvious solution for this problem, maintaining the same particle distribution, is to chose a dilation parameter large enough, see Figure 6.

Remark 5. The shape functions N j are hierarchical. Thus, in one dimension, the weighting functions ((xx i )= ) can be truncated outside and continuity of N j (x) is preserved, see Figures 4 and6. This property cannot be generalized to higher dimensions. In fact Sections 4 and 5 discuss this issue.

Remark 6. As previously indicated for EFG, the interpolation functions could be deÿned using (2) instead of (4). Thus, the scalar product needed to deÿne M(x * ) is now

f; g x * = j∈I f(x j )g(x j ) x * -x j (16) 
instead of [START_REF] Liu | Meshless methods[END_REF]. However, it is preferable to scale the polynomials P(x) as done previously, see ( 4) and ( 15), because Gram matrices, such as M(x * ), are easily ill-conditioned, specially with the trivial basis of polynomials. In general, with the translation to x * and the scaling with , Gram matrices have lower condition numbers.

Remark 7. The aforementioned conditions for matrix M(x) ensure its regularity. However, these conditions do not imply the solvability of the discrete variational problem. The 'sti ness' matrix for the global problem may be singular if a quadrature not accurate enough is employed. Moreover, as discussed in Section 5, Remark 9, when particles are added as an enrichment of ÿnite elements, the shape functions associated to particles, N , are not linearly independent.

COUPLED FINITE ELEMENT AND ELEMENT-FREE GALERKIN

In this section, a new formulation, which generalizes the coupled formulation proposed by Belytschko et al. [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF], is presented. This coupling between ÿnite elements and EFG maintains both continuity and consistency everywhere, in particular, in the transition area. The major di erences with the previously cited reference [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF] are: [START_REF] Liu | Wavelet and multiple scale reproducing kernel methods[END_REF] there is no need to replace nodes by particles, and (2) no ramp functions must be deÿned.

In fact, the generalization proposed here can be used for any order of consistency (it can go beyond linear elements and order one consistency). Moreover, this method allows to introduce as many particles as desired in the last element that deÿnes the transition area, see Figures 7 and8.

The computational domain is divided into three non-disjoint regions: one where ÿnite elements have an in uence, h , another where particles have an in uence,

, and ÿnally, one region, ˜ , for the transition. In the latter, both particles and nodes deÿne the interpolation, see Figure 1. Such a situation may be of interest if a computation with ÿnite elements of degree p needs to be reÿned in a region without remeshing. The nodes of the original ÿnite element mesh are removed in but as many particles as needed are added in that region (see the crack propagation examples in the papers by Belytschko and co-workers [START_REF] Belytschko | Element-free Galerkin methods for dynamic fracture in concrete[END_REF][START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF][START_REF] Belytschko | Dynamic fracture using element-free galerkin methods[END_REF][START_REF] Organ | Continuous meshless approximations for nonconvex bodies by di raction and transparency[END_REF]).

It is important to notice that the approximation u h + u is continuous everywhere in if the following conditions are met. First, the same order of consistency is imposed all over (i.e. for both ÿnite elements and particles), namely, m = p. And second, the domain of in uence of particles, , coincides exactly with the region where ÿnite elements do not have a complete basis. That is, no particles are added in 'complete' ÿnite elements (i.e. elements where no node has been suppressed). Moreover, weighting functions are chopped o in those 'complete' ÿnite elements, see Figure 6. In other words, is the union of elements where at least one node has been removed.

The approximation u h + u is continuous as long as the shape functions N j are continuous. In spite of chopping o the weighting functions outside the approximation maintains its regularity. This is due to the fact that N j (x) = 0 over h ∩ @ , with absolute independence of the fact that ((xx j )= ) = 0 over h ∩ @ . In h \ the ÿnite element interpolation is complete and of order m. In particular, over h ∩@ polynomials of degree less or equal to m are interpolated exactly. Thus, it is easy to verify that P(0) -

i∈I h P x -x i N h i (x) = 0 over h ∩ @
Recalling ( 14), the previous equation implies that Q(x) = 0, and consequently, N j (x) = 0 for x ∈ h ∩ @ , see Equation ( 4). Note that the previous rationale is independent of the spatial dimensions. Thus, in 1D, 2D or 3D, the shape functions N j are continuous independently of the truncation of the weighting functions ((xx j )= ), see Figure 6.

Remark 8. In \ h ÿnite elements have no in uence, P(0) -

i∈I h P x -x i N h i (x) = P(0)
In this region, shape functions N j are identical to the standard EFG ones.

Convergence analysis

It is easy to verify that the mixed interpolation proposed preserves the convergence rate of FEM and EFG. Function

u(x) = x 4 + 2x 3 is interpolated for x ∈ = [-1; 1]
The three regions of in uence of ÿnite elements, particles and the mixed interpolation are: h = [-h; 1], = [-1; 0] and ˜ = [-h; 0], where h is the size of ÿnite elements, see Figure 6. Figure 9 shows the convergence rate-logarithm of the error in L 2 ([-1; 1]) versus the total number of degrees of freedom-in two cases: standard linear ÿnite elements and a coupled ÿnite element-EFG approximation of order one. With this distribution of particles and with consistency of order one, this approach gives the same results as the one proposed by Belytschko et al. [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF]. Similar conclusions can be drawn with other distributions of particles and order of consistency, see in the same ÿgure the convergence results obtained with m = 2 and a particle distribution of Figure 8.

FINITE ELEMENT ENRICHMENT WITH ELEMENT-FREE GALERKIN

A ÿnite element approximation can be improved (enriched) without any need of remeshing by adding particles. Particle methods have demonstrated their advantages in adaptive computations and their suitability to capture large gradients, concentrated loads and large deformations. Thus, enrichment of ÿnite elements with meshless methods of the desired order seems an attractive option in these problems.

In this case, the region ˜ where particles are added also maintains the original complete ÿnite element interpolation, see Figure 2. In ˜ , the consistency of the mixed interpolation m must be larger than the order of the ÿnite element interpolation p. If consistency is set equal to p, ÿnite elements can reproduce exactly polynomials up to degree p, thus P(0) -

i∈I h P x -x i N h i (x) = 0 ∀x ∈ ˜
and the solution of ( 14) is the trivial one, Q = 0. Consequently, the interpolation functions related to the particles N j are identically zero everywhere. Thus P(x) must include at least one polynomial not reproducible by the ÿnite element interpolation, i.e. m ¿ p.

As previously seen in Section 3 the shape functions N j are hierarchical. Thus, the interpolation is continuous in one-dimensional problems irrespective of the truncation of the weighting functions, (x) outside ˜ . In higher dimensions, continuity is not preserved as soon as the order of consistency is not constant and uniform everywhere in . In fact, the increase in consistency just mentioned in ˜ will induce discontinuities in the approximation along @ ˜ : functions N j are hierarchical but do not go to zero everywhere on @ ˜ . If the approximation must be continuous a region surrounding ˜ must be deÿned in which the interpolation functions N j go to zero with continuity. However, if @ ˜ coincides with an area where ÿnite elements capture accurately the solution, those discontinuities due to the enrichment are going to be small. Remark 9. Linear elements in 1D reproduce exactly polynomials of degree less or equal to one. In this case the ÿrst two equations of the system of Equations ( 14) are the consistency conditions: j∈I N j (x) = 0 j∈I x j N j (x) = 0 which correspond to the ÿrst two equations in [START_REF] Hegen | Element free Galerkin methods in combination with ÿnite element approaches[END_REF]. This implies that all the interpolation functions N j must verify these relations and, thus, they are no longer linearly independent. If every interpolation function is used in the resolution of the boundary value problem, the 'sti ness' matrix would be singular (two of its eigenvalues are zero). Thus, once the shape functions are evaluated, i.e. after ( 14) is solved, two of those interpolation functions are eliminated. Then, a linear set of interpolation functions is recovered and the 'sti ness' matrix remains regular. In general, it is necessary to suppress a N j (i.e. a particle) of the interpolation set for each polynomial in P(x) that ÿnite elements are able to capture exactly. 

Convergence analysis

A parametric analysis of convergence rates for this proposed method is shown next. The same function used previously is also used here,

u(x) = x 4 + 2x 3 ; x ∈ = [-1; 1]
with particles and ÿnite elements everywhere. Finite elements are enriched everywhere adding particles and increasing the order of consistency. As before, p is the degree of the ÿnite element interpolation, and m is the order of consistency obtained with the added particles. The increment of consistency q is deÿned as

q := m -p
The error is evaluated in the L 2 ( ) norm. In Figure 10 the logarithm of the error is plotted against the logarithm of the number of degrees of freedom for di erent values of p and q.

Here, both ÿnite element and meshless approximations are reÿned simultaneously (maintaining h= constant). Note that the order of the method is O(h m+1 ). It is the same order that can be obtained with standard ÿnite elements of degree m = p + q, or standard EFG with consistency of order m.

Figure 11 shows convergence results when the number of particles is kept constant but elements are reÿned. The order of the method is O(h p+1 ) (identical to the order of ÿnite elements alone) if the constant is large (four particles in ). However, when the number of particles increases (256 particles in ), i.e. small , the order becomes O(h m+1 ). Thus, if the density of particles is large, a reÿnement in ÿnite elements of degree p induces an order of convergence similar to ÿnite elements of degree m = p + q.

Finally, Figure 12 shows the rate of convergence when reÿnement is only based on particles. That is, the ÿnite element mesh is kept constant. If the element size, h, is small, the order observed is O( q ), but when the element size is large (four elements is ) the mixed approximation does not converge as goes to zero.

Remark 10. Note that this convergence rates are also obtained with functions other than polynomials. In particular, similar results are obtained with the following function:

u(x) = sin ( 7 6 (x + 1)) cos 3 ( 35 6 (x + 1)) (17) 
which is plotted in Figure 13.

In fact, this convergence analysis can further be exploited. An a priori error estimate can be obtained for the mixed approximation proposed in this section.

Theorem 1. Let m be the order of consistency of the mixed approximation u h + u ; such that m = p + q; where p is the order of the ÿnite element approximation; u h ; and q ¿ 0 is the order increment due to u . Suppose the following regularity conditions hold for the exact solution; u; and the weighting function; : u ∈ C m+1 ( ) and ∈ C 0 ( ); where is bounded and @ is smooth. Finally; assume that the element size is small enough; i.e.

h 6 min p+16r6m r p + 1 -1=(r-(p+1)) Then; u -(u h + u ) L ∞ 6h p+1 [C 1 h q + C 2 q ] |u| W m+1 ∞ ( 18 
)
where C 1 and C 2 are independent of the ÿnite element size; h; and the dilation parameter; ; of the meshless approximation.

Note that on the left-hand side of the inequality the standard inÿnite norm over is used, whereas on the right-hand side the seminorm |•| W m+1 ∞ is employed. For the sake of clarity, multiindex notation is introduced: given the n-tuple = ( 1 ; 2 ; : : : ; n ) ∈ N n and the non-negative integer

| | := 1 + 2 + • • • + n then, by deÿnition, |u| W m+1 ∞ = | |=m+1 max x∈ @ | | u @x 1 1 @x 2 2 : : : @x n n
It is important to remark that the error bound in [START_REF] Fernã Andez-Mã Endez | Convergence of ÿnite elements enriched with meshless methods[END_REF] coincides with the convergence results shown in Figures 101112. That is, when both h and decrease simultaneously, the order of convergence is p + q + 1 = m + 1. When h goes to zero while is kept constant, the order is either p + 1 if C 1 h q ¡ C 2 q or m + 1 when C 1 h q C 2 q . And ÿnally, convergence is ensured at a rate of q when goes to zero provided that C 1 h q C 2 q . The previous theorem introduces a restriction on the element size which can be relaxed at a prize of obtaining a new error bound not as sharp.

Theorem 2. Under the same assumptions of Theorem 1 but with no restriction on the element size; the a priori error bound becomes

u -(u h + u ) L ∞ 6h p+1 [C 1 h q + C 2 1 ]|u| W m+1

∞

See Reference [START_REF] Huerta | Enrichissement des interpolations d'à elà ements ÿnis en utilisant des mà ethodes de particules[END_REF] for a detailed proof of the previous theorems. Moreover, following the ideas exposed in Liu et al. [START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF] Theorem 1 can be extended to the standard form in ÿnite element analysis, see the proof in Reference [START_REF] Fernã Andez-Mã Endez | Convergence of ÿnite elements enriched with meshless methods[END_REF]. Theorem 3. Let m be the order of consistency of the mixed approximation u h + u ; such that m = p + q; where p is the order of the ÿnite element approximation; u h ; and q ¿ 0 is the order increment due to u . Given k such that 06k6p; suppose the following regularity conditions hold for the exact solution; u; and the weighting function; : u ∈ C m+1 ( ) and ∈ C k ( ); where is bounded and @ is smooth. Finally; assume that the element size is small enough; i.e. 

u -(u h + u ) W k ∞ 6h p+1-k [C 1 h q + C 2 q ]|u| W m+1 ∞ ( 19 
)
where C 1 and C 2 are independent of the ÿnite element size; h; and the dilation parameter; ; of the meshless approximation.

The standard deÿnition of the norm

• W k ∞ is used, namely u W k ∞ = k s=0 |u| W s ∞ = k s=0 | |=s max x∈ @ | | u @x 1
1 @x 2 2 : : : @x n n 6. NUMERICAL EXAMPLES

Coupled EFG-FEM

In this section a coupled FE-EFG approximation is employed with a simple example, the interpolation of u(x) = sin( x) in = [-1; 1]. Linear elements are employed (p = 1) and the nodes in = [-1; 0) are replaced by particles. Consistency of order one is enforced everywhere. Figure 14 shows, on the left, the interpolation functions. The shape functions, N , associated to particles, denoted by asterisks, are plotted with a solid line. The ÿnite element interpolation functions, N h , are depicted with dashed lines and the position of the nodes by circles. The transition region ˜ is [-0:25; 0]. Figure 14 also shows, on the right, the result of such an interpolation. The approximation u h + u is plotted with a solid line and the error, u -(u h + u ), with a dashed line. It is important to notice the special proÿle adopted by the shape function associated to the ÿrst particle (particle at x = -0:25): on the left it is similar to the particle positioned at the boundary of the domain, while in ˜ it looks like a standard linear ÿnite element interpolation function.

In this case the approximation is similar to the one proposed in Reference [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF]. However, here there is no need to deÿne any ramp function. Moreover, the same formulation can be employed with a particles distribution such that the transition region ˜ includes more than one particle. For instance, Figure 15 shows both the shape functions and the interpolation with its associated error for a di erent distribution of particles. In particular, now the transition region includes three particles (one on its boundary and two in the interior of ˜ ). The larger number of particles (with their associated smaller dilation parameter) induces a better approximation in = [-1; 0]. Figure 17 shows the interpolation results obtained with the particle distribution of Figure 16. Six particles and ÿve nodes have been used, their associated shape functions are shown in Figure 16. It is important to note that, as expected, the interpolation functions are hierarchical.

The error in each region can be found in Table I. In [0.5,1] linear ÿnite elements induce the larger error. In [0,0.5] the error is reduced with an 'h-p reÿnement': particles are added and the order of consistency is increased. In both regions the ÿnite element interpolation is complete. The price, in the number of degrees of freedom, is considerable. Similar results are obtained if the number of particles is increased. Figure 18 shows the results with the same ÿnite element mesh, the same orders of consistency and 11 particles. The dilation parameter is reduced by a half. The error measures can be found in Table II.

This example also shows the in uence of a coarse ÿnite element mesh when the number of particles is increased. This point was already discussed in the error analysis. In [-1; -0:5] and in [0; 0:5] the distribution of particles is similar. In the former the precision is higher albeit that the number of degrees of freedom is lower than in the other region. In the latter the complete ÿnite element interpolation introduces extra degrees of freedom but the error does not decrease. As previously noted, see Section 5, if the ÿnite element mesh is too coarse an increase in the number of particles does not reduce the error.

If the ÿnite element mesh is enriched with meshless approximations, the coe cients associated to the ÿnite element shape functions maintain their physical meaning. The meshless shape functions are hierarchical. However, convergence can only be achieved on a coarse mesh if the order of consistency is increased, i.e. adding more particles without any increase in m does not su ce. for each approximation (right).

CONCLUSIONS

This paper develops a mixed interpolation, it is based on ÿnite element and meshless methods. In fact, it is an extension of previous published papers by Liu,Belytschko and coworkers [5;[START_REF] Liu | Enrichment of the ÿnite element method with reproducing Kernel particle method[END_REF][START_REF] Liu | Moving least square reproducing kernel methods. (I) Methodology and convergence[END_REF] with a uniÿed formulation generalizable to any spatial order (p or m) and with its corresponding convergence analysis. Two di erent cases have been studied: coupled ÿnite elements with EFG, p = m, or enrichment of ÿnite elements with EFG, m¿p. For the sake of clarity, EFG has been used as the meshless method. However, generalization to RKPM is straightforward. Plate 6. Final mesh with its corresponding equivalent inelastic strain for a standard finite element (8 noded elements) computation (left) and distribution of particles with its inelastic strain distribution for EFG (right).

Plate 7. Coarse finite element mesh (Q1 elements) with its corresponding equivalent inelastic strain (left) and mixed interpolation with its equivalent inelastic strain distribution (right).

The ÿrst case allows to implement Dirichlet boundary conditions in a standard ÿnite element context. In fact, this was proposed by Belytschko et al. [START_REF] Belytschko | A coupled ÿnite element-free Galerkin method[END_REF] and here a simple generalization avoids the use of any ramp function and the need of substituting nodes per particles. That is, particles can be added arbitrarily in the region of the computational domain where the ÿnite element interpolation is not complete. This ensures continuity of the solution (no coupling via Lagrange multipliers is imposed) and also enforces a uniform order of consistency (and thus of convergence) everywhere in the computational domain. The convergence properties of the mixed approximation are similar to those of the ÿnite element method or element-free Galerkin.

The second case, enrichment of ÿnite elements with EFG, allows to improve the accuracy of ÿnite elements where needed in an adaptive process without any remeshing. The a priori error bounds of this formulation are illustrated with numerical examples and stated in a formal setting. They indicate that both the element size, h, and the dilation parameter, , in uence the convergence, as well as the order of the ÿnite element interpolation, p, and the increase of order of consistency, q, due to the added particles. Moreover, the a priori bound shows that h, h-p or -q reÿnements will induce convergence but reÿnement on its own will fail to decrease arbitrarily the error of the approximation. That is, convergence cannot be attained by simply adding particles and thus reducing the dilation parameter, an increase in the order of consistency is needed.

Both cases are illustrated with several examples. They show the applicability of the proposed formulation in standard linear and non-linear boundary value problems.

Figure 1 .

 1 Figure 1. Coupled ÿnite element and element-free Galerkin.

Figure 2 .

 2 Figure 2. Finite element enrichment with elementfree Galerkin.

Figure 3 .

 3 Figure 3. Substitution of a ÿnite element node by one particle. Non-admissible distribution.

Figure 4 .

 4 Figure 4. Substitution of a ÿnite element node by two particles. Admissible distribution.

Figure 5 .

 5 Figure 5. Non-admissible distribution. ˜ is under the in uence of only one particle.

Figure 6 .

 6 Figure 6. Approximation functions before and after imposing the consistency condition of order one.

Figure 7 .

 7 Figure 7. Coupled approximation functions with consistency of order one and two particles in the transition region ˜ .

Figure 8 .

 8 Figure 8. Coupled approximation functions with consistency of order two and two di erent distribution of particles.

Figure 9 .

 9 Figure 9. Convergence of FEM and coupled FEM-EFG for a distribution of elements and particles shown in Figure 6.

Figure 10 .

 10 Figure 10. Convergence for a mesh and meshless reÿnement: constant h= and h → 0.

Figure 11 .

 11 Figure 11. Convergence for a mesh reÿnement: constant and h → 0.

Figure 12 .

 12 Figure 12. Convergence for a meshless reÿnement: constant h and → 0.

Figure 13 .

 13 Figure 13. Function u(x) deÿned in (17).

Figure 14 .

 14 Figure 14. Approximation functions-4 particles and 5 nodes-(left) and interpolation result, u + u h , with error distribution (right).

Figure 15 .

 15 Figure 15. Approximation functions-12 particles and 5 nodes-(left) and interpolation result, u + u h , with error distribution (right).

6. 2 .

 2 Coupled and enriched EFG-FEMCoupling and enrichment can be employed together. In this case, particles are added and element removed without any particular restriction. Function u(x) = sin(2 x) in = [-1; 1] is interpolated. As shown in Figure16four di erent regions are present: in [-1; -0:5] only particles have an in uence, in [-0:5; 0] particles and a non-complete basis of ÿnite elements are present, in [0; 0:5] both particles and complete ÿnite elements are used, ÿnally, in [0:5; 1] only ÿnite elements have an in uence. Consistency is not uniform in this case, in \ = [0:5; 1] the ÿnite element interpolation controls the order of consistency, m = p = 1. But in the meshless area of in uence, i.e. = [-1; 0:5], the order of consistency required is m = 2.

Figure 16 .

 16 Figure 16. Approximation functions: 6 particles and 5 nodes.

Figure 17 .

 17 Figure 17. Mixed interpolation with 6 particles and 5 nodes.

Figure 19 .

 19 Figure 19. Problem statement: rectangular specimen with one centred imperfection.

Figure 20 .

 20 Figure 20. Force versus displacement (left) and evolution of the equivalent inelastic strain along (A-A )for each approximation (right).

Plate 1 .

 1 Analytical solution and section along y = x. Plate 2. Finite element mesh and error distribution. Plate 3. Approximation with 8 x 8 Q1 finite elements. Plate 4. Finite element mesh enriched with particles and error distribution of the mixed approximation.

  

  

  

  

  

  

Table II .

 II Measures of error for 11 particles and 5 nodes.

	Figure 18. Mixed interpolation with 11 particles and 5 nodes.
		[-1; -0:5] [-0:5; 0] [0,0.5] [0.5,1]
	Error in L 2 norm	0.015	0.027	0.036	0.107
	Error in L ∞ norm	0.048	0.052	0.088	0.209
	DOF EFG+MEF	4+0	3+1	3+3	0+3
					5,1]
	Error in L 2 norm	0.059	0.098	0.073	0.107
	Error in L ∞ norm	0.124	0.194	0.160	0.209
	DOF EFG+FEM	2+0	2+1	2+3	0+3

where n is the outward unit normal vector. The source term, f, and the boundary conditions, q 0 and u 0 , are chosen such that u(x) = e -(6(x+y-1)) 2 is the solution. Plate 1 depicts this solution (left) and a cross-section on the plane y = x. Essential boundary conditions are imposed using Lagrange multipliers which are interpolated using the C 0 ÿnite element interpolation functions along the boundary.

Plates 2 and 3 show the ÿnite element mesh, the solution and the error distribution. An 8 × 8 quadrilateral mesh with bilinear ÿnite elements (Q1) has been used. The error is larger along the diagonal x + y = 1 and the error measure in the maximum norm (L ∞ norm) is 0:1707.

In order to improve the approximation, the ÿnite element mesh is enriched adding particles and imposing an order of consistency m = 2. Plate 4 shows the ÿnite element mesh and the distributions of particles. The error of the mixed approximation is also plotted in the same ÿgure and with the same scale used in Plate 2. In fact the measure in the maximum norm is now: 0:0204.

Finally, Plate 5 presents the mixed approximation. The ÿnite element approximation, u h (top), is improved by a particle contribution, u (centre), which induces the ÿnal mixed approximation, u h + u (bottom).

Finite element enrichment with EFG in non-linear computational mechanics

This example reproduces the ÿnite element enrichment with EFG in a nonlinear computational problem. A rectangular specimen with an imperfection is loaded, see References [19; 20]. It has two axes of symmetry, a bilinear elastoplastic material is considered, and plane strain conditions are assumed. Figure 19 presents the problem statement with the material properties.

This problem has been solved with standard eight-noded quadrilateral elements. Moreover, an adaptive error analysis [20; 21] has been conducted up to convergence. The ÿnal mesh and its equivalent inelastic strain distribution is shown in Plate 6 (left). This mesh has 2022 d.o.f. and a relative error (measured in energy norm) of 0.18 per cent.

The same example has also been solved with element-free Galerkin. In order to obtain comparable results, the distribution of particles coincides with the distribution of nodes in the previous ÿnite element mesh; and consistency of order two is required. Thus, the number of degrees of freedom (d.o.f.) is also 2022. Plate 6 (right) shows the distribution of particles and inelastic strains.

Results degrade drastically if a coarse mesh of quadrilateral bilinear ÿnite elements (308 d.o.f.) is employed, see Plate 7. However, when particles are added (308+906=1214 d.o.f.) and the order of consistency is increased (m = 2), the correct distribution of inelastic strains is recovered, see Plate 7. Note that, the ÿnal ÿnite element mesh in Plate 6 (left) was obtained after an iterative process which needed for each iteration the generation of a new mesh. In this ÿnal example, Plate 7, the original mesh is maintained and particles are added where they are needed.

Finally, Figure 20 shows the evolution of the inelastic strains along the direction (A-A ) for every conÿguration studied. Section (A-A ) is plotted in Figure 19.