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TEXTURE INPAINTING USING EFFICIENT GAUSSIAN1

CONDITIONAL SIMULATION2

BRUNO GALERNE∗ AND ARTHUR LECLAIRE†3

Abstract. Inpainting consists in computing a plausible completion of missing parts of an image4
given the available content. In the restricted framework of texture images, the image can be seen as a5
realization of a random field model, which gives a stochastic formulation of image inpainting: on the6
masked exemplar one estimates a random texture model which can then be conditionally sampled in7
order to fill the hole.8

In this paper is proposed an instance of such stochastic inpainting methods, dealing with the9
case of Gaussian textures. First a simple procedure is proposed for estimating a Gaussian texture10
model based on a masked exemplar, which, although quite naive, gives sufficient results for our11
inpainting purpose. Next, the conditional sampling step is solved with the traditional algorithm12
for Gaussian conditional simulation. The main difficulty of this step is to solve a very large linear13
system, which, in the case of stationary Gaussian textures, can be done efficiently with a conjugate14
gradient descent (using a Fourier representation of the covariance operator). Several experiments15
show that the corresponding inpainting algorithm is able to inpaint large holes (of any shape) in a16
texture, with a reasonable computational time. Moreover, several comparisons illustrate that the17
proposed approach performs better on texture images than state-of-the-art inpainting methods.18

Key words. Inpainting, Gaussian textures, Conditional simulation, Simple kriging.19
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1. Introduction. Inpainting consists in filling missing or corrupted regions in21

images by inferring from the context. In other words, given an image whose pixel22

values are missing in a masked domain, the problem is to propose a possible completion23

of the mask that will appear as natural as possible given the available part of the24

image. Inspired by art restorers, this problem was called “inpainting” by Bertalmio25

et al. [8], but was already addressed under the name “disocclusion” in [68, 67]. Both26

these works suggest to fill the hole by extending the geometric structures, either by27

level-lines completion [68] or by iterating a finite-difference scheme [8]. These early28

methods already give good results on structured images provided that the mask is29

sufficiently thin. However, they fail to inpaint textural content, which is the main30

purpose of this paper.31

General image inpainting is a very ill-posed problem, and instead of retrieving32

the occluded content, one can only make a guess of what the image should have been.33

However, in the restricted framework of textures, we have at our disposal several34

stochastic models which can be used to model and synthesize a large class of textures.35

In this setting, inpainting consists in first estimating a stochastic model from the36

unmasked region, and then performing conditional simulation of the estimated random37

model given the values around the mask. This point of view thus provides a better-38

posed formulation of textural inpainting, which has been seldom considered in the39

past. In particular, such approximate conditional sampling results are given in [31,40

84, 54] under the name “constrained texture synthesis”. Also, the authors of [24] give41

an instructive discussion which opposes deterministic and stochastic strategies for42

image inpainting (with the intention to explain the differences between [31] and [84]).43

It seems reasonable to assert that the choice between deterministic methods or44

stochastic methods must be driven by the level of randomness of the data. Here, we45
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2 B. GALERNE, A. LECLAIRE

will mainly focus on inpainting very irregular texture images, called microtextures.46

Following the definition of [36], microtextures are images whose visual perception47

is not affected by randomization of the Fourier phase. These textures are not well48

described by a generic variational principle. In contrast, they can be precisely and49

efficiently synthesized with simple stochastic models that rely on second-order statis-50

tics, for example the asymptotic discrete spot noise (ADSN) introduced in [83] and51

thoroughly studied in [36, 86, 59]. In this paper, we propose a microtexture inpainting52

algorithm that relies on a precise conditional sampling. Conditional sampling of the53

ADSN model can be easily formulated, and gives inpainting results which are visually54

better than the ones obtained with recent methods while keeping strong mathematical55

guarantees.56

In the remaining paragraphs of this introduction, we discuss existing inpainting57

techniques, and in particular discuss the links between image inpainting and texture58

synthesis. Giving an exhaustive overview of the literature on this famous problem is59

not the main purpose of this paper. We refer the interested reader to [44, 15, 78] for60

much more detailed reviews of existing methods.61

1.1. Inpainting Algorithms for Geometric Content. As mentioned above,62

a very natural way to inpaint images is to propagate the geometric content through the63

masked region. To that purpose, the early geometric inpainting methods described64

by Masnou and Morel [68, 67] consist in connecting the level lines across the hole65

in order to satisfy the Gestaltist’s principle of good continuation. More precisely,66

the inpainted image is the solution of a generic minimization problem which includes67

the total variation (TV) of the image and the angle total variation of the level lines68

(Euler’s elastica).69

Closely related to these generic variational inpainting methods lie models based70

on partial differential equations (PDE). Bertalmio et al. [8] suggest to iterate a finite-71

difference scheme, which was later interpreted as a numerical scheme for a PDE related72

to Navier-Stokes equation [7]. Of course, there is a strong connection between PDE-73

based and variational methods because the minimum of a generic functional satisfies74

the associated Euler-Lagrange equation (but a PDE may not be associated with a75

variational problem [78]). Among many papers lying in between PDEs and generic76

variational problems, we will only quote a few important contributions.77

Ballester et al. [5] propose to perform joint interpolation of image values and gra-78

dient orientations by solving a minimization problem which leads to coupled second-79

order PDEs on image values and gradient orientations. Chan and Shen [18] give a80

detailed study of the inpainting method based on TV minimization (which, compared81

to [68] drops the elastica term in the minimization problem), and propose a more82

general scheme called curvature-driven diffusion (which allows to better respect the83

good continuation principle). The link with Mumford-Shah image model was already84

discussed in [18], and more importantly exploited by Esedoglu and Shen [34], who85

completed the Mumford-Shah model with an Euler’s elastica term, leading to fourth-86

order nonlinear parabolic PDEs, and allowing better connectivity in the inpainting87

result. Later, other fourth-order PDEs were exploited to inpaint non-texture images88

with better connectivity: Bertozzi et al. [10] propose to solve a modified Cahn-Hilliard89

equation for fast inpainting of binary or highly-contrasted images, an approach which90

was generalized to real-valued images by Burger et al. [14]. Finally, Bornemann and91

März [12] propose an efficient non-iterative inpainting algorithm which is based on a92

transport equation and inspired by the fast marching algorithm of [81].93

A common drawback of these deterministic methods is that they are not able94
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GAUSSIAN TEXTURE INPAINTING 3

Fig. 1. Textural inpainting via conditional simulation. Inpainting with a stochastic texture
model amounts to sampling the values on the mask M knowing the values on conditioning points C
located at the border of the mask.

to inpaint textural content precisely because solving a PDE or a variational problem95

often imposes a certain degree of smoothness for the solution.96

1.2. Exemplar-based Inpainting, Sampling or Minimizing?... An efficient97

way to model irregular images is to consider stochastic image models, and in partic-98

ular many texture synthesis algorithms can be formulated as sampling a probability99

distribution. Thus, one first strategy to inpaint textural parts of an image is to use100

an exemplar-based texture synthesis algorithm and to blend the synthesized content101

in the masked image. Such a method was proposed by Igehy and Pereira [49] who102

relied on Heeger-Bergen synthesis algorithm [47] to produce textural content.103

On the other hand, if a stochastic image model is fixed, inpainting can be under-104

stood as sampling a conditional distribution, as illustrated on Fig. 1. This point of105

view was originally adopted by Efros and Leung [31]. These authors suggest to ap-106

proximate conditional sampling of a Markov random field (MRF) model by progressive107

completion of the unknown region using patch nearest neighbor search. Even if they108

show some texture inpainting results, their main concern is structured texture synthe-109

sis. For inpainting, this patch-based approach was precised in [11, 24]. In particular,110

Demanet et al. discuss the two possible formulations of the inpainting problem as111

either minimizing the energy E or sampling the probability distribution Ce−E . They112

give several arguments to support that the variational point of view is a lighter and113

sufficient method to efficiently compute an inpainting solution. However, let us men-114

tion that the patch-based energy given in [24] is highly non-convex, and that the115

adopted optimization strategy does not offer much theoretical guarantees. Therefore,116

the empirical conclusions based on the results of this algorithm must be interpreted117

carefully. Our paper will shed some more light on this interesting (and still open)118

question, in the case of Gaussian textures.119

Many other inpainting methods were inspired by these exemplar-based synthesis120

algorithms [24, 30, 23, 71, 53, 85, 4, 13, 87, 3, 2, 57, 63, 46, 69, 15]. These papers121

contain several clever algorithmic extensions of the original algorithm of [24]. In122

particular, Criminisi et al. [23] highlighted the importance of the pixel-filling order,123

and suggested that it should be driven by (progressively updated) patch priorities124

measuring the amount of available data and the quantity of structural information125

in the currently synthesized content. Many authors [30, 53, 85, 3, 69] demonstrated126

that the inpainting problem could be more efficiently solved (both in visual terms or127

numerical terms) by relying on a multi-scale strategy. From a computational point128

of view, the speed of these algorithms highly depends on the method used for getting129
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4 B. GALERNE, A. LECLAIRE

patch nearest neighbors, and many state of the art methods rely on the PatchMatch130

method which efficiently computes an approximate nearest neighbor field [6, 2, 63, 69].131

Let us also mention that the choice of the metric used for patch comparison may132

influence the inpainting results; to that purpose, the authors of [63, 69] suggested133

to improve the comparison by including textural features in the patch distance (e.g.134

local sum of absolute derivatives).135

Here we would like to put the emphasis on a few papers which provide a thorough136

mathematical analysis of the variational formulation proposed by [24]. Aujol et al. [4]137

show the existence of a solution to a continuous analog of Demanet et al.’ energy138

among the set of piecewise roto-translations, propose several extensions of this prob-139

lem (allowing for either regularization or cartoon+texture decomposition), and also140

provide a 2D-example which illustrates the model ability to globally reconstruct ge-141

ometric features. Arias et al. [3] propose and compare several variational models142

obtained by varying the distance used in patch comparison (using the L1 or L2 norm143

on the image values or gradients), and also propose to replace the patch correspon-144

dence by generalized patch linear combinations using an adaptive weighting function.145

In [2], the same authors provide an additional mathematical analysis with a proof of146

the solution existence, of the convergence of the proposed minimization algorithm. In147

these works, the inpainting problem is mainly formulated with a correspondence map148

(or a more general weighting function in [3]). In contrast, Liu and Caselles have shown149

in [63] that using an offset map instead allows to formulate inpainting as a discrete150

optimization problem which is efficiently solved with graph cuts. The statistics of151

patch offsets have been studied in [46]; He and Sun compute and exploit recurrent152

patch offsets in order to simplify the graphcut inpainting approach leading to an even153

faster algorithm.154

Finally, the above-mentioned structural and exemplar-based methods can be com-155

bined to obtain hybrid structure-texture inpainting methods [9, 50, 80, 17]. Also, sev-156

eral authors proposed inpainting methods based on sparse decompositions of images157

or patches [32, 64, 16, 72]. In these methods, the inpainting is also formulated as a158

minimization problem (which can be coupled with the dictionary learning problem as159

in [64]). Although these methods are efficient in recovering missing data for thin or160

randomly-distributed masks, they are not able to fill large missing regions.161

1.3. Gaussian Conditional Simulation. In this paper, we will address textu-162

ral inpainting by precise conditional sampling of a stochastic texture model.163

In the computer graphics community, many authors have demonstrated the ex-164

pressive power of microtexture models based on Fourier phase randomization [60, 61]165

or on convolution of spot functions with noisy patterns [83]. Later, these models166

were studied in more detail by Galerne et al. [36] who propose in particular a simple167

analysis-synthesis pipeline for by-example microtexture synthesis with the Asymp-168

totic Discrete Spot Noise (ADSN) model (which is the Gaussian limit of Van Wijk’s169

Spot Noise model [83]). Such a Gaussian model is described by its first and second-170

order moments, and allows for fruitful mathematical developments, with applications171

in texture analysis [25], texture mixing [86], procedural texture synthesis [38, 40].172

In this paper (following the preliminary work of [39]), we propose to take advan-173

tage of another benefit of the Gaussian model, which is the availability of a precise174

conditional sampling algorithm. Indeed, for Gaussian vectors, independence is equiv-175

alent to uncorrelatedness, which can be rephrased as orthogonality in the Hilbert176

space of square-integrable random variables. Therefore, conditional simulation of a177

zero-mean Gaussian vector F only requires to compute an orthogonal projection F ∗178
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Original Masked input Conditioning set C

Kriging component Innovation component Inpainted result

Fig. 2. Summary of our microtexture inpainting method The main idea of our method is
to fill the masked region with a conditional sample of a Gaussian model. So this method is less
about retrieving the initial image than computing another plausible sample of the texture model in
the masked region. The Gaussian model is estimated from the unmasked values, and conditionally
sampled knowing the values on a set C composed of a 3 pixel wide border of the mask. The conditional
sample is obtained by adding a kriging component (derived from the conditioning values) and an
innovation component (derived from an independent realization of the Gaussian model). The former
extends the long-range correlations and the latter adds texture details, in a way that globally preserves
the global covariance of the model. Though limited to microtextures, this algorithm is able to fill
both small and large holes, whatever the regularity of the boundary.

on a subspace of random variables (which corresponds to the conditional expectation179

given the known values) and to sample the orthogonal component F −F ∗. Following180

the presentation of [55], we will rely on the terminology which is traditionally used181

in “simple kriging estimation”: the conditional expectation F ∗ will be called “kriging182

component”, and F−F ∗ will be called “innovation component”. The role of these two183

components for conditional simulation is illustrated in Fig. 2. Let us mention that184

in the Gaussian case, solving the maximum a posteriori for the conditional model185

amounts to computing the conditional expectation (i.e. kriging component), which is186

very different from conditional sampling, as one can see on Fig. 2.187

To the best of our knowledge, microtexture inpainting has not been addressed188

in those terms in the past. Gaussian conditional simulation algorithm was used by189

Hoffman and Ribak [48] for cosmological constrained simulations with parametric190

Gaussian models. More recently, local Gaussian conditional models were used for191

structured texture synthesis in [75, 74]. In the monoscale version [75], Raad et al.192

suggest to progressively sample the texture with conditional sampling of local Gaus-193

sian models estimated from the exemplar (with nearest neighbor search as in [31, 84]);194

they also propose a multiscale adaptation of this algorithm [74]. As for [31], this algo-195

rithm could also be adapted for inpainting, but, because of the progressively estimated196

local models, the global model is not Gaussian. Ordinary kriging was used by Chan-197

dra et al. [19] to interpolate sparsely sampled textural data (but does not compute a198

conditional sample).199
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6 B. GALERNE, A. LECLAIRE

1.4. Connections with geostatistics. However, kriging-based Gaussian con-200

ditional simulation is a traditional method used for data interpolation in geostatis-201

tics [21, 55, 22, 43, 26]. Several parts of the method we propose are already well-known202

to geostatisticians, sometimes under other names. In particular, the ADSN model that203

we use is an instance of moving-average random fields [51, 70] whose spectral-based204

unconditional sampling algorithm is explained in [45, 20, 58]. The authors of [58]205

also suggest an optimization procedure to modify the unconditional sample so that206

it complies with the available data. In contrast, we propose direct sampling of a207

global conditional Gaussian model. Let us emphasize that, contrary to many exam-208

ples shown in the geostatistics literature, our imaging application leads to very large209

conditioning sets (with possibly several thousands conditioning values). Thus, in our210

case, precise conditional sampling is much more difficult than unconditional sampling.211

Also, in the geostatistics literature, several authors have proposed generalized212

kriging algorithms for data prediction with various stochastic models [76, 1, 77, 33,213

21, 62]. In particular, in [76], Rue proposes a fast algorithm for conditional simulation214

in the particular case of Gaussian Markov random fields. Another technique for215

fast sampling in geostatistics is given by sequential simulation [42], which amounts216

to progressive filling of the pixels in a random order using successive conditional217

sampling. In our context, this approach would require to solve larger and larger kriging218

systems and would not be as efficient as our global approach. About progressive filling219

of the pixels, let us also mention a clear connection between the inpainting adaptation220

of [31] and the direct sampling method of [66]. We refer the interested reader to [65]221

for a much deeper discussion on the links between texture synthesis and multiple-point222

geostatistics.223

1.5. Plan of the Paper. In Section 2, we explain the traditional algorithm for224

Gaussian conditional simulation (using a terminology that is derived from kriging es-225

timation). In Section 3, we apply this conditional sampling algorithm to microtexture226

inpainting. In particular, we discuss the estimation of a Gaussian model on a masked227

exemplar, and we also provide a Fourier based algorithm which allows to compute228

the kriging estimation even when the number of conditioning points is very large.229

Finally, in Section 4, we provide several texture inpainting experiments to illustrate230

the validity of our approach; in particular we show that our method can compete with231

state of the art inpainting methods on textural content.232

2. Gaussian Conditional Simulation. In this section, we recall the classical233

algorithm for conditional sampling of Gaussian random vectors. Following [55], we234

rely on a kriging framework that we introduce next.235

Notation. Let Ω be a finite set. Let (F (x))x∈Ω be a real-valued Gaussian236

vector, that is, a real-valued random vector for which any linear combination of the237

components is Gaussian. We assume that F has zero mean. The covariance of F is238

written Γ(x, y) = Cov(F (x), F (y)) = E(F (x)F (y)), x, y ∈ Ω. For a set A ⊂ Ω and a239

function f : Ω → R we denote by |A| the cardinality of the finite set A, and f|A the240

restriction to A of the function f .241

We also introduce a subset C ⊂ Ω of conditioning points. Given prescribed values242

ϕ : C → R on C, conditional Gaussian simulation consists in sampling the conditional243

distribution of F given that F|C = ϕ. As we shall see later, this conditional sampling244

makes sense as soon as ϕ belongs to the support of the distribution of F|C , which is245

the range of the restricted covariance matrix Γ|C×C and denoted by Range(Γ|C×C).246
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GAUSSIAN TEXTURE INPAINTING 7

2.1. Simple Kriging Estimation. We define the simple kriging estimator247

(1) F ∗(x) = E( F (x) | F (c) , c ∈ C ).248

A standard result of probability theory [28] ensures that in the Gaussian case F ∗(x) is249

the orthogonal projection of F (x) on the subspace of linear combinations of (F (c))c∈C250

(for the L2-distance between square-integrable random variables). Hence, there exist251

deterministic coefficients (λc(x))c∈C , called kriging coefficients such that252

(2) F ∗(x) =
∑
c∈C

λc(x)F (c).253

Notice that by definition, F ∗(x) = F (x) for every x ∈ C.254

Generally speaking, for a given x, there may be several possible sets of kriging255

coefficients i.e. several vectors (λc(x))c∈C which satisfy (2) (for example if there are256

two distinct points c1, c2 ∈ C such that F (c1) = F (c2)). But we will later give a257

canonical way to compute a valid set of kriging coefficients.258

2.2. Gaussian Conditional Sampling Using Kriging Estimation. Let us259

fix a set of coefficients (λc(x))x∈Ω,c∈C satisfying (2). For any ϕ : C → R, we denote260

by ϕ∗ the kriging estimation based on the values ϕ, defined for x ∈ Ω by ϕ∗(x) =261 ∑
c∈C λc(x)ϕ(c). With a notation abuse, if ϕ : Ω→ R, we will denote ϕ∗ = (ϕ|C)

∗.262

Theorem 1 (See for example [28, 55]). F ∗ and F − F ∗ are independent. Con-263

sequently, if G is independent of F with same distribution, then H = F ∗ + (G−G∗)264

has the same distribution as F and satisfies H|C = F|C.265

If ϕ|C ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ|C can thus be266

obtained with ϕ∗ + F − F ∗. In this decomposition, ϕ∗ will be called the kriging267

component and F − F ∗ will be called the innovation component.268

2.3. Expression of the Kriging Coefficients. In order to compute the kriging269

estimator at x ∈ Ω, one needs to compute a valid set of kriging coefficients (λc(x))c∈C .270

Since F ∗ and F −F ∗ are orthogonal, we get that the row vector λ(x) = (λc(x))c∈C is271

a solution of the following |C| × |C| linear system272

(3) ∀c ∈ C,
∑
d∈C

λd(x)Γ(d, c) = Γ(x, c), i.e. λ(x)Γ|C×C = Γ|{x}×C .273

Conversely, any solution of (3) gives a valid set of kriging coefficients satisfying (2).274

Aggregating the kriging coefficients in a |Ω| × |C| matrix Λ = (λc(x))x∈Ω,c∈C , the275

system characterizing the kriging coefficients can also be written ΛΓ|C×C = Γ|Ω×C .276

If the matrix Γ|C×C is invertible, the global system admits a unique solution Λ =277

Γ|Ω×CΓ
−1
|C×C . In the case where Γ|C×C is not invertible, it is always possible to compute278

valid kriging coefficients with the pseudo-inverse Γ†|C×C . Indeed, since the system (3)279

has a solution1, then Γ|{x}×CΓ
†
|C×C is also a solution. Thus we can always consider280

the set of kriging coefficients given by Λ = Γ|Ω×CΓ
†
|C×C .281

Once a set Λ of valid kriging coefficients has been computed, a conditional sample282

of F given F|C = ϕ can be obtained as Λϕ+F −ΛF|C , where ϕ and F are written as283

column vectors.284

1The existence of such a solution directly comes from the existence of the orthogonal projection
of F (x) on the subspace spanned by the F (c), c ∈ C.
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8 B. GALERNE, A. LECLAIRE

2.4. Matrix Expression of the Conditional Simulation. From this expres-285

sion of the conditional sample, we will derive the usual expression of the Gaussian286

conditional distribution in matrix notation (as e.g. in [77, 74]).287

Let p = |C|, q = |Ω \ C| (where Ω \ C denotes the complement of C in Ω) and288

n = |Ω|. Let us introduce the matrices R =
(
Ip 0

)
∈ Rp×n, S =

(
0 Iq

)
∈ Rq×n,289

Using the first p indices for the elements of C, we write block decompositions290

F =

(
F|C
F|Ω\C

)
=

(
RF
SF

)
, Γ =

(
Γ|C×C Γ|C×(Ω\C)

Γ|(Ω\C)×C Γ|(Ω\C)×(Ω\C)

)
=

(
RΓRT RΓST

SΓRT SΓST

)
.291

With such notation, if ϕ ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ is292

given by Λϕ+ F − ΛRF. From this expression we get the conditional distribution293

(4) F | F|C = ϕ ∼ N
(

Λϕ , (In − ΛR)Γ(In − ΛR)T
)
.294

Using the kriging system (which rewrites ΛRΓRT = ΓRT ), we get the usual formulae295

E( SF | F|C = ϕ ) = SΛϕ = S

(
RΓRT

SΓRT

)
(RΓRT )†ϕ = SΓRT (RΓRT )†ϕ,(5)296

Cov( SF | F|C = ϕ ) = SΓST − SΓRT (RΓRT )†RΓST .(6)297298

When RΓRT = Γ|C×C is non-singular, we get back the expressions of [77, 74].299

3. Microtexture Inpainting Algorithm. This section contains our main con-300

tribution: how to use Gaussian conditional sampling for microtexture inpainting.301

We are given an input texture image u : Ω → R defined on a finite rectangular302

domain Ω ⊂ Z2. The values of u are known except on the mask M ⊂ Ω and we303

want to generate plausible values on the mask given the surrounding content. For304

that, we sample a stationary Gaussian texture model (U(x))x∈Ω given the values305

of u outside M . More precisely, we consider a Gaussian model associated with an306

asymptotic discrete spot noise (ADSN), which we sample knowing the values on a307

conditioning set C = ∂wM defined as the outer border of M with width w pixels (we308

usually take w = 3 but we discuss this choice in Section 4.4).309

After recalling the basics about the ADSN model, we discuss the estimation of310

such a model on a masked exemplar texture. Then we give an efficient and scalable311

way to compute the kriging estimator for the ADSN model by relying on conjugate312

gradient descent (numerical issues are discussed in the IPOL companion paper [37]).313

Visual results are given in the next section.314

3.1. ADSN Models. As shown in [83, 36], a convenient model for microtexture315

is given by the asymptotic discrete spot noise (ADSN). Given a function h : Z2 → R316

with finite support, the ADSN corresponding to h is the convolution of h with a317

normalized Gaussian white noise W on Z2, defined as318

(7) ∀x ∈ Z2, h ∗W (x) =
∑
y∈Z2

h(y)W (x− y).319

This Gaussian random field is stationary, has zero mean, and its covariance function320

is given by E(h∗W (x)h∗W (y)) = (h∗ h̃)(x−y), where h̃(z) = h(−z). The restriction321

on a finite Ω ⊂ Z2 of h∗W is a zero-mean Gaussian model (F (x))x∈Ω. Thanks to the322

simple convolutive expression of the ADSN, it can be efficiently sampled using the fast323

Fourier transform (FFT). Depending on the boundary conditions, we can consider a324
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GAUSSIAN TEXTURE INPAINTING 9

periodic ADSN or a non-periodic ADSN. Apart from a slight gain of complexity, there325

is no general reason to favor the periodic model. The choice is often driven by the326

applicative context; for example, non-periodic models are better suited for on-demand327

texture synthesis [38, 40]. Here we choose the non-periodic model and we refer to [59,328

Chap.2] for a detailed exposure regarding both ADSN models.329

Extension to Color Images. ADSN models extend to color images by con-330

volving each color channel with the same white noise in (7). This gives an Rd-valued331

Gaussian random field F on Ω (where d is the number of channels, i.e. 3 for color332

images). Regarding the conditional simulation, a simple way to understand this ex-333

tension is to consider the Rd-valued random field F as a real-valued random field on334

Ω× {1, . . . , d}. The covariance matrix is then given by335

(8) ∀(x, j), (y, k) ∈ Ω× {1, . . . , d}, Γ((x, j), (y, k)) = E(Fj(x)Fk(y)).336

Even if this changes the covariance matrix, we keep the same notation for restrictions337

of the covariance matrix: for example, we still use the notation Γ|C×C for the covariance338

of F on C, but strictly speaking we should write Γ|(C×{1,...,d})×(C×{1,...,d}).339

3.2. Estimation of the Gaussian Model. If the image u : Ω → Rd were340

entirely available, the estimation procedure would be the same as for texture syn-341

thesis [36, 38], which is briefly recalled here. We compute the mean value ū =342
1
|Ω|
∑

x∈Ω u(x) and the normalized spot tu = 1√
|Ω|

(u− ū) (extended by zero-padding).343

The microtexture u is then synthesized by sampling ū+ tu ∗W , with W a normalized344

Gaussian white noise. We call oracle model the ADSN model estimated from the345

unmasked exemplar.346

In the inpainting context, only the values on Ω\M are available. Thus, we choose347

a subdomain ω ⊂ Ω \M and we derive an ADSN model using the restriction v = u|ω.348

A simple way to do that is to consider the Gaussian model U = v̄ + tv ∗W where349

(9) v̄ =
1

|ω|
∑
x∈ω

v(x), tv(x) =

{
1√
|ω|

(v(x)− v̄) if x ∈ ω,

0 otherwise.
350

This choice amounts to estimate the texture covariance by cv = tv ∗ t̃ T
v , which writes351

(10) cv(h) =
1

|ω|
∑

x∈ω∩(ω−h)

(u(x+ h)− v̄)(u(x)− v̄)T ∈ Rd×d.352

This subdomain ω is not constrained to be a rectangle; for example, a canonical353

choice would be to consider ω = Ω\M . As will be observed in Section 4.2, this choice354

already gives good results in our inpainting framework. However, one must be aware355

that the geometry of ω may impact the quality of the estimation. We illustrate this356

effect in Fig. 3. In general, we observed that the performance of the naive estimator357

is surprisingly good provided that the mask is not too much irregular.358

We would like to point out here that designing more precise estimators of the359

covariance is an interesting question. In particular, at first sight one can be puzzled360

by the normalization of (10). A better normalized estimator c′v(h) would be obtained361

by replacing 1
|ω| by 1

|ω∩(ω−h)| in this formula. But a drawback of this new estimator362

is that it does not define a semi-definite positive estimator, and thus is not associated363

with a Gaussian model that could be sampled. A way to cope with this effect is to364

enforce semi-definite positiveness, which in the stationary case is equivalent to project365
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Fig. 3. Estimation of an ADSN model on a masked exemplar. We illustrate with several
types of mask the estimation of the Gaussian model with the naive estimator (10) using ω = Ω \M .
We display in the first row the masked exemplar, in the second row a sample of the estimated ADSN
model, and in the third row a sample of the oracle ADSN model estimated from the unmasked
exemplar (generated with the same random seed). As one can see, in terms of synthesis, the naive
estimator produces nearly perfect results as soon as the mask complement contains a sufficiently
large connected region to capture the textural aspect. The worst case is encountered for very irregular
masks like the one shown in the third column (75% of masked pixels).

on the non-negative orthant in Fourier domain. We have led some experiments in this366

direction, and they have shown that the resulting Gaussian model is not better than367

the one obtained with the naive estimator (both in terms of resynthesis or in terms368

of optimal transport distance between Gaussian models [38]). Indeed, the projection369

on the Fourier orthant has a dramatic impact on the model (in particular, it may370

significantly impact the estimation of the marginal variance).371

One explanation of the success of the naive estimator for regular masks is that372

in this case we have |ω∩(ω−h)|
|ω| ≈ 1 when h ≈ 0. Therefore the naive estimator is373

approximately well normalized around 0 and thus correctly estimates the covariance374

in a neighborhood of 0, which is the most important part for microtexture images.375

3.3. Kriging Estimation with Conjugate Gradient Descent. In this sec-376

tion, we propose an efficient way to compute a conditional sample of the ADSN model.377

The most difficult part consists in solving a large linear system involving the condi-378

tional values. This step is dealt with by using a conjugate gradient descent algorithm,379

which proves to be efficient even for very large images.380

In order to draw a conditional sample on the mask M , we introduce a set of381

conditioning points C ⊂ Ω \M . Ideally, we should choose C = Ω \M ; but we will382

see below that for computational and theoretical reasons, taking C = ∂wM (border383

of M with width w) may be useful. Of course, in the case where C ( Ω \M , we384

draw a conditional sample on Ω but we exploit only the restriction on M to get the385

inpainting result (in other words, on Ω \M we always impose the original image).386

As explained in the last section, after subtracting the estimated mean v̄, we387

can use the ADSN model (F (x))x∈Ω corresponding to the spot tv (which is a zero388

mean Gaussian vector). Using the framework and notation of Section 2, we draw a389
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conditional sample (F (x))x∈Ω given F|C = u|C − v̄ by computing390

(11) (u− v̄)∗ + F − F ∗ = Λ
(
(u− v̄)|C

)
+ F − Λ(F|C).391

Let us explain how to efficiently apply the matrix Λ = Γ|Ω×CΓ
†
|C×C to a given ϕ ∈ RC .392

Let us begin with the multiplication by ΓΩ×C , which is easier. Assume that393

ψ = Γ†|C×Cϕ has been computed. Using the notation of Section 2.4, Γ|Ω×Cψ = ΓΨ,394

where Ψ = RTψ ∈ RΩ is the zero-padding extension of ψ. Now, since Γ is the395

covariance function of an ADSN model, it can be simply computed by convolution.396

More precisely, ΓΨ is the restriction on Ω of the convolution of Ψ by tv ∗ t̃v.397

Computing A†ϕ where A = Γ|C×C is more costly. Assume for a moment that A398

is invertible. Then computing A−1ϕ amounts to solving a linear system of size p× p399

(where p = d|C|). Since A is symmetric positive-definite, this can be reduced to solv-400

ing two triangular systems thanks to the Cholesky factorization of A. Nevertheless,401

finding the Cholesky factorization of A requires O(p3) flops in general. Therefore,402

this direct method will only work for small values of p. This was a major limitation403

of our preliminary work presented in [39].404

To cope with this problem, we propose here to solve the linear system with a405

conjugate gradient descent algorithm, taking profit of the fact that applying the ma-406

trix A can be done efficiently. Indeed, computing Aψ amounts to extend ψ to Ω by407

zero-padding, convolve by tv ∗ t̃v and restrict the result on C. Besides, using a conju-408

gate gradient descent on the normal equations allows to cope with possibly singular409

matrices A.410

Following [52], we compute A†ϕ by performing a conjugate gradient descent on411

(12) f : ψ 7−→ 1

2
‖Aψ − ϕ‖2412

with initialization ψ0 = 0. This optimization procedure actually solves the normal413

equations ATAψ = ATϕ, which are equivalent to Aψ = ϕ when ϕ ∈ Range(A) (recall414

that the range of A and the kernel of AT are orthogonal subspaces). The algorithm415

is summarized below.416

Algorithm CGD: Conjugate gradient descent to compute A†ϕ
• Initialize k ← 0, ψ0 ← 0, r0 ← ATϕ−ATAψ0, d0 ← r0.
• While ‖rk‖ > ε, do

– αk = ‖rk‖2
dT
k ATAdk

– ψk+1 ← ψk + αkdk
– rk+1 ← rk − αkA

TAdk

– dk+1 ← rk+1 + ‖rk+1‖2
‖rk‖2 dk

– k ← k + 1
• Return ψk

Notice that in our case where A is symmetric, this Algorithm CGD is nothing417

but the classical algorithm for solving A2ψ = Aϕ. In this case, the range and kernel418

of A are orthogonal subspaces so that the convergence of the algorithm follows from419

the non-singular case (applied to the restriction of A2 to the range of A).420

Since the multiplication by A can be computed efficiently with the FFT, the421

complexity of Algorithm CGD with N iterations is O(N |Ω| log |Ω|). The main benefit422

of using this algorithm is that it allows to consider very large conditioning sets C.423

This manuscript is for review purposes only.



12 B. GALERNE, A. LECLAIRE

Of course, increasing C may increase the number of required iterations to obtain the424

solution at a given precision ε. But if the condition number of the system is low, we425

will get a good approximation of the solution in a reasonable number of iterations. Let426

us mention that Algorithm CGD is theoretically expected to get the exact solution427

in a finite number of iterations, but this remark is not useful for our practical case428

because of the numerical errors caused by the FFT.429

Stopping criterion. The stopping criterion that we use in Algorithm CGD is430

‖rk‖ ≤ ε where the residual at iteration k is given by431

(13) rk = ATϕ−ATAψk,432

and where ‖rk‖ is the unnormalized `2-norm of rk ∈ R|C|. In practice, to keep a433

simple choice, we take ε := 10−3 and we also constrain the number of iterations to be434

less than kmax = 1000. The numerical behavior of this CGD algorithm is studied in435

the IPOL companion paper.436

3.4. Comments on the Kriging System.437

The matrix A is not necessarily invertible. Indeed, let us consider the case of438

a color periodic ADSN model on Ω estimated by (9). Then the DFT of the covariance439

operator Γ is given by440

(14) t̂v(ξ)t̂v(ξ)∗ =

{
1
|ω| v̂(ξ)v̂(ξ)∗ if ξ 6= 0

0 if ξ = 0
.441

As noted in [86], this matrix has rank ≤ 1 which constrains the rank of the ma-442

trix Γ (of size d|Ω| × d|Ω|) to be bounded by |Ω| − 1. Since A is a submatrix of Ω,443

Rank(A) ≤ |Ω| − 1. In particular, if the conditioning set is sufficiently big so that444

d |C| ≥ |Ω|, then A cannot be invertible.445

The vector ϕ = u|C − ū may not be in the range of A. Indeed, if A is446

not invertible, the conditioning values could be out of the range of A. However this447

is not a problem to apply Algorithm CGD because taking Aϕ implicitly cancels the448

component on the kernel of A.449

Notice also that if the estimated ADSN model is well adapted to the masked450

texture, then it is likely that ϕ is close to the range of A. In practice, the distance451

of ϕ to the range of A is bounded by the norm of the residual obtained with the direct452

conjugate gradient method ‖ϕ−Aψk‖ ≥ dist
(
ϕ,Range(A)

)
.453

3.5. Complete Algorithm. To end this section, we summarize our microtex-454

ture inpainting algorithm. In Algorithm CGD the matrix A = Γ|C×C is not formed455

explicitly, and we only need to apply it efficiently with the FFT-based algorithm.456

Also, if one is not interested in the kriging and innovation components but only in457

the inpainting result, then only one instance of gradient descent is needed since the458

output only depends on (u− v̄ − F )∗ = Γ†|C×C(u|C − v̄ − F|C).459

The overall complexity of this algorithm is O(kmax|Ω| log |Ω|) where kmax is the460

number of iterations used in the gradient descent algorithm. The overall number of461

FFTs required by the whole inpainting process (whose detailed computation can be462

found in the IPOL companion paper) is (4kmax + 6)d FFTs. Using our C implemen-463

tation (involving parallel computing, in particular for the FFT) run with a modern464

computer (Intel i7 processor @2.60GHz with 4 cores), the whole inpainting process465

takes about 20 seconds for a 256× 256 and 1000 iterations of CGD.466
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Algorithm: Microtexture inpainting

Input: Mask M ⊂ Ω, texture u on Ω \M , conditioning points C = ∂3M .

- Choose a subdomain ω ⊂ Ω \M for the estimation (by default, ω = Ω \M)

- From the restriction v of u to ω, compute

v̄ =
1

|ω|
∑
x∈ω

v(x), tv =
1√
|ω|

(v − v̄)1ω

- Draw a Gaussian sample F = tv ∗W
- Compute ψ1 = Γ†|C×C(u|C − v̄), ψ2 = Γ†|C×CF|C
(Algorithm CGD with A = Γ|C×C , ε = 10−3 and kmax = 1000 iterations)

- Extend ψ1 and ψ2 by zero-padding to get Ψ1 and Ψ2

- Compute
(u− v̄)∗ = tv ∗ t̃Tv ∗Ψ1 (kriging component)

F ∗ = tv ∗ t̃Tv ∗Ψ2 (innovation component)

Output: Fill M with the values of v̄ + (u− v̄)∗ + F − F ∗

4. Results and Discussion.467

4.1. Inpainting with an Oracle Model. First, we propose a validation exper-468

iment to confirm that Gaussian conditional simulation can be applied to constrained469

microtexture synthesis. For that, we consider a non-masked texture image u on which470

we estimate an oracle ADSN model as explained in Section 3.2. We compute one re-471

alization of this oracle ADSN model (with a random seed s1), on which we put a472

mask M . Then we perform conditional sampling of the values in the masked region473

(with a random seed s2 6= s1), based on a set of conditioning points C, which is474

taken to be either C = Ω \M or C = ∂3M . This amounts to applying our inpainting475

algorithm, except that we use an oracle model.476

The results are reported in Fig. 4 for a square mask and in Fig. 5 for more477

irregular masks (obtained as level sets of white or correlated noise). Notice that in478

all these experiments, the result is visually perfect, in the sense that the inpainted479

texture is visually similar to a realization of the global ADSN model. Therefore, with480

our conjugate gradient descent scheme, the error made in the resolution of the linear481

system has only a negligible visual impact. Another important point raised by the482

results of Fig. 4 is that conditioning on the two different sets C = Ω \M and C = ∂3Ω483

give very similar results. This illustrates that this inpainting scheme truly respects484

the covariance structure (and in particular the long-range correlations) even if the485

conditioning border is thin. Increasing further the conditioning border only adds486

some redundancy in the conditional model (and worsens the kriging system condition487

number). See Section 4.4 for a more detailed analysis of this parameter.488

Let us remark that the results obtained in Fig. 5 with irregular masks look im-489

pressive at first sight since a wide majority of pixels are masked; but one should recall490

that in this experiment the oracle ADSN model is estimated on the unmasked exem-491

plar, which makes the inpainting problem much simpler (compare with the results of492

Section 4.2).493

In the experiment of Fig. 6, we show that Gaussian conditional simulation with an494
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ADSN Input C = Ω \M C = ∂3M

Fig. 4. Inpainting Gaussian textures with the oracle Gaussian model - regular masks.
The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian
model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From
left to right, we show a sample of the oracle model, the masked input, and the inpainted results
obtained for C = Ω \M or C = ∂3M . The inpainted results are visually perfect in the sense that
they cannot be distinguished from a sample of the oracle model. This is true both for C = Ω\M and
C = ∂3M which shows that conditioning on C = ∂3M is practically sufficient.

oracle model can be used to extrapolate textural content defined on a thin domain. In495

this case, the simulated conditional Gaussian vector is very high-dimensional, which496

illustrates the benefit of having a scalable algorithm based on gradient descent (and497

not on explicit computation of the covariance operators).498

4.2. Inpainting with an Estimated Gaussian Model. In this section, we499

provide experimental results which show that our algorithm is able to inpaint holes500

in microtextures, whatever the size of the hole, and with only minimal requirements501

on the hole regularity. In contrast with the last section, the Gaussian model is now502

estimated from the masked exemplar. We will show that the naive estimation tech-503

nique explained in Section 3.2 and illustrated in Fig. 3 leads to satisfying inpainting504

results except in the case where the mask is made of randomly scattered pixels. In505

the experiments shown in this section, we took C = ∂3M .506

In Fig. 7, we show some results of our algorithm for several microtextures and507

macrotextures, with various types of masks. As one can observe, the results with508

microtextures are globally very satisfying; the most difficult case being the irregular509

mask of the third column, for which the Gaussian model cannot be properly estimated,510

in accordance with one of the conclusions drawn in [66]. Surprisingly, we also obtained511

quite convincing results on more structured textures.512

To end this section, we show that our algorithm can be used to inpaint textural513

parts of more general images. For example, on Fig. 8, we used it to remove some514

undesirable details located in a region composed of one homogeneous microtexture.515

In such a case, one must manually specify the subdomain ω on which the Gaussian516

model is estimated in order to take only values in the desired texture region.517

4.3. Computing and Visualizing the Kriging Coefficients. In order to518

better understand the conditional simulation, it is interesting to visualize the kriging519
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ADSN Input 1 Output 1 Input 2 Output 2

Fig. 5. Inpainting Gaussian textures with the oracle Gaussian model - irregular masks.
The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian
model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From
left to right, we display a sample of the oracle model, a first masked input (the mask is obtained as an
excursion set of a Gaussian process) and the corresponding inpainting result, and a second masked
input (the pixels are masked independently with probability 0.8). Again, these inpainted results are
visually perfect since they look exactly like a realization of the global ADSN model.
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Input Extrapolated Baseline

Fig. 6. Gaussian texture extrapolation with an oracle Gaussian model. From left to
right: input images, extrapolated texture (C = ∂3M), baseline result (obtained with an independent
ADSN realization on the mask). The images are of size 621× 427. The extrapolation by Gaussian
conditional simulation has succeeded since the letters cannot be retrieved in the resulting image. In
contrast, with the baseline method, the border of the extrapolated region is still visible (essentially
because of the low frequency component).

coefficients. Heuristically speaking, every non-zero coefficient λc(x) corresponds to520

a position x whose value F (x) depends on F (c) in the conditional simulation. We521

can thus expect the correlations of the adopted Gaussian model to be reflected in the522

kriging coefficients.523

First, let us explain how to visualize (λc(x))x∈Ω for a fixed c ∈ C. We have524

(15) (λc(x))x∈Ω = Λδc = Γ|Ω×CΓ
†
|C×Cδc,525

where we used the notation δc = (1c=d)d∈C . Thus, to compute (λc(x))c∈C , we just526

use our algorithm on a Dirac input.527

In a dual manner, one can also visualize (λc(x))c∈C for each x ∈ Ω. For that, we528

simply notice that529

(16) (λc(x))c∈C = ΛT δx = Γ†|C×CΓ|C×Ωδx,530

where δx = (1x=y)y∈Ω. So the computation of these coefficients can be done in a531

similar fashion, except that the covariance convolution Γ|C×Ω is performed before532

pseudo-inverse computation (with Algorithm CGD).533

In the case of the inpainting application, we get the coefficients shown in Fig. 9.534

These results clearly indicate that the correlations captured in the Gaussian model535

are reflected by the large kriging coefficients. We can also observe on this figure that536

the kriging coefficients are not positive in general.537

4.4. Impact of the Size of the Conditioning Border. In this section, we538

investigate the impact of changing the size of the conditioning border. Again, an ideal539

setting would be to choose C = Ω\M , but then the kriging system is very large. Here540

we will confirm that taking C = ∂wM is sufficient, and we will precisely examine the541

variation of the conditional model when increasing the width w of the border.542

In order to give a quantitative comparison, we suggest to compute distances543

between the conditional models, which are basically Gaussian random vectors on M .544

This manuscript is for review purposes only.



GAUSSIAN TEXTURE INPAINTING 17
In

p
u

t
In

p
a
in

te
d

A
D

S
N

In
p

u
t

In
p

ai
n
te

d
A

D
S

N

Fig. 7. Examples of textural inpainting. We present results of our inpainting method for
several textures and masks. From top to bottom (rows 1-3 and rows 4-6), we display a masked input,
the inpainted result, and a sample of the estimated ADSN model (which is useful to exhibit the limit
of the Gaussian model). On rows 1-3, we display results on microtextures, while on rows 4-6 we
display results on more structured textures. The results on microtextures are visually pleasing, except
for the irregular mask of the third column. The results on macrotextures are of course not as perfect
(in particular, for the wood example of the bottom of fourth column, the mask is still visible on
close examination). Nevertheless, it is surprising that our method (based on Gaussian synthesis)
still gives convincing results on some macrotextures.

A possible way to perform this comparison is to rely on the L2-optimal transport545

distance, which has already been used in several works about texture synthesis [86, 38].546

Let us recall [29] that the L2-optimal transport distance between two Gaussian models547

µX = N (mX ,ΣX), µY = N (mY ,ΣY ) is given by548

(17) dOT(µX , µY )2 = ‖mX −mY ‖2 + Tr(ΣX) + Tr(ΣY )− 2Tr
(

(ΣXΣY )1/2
)
.549

We consider a gray-level exemplar texture u : Ω→ R on which we estimate an550

oracle model N (ū,Γ) and on which we put a mask M ⊂ Ω. Then, we consider the551

reference conditional model µ∞ = N (m∞,Σ∞) obtained with C∞ = Ω \M , and the552
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Fig. 8. Inpainting textural parts of an image. From top to bottom, we display the original
image (of size 768 × 577), the masked input (the Gaussian model has been estimated in the sub-
domain ω delimited by the red box), and the inpainted result. Our algorithm is able to synthesize
microtexture content which naturally blends with the surrounding context.
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Fig. 9. Visualizing Kriging coefficients. In the first column, we display the masked input.
For the three other columns: in the first row, we display the kriging coefficients (λc(x))x∈M for
different positions of the conditioning pixel c ∈ C (drawn in red); in the second row, we display
the kriging coefficients (λc(x))c∈C for different positions of the pixel x ∈ M (drawn in red). So in
the first row, we can observe the values that will be more impacted by a given conditioning point c,
and in the second row, we can observe the conditioning values which contribute most in conditional
sampling at a given position x. The kriging coefficients are obtained from an oracle model estimated
on the unmasked exemplar and we took C = ∂3M . The color map is renormalized in each case. It
is interesting to remark that the vertical correlations captured by this texture model are reflected by
larger kriging coefficients.

conditional models µw = N (mw,Σw) obtained with Cw = ∂wM (border of M with553

width w pixels). Using the expressions found in Section 2.3 and Section 2.4, we recall554

mw = Γ|M×CwΓ†|Cw×Cw(u− ū)|Cw , Σw = Γ|M×M − Γ|M×CwΓ†|Cw×CwΓ|Cw×M .555

For our experiment, we choose a reasonably small texture so that all these covariance556

matrices can be explicitly built and stored (relying on standard numerical routines557

for pseudo-inverse and square roots computation2). We then plot the function558

(18) w ∈ {1, . . . , 20} 7−→ dOT(µw, µ∞)

σu
√
|M |

,559

where σu is the marginal standard deviation of the oracle model. We also report560

separately the distances between the mean values and the covariance matrices, i.e.561

d(mw,m∞) = ‖mw −m∞‖, d(Σw,Σ∞)2 = Tr(Σw) + Tr(Σ∞)− 2Tr
(

(ΣwΣ∞)1/2
)
.562

The results can be observed in Fig 10. One can observe a global tendency of these563

distances to decrease when the conditioning border gets larger. But we do not observe564

a sudden plunge of the value (even if the covariance distance decreases a bit quicker565

for w < 5). Also, an interesting fact raised by these graphs is that the marginal error566

made when replacing C∞ by Cw is in general less than one σu. Notice also that when567

w increases, the kriging system become more and more ill-conditioned.568

2The pseudo-inverse is only computed up to a given precision. But, following the remark at
the end of Section 3.4, we checked that after conditional simulation with the approximate kriging
coefficients, the covariance matrix of the global Gaussian model is the desired one up to an error of
`∞-norm less than 10−15.

This manuscript is for review purposes only.



20 B. GALERNE, A. LECLAIRE

w

0 5 10 15 20

×
 σ

u

0

0.1

0.2

0.3

0.4

0.5
Distance to reference Gaussian model

Gaussian Model

Mean value

Covariance

w

0 5 10 15 20

×10
4

0

1

2

3

4

5

6

7
Condition number

Fig. 10. Quantative study of the conditional models depending on the conditioning set C.
We computed the distance between the reference conditional model (obtained for C∞ = Ω \M) and
the conditional models (obtained for Cw = ∂wM), see (18). On the same diagram, we also show the
distance between the mean and covariance components separately. On the right diagram, we display
the conditioning number of the kriging system. When w increases, the conditional model slowly gets
closer to the reference model, and the conditioning number increases.

We also propose in Fig. 11 a more qualitative experiment. This qualitative study569

is important to examine the quality of the inpainting result around the mask border570

(which is not reflected through the marginal L2 error between two conditional models).571

For several values of the border width w = 1, 3, 5, we inpaint a texture image (with572

the oracle Gaussian model), and we compare the results with the one obtained in the573

ideal case C∞ = Ω \M . In order to give per-pixel comparison, we used the same574

random seed for the conditional sampling. Apart from the visual results, we also575

report the distance between the mean values of the corresponding conditional models.576

It is interesting to notice that the kriging components look very different with577

w = 5 and w =∞. Indeed, when the conditioning set gets larger, the kriging com-578

ponent depends on a larger number of random variables, and thus has an increased579

stochastic nature. This explains why the distance between the Gaussian models (or580

their mean or covariance functions) does not quickly tend to zero when w increases.581

Still, as reflected by the example of Fig. 11 and as observed in all our experiments,582

the inpainting result is already good for w = 3 (in particular, for many textures, this583

value is sufficient to naturally blend the inpainted domain in the context).584

To conclude this section, we confirm that taking C = ∂3M is in general sufficient585

for our inpainting purpose. Besides, growing C adds redundancy in the kriging system,586

and also increases the stochastic nature of the kriging component.587

4.5. Comparisons. In this section, we compare our microtexture inpainting588

algorithm with several recent inpainting techniques.589

First, in Fig. 12, we compare our method with two very famous methods, namely,590

total variation (TV) based inpainting [18], and the patch-based method of Criminisi591

et al [23]. As could be expected, the TV inpainting method is not appropriate for this592

example, because the water texture in this image is not of bounded variation. In con-593

trast, much better results are obtained with our method or the one of Criminisi et al.594

Compared to [23], our result seems a bit more stochastic, maybe even too stochastic595

in the upper part of the inpainted domain. This clearly reflects one limitation of our596

model, which is stationarity.597

On Fig. 13 and Fig. 14, we compare our Gaussian inpainting algorithm with sev-598

eral patch-based methods. On the first rows of Fig. 13, one can observe that Gaussian599

inpainting gives nearly perfect results on microtextures (which was expected). Also,600

the last rows of Fig. 13 show that the results obtained on macrotextures, although601
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w = 1 w = 3 w = 5 w =∞

d = 0.3621 d = 0.33398 d = 0.3058

d = 0.23967 d = 0.21926 d = 0.20396

Fig. 11. Qualitative study of the conditional models depending on the conditioning set C.
From left to right, we display the inpainting results obtained for C being a border of M of width
w = 1, 3, 5 pixels, and also the limit solution C = Ω \M . In the first row, we display the sample
of the conditional model, and on the second row the mean value of the conditional model (kriging
component). In both rows, we compute the standard `2-distance to the image shown on the right

(normalized by σu
√
|M |d). See the text for additional comments.

Original TV inpainting [18]

Our result Criminisi et al. [23]

Fig. 12. Comparison with [18, 23]. In the first row, we display the original image (taken
from [23]) on the left, and on the right the result of TV inpainting [18] (obtained with the implemen-
tation available at [41]). In the second row, on the left we show the result of Gaussian inpainting
(with a model estimated in the red box), and on the right the result of the patch-based method of [23].
As one can see, the TV inpainting is not able to preserve texture. In contrast, the method of [23] is
truly able to generate textural content, but may lead to repetition artifacts.
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not perfect, are still quite convincing in comparison to patch-based methods. Even602

if Gaussian inpainting is not able to preserve salient geometric features, it has two603

important benefits: the synthesized content is smoothly blended in the input data,604

and the synthesized content does not suffer from repetition artifacts. But of course,605

Gaussian inpainting will clearly fail if one tries to inpaint a very thick hole in a highly606

non Gaussian texture (because the human visual system is able to discriminate be-607

tween a highly structured texture and its ADSN counterpart). Let us mention that608

some examples of Fig. 13 are difficult to handle with patch-based methods because609

the number of available patches in the unmasked area is quite small, which favors610

repetitions. This is a noticeable advantage of our method to be applicable even if the611

unmasked part does not contain many complete patches.612

All these remarks are confirmed with the results of Fig. 14 which provides a613

comparison of these methods on a difficult textural inpainting problem. This striking614

example clearly exhibits the benefits and drawbacks of each method. With Gaussian615

inpainting, the color distribution and frequential content are precisely respected, and616

long-range correlations are preserved (as can be seen in the kriging component), but617

complex geometric structures are not properly synthesized as they would be with a618

patch-based method. In contrast, with patch-based methods, even if there is enough619

available patches here, we observe some repetition artifacts which can be explained620

in the same way as the growing garbage effect which was already brought up by the621

seminal paper [31]. There may also be other artifacts which are more specific: on the622

result of [3], the inpainted domain is a bit too blurry and the border of the inpainted623

domain is still clearly visible; and on the result of [69], after close examination of the624

inpainted domain, we can perceive small seams which are due to changes in the offsets625

used for region pasting.626

5. Conclusion. In this paper, we proposed a stochastic inpainting method based627

on Gaussian conditional simulation. It is able to inpaint holes of any shape and size628

in microtexture images while precisely respecting a random texture model. Gaussian629

texture inpainting shares of course some limitations with Gaussian texture synthesis,630

but we have illustrated on many texture images that this simple approach competes631

with state-of-the-art inpainting algorithms in terms of visual results.632

As discussed in the paper, we have proposed a very simple procedure for esti-633

mating a Gaussian texture model from a masked exemplar texture. Numerical ex-634

periments show that this naive technique gives good results provided that the mask635

complement contains a sufficiently plain piece of texture. Still, we believe that it would636

be interesting to dispose of a more robust estimation technique amenable to deal with637

very irregular masks. This may be rephrased as parameter estimation with hidden638

variables and might be addressed with an expectation-maximization technique, but639

keeping the computational cost of such a procedure seems very challenging. Notice640

that this problem has already been generally discussed in [79] and more particularly641

addressed in [56, 27, 73] in a Bayesian framework for parametrized covariances.642

A promising (but equally challenging) direction for future work is to extend condi-643

tional simulation to non-stationary models in order to address inpainting of images of644

natural scenes. It is likely that for such images, one should use a deterministic method645

for extension of geometric structures, coupled with a (conditional) stochastic step to646

complete the textural content. Such a model would build another bridge between647

variational and stochastic inpainting, thus shedding another light on the question648

whether inpainting should be considered as minimizing a functional or sampling a649

large-scale distribution.650
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Input Our method Newson et al. [69] Arias et al. [3] Daisy et al. [15]

Fig. 13. Comparison with patch-based methods (I). On each row, from left to right, we
display a masked input, the result of our Gaussian inpainting algorithm, the result of [69], the
result of variational non-local inpainting [3] (obtained with the online implementation of [35] using
the NLmeans option), and the result of [15] (obtained with the publicly available G’MIC plugin for
GIMP [82]). With the results of the fourth first rows, one clearly sees that Gaussian inpainting gives
much better results on microtextures. The results of the last rows show that Gaussian inpainting
also gives reasonable results on macrotextures, and in particular, it avoids the repetition artifacts
that can sometimes be encountered with patch-based synthesis (first and fifth rows). In contrast
patch-based inpainting better preserves geometric features (like the stitches of the sixth and seventh
examples) which are completely lost with Gaussian synthesis.

This manuscript is for review purposes only.



24 B. GALERNE, A. LECLAIRE

Original Gaussian inpainting Kriging component

Arias et al. [3] Daisy et al. [15] Newson et al. [69]

Fig. 14. Comparison with patch-based methods (II). We compare several inpainting methods
on a difficult textural inpainting problem. On the first row, from left or right, we display the masked
input, the result of our method, together with the corresponding kriging component. On the second
row, we display the results of variational non-local inpainting [3] (obtained with the online imple-
mentation of [35] using the NLmeans option), the result of [15] (obtained with the publicly available
G’MIC plugin for GIMP [82]), and the result of [69]. Again, we observe on this example that Gaus-
sian inpainting fills the hole with a truly stochastic content which respects the second-order statistic
of the texture (in particular the color distribution and the power spectrum), but fails to reproduce
the geometric features in contrast to patch-based methods. The second row precisely highlights typ-
ical artifacts associated with state-of-the-art patch-based methods: with [3] the inpainted content is
too blurry; with [15] we get repetition artifacts; and with [69] we can perceive small seams between
inpainted regions using different offsets.
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[72] G. Peyré, Texture Synthesis with Grouplets, IEEE Transactions on PAMI, 32 (2010), pp. 733–817
746, doi:10.1109/TPAMI.2009.54.818
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[82] D. Tschumperlé, GREYC’s Magic for Image Computing (GIMP plugin), http://gmic.eu/.837
[83] J. J. Van Wijk, Spot noise texture synthesis for data visualization, in Proc. of SIGGRAPH,838

vol. 25, 1991, pp. 309–318.839
[84] L. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization, in840

Proceedings of SIGGRAPH, 2000, pp. 479–488.841
[85] Y. Wexler, E. Shechtman, and M. Irani, Space-Time Completion of Video, IEEE Transac-842

tions on Pattern Analysis and Machine Intelligence, 29 (2007), pp. 463–476, doi:10.1109/843
TPAMI.2007.60.844
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