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1. Introduction. Inpainting consists in filling missing or corrupted regions in images by inferring from the context. In other words, given an image whose pixel values are missing in a masked domain, the problem is to propose a possible completion of the mask that will appear as natural as possible given the available part of the image. Inspired by art restorers, this problem was called "inpainting" by Bertalmio et al. [START_REF] Bertalmio | Image Inpainting[END_REF], but was already addressed under the name "disocclusion" in [START_REF] Masnou | Level lines based disocclusion[END_REF][START_REF] Masnou | Disocclusion: a variational approach using level lines[END_REF]. Both these works suggest to fill the hole by extending the geometric structures, either by level-lines completion [START_REF] Masnou | Level lines based disocclusion[END_REF] or by iterating a finite-difference scheme [START_REF] Bertalmio | Image Inpainting[END_REF]. These early methods already give good results on structured images provided that the mask is sufficiently thin. However, they fail to inpaint textural content, which is the main purpose of this paper.

General image inpainting is a very ill-posed problem, and instead of retrieving the occluded content, one can only make a guess of what the image should have been.

However, in the restricted framework of textures, we have at our disposal several stochastic models which can be used to model and synthesize a large class of textures.

In this setting, inpainting consists in first estimating a stochastic model from the unmasked region, and then performing conditional simulation of the estimated random model given the values around the mask. This point of view thus provides a betterposed formulation of textural inpainting, which has been seldom considered in the past. In particular, such approximate conditional sampling results are given in [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF][START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF][START_REF] Kopf | Solid texture synthesis from 2d exemplars[END_REF] under the name "constrained texture synthesis". Also, the authors of [START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF] give an instructive discussion which opposes deterministic and stochastic strategies for image inpainting (with the intention to explain the differences between [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] and [START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF]).

It seems reasonable to assert that the choice between deterministic methods or stochastic methods must be driven by the level of randomness of the data. Here, we will mainly focus on inpainting very irregular texture images, called microtextures.

Following the definition of [START_REF] Galerne | Random Phase Textures: Theory and Synthesis[END_REF], microtextures are images whose visual perception is not affected by randomization of the Fourier phase. These textures are not well described by a generic variational principle. In contrast, they can be precisely and efficiently synthesized with simple stochastic models that rely on second-order statistics, for example the asymptotic discrete spot noise (ADSN) introduced in [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF] and thoroughly studied in [START_REF] Galerne | Random Phase Textures: Theory and Synthesis[END_REF][START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF][START_REF] Leclaire | Random Phase Fields and Gaussian Fields for Image Sharpness Assessment and Fast Texture Synthesis[END_REF]. In this paper, we propose a microtexture inpainting algorithm that relies on a precise conditional sampling. Conditional sampling of the ADSN model can be easily formulated, and gives inpainting results which are visually better than the ones obtained with recent methods while keeping strong mathematical guarantees.

In the remaining paragraphs of this introduction, we discuss existing inpainting techniques, and in particular discuss the links between image inpainting and texture synthesis. Giving an exhaustive overview of the literature on this famous problem is not the main purpose of this paper. We refer the interested reader to [START_REF] Guillemot | Image inpainting: Overview and recent advances[END_REF][START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF][START_REF] Schönlieb | Partial Differential Equation Methods for Image Inpainting[END_REF] for much more detailed reviews of existing methods.

1.1. Inpainting Algorithms for Geometric Content. As mentioned above, a very natural way to inpaint images is to propagate the geometric content through the masked region. To that purpose, the early geometric inpainting methods described by Masnou and Morel [START_REF] Masnou | Level lines based disocclusion[END_REF][START_REF] Masnou | Disocclusion: a variational approach using level lines[END_REF] consist in connecting the level lines across the hole in order to satisfy the Gestaltist's principle of good continuation. More precisely, the inpainted image is the solution of a generic minimization problem which includes the total variation (TV) of the image and the angle total variation of the level lines (Euler's elastica).

Closely related to these generic variational inpainting methods lie models based on partial differential equations (PDE). Bertalmio et al. [START_REF] Bertalmio | Image Inpainting[END_REF] suggest to iterate a finitedifference scheme, which was later interpreted as a numerical scheme for a PDE related to Navier-Stokes equation [START_REF] Bertalmio | Navier-stokes, fluid dynamics, and image and video inpainting[END_REF]. Of course, there is a strong connection between PDEbased and variational methods because the minimum of a generic functional satisfies the associated Euler-Lagrange equation (but a PDE may not be associated with a variational problem [START_REF] Schönlieb | Partial Differential Equation Methods for Image Inpainting[END_REF]). Among many papers lying in between PDEs and generic variational problems, we will only quote a few important contributions.

Ballester et al. [START_REF] Ballester | Filling-in by joint interpolation of vector fields and graylevels[END_REF] propose to perform joint interpolation of image values and gradient orientations by solving a minimization problem which leads to coupled secondorder PDEs on image values and gradient orientations. Chan and Shen [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF] give a detailed study of the inpainting method based on TV minimization (which, compared to [START_REF] Masnou | Level lines based disocclusion[END_REF] drops the elastica term in the minimization problem), and propose a more general scheme called curvature-driven diffusion (which allows to better respect the good continuation principle). The link with Mumford-Shah image model was already discussed in [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF], and more importantly exploited by Esedoglu and Shen [START_REF] Esedoglu | Digital inpainting based on the Mumford-Shah-Euler image model[END_REF], who completed the Mumford-Shah model with an Euler's elastica term, leading to fourthorder nonlinear parabolic PDEs, and allowing better connectivity in the inpainting result. Later, other fourth-order PDEs were exploited to inpaint non-texture images with better connectivity: Bertozzi et al. [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF] propose to solve a modified Cahn-Hilliard equation for fast inpainting of binary or highly-contrasted images, an approach which was generalized to real-valued images by Burger et al. [START_REF] Burger | Cahn-Hilliard inpainting and a generalization for grayvalue images[END_REF]. Finally, Bornemann and März [START_REF] Bornemann | Fast image inpainting based on coherence transport[END_REF] propose an efficient non-iterative inpainting algorithm which is based on a transport equation and inspired by the fast marching algorithm of [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF].

A common drawback of these deterministic methods is that they are not able This manuscript is for review purposes only. to inpaint textural content precisely because solving a PDE or a variational problem often imposes a certain degree of smoothness for the solution.

1.2. Exemplar-based Inpainting, Sampling or Minimizing?... An efficient way to model irregular images is to consider stochastic image models, and in particular many texture synthesis algorithms can be formulated as sampling a probability distribution. Thus, one first strategy to inpaint textural parts of an image is to use an exemplar-based texture synthesis algorithm and to blend the synthesized content in the masked image. Such a method was proposed by Igehy and Pereira [START_REF] Igehy | Image replacement through texture synthesis[END_REF] who relied on Heeger-Bergen synthesis algorithm [START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF] to produce textural content.

On the other hand, if a stochastic image model is fixed, inpainting can be understood as sampling a conditional distribution, as illustrated on Fig. 1. This point of view was originally adopted by Efros and Leung [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF]. These authors suggest to approximate conditional sampling of a Markov random field (MRF) model by progressive completion of the unknown region using patch nearest neighbor search. Even if they show some texture inpainting results, their main concern is structured texture synthesis. For inpainting, this patch-based approach was precised in [START_REF] Bornard | Missing data correction in still images and image sequences[END_REF][START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF]. In particular, Demanet et al. discuss the two possible formulations of the inpainting problem as either minimizing the energy E or sampling the probability distribution Ce -E . They give several arguments to support that the variational point of view is a lighter and sufficient method to efficiently compute an inpainting solution. However, let us mention that the patch-based energy given in [START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF] is highly non-convex, and that the adopted optimization strategy does not offer much theoretical guarantees. Therefore, the empirical conclusions based on the results of this algorithm must be interpreted carefully. Our paper will shed some more light on this interesting (and still open) question, in the case of Gaussian textures.

Many other inpainting methods were inspired by these exemplar-based synthesis algorithms [START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF][START_REF] Drori | Fragment-based image completion[END_REF][START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF][START_REF] Pérez | Patchworks: Example-based region tiling for image editing[END_REF][START_REF] Komodakis | Image completion using efficient belief propagation via priority scheduling and dynamic pruning[END_REF][START_REF] Wexler | Space-Time Completion of Video[END_REF][START_REF] Aujol | Exemplar-based inpainting from a variational point of view[END_REF][START_REF] Bugeau | A comprehensive framework for image inpainting[END_REF][START_REF] Xu | Image inpainting by patch propagation using patch sparsity[END_REF][START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF][START_REF] Arias | Analysis of a Variational Framework for Exemplar-Based Image Inpainting[END_REF][START_REF] Meur | Super-resolution-based inpainting[END_REF][START_REF] Liu | Exemplar-based image inpainting using multiscale graph cuts[END_REF][START_REF] He | Image completion approaches using the statistics of similar patches[END_REF][START_REF] Newson | Video Inpainting of Complex Scenes[END_REF][START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF]. These papers contain several clever algorithmic extensions of the original algorithm of [START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF]. In particular, Criminisi et al. [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] highlighted the importance of the pixel-filling order, and suggested that it should be driven by (progressively updated) patch priorities measuring the amount of available data and the quantity of structural information in the currently synthesized content. Many authors [START_REF] Drori | Fragment-based image completion[END_REF][START_REF] Komodakis | Image completion using efficient belief propagation via priority scheduling and dynamic pruning[END_REF][START_REF] Wexler | Space-Time Completion of Video[END_REF][START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF][START_REF] Newson | Video Inpainting of Complex Scenes[END_REF] demonstrated that the inpainting problem could be more efficiently solved (both in visual terms or numerical terms) by relying on a multi-scale strategy. From a computational point of view, the speed of these algorithms highly depends on the method used for getting This manuscript is for review purposes only.

patch nearest neighbors, and many state of the art methods rely on the PatchMatch method which efficiently computes an approximate nearest neighbor field [START_REF] Barnes | PatchMatch: a randomized correspondence algorithm for structural image editing[END_REF][START_REF] Arias | Analysis of a Variational Framework for Exemplar-Based Image Inpainting[END_REF][START_REF] Liu | Exemplar-based image inpainting using multiscale graph cuts[END_REF][START_REF] Newson | Video Inpainting of Complex Scenes[END_REF].

Let us also mention that the choice of the metric used for patch comparison may influence the inpainting results; to that purpose, the authors of [START_REF] Liu | Exemplar-based image inpainting using multiscale graph cuts[END_REF][START_REF] Newson | Video Inpainting of Complex Scenes[END_REF] suggested to improve the comparison by including textural features in the patch distance (e.g. local sum of absolute derivatives).

Here we would like to put the emphasis on a few papers which provide a thorough mathematical analysis of the variational formulation proposed by [START_REF] Demanet | Image inpainting by correspondence maps: a deterministic approach[END_REF]. Aujol et al. [START_REF] Aujol | Exemplar-based inpainting from a variational point of view[END_REF] show the existence of a solution to a continuous analog of Demanet et al.' energy among the set of piecewise roto-translations, propose several extensions of this problem (allowing for either regularization or cartoon+texture decomposition), and also provide a 2D-example which illustrates the model ability to globally reconstruct geometric features. Arias et al. [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] propose and compare several variational models obtained by varying the distance used in patch comparison (using the L 1 or L 2 norm on the image values or gradients), and also propose to replace the patch correspondence by generalized patch linear combinations using an adaptive weighting function.

In [START_REF] Arias | Analysis of a Variational Framework for Exemplar-Based Image Inpainting[END_REF], the same authors provide an additional mathematical analysis with a proof of the solution existence, of the convergence of the proposed minimization algorithm. In these works, the inpainting problem is mainly formulated with a correspondence map (or a more general weighting function in [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF]). In contrast, Liu and Caselles have shown in [START_REF] Liu | Exemplar-based image inpainting using multiscale graph cuts[END_REF] that using an offset map instead allows to formulate inpainting as a discrete optimization problem which is efficiently solved with graph cuts. The statistics of patch offsets have been studied in [START_REF] He | Image completion approaches using the statistics of similar patches[END_REF]; He and Sun compute and exploit recurrent patch offsets in order to simplify the graphcut inpainting approach leading to an even faster algorithm. Finally, the above-mentioned structural and exemplar-based methods can be combined to obtain hybrid structure-texture inpainting methods [START_REF] Bertalmio | Simultaneous structure and texture image inpainting[END_REF][START_REF] Jia | Inference of segmented color and texture description by tensor voting[END_REF][START_REF] Sun | Image completion with structure propagation[END_REF][START_REF] Cao | Geometrically guided exemplar-based inpainting[END_REF]. Also, several authors proposed inpainting methods based on sparse decompositions of images or patches [START_REF] Elad | Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[END_REF][START_REF] Mairal | Sparse Representation for Color Image Restoration[END_REF][START_REF] Cai | A framelet-based image inpainting algorithm[END_REF][START_REF] Peyré | Texture Synthesis with Grouplets[END_REF]. In these methods, the inpainting is also formulated as a minimization problem (which can be coupled with the dictionary learning problem as in [START_REF] Mairal | Sparse Representation for Color Image Restoration[END_REF]). Although these methods are efficient in recovering missing data for thin or randomly-distributed masks, they are not able to fill large missing regions.

1.3. Gaussian Conditional Simulation. In this paper, we will address textural inpainting by precise conditional sampling of a stochastic texture model.

In the computer graphics community, many authors have demonstrated the expressive power of microtexture models based on Fourier phase randomization [START_REF] Lewis | Texture Synthesis for Digital Painting[END_REF][START_REF] Lewis | Methods for Stochastic Spectral Synthesis[END_REF] or on convolution of spot functions with noisy patterns [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF]. Later, these models were studied in more detail by Galerne et al. [START_REF] Galerne | Random Phase Textures: Theory and Synthesis[END_REF] who propose in particular a simple analysis-synthesis pipeline for by-example microtexture synthesis with the Asymptotic Discrete Spot Noise (ADSN) model (which is the Gaussian limit of Van Wijk's Spot Noise model [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF]). Such a Gaussian model is described by its first and secondorder moments, and allows for fruitful mathematical developments, with applications in texture analysis [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF], texture mixing [START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF], procedural texture synthesis [START_REF] Galerne | A Texton for Fast and Flexible Gaussian Texture Synthesis[END_REF][START_REF] Galerne | Texton Noise[END_REF].

In this paper (following the preliminary work of [START_REF] Galerne | Microtexture Inpainting Through Gaussian Conditional Simulation[END_REF]), we propose to take advantage of another benefit of the Gaussian model, which is the availability of a precise conditional sampling algorithm. Indeed, for Gaussian vectors, independence is equivalent to uncorrelatedness, which can be rephrased as orthogonality in the Hilbert space of square-integrable random variables. Therefore, conditional simulation of a zero-mean Gaussian vector F only requires to compute an orthogonal projection F * This manuscript is for review purposes only.
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Fig. 2. Summary of our microtexture inpainting method The main idea of our method is to fill the masked region with a conditional sample of a Gaussian model. So this method is less about retrieving the initial image than computing another plausible sample of the texture model in the masked region. The Gaussian model is estimated from the unmasked values, and conditionally sampled knowing the values on a set C composed of a 3 pixel wide border of the mask. The conditional sample is obtained by adding a kriging component (derived from the conditioning values) and an innovation component (derived from an independent realization of the Gaussian model). The former extends the long-range correlations and the latter adds texture details, in a way that globally preserves the global covariance of the model. Though limited to microtextures, this algorithm is able to fill both small and large holes, whatever the regularity of the boundary.

on a subspace of random variables (which corresponds to the conditional expectation given the known values) and to sample the orthogonal component F -F * . Following the presentation of [START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF], we will rely on the terminology which is traditionally used in "simple kriging estimation": the conditional expectation F * will be called "kriging component", and F -F * will be called "innovation component". The role of these two components for conditional simulation is illustrated in Fig. 2. Let us mention that in the Gaussian case, solving the maximum a posteriori for the conditional model amounts to computing the conditional expectation (i.e. kriging component), which is very different from conditional sampling, as one can see on Fig. 2.

To the best of our knowledge, microtexture inpainting has not been addressed in those terms in the past. Gaussian conditional simulation algorithm was used by Hoffman and Ribak [START_REF] Hoffman | Constrained realizations of Gaussian fields: a simple algorithm[END_REF] for cosmological constrained simulations with parametric Gaussian models. More recently, local Gaussian conditional models were used for structured texture synthesis in [START_REF] Raad | Conditional Gaussian Models for Texture Synthesis[END_REF][START_REF] Raad | A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm[END_REF]. In the monoscale version [START_REF] Raad | Conditional Gaussian Models for Texture Synthesis[END_REF], Raad et al. suggest to progressively sample the texture with conditional sampling of local Gaussian models estimated from the exemplar (with nearest neighbor search as in [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF][START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF]); they also propose a multiscale adaptation of this algorithm [START_REF] Raad | A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm[END_REF]. As for [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF], this algorithm could also be adapted for inpainting, but, because of the progressively estimated local models, the global model is not Gaussian. Ordinary kriging was used by Chandra et al. [START_REF] Chandra | Texture Interpolation Using Ordinary Kriging[END_REF] to interpolate sparsely sampled textural data (but does not compute a conditional sample).

This manuscript is for review purposes only.

1.4. Connections with geostatistics. However, kriging-based Gaussian conditional simulation is a traditional method used for data interpolation in geostatistics [START_REF] Chilès | Geostatistics: modeling spatial uncertainty[END_REF][START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF][START_REF] Cressie | Statistics for Spatial Data[END_REF][START_REF] Goovaerts | Geostatistics for Natural Resources Evaluation[END_REF][START_REF] Deutsch | Geostatistical software library and user's guide[END_REF]. Several parts of the method we propose are already well-known to geostatisticians, sometimes under other names. In particular, the ADSN model that we use is an instance of moving-average random fields [START_REF] Journel | Geostatistics for conditional simulation of ore bodies[END_REF][START_REF] Oliver | Moving averages for Gaussian simulation in two and three dimensions[END_REF] whose spectral-based unconditional sampling algorithm is explained in [START_REF] Gutjahr | Fast Fourier Transforms for Random Field Generation[END_REF][START_REF] Chilès | Quelques méthodes de simulation de fonctions aléatoires intrinsèques[END_REF][START_REF] Ravalec-Dupin | The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations[END_REF]. The authors of [START_REF] Ravalec-Dupin | The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations[END_REF] also suggest an optimization procedure to modify the unconditional sample so that it complies with the available data. In contrast, we propose direct sampling of a global conditional Gaussian model. Let us emphasize that, contrary to many examples shown in the geostatistics literature, our imaging application leads to very large conditioning sets (with possibly several thousands conditioning values). Thus, in our case, precise conditional sampling is much more difficult than unconditional sampling. Also, in the geostatistics literature, several authors have proposed generalized kriging algorithms for data prediction with various stochastic models [START_REF] Rue | Fast sampling of Gaussian Markov random fields[END_REF][START_REF] Almansa | Interpolation of digital elevation models using AMLE and related methods[END_REF][START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF][START_REF] Emery | Conditioning Simulations of Gaussian Random Fields by Ordinary Kriging[END_REF][START_REF] Chilès | Geostatistics: modeling spatial uncertainty[END_REF][START_REF] Li | Universal kriging with training images[END_REF]. In particular, in [START_REF] Rue | Fast sampling of Gaussian Markov random fields[END_REF], Rue proposes a fast algorithm for conditional simulation in the particular case of Gaussian Markov random fields. Another technique for fast sampling in geostatistics is given by sequential simulation [START_REF] Gómez-Hernàndez | Theory and Practice of Sequential Simulation[END_REF], which amounts to progressive filling of the pixels in a random order using successive conditional sampling. In our context, this approach would require to solve larger and larger kriging systems and would not be as efficient as our global approach. About progressive filling of the pixels, let us also mention a clear connection between the inpainting adaptation of [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] and the direct sampling method of [START_REF] Mariethoz | Reconstruction of incomplete data sets or images using direct sampling[END_REF]. We refer the interested reader to [START_REF] Mariethoz | Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research[END_REF] for a much deeper discussion on the links between texture synthesis and multiple-point geostatistics.

1.5. Plan of the Paper. In Section 2, we explain the traditional algorithm for Gaussian conditional simulation (using a terminology that is derived from kriging estimation). In Section 3, we apply this conditional sampling algorithm to microtexture inpainting. In particular, we discuss the estimation of a Gaussian model on a masked exemplar, and we also provide a Fourier based algorithm which allows to compute the kriging estimation even when the number of conditioning points is very large.

Finally, in Section 4, we provide several texture inpainting experiments to illustrate the validity of our approach; in particular we show that our method can compete with state of the art inpainting methods on textural content.

Gaussian Conditional Simulation.

In this section, we recall the classical algorithm for conditional sampling of Gaussian random vectors. Following [START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF], we rely on a kriging framework that we introduce next.

Notation.

Let Ω be a finite set. Let (F (x)) x∈Ω be a real-valued Gaussian vector, that is, a real-valued random vector for which any linear combination of the components is Gaussian. We assume that F has zero mean. The covariance of F is This manuscript is for review purposes only.

written Γ(x, y) = Cov(F (x), F (y)) = E(F (x)F (y)), x, y ∈ Ω.
2.1. Simple Kriging Estimation. We define the simple kriging estimator

(1) F * (x) = E( F (x) | F (c) , c ∈ C ).
A standard result of probability theory [START_REF] Doob | Stochastic processes[END_REF] ensures that in the Gaussian case F * (x) is the orthogonal projection of F (x) on the subspace of linear combinations of (F (c)) c∈C (for the L 2 -distance between square-integrable random variables). Hence, there exist deterministic coefficients (λ c (x)) c∈C , called kriging coefficients such that

(2)

F * (x) = c∈C λ c (x)F (c).
Notice that by definition, F * (x) = F (x) for every x ∈ C.

Generally speaking, for a given x, there may be several possible sets of kriging coefficients i.e. several vectors (λ c (x)) c∈C which satisfy (2) (for example if there are

two distinct points c 1 , c 2 ∈ C such that F (c 1 ) = F (c 2 )
). But we will later give a canonical way to compute a valid set of kriging coefficients. Theorem 1 (See for example [START_REF] Doob | Stochastic processes[END_REF][START_REF] Lantuéjoul | Geostatistical Simulation: Models and Algorithms[END_REF]). F * and F -F * are independent. Consequently, if G is independent of F with same distribution, then

Gaussian Conditional

H = F * + (G -G * )
has the same distribution as F and satisfies

H |C = F |C . If ϕ |C ∈ Range(Γ |C×C ), a conditional sample of F given F |C = ϕ |C can thus be obtained with ϕ * + F -F * .
In this decomposition, ϕ * will be called the kriging component and F -F * will be called the innovation component.

Expression of the Kriging Coefficients.

In order to compute the kriging estimator at x ∈ Ω, one needs to compute a valid set of kriging coefficients (λ c (x)) c∈C .

Since F * and F -F * are orthogonal, we get that the row vector λ(x) = (λ c (x)) c∈C is a solution of the following |C| × |C| linear system

(3) ∀c ∈ C, d∈C λ d (x)Γ(d, c) = Γ(x, c), i.e. λ(x)Γ |C×C = Γ |{x}×C .
Conversely, any solution of (3) gives a valid set of kriging coefficients satisfying [START_REF] Arias | Analysis of a Variational Framework for Exemplar-Based Image Inpainting[END_REF].

Aggregating the kriging coefficients in a |Ω| × |C| matrix Λ = (λ c (x)) x∈Ω,c∈C , the system characterizing the kriging coefficients can also be written ΛΓ |C×C = Γ |Ω×C .

If the matrix Γ |C×C is invertible, the global system admits a unique solution Λ =

Γ |Ω×C Γ -1 |C×C .
In the case where Γ |C×C is not invertible, it is always possible to compute valid kriging coefficients with the pseudo-inverse Γ † |C×C . Indeed, since the system (3) has a solution1 , then Γ |{x}×C Γ † |C×C is also a solution. Thus we can always consider the set of kriging coefficients given by Λ = Γ |Ω×C Γ † |C×C .

Once a set Λ of valid kriging coefficients has been computed, a conditional sample of F given F |C = ϕ can be obtained as Λϕ + F -ΛF |C , where ϕ and F are written as column vectors.

Matrix Expression of the Conditional Simulation.

From this expression of the conditional sample, we will derive the usual expression of the Gaussian conditional distribution in matrix notation (as e.g. in [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF][START_REF] Raad | A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm[END_REF]).

Let p = |C|, q = |Ω \ C| (where Ω \ C denotes the complement of C in Ω) and

n = |Ω|. Let us introduce the matrices R = I p 0 ∈ R p×n , S = 0 I q ∈ R q×n ,
Using the first p indices for the elements of C, we write block decompositions

F = F |C F |Ω\C = RF SF , Γ = Γ |C×C Γ |C×(Ω\C) Γ |(Ω\C)×C Γ |(Ω\C)×(Ω\C) = RΓR T RΓS T SΓR T SΓS T . With such notation, if ϕ ∈ Range(Γ |C×C ), a conditional sample of F given F |C = ϕ is
given by Λϕ + F -ΛRF. From this expression we get the conditional distribution (4)

F | F |C = ϕ ∼ N Λϕ , (I n -ΛR)Γ(I n -ΛR) T .
Using the kriging system (which rewrites ΛRΓR T = ΓR T ), we get the usual formulae

E( SF | F |C = ϕ ) = SΛϕ = S RΓR T SΓR T (RΓR T ) † ϕ = SΓR T (RΓR T ) † ϕ, (5) 
Cov( SF | F |C = ϕ ) = SΓS T -SΓR T (RΓR T ) † RΓS T . ( 6 
)
When RΓR T = Γ |C×C is non-singular, we get back the expressions of [START_REF] Rue | Gaussian Markov Random Fields: Theory and Applications[END_REF][START_REF] Raad | A Conditional Multiscale Locally Gaussian Texture Synthesis Algorithm[END_REF].

3. Microtexture Inpainting Algorithm. This section contains our main contribution: how to use Gaussian conditional sampling for microtexture inpainting.

We are given an input texture image u : Ω → R defined on a finite rectangular domain Ω ⊂ Z 2 . The values of u are known except on the mask M ⊂ Ω and we want to generate plausible values on the mask given the surrounding content. For that, we sample a stationary Gaussian texture model (U (x)) x∈Ω given the values of u outside M . More precisely, we consider a Gaussian model associated with an asymptotic discrete spot noise (ADSN), which we sample knowing the values on a conditioning set C = ∂ w M defined as the outer border of M with width w pixels (we usually take w = 3 but we discuss this choice in Section 4.4).

After recalling the basics about the ADSN model, we discuss the estimation of such a model on a masked exemplar texture. Then we give an efficient and scalable way to compute the kriging estimator for the ADSN model by relying on conjugate gradient descent (numerical issues are discussed in the IPOL companion paper [START_REF] Galerne | An Algorithm for Gaussian Texture Inpainting[END_REF]).

Visual results are given in the next section.

ADSN Models.

As shown in [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF][START_REF] Galerne | Random Phase Textures: Theory and Synthesis[END_REF], a convenient model for microtexture is given by the asymptotic discrete spot noise (ADSN). Given a function h : Z 2 → R with finite support, the ADSN corresponding to h is the convolution of h with a normalized Gaussian white noise W on Z 2 , defined as

(7) ∀x ∈ Z 2 , h * W (x) = y∈Z 2 h(y)W (x -y).
This Gaussian random field is stationary, has zero mean, and its covariance function

is given by E(h * W (x)h * W (y)) = (h * h)(x -y), where h(z) = h(-z). The restriction on a finite Ω ⊂ Z 2 of h * W is a zero-mean Gaussian model (F (x)) x∈Ω .
Thanks to the simple convolutive expression of the ADSN, it can be efficiently sampled using the fast

Fourier transform (FFT). Depending on the boundary conditions, we can consider a
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periodic ADSN or a non-periodic ADSN. Apart from a slight gain of complexity, there is no general reason to favor the periodic model. The choice is often driven by the applicative context; for example, non-periodic models are better suited for on-demand texture synthesis [START_REF] Galerne | A Texton for Fast and Flexible Gaussian Texture Synthesis[END_REF][START_REF] Galerne | Texton Noise[END_REF]. Here we choose the non-periodic model and we refer to [59, Chap.2] for a detailed exposure regarding both ADSN models.

Extension to Color Images. ADSN models extend to color images by convolving each color channel with the same white noise in [START_REF] Bertalmio | Navier-stokes, fluid dynamics, and image and video inpainting[END_REF]. This gives an R d -valued

Gaussian random field F on Ω (where d is the number of channels, i.e. 3 for color images). Regarding the conditional simulation, a simple way to understand this extension is to consider the R d -valued random field F as a real-valued random field on Ω × {1, . . . , d}. The covariance matrix is then given by ( 8)

∀(x, j), (y, k) ∈ Ω × {1, . . . , d}, Γ((x, j), (y, k)) = E(F j (x)F k (y)).
Even if this changes the covariance matrix, we keep the same notation for restrictions of the covariance matrix: for example, we still use the notation Γ |C×C for the covariance of F on C, but strictly speaking we should write Γ |(C×{1,...,d})×(C×{1,...,d}) .

Estimation of the Gaussian Model.

If the image u : Ω → R d were entirely available, the estimation procedure would be the same as for texture synthesis [START_REF] Galerne | Random Phase Textures: Theory and Synthesis[END_REF][START_REF] Galerne | A Texton for Fast and Flexible Gaussian Texture Synthesis[END_REF], which is briefly recalled here. We compute the mean value ū = A simple way to do that is to consider the Gaussian model U = v + t v * W where

(9) v = 1 |ω| x∈ω v(x), t v (x) = 1 √ |ω| (v(x) -v) if x ∈ ω, 0 otherwise.
This choice amounts to estimate the texture covariance by

c v = t v * t T v , which writes (10) c v (h) = 1 |ω| x∈ω∩(ω-h) (u(x + h) -v)(u(x) -v) T ∈ R d×d .
This subdomain ω is not constrained to be a rectangle; for example, a canonical choice would be to consider ω = Ω \ M . As will be observed in Section 4.2, this choice already gives good results in our inpainting framework. However, one must be aware that the geometry of ω may impact the quality of the estimation. We illustrate this effect in Fig. 3. In general, we observed that the performance of the naive estimator is surprisingly good provided that the mask is not too much irregular.

We would like to point out here that designing more precise estimators of the covariance is an interesting question. In particular, at first sight one can be puzzled by the normalization of [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF]. A better normalized estimator c v (h) would be obtained by replacing 1 |ω| by 1 |ω∩(ω-h)| in this formula. But a drawback of this new estimator is that it does not define a semi-definite positive estimator, and thus is not associated with a Gaussian model that could be sampled. A way to cope with this effect is to enforce semi-definite positiveness, which in the stationary case is equivalent to project
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Estimated Oracle

Fig. 3. Estimation of an ADSN model on a masked exemplar. We illustrate with several types of mask the estimation of the Gaussian model with the naive estimator (10) using ω = Ω \ M . We display in the first row the masked exemplar, in the second row a sample of the estimated ADSN model, and in the third row a sample of the oracle ADSN model estimated from the unmasked exemplar (generated with the same random seed). As one can see, in terms of synthesis, the naive estimator produces nearly perfect results as soon as the mask complement contains a sufficiently large connected region to capture the textural aspect. The worst case is encountered for very irregular masks like the one shown in the third column (75% of masked pixels).

on the non-negative orthant in Fourier domain. We have led some experiments in this direction, and they have shown that the resulting Gaussian model is not better than the one obtained with the naive estimator (both in terms of resynthesis or in terms of optimal transport distance between Gaussian models [START_REF] Galerne | A Texton for Fast and Flexible Gaussian Texture Synthesis[END_REF]). Indeed, the projection on the Fourier orthant has a dramatic impact on the model (in particular, it may significantly impact the estimation of the marginal variance).

One explanation of the success of the naive estimator for regular masks is that in this case we have |ω∩(ω-h)| |ω| ≈ 1 when h ≈ 0. Therefore the naive estimator is approximately well normalized around 0 and thus correctly estimates the covariance in a neighborhood of 0, which is the most important part for microtexture images. The most difficult part consists in solving a large linear system involving the conditional values. This step is dealt with by using a conjugate gradient descent algorithm, which proves to be efficient even for very large images.

In order to draw a conditional sample on the mask M , we introduce a set of conditioning points C ⊂ Ω \ M . Ideally, we should choose C = Ω \ M ; but we will see below that for computational and theoretical reasons, taking C = ∂ w M (border of M with width w) may be useful. Of course, in the case where C Ω \ M , we draw a conditional sample on Ω but we exploit only the restriction on M to get the inpainting result (in other words, on Ω \ M we always impose the original image).

As explained in the last section, after subtracting the estimated mean v, we can use the ADSN model (F (x)) x∈Ω corresponding to the spot t v (which is a zero mean Gaussian vector). Using the framework and notation of Section 2, we draw a
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conditional sample (F (x)) x∈Ω given F |C = u |C -v by computing (11) (u -v) * + F -F * = Λ (u -v) |C + F -Λ(F |C ).
Computing A † ϕ where A = Γ |C×C is more costly. Assume for a moment that A is invertible. Then computing A -1 ϕ amounts to solving a linear system of size p × p (where p = d|C|). Since A is symmetric positive-definite, this can be reduced to solving two triangular systems thanks to the Cholesky factorization of A. Nevertheless, finding the Cholesky factorization of A requires O(p 3 ) flops in general. Therefore, this direct method will only work for small values of p. This was a major limitation of our preliminary work presented in [START_REF] Galerne | Microtexture Inpainting Through Gaussian Conditional Simulation[END_REF].

To cope with this problem, we propose here to solve the linear system with a conjugate gradient descent algorithm, taking profit of the fact that applying the matrix A can be done efficiently. Indeed, computing Aψ amounts to extend ψ to Ω by zero-padding, convolve by t v * tv and restrict the result on C. Besides, using a conjugate gradient descent on the normal equations allows to cope with possibly singular matrices A.

Following [START_REF] Kammerer | On the Convergence of the Conjugate Gradient Method for Singular Linear Operator Equations[END_REF], we compute A † ϕ by performing a conjugate gradient descent on

(12) f : ψ -→ 1 2 Aψ -ϕ 2
with initialization ψ 0 = 0. This optimization procedure actually solves the normal equations A T Aψ = A T ϕ, which are equivalent to Aψ = ϕ when ϕ ∈ Range(A) (recall that the range of A and the kernel of A T are orthogonal subspaces). The algorithm is summarized below.

Algorithm CGD: Conjugate gradient descent to compute

A † ϕ • Initialize k ← 0, ψ 0 ← 0, r 0 ← A T ϕ -A T Aψ 0 , d 0 ← r 0 . • While r k > ε, do -α k = r k 2 d T k A T Ad k -ψ k+1 ← ψ k + α k d k -r k+1 ← r k -α k A T Ad k -d k+1 ← r k+1 + r k+1 2 r k 2 d k -k ← k + 1 • Return ψ k
Notice that in our case where A is symmetric, this Algorithm CGD is nothing but the classical algorithm for solving A 2 ψ = Aϕ. In this case, the range and kernel of A are orthogonal subspaces so that the convergence of the algorithm follows from the non-singular case (applied to the restriction of A 2 to the range of A).

Since the multiplication by A can be computed efficiently with the FFT, the complexity of Algorithm CGD with N iterations is O(N |Ω| log |Ω|). The main benefit of using this algorithm is that it allows to consider very large conditioning sets C. This manuscript is for review purposes only.

Of course, increasing C may increase the number of required iterations to obtain the solution at a given precision ε. But if the condition number of the system is low, we will get a good approximation of the solution in a reasonable number of iterations. Let us mention that Algorithm CGD is theoretically expected to get the exact solution in a finite number of iterations, but this remark is not useful for our practical case because of the numerical errors caused by the FFT.

Stopping criterion. The stopping criterion that we use in Algorithm CGD is r k ≤ ε where the residual at iteration k is given by ( 13)

r k = A T ϕ -A T Aψ k ,
and where r k is the unnormalized 2 -norm of r k ∈ R |C| . In practice, to keep a simple choice, we take ε := 10 -3 and we also constrain the number of iterations to be less than k max = 1000. The numerical behavior of this CGD algorithm is studied in the IPOL companion paper.

Comments on the Kriging System.

The matrix A is not necessarily invertible. Indeed, let us consider the case of a color periodic ADSN model on Ω estimated by [START_REF] Bertalmio | Simultaneous structure and texture image inpainting[END_REF]. Then the DFT of the covariance operator Γ is given by ( 14)

t v (ξ) t v (ξ) * = 1 |ω| v(ξ) v(ξ) * if ξ = 0 0 if ξ = 0 .
As noted in [START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF], this matrix has rank ≤ 1 which constrains the rank of the matrix Γ (of size d|Ω| × d|Ω|) to be bounded by |Ω| -1. Since A is a submatrix of Ω, Rank(A) ≤ |Ω| -1. In particular, if the conditioning set is sufficiently big so that d |C| ≥ |Ω|, then A cannot be invertible.

The vector ϕ = u |C -ū may not be in the range of A. Indeed, if A is not invertible, the conditioning values could be out of the range of A. However this is not a problem to apply Algorithm CGD because taking Aϕ implicitly cancels the component on the kernel of A.

Notice also that if the estimated ADSN model is well adapted to the masked texture, then it is likely that ϕ is close to the range of A. In practice, the distance of ϕ to the range of A is bounded by the norm of the residual obtained with the direct conjugate gradient method ϕ -Aψ k ≥ dist ϕ, Range(A) .

Complete Algorithm.

To end this section, we summarize our microtexture inpainting algorithm. In Algorithm CGD the matrix A = Γ |C×C is not formed explicitly, and we only need to apply it efficiently with the FFT-based algorithm.

Also, if one is not interested in the kriging and innovation components but only in the inpainting result, then only one instance of gradient descent is needed since the output only depends on (u

-v -F ) * = Γ † |C×C (u |C -v -F |C ).
The overall complexity of this algorithm is

O(k max |Ω| log |Ω|)
where k max is the number of iterations used in the gradient descent algorithm. The overall number of FFTs required by the whole inpainting process (whose detailed computation can be found in the IPOL companion paper) is (4k max + 6)d FFTs. Using our C implementation (involving parallel computing, in particular for the FFT) run with a modern computer (Intel i7 processor @2.60GHz with 4 cores), the whole inpainting process takes about 20 seconds for a 256 × 256 and 1000 iterations of CGD.
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Algorithm: Microtexture inpainting

Input: Mask M ⊂ Ω, texture u on Ω \ M , conditioning points C = ∂ 3 M .
-Choose a subdomain ω ⊂ Ω \ M for the estimation (by default, The results are reported in Fig. 4 for a square mask and in Fig. 5 for more irregular masks (obtained as level sets of white or correlated noise). Notice that in all these experiments, the result is visually perfect, in the sense that the inpainted texture is visually similar to a realization of the global ADSN model. Therefore, with our conjugate gradient descent scheme, the error made in the resolution of the linear system has only a negligible visual impact. Another important point raised by the results of Fig. 4 is that conditioning on the two different sets

ω = Ω \ M ) -From the restriction v of u to ω, compute v = 1 |ω| x∈ω v(x), t v = 1 |ω| (v -v)1 ω -Draw a Gaussian sample F = t v * W -Compute ψ 1 = Γ † |C×C (u |C -v), ψ 2 = Γ † |C×C F |C (Algorithm CGD with A = Γ |C×C , ε = 10 -3 and k max = 1000 iterations) -Extend ψ 1 and ψ 2 by zero-padding to get Ψ 1 and Ψ 2 -Compute (u -v) * = t v * tT v * Ψ 1 (kriging component) F * = t v * tT v * Ψ 2 (innovation component) Output: Fill M with the values of v + (u -v) * + F -F *
C = Ω \ M and C = ∂ 3 Ω
give very similar results. This illustrates that this inpainting scheme truly respects the covariance structure (and in particular the long-range correlations) even if the conditioning border is thin. Increasing further the conditioning border only adds some redundancy in the conditional model (and worsens the kriging system condition number). See Section 4.4 for a more detailed analysis of this parameter.

Let us remark that the results obtained in Fig. 5 with irregular masks look impressive at first sight since a wide majority of pixels are masked; but one should recall that in this experiment the oracle ADSN model is estimated on the unmasked exemplar, which makes the inpainting problem much simpler (compare with the results of Section 4.2).

In the experiment of Fig. 6, we show that Gaussian conditional simulation with an

This manuscript is for review purposes only. oracle model can be used to extrapolate textural content defined on a thin domain. In this case, the simulated conditional Gaussian vector is very high-dimensional, which illustrates the benefit of having a scalable algorithm based on gradient descent (and not on explicit computation of the covariance operators).

ADSN Input C = Ω \ M C = ∂ 3 M

4.2.

Inpainting with an Estimated Gaussian Model. In this section, we provide experimental results which show that our algorithm is able to inpaint holes in microtextures, whatever the size of the hole, and with only minimal requirements on the hole regularity. In contrast with the last section, the Gaussian model is now estimated from the masked exemplar. We will show that the naive estimation technique explained in Section 3.2 and illustrated in Fig. 3 leads to satisfying inpainting results except in the case where the mask is made of randomly scattered pixels. In the experiments shown in this section, we took C = ∂ 3 M . In Fig. 7, we show some results of our algorithm for several microtextures and macrotextures, with various types of masks. As one can observe, the results with microtextures are globally very satisfying; the most difficult case being the irregular mask of the third column, for which the Gaussian model cannot be properly estimated, in accordance with one of the conclusions drawn in [START_REF] Mariethoz | Reconstruction of incomplete data sets or images using direct sampling[END_REF]. Surprisingly, we also obtained quite convincing results on more structured textures.

To end this section, we show that our algorithm can be used to inpaint textural parts of more general images. For example, on Fig. 8, we used it to remove some undesirable details located in a region composed of one homogeneous microtexture.

In such a case, one must manually specify the subdomain ω on which the Gaussian model is estimated in order to take only values in the desired texture region.

Computing and

Visualizing the Kriging Coefficients. In order to better understand the conditional simulation, it is interesting to visualize the kriging This manuscript is for review purposes only.

ADSN Input 1 Output 1 Input 2 Output 2

Fig. 5. Inpainting Gaussian textures with the oracle Gaussian model -irregular masks. The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From left to right, we display a sample of the oracle model, a first masked input (the mask is obtained as an excursion set of a Gaussian process) and the corresponding inpainting result, and a second masked input (the pixels are masked independently with probability 0.8). Again, these inpainted results are visually perfect since they look exactly like a realization of the global ADSN model.

Input Extrapolated Baseline

Fig. 6. Gaussian texture extrapolation with an oracle Gaussian model. From left to right: input images, extrapolated texture (C = ∂ 3 M ), baseline result (obtained with an independent ADSN realization on the mask). The images are of size 621 × 427. The extrapolation by Gaussian conditional simulation has succeeded since the letters cannot be retrieved in the resulting image. In contrast, with the baseline method, the border of the extrapolated region is still visible (essentially because of the low frequency component).

coefficients. Heuristically speaking, every non-zero coefficient λ c (x) corresponds to a position x whose value F (x) depends on F (c) in the conditional simulation. We can thus expect the correlations of the adopted Gaussian model to be reflected in the kriging coefficients.

First, let us explain how to visualize (λ c (x)) x∈Ω for a fixed c ∈ C. We have [START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] (λ c (x)

) x∈Ω = Λδ c = Γ |Ω×C Γ † |C×C δ c ,
where we used the notation δ c = (1 c=d ) d∈C . Thus, to compute (λ c (x)) c∈C , we just use our algorithm on a Dirac input.

In a dual manner, one can also visualize (λ c (x)) c∈C for each x ∈ Ω. For that, we simply notice that

(16) (λ c (x)) c∈C = Λ T δ x = Γ † |C×C Γ |C×Ω δ x ,
where δ x = (1 x=y ) y∈Ω . So the computation of these coefficients can be done in a similar fashion, except that the covariance convolution Γ |C×Ω is performed before pseudo-inverse computation (with Algorithm CGD).

In the case of the inpainting application, we get the coefficients shown in Fig. 9.

These results clearly indicate that the correlations captured in the Gaussian model are reflected by the large kriging coefficients. We can also observe on this figure that the kriging coefficients are not positive in general.

4.4. Impact of the Size of the Conditioning Border. In this section, we investigate the impact of changing the size of the conditioning border. Again, an ideal setting would be to choose C = Ω \ M , but then the kriging system is very large. Here we will confirm that taking C = ∂ w M is sufficient, and we will precisely examine the variation of the conditional model when increasing the width w of the border.

In order to give a quantitative comparison, we suggest to compute distances between the conditional models, which are basically Gaussian random vectors on M .

This manuscript is for review purposes only. We present results of our inpainting method for several textures and masks. From top to bottom (rows 1-3 and rows 4-6), we display a masked input, the inpainted result, and a sample of the estimated ADSN model (which is useful to exhibit the limit of the Gaussian model). On rows 1-3, we display results on microtextures, while on rows 4-6 we display results on more structured textures. The results on microtextures are visually pleasing, except for the irregular mask of the third column. The results on macrotextures are of course not as perfect (in particular, for the wood example of the bottom of fourth column, the mask is still visible on close examination). Nevertheless, it is surprising that our method (based on Gaussian synthesis) still gives convincing results on some macrotextures.

A possible way to perform this comparison is to rely on the L 2 -optimal transport distance, which has already been used in several works about texture synthesis [START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF][START_REF] Galerne | A Texton for Fast and Flexible Gaussian Texture Synthesis[END_REF].

Let us recall [START_REF] Dowson | The Fréchet distance between multivariate normal distributions[END_REF] that the L 2 -optimal transport distance between two Gaussian models

µ X = N (m X , Σ X ), µ Y = N (m Y , Σ Y ) is given by (17) d OT (µ X , µ Y ) 2 = m X -m Y 2 + Tr(Σ X ) + Tr(Σ Y ) -2Tr (Σ X Σ Y ) 1/2 .
We consider a gray-level exemplar texture u : Ω → R on which we estimate an oracle model N (ū, Γ) and on which we put a mask M ⊂ Ω. Then, we consider the

reference conditional model µ ∞ = N (m ∞ , Σ ∞ ) obtained with C ∞ = Ω \ M ,

and the
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m w = Γ |M ×Cw Γ † |Cw×Cw (u -ū) |Cw , Σ w = Γ |M ×M -Γ |M ×Cw Γ † |Cw×Cw Γ |Cw×M .
For our experiment, we choose a reasonably small texture so that all these covariance matrices can be explicitly built and stored (relying on standard numerical routines for pseudo-inverse and square roots computation2 ). We then plot the function

(18) w ∈ {1, . . . , 20} -→ d OT (µ w , µ ∞ ) σ u |M | ,
where σ u is the marginal standard deviation of the oracle model. We also report separately the distances between the mean values and the covariance matrices, i.e.

d(m w , m ∞ ) = m w -m ∞ , d(Σ w , Σ ∞ ) 2 = Tr(Σ w ) + Tr(Σ ∞ ) -2Tr (Σ w Σ ∞ ) 1/2 .
The results can be observed in Fig 10 . One can observe a global tendency of these distances to decrease when the conditioning border gets larger. But we do not observe a sudden plunge of the value (even if the covariance distance decreases a bit quicker for w < 5). Also, an interesting fact raised by these graphs is that the marginal error made when replacing C ∞ by C w is in general less than one σ u . Notice also that when w increases, the kriging system become more and more ill-conditioned. 

Condition number

Fig. 10. Quantative study of the conditional models depending on the conditioning set C. We computed the distance between the reference conditional model (obtained for C∞ = Ω \ M ) and the conditional models (obtained for Cw = ∂wM ), see [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF]. On the same diagram, we also show the distance between the mean and covariance components separately. On the right diagram, we display the conditioning number of the kriging system. When w increases, the conditional model slowly gets closer to the reference model, and the conditioning number increases.

We also propose in Fig. 11 a more qualitative experiment. This qualitative study is important to examine the quality of the inpainting result around the mask border (which is not reflected through the marginal L 2 error between two conditional models).

For several values of the border width w = 1, 3, 5, we inpaint a texture image (with the oracle Gaussian model), and we compare the results with the one obtained in the ideal case C ∞ = Ω \ M . In order to give per-pixel comparison, we used the same random seed for the conditional sampling. Apart from the visual results, we also report the distance between the mean values of the corresponding conditional models.

It is interesting to notice that the kriging components look very different with w = 5 and w = ∞. Indeed, when the conditioning set gets larger, the kriging component depends on a larger number of random variables, and thus has an increased stochastic nature. This explains why the distance between the Gaussian models (or their mean or covariance functions) does not quickly tend to zero when w increases.

Still, as reflected by the example of Fig. 11 and as observed in all our experiments, the inpainting result is already good for w = 3 (in particular, for many textures, this value is sufficient to naturally blend the inpainted domain in the context).

To conclude this section, we confirm that taking C = ∂ 3 M is in general sufficient for our inpainting purpose. Besides, growing C adds redundancy in the kriging system, and also increases the stochastic nature of the kriging component. First, in Fig. 12, we compare our method with two very famous methods, namely, total variation (TV) based inpainting [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF], and the patch-based method of Criminisi et al [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. As could be expected, the TV inpainting method is not appropriate for this example, because the water texture in this image is not of bounded variation. In contrast, much better results are obtained with our method or the one of Criminisi et al.

Compared to [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF], our result seems a bit more stochastic, maybe even too stochastic in the upper part of the inpainted domain. This clearly reflects one limitation of our model, which is stationarity. On Fig. 13 and Fig. 14, we compare our Gaussian inpainting algorithm with several patch-based methods. On the first rows of Fig. 13, one can observe that Gaussian inpainting gives nearly perfect results on microtextures (which was expected). Also, the last rows of Fig. 13 show that the results obtained on macrotextures, although This manuscript is for review purposes only. 

Original

TV inpainting [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF] Our result Criminisi et al. [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] Fig. 12. Comparison with [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF][START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. In the first row, we display the original image (taken from [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]) on the left, and on the right the result of TV inpainting [START_REF] Chan | Mathematical models for local nontexture inpaintings[END_REF] (obtained with the implementation available at [START_REF] Getreuer | Total Variation Inpainting using Split Bregman[END_REF]). In the second row, on the left we show the result of Gaussian inpainting (with a model estimated in the red box), and on the right the result of the patch-based method of [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. As one can see, the TV inpainting is not able to preserve texture. In contrast, the method of [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] is truly able to generate textural content, but may lead to repetition artifacts. not perfect, are still quite convincing in comparison to patch-based methods. Even if Gaussian inpainting is not able to preserve salient geometric features, it has two important benefits: the synthesized content is smoothly blended in the input data, and the synthesized content does not suffer from repetition artifacts. But of course, Gaussian inpainting will clearly fail if one tries to inpaint a very thick hole in a highly non Gaussian texture (because the human visual system is able to discriminate between a highly structured texture and its ADSN counterpart). Let us mention that some examples of Fig. 13 are difficult to handle with patch-based methods because the number of available patches in the unmasked area is quite small, which favors repetitions. This is a noticeable advantage of our method to be applicable even if the unmasked part does not contain many complete patches.

All these remarks are confirmed with the results of Fig. 14 which provides a comparison of these methods on a difficult textural inpainting problem. This striking example clearly exhibits the benefits and drawbacks of each method. With Gaussian inpainting, the color distribution and frequential content are precisely respected, and long-range correlations are preserved (as can be seen in the kriging component), but complex geometric structures are not properly synthesized as they would be with a patch-based method. In contrast, with patch-based methods, even if there is enough available patches here, we observe some repetition artifacts which can be explained in the same way as the growing garbage effect which was already brought up by the seminal paper [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF]. There may also be other artifacts which are more specific: on the result of [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF], the inpainted domain is a bit too blurry and the border of the inpainted domain is still clearly visible; and on the result of [START_REF] Newson | Video Inpainting of Complex Scenes[END_REF], after close examination of the inpainted domain, we can perceive small seams which are due to changes in the offsets used for region pasting.

Conclusion.

In this paper, we proposed a stochastic inpainting method based on Gaussian conditional simulation. It is able to inpaint holes of any shape and size in microtexture images while precisely respecting a random texture model. Gaussian texture inpainting shares of course some limitations with Gaussian texture synthesis, but we have illustrated on many texture images that this simple approach competes with state-of-the-art inpainting algorithms in terms of visual results.

As discussed in the paper, we have proposed a very simple procedure for estimating a Gaussian texture model from a masked exemplar texture. Numerical experiments show that this naive technique gives good results provided that the mask complement contains a sufficiently plain piece of texture. Still, we believe that it would be interesting to dispose of a more robust estimation technique amenable to deal with very irregular masks. This may be rephrased as parameter estimation with hidden variables and might be addressed with an expectation-maximization technique, but keeping the computational cost of such a procedure seems very challenging. Notice that this problem has already been generally discussed in [START_REF] Stein | Interpolation of spatial data: some theory for kriging[END_REF] and more particularly addressed in [START_REF] Le | Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging[END_REF][START_REF] Diggle | Model-based geostatistics[END_REF][START_REF] Pilz | Why do we need and how should we implement Bayesian kriging methods[END_REF] in a Bayesian framework for parametrized covariances.

A promising (but equally challenging) direction for future work is to extend conditional simulation to non-stationary models in order to address inpainting of images of natural scenes. It is likely that for such images, one should use a deterministic method for extension of geometric structures, coupled with a (conditional) stochastic step to complete the textural content. Such a model would build another bridge between variational and stochastic inpainting, thus shedding another light on the question whether inpainting should be considered as minimizing a functional or sampling a large-scale distribution.

This manuscript is for review purposes only. Fig. 13. Comparison with patch-based methods (I). On each row, from left to right, we display a masked input, the result of our Gaussian inpainting algorithm, the result of [START_REF] Newson | Video Inpainting of Complex Scenes[END_REF], the result of variational non-local inpainting [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] (obtained with the online implementation of [START_REF] Fedorov | Variational Framework for Non-Local Inpainting[END_REF] using the NLmeans option), and the result of [START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] (obtained with the publicly available G'MIC plugin for GIMP [START_REF] Tschumperlé | GREYC's Magic for Image Computing[END_REF]). With the results of the fourth first rows, one clearly sees that Gaussian inpainting gives much better results on microtextures. The results of the last rows show that Gaussian inpainting also gives reasonable results on macrotextures, and in particular, it avoids the repetition artifacts that can sometimes be encountered with patch-based synthesis (first and fifth rows). In contrast patch-based inpainting better preserves geometric features (like the stitches of the sixth and seventh examples) which are completely lost with Gaussian synthesis. We compare several inpainting methods on a difficult textural inpainting problem. On the first row, from left or right, we display the masked input, the result of our method, together with the corresponding kriging component. On the second row, we display the results of variational non-local inpainting [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] (obtained with the online implementation of [START_REF] Fedorov | Variational Framework for Non-Local Inpainting[END_REF] using the NLmeans option), the result of [START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] (obtained with the publicly available G'MIC plugin for GIMP [START_REF] Tschumperlé | GREYC's Magic for Image Computing[END_REF]), and the result of [START_REF] Newson | Video Inpainting of Complex Scenes[END_REF]. Again, we observe on this example that Gaussian inpainting fills the hole with a truly stochastic content which respects the second-order statistic of the texture (in particular the color distribution and the power spectrum), but fails to reproduce the geometric features in contrast to patch-based methods. The second row precisely highlights typical artifacts associated with state-of-the-art patch-based methods: with [START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] the inpainted content is too blurry; with [START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] we get repetition artifacts; and with [START_REF] Newson | Video Inpainting of Complex Scenes[END_REF] we can perceive small seams between inpainted regions using different offsets.
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Fig. 1 .

 1 Fig. 1. Textural inpainting via conditional simulation. Inpainting with a stochastic texture model amounts to sampling the values on the mask M knowing the values on conditioning points C located at the border of the mask.

  For a set A ⊂ Ω and a function f : Ω → R we denote by |A| the cardinality of the finite set A, and f |A the restriction to A of the function f . We also introduce a subset C ⊂ Ω of conditioning points. Given prescribed values ϕ : C → R on C, conditional Gaussian simulation consists in sampling the conditional distribution of F given that F |C = ϕ. As we shall see later, this conditional sampling makes sense as soon as ϕ belongs to the support of the distribution of F |C , which is the range of the restricted covariance matrix Γ |C×C and denoted by Range(Γ |C×C ).

  Sampling Using Kriging Estimation. Let us fix a set of coefficients (λ c (x)) x∈Ω,c∈C satisfying (2). For any ϕ : C → R, we denote by ϕ * the kriging estimation based on the values ϕ, defined for x ∈ Ω by ϕ * (x) = c∈C λ c (x)ϕ(c). With a notation abuse, if ϕ : Ω → R, we will denote ϕ * = (ϕ |C ) * .

1

 1 |Ω|x∈Ω u(x) and the normalized spott u = 1 √ |Ω| (u -ū) (extended by zero-padding).The microtexture u is then synthesized by sampling ū + t u * W , with W a normalized Gaussian white noise. We call oracle model the ADSN model estimated from the unmasked exemplar.In the inpainting context, only the values on Ω\M are available. Thus, we choose a subdomain ω ⊂ Ω \ M and we derive an ADSN model using the restriction v = u |ω .

3. 3 .

 3 Kriging Estimation with Conjugate Gradient Descent. In this section, we propose an efficient way to compute a conditional sample of the ADSN model.

  Let us explain how to efficiently apply the matrix Λ = Γ |Ω×C Γ † |C×C to a given ϕ ∈ R C . Let us begin with the multiplication by Γ Ω×C , which is easier. Assume that ψ = Γ † |C×C ϕ has been computed. Using the notation of Section 2.4, Γ |Ω×C ψ = ΓΨ, where Ψ = R T ψ ∈ R Ω is the zero-padding extension of ψ. Now, since Γ is the covariance function of an ADSN model, it can be simply computed by convolution.

4. Results and Discussion. 4 . 1 .

 41 Inpainting with an Oracle Model. First, we propose a validation experiment to confirm that Gaussian conditional simulation can be applied to constrained microtexture synthesis. For that, we consider a non-masked texture image u on which we estimate an oracle ADSN model as explained in Section 3.2. We compute one realization of this oracle ADSN model (with a random seed s 1 ), on which we put a mask M . Then we perform conditional sampling of the values in the masked region (with a random seed s 2 = s 1 ), based on a set of conditioning points C, which is taken to be either C = Ω \ M or C = ∂ 3 M . This amounts to applying our inpainting algorithm, except that we use an oracle model.

Fig. 4 .

 4 Fig. 4. Inpainting Gaussian textures with the oracle Gaussian model -regular masks. The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From left to right, we show a sample of the oracle model, the masked input, and the inpainted results obtained for C = Ω \ M or C = ∂ 3 M . The inpainted results are visually perfect in the sense that they cannot be distinguished from a sample of the oracle model. This is true both for C = Ω \ M and C = ∂ 3 M which shows that conditioning on C = ∂ 3 M is practically sufficient.

Fig. 7 .

 7 Fig.7. Examples of textural inpainting. We present results of our inpainting method for several textures and masks. From top to bottom (rows 1-3 and rows 4-6), we display a masked input, the inpainted result, and a sample of the estimated ADSN model (which is useful to exhibit the limit of the Gaussian model). On rows 1-3, we display results on microtextures, while on rows 4-6 we display results on more structured textures. The results on microtextures are visually pleasing, except for the irregular mask of the third column. The results on macrotextures are of course not as perfect (in particular, for the wood example of the bottom of fourth column, the mask is still visible on close examination). Nevertheless, it is surprising that our method (based on Gaussian synthesis) still gives convincing results on some macrotextures.

Fig. 8 .

 8 Fig. 8. Inpainting textural parts of an image. From top to bottom, we display the original image (of size 768 × 577), the masked input (the Gaussian model has been estimated in the subdomain ω delimited by the red box), and the inpainted result. Our algorithm is able to synthesize microtexture content which naturally blends with the surrounding context.

Fig. 9 .

 9 Fig. 9. Visualizing Kriging coefficients. In the first column, we display the masked input. For the three other columns: in the first row, we display the kriging coefficients (λc(x)) x∈M for different positions of the conditioning pixel c ∈ C (drawn in red); in the second row, we display the kriging coefficients (λc(x)) c∈C for different positions of the pixel x ∈ M (drawn in red). So in the first row, we can observe the values that will be more impacted by a given conditioning point c, and in the second row, we can observe the conditioning values which contribute most in conditional sampling at a given position x. The kriging coefficients are obtained from an oracle model estimated on the unmasked exemplar and we took C = ∂ 3 M . The color map is renormalized in each case. It is interesting to remark that the vertical correlations captured by this texture model are reflected by larger kriging coefficients.

4. 5 .

 5 Comparisons. In this section, we compare our microtexture inpainting algorithm with several recent inpainting techniques.

Fig. 11 .

 11 Fig. 11. Qualitative study of the conditional models depending on the conditioning set C. From left to right, we display the inpainting results obtained for C being a border of M of width w = 1, 3, 5 pixels, and also the limit solution C = Ω \ M . In the first row, we display the sample of the conditional model, and on the second row the mean value of the conditional model (kriging component). In both rows, we compute the standard 2 -distance to the image shown on the right (normalized by σu |M |d). See the text for additional comments.

Fig. 14 .

 14 Fig.[START_REF] Burger | Cahn-Hilliard inpainting and a generalization for grayvalue images[END_REF]. Comparison with patch-based methods (II). We compare several inpainting methods on a difficult textural inpainting problem. On the first row, from left or right, we display the masked input, the result of our method, together with the corresponding kriging component. On the second row, we display the results of variational non-local inpainting[START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] (obtained with the online implementation of[START_REF] Fedorov | Variational Framework for Non-Local Inpainting[END_REF] using the NLmeans option), the result of[START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] (obtained with the publicly available G'MIC plugin for GIMP[START_REF] Tschumperlé | GREYC's Magic for Image Computing[END_REF]), and the result of[START_REF] Newson | Video Inpainting of Complex Scenes[END_REF]. Again, we observe on this example that Gaussian inpainting fills the hole with a truly stochastic content which respects the second-order statistic of the texture (in particular the color distribution and the power spectrum), but fails to reproduce the geometric features in contrast to patch-based methods. The second row precisely highlights typical artifacts associated with state-of-the-art patch-based methods: with[START_REF] Arias | A variational framework for exemplarbased image inpainting[END_REF] the inpainted content is too blurry; with[START_REF] Buyssens | Exemplar-based Inpainting: Technical Review and new Heuristics for better Geometric Reconstructions[END_REF] we get repetition artifacts; and with[START_REF] Newson | Video Inpainting of Complex Scenes[END_REF] we can perceive small seams between inpainted regions using different offsets.

The existence of such a solution directly comes from the existence of the orthogonal projection of F (x) on the subspace spanned by theF (c), c ∈ C.This manuscript is for review purposes only.

This manuscript is for review purposes only.

The pseudo-inverse is only computed up to a given precision. But, following the remark at the end of Section

3.4, we checked that after conditional simulation with the approximate kriging coefficients, the covariance matrix of the global Gaussian model is the desired one up to an error of ∞ -norm less than 10 -15 .This manuscript is for review purposes only.
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