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GAUSSIAN TEXTURE INPAINTING1

BRUNO GALERNE∗ AND ARTHUR LECLAIRE†2

Abstract. Inpainting consists in computing a plausible completion of missing parts of an image3
given the available content. In the restricted framework of texture images, the image can be seen as a4
realization of a random field model, which gives a stochastic formulation of image inpainting: on the5
masked exemplar one estimates a random texture model which can then be conditionally sampled in6
order to fill the hole.7

In this paper is proposed an instance of such stochastic inpainting methods, dealing with the8
case of Gaussian textures. First a simple procedure is proposed for estimating a Gaussian texture9
model based on a masked exemplar, which, although quite naive, gives sufficient results for our10
inpainting purpose. Next, the conditional sampling step is solved with the traditional algorithm11
for Gaussian conditional simulation. The main difficulty of this step is to solve a very large linear12
system, which, in the case of stationary Gaussian textures, can be done efficiently with a conjugate13
gradient descent (using a Fourier representation of the covariance operator). Several experiments14
show that the corresponding inpainting algorithm is able to inpaint large holes (of any shape) in a15
texture, with a reasonable computational time. Moreover, several comparisons illustrate that the16
proposed approach performs better on texture images than state-of-the-art inpainting methods.17

Key words. Inpainting, Gaussian textures, Conditional simulation, Simple kriging.18
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1. Introduction. Inpainting consists in filling missing or corrupted regions in20

images by inferring from the context. In other words, given an image whose pixel21

values are missing in a masked domain, the problem is to propose a possible completion22

of the mask that will appear as natural as possible given the available part of the23

image. Inspired by art restorers, this problem was called “inpainting” by Bertalmio24

et al. [8], but was already addressed under the name “disocclusion” in [54, 53]. Both25

these works suggest to fill the hole by extending the geometric structures, either by26

level-lines completion [54] or by iterating a finite-difference scheme [8]. These early27

methods already give good results on structured images provided that the mask is28

sufficiently thin. However, they fail to inpaint textural content, which is the main29

purpose of this paper.30

General image inpainting is a very ill-posed problem, and instead of retrieving31

the occluded content, one can only make a guess of what the image should have32

been. However, in the restricted framework of textures, we have at our disposal33

several stochastic models which can be used to model and synthesize a large class of34

textures. In this setting, inpainting consists in first estimating a stochastic model from35

the unmasked region, and then performing conditional simulation of the estimated36

random model given the values around the mask. This point of view thus provides37

a better-posed formulation of textural inpainting, which has been seldom considered38

in the past. In particular, such approximate conditional sampling results are given39

in [27, 67] under the name “constrained texture synthesis”. Also, the authors of [22]40

give an instructive discussion which opposes deterministic and stochastic strategies for41

image inpainting (with the intention to explain the differences between [27] and [67]).42

It seems reasonable to assert that the choice between deterministic methods or43

stochastic methods must be driven by the level of randomness of the data. Here, we44

will mainly focus on inpainting very irregular texture images, called microtextures.45
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2 B. GALERNE, A. LECLAIRE

These textures are not well described by a generic variational principle. In contrast,46

they can be precisely and efficiently synthesized with simple stochastic models that47

rely on second-order statistics, for example the asymptotic discrete spot noise (ADSN)48

introduced in [66] and thoroughly studied in [31, 69, 46]. In this paper, we propose a49

microtexture inpainting algorithm that relies on a precise conditional sampling. Con-50

ditional sampling of the ADSN model can be easily formulated, and gives inpainting51

results which are visually better than the ones obtained with recent methods while52

keeping strong mathematical guarantees.53

In the remaining paragraphs of this introduction, we discuss existing inpainting54

techniques, and in particular discuss the links between image inpainting and texture55

synthesis. Giving an exhaustive overview of the literature on this famous problem is56

not the main purpose of this paper. We refer the interested reader to [36, 15, 62] for57

much more detailed reviews of existing methods.58

1.1. Inpainting Algorithms for Geometric Content. As mentioned above,59

a very natural way to inpaint images is to propagate the geometric content through the60

masked region. To that purpose, the early geometric inpainting methods described61

by Masnou and Morel [54, 53] consist in connecting the level lines across the hole62

in order to satisfy the Gestaltist’s principle of good continuation. More precisely,63

the inpainted image is the solution of a generic minimization problem which includes64

the total variation (TV) of the image and the angle total variation of the level lines65

(Euler’s elastica).66

Closely related to these generic variational inpainting methods lie models based67

on partial differential equations (PDE). Bertalmio et al. [8] suggest to iterate a finite-68

difference scheme, which was later interpreted as a numerical scheme for a PDE69

related to Navier-Stokes equation [7]. Of course, there is a strong connection between70

PDE-based and variational methods because the minimum of a generic functional71

satisfies the associated Euler-Lagrange equation (but a PDE may not be associated72

to a variational problem [62]). Among many papers lying in between PDEs and73

generic variational problems, we will only quote a few important contributions.74

Ballester et al. [5] propose to perform joint interpolation of image values and gra-75

dient orientations by solving a minimization problem which leads to coupled second-76

order PDEs on image values and gradient orientations. Chan and Shen [18] give a77

detailed study of the inpainting method based on TV minimization (which, compared78

to [54] drops the elastica term in the minimization problem), and propose a more79

general scheme called curvature-driven diffusion (which allows to better respect the80

good continuation principle). The link with Mumford-Shah image model was already81

discussed in [18], and more importantly exploited by Esedoglu and Shen [29], who82

completed the Mumford-Shah model with an Euler’s elastica term, leading to fourth-83

order nonlinear parabolic PDEs, and allowing better connectivity in the inpainting84

result. Later, other fourth-order PDEs were exploited to inpaint non-texture images85

with better connectivity: Bertozzi et al. [10] propose to solve a modified Cahn-Hilliard86

equation for fast inpainting of binary or highly-contrasted images, an approach which87

was generalized to real-valued images by Burger et al. [14]. Finally, Bornemann and88

März [12] propose an efficient non-iterative inpainting algorithm which is based on a89

transport equation and inspired by the fast marching algorithm of [64].90

A common drawback of these deterministic methods is that they are not able91

to inpaint textural content precisely because solving a PDE or a variational problem92

often imposes a certain degree of smoothness for the solution.93
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GAUSSIAN TEXTURE INPAINTING 3

Fig. 1. Textural inpainting via conditional simulation. Inpainting with a stochastic texture
model amounts to sampling the values on the mask M knowing the values on conditioning points C
located at the border of the mask.

1.2. Exemplar-based Inpainting, Sampling or Minimizing?... An efficient94

way to model irregular images is to consider stochastic image models, and in partic-95

ular many texture synthesis algorithms can be formulated as sampling a probability96

distribution. Thus, one first strategy to inpaint textural parts of an image is to use97

an exemplar-based texture synthesis algorithm and to blend the synthesized content98

in the masked image. Such a method was proposed by Igehy and Pereira [40] who99

relied on Heeger-Bergen synthesis algorithm [38] to produce textural content.100

On the other hand, if a stochastic image model is fixed, inpainting can be under-101

stood as sampling a conditional distribution, as illustrated on Fig. 1. This point of102

view was originally adopted by Efros and Leung [27]. These authors suggest approx-103

imate conditional sampling of a Markov random field (MRF) model by progressive104

completion of the unknown region using patch nearest neighbor search. Even if they105

show some texture inpainting results, their main concern is structured texture synthe-106

sis. For inpainting, this patch-based approach was precised in [11, 22]. In particular,107

Demanet et al. discuss the two possible formulations of the inpainting problem as108

either minimizing the energy E or sampling the probability distribution Ce−E . They109

give several arguments to support that the variational point of view is a lighter and110

sufficient method to efficiently compute an inpainting solution. However, let us men-111

tion that the patch-based energy given in [22] is highly non-convex, and that the112

adopted optimization strategy does not offer much theoretical guarantees. Therefore,113

the empirical conclusions based on the results of this algorithm must be interpreted114

carefully. Our paper will shed some more light on this interesting (and still open)115

question, in the case of Gaussian textures.116

Many other inpainting methods were inspired by these exemplar-based synthesis117

algorithms [22, 26, 21, 56, 43, 68, 4, 13, 70, 3, 2, 45, 50, 37, 55, 15]. These papers118

contain several clever algorithmic extensions of the original algorithm of [22]. In119

particular, Criminisi et al. [21] highlighted the importance of the pixel-filling order,120

and suggested that it should be driven by (progressively updated) patch priorities121

measuring the amount of available data and the quantity of structural information122
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4 B. GALERNE, A. LECLAIRE

in the currently synthesized content. Many authors [26, 43, 68, 3, 55] demonstrated123

that the inpainting problem could be more efficiently solved (both in visual terms or124

numerical terms) by relying on a multi-scale strategy. From a computational point125

of view, the speed of these algorithms highly depends on the method used for getting126

patch nearest neighbors, and many state of the art methods rely on the PatchMatch127

method which efficiently computes an approximate nearest neighbor field [6, 2, 50, 55].128

Let us also mention that the choice of the metric used for patch comparison may129

influence the inpainting results; to that purpose, the authors of [50, 55] suggested130

to improve the comparison by including textural features in the patch distance (e.g.131

local sum of absolute derivatives).132

Here we would like to put the emphasis on a few papers which provide a thorough133

mathematical analysis of the variational formulation proposed by [22]. Aujol et al. [4]134

show the existence of a solution to a continuous analog of Demanet et al.’ energy135

among the set of piecewise roto-translations, propose several extensions of this prob-136

lem (allowing for either regularization or cartoon+texture decomposition), and also137

provide a 2D-example which illustrates the model ability to globally reconstruct ge-138

ometric features. Arias et al. [3] propose and compare several variational models139

obtained by varying the distance used in patch comparison (using the L1 or L2 norm140

on the image values or gradients), and also propose to replace the patch correspon-141

dence by generalized patch linear combinations using an adaptive weighting function.142

In [2], the same authors provide an additional mathematical analysis with a proof of143

the solution existence, of the convergence of the proposed minimization algorithm,144

and also a mathematical analysis of the PatchMatch algorithm. In these works, the145

inpainting problem is mainly formulated with a correspondence map (or a more gen-146

eral weighting function in [3]). In contrast, Liu and Caselles have shown in [50] that147

using an offset map instead allows to formulate inpainting as a discrete optimization148

problem which is efficiently solved with graph cuts. The statistics of patch offsets have149

been studied in [37]; He and Sun compute and exploit recurrent patch offsets in order150

to simplify the graphcut inpainting approach leading to an even faster algorithm.151

Finally, the upper mentioned structural and exemplar-based methods can be com-152

bined to obtain hybrid structure-texture inpainting methods [9, 41, 63, 17]. Also, sev-153

eral authors proposed inpainting methods based on sparse decompositions of images154

or patches [28, 51, 16, 57]. In these methods, the inpainting is also formulated as a155

minimization problem (which can be coupled with the dictionary learning problem as156

in [51]). Although these methods are efficient in recovering missing data for thin or157

randomly-distributed masks, they are not able to fill large missing regions.158

1.3. Gaussian Conditional Simulation. In this paper, we will address textu-159

ral inpainting by precise conditional sampling of a stochastic texture model.160

In the computer graphics community, many authors have demonstrated the ex-161

pressive power of microtexture models based on Fourier phase randomization [47, 48]162

or on convolution of spot functions with noisy patterns [66]. Later, these models163

were studied in more detail by Galerne et al. [31] who propose in particular a simple164

analysis-synthesis pipeline for by-example microtexture synthesis with the Asymp-165

totic Discrete Spot Noise (ADSN) model (which is the Gaussian limit of Van Wijk’s166

Spot Noise model [66]). Such a Gaussian model is described by its first and second-167

order moments, and allows for fruitful mathematical developments, with applications168

in texture analysis [23], texture mixing [69], procedural texture synthesis [33, 32].169

In this paper (following the preliminary work of [34]), we propose to take advan-170

tage of another benefit of the Gaussian model, which is the availability of a precise171
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GAUSSIAN TEXTURE INPAINTING 5

Original Masked input Conditioning set C

Kriging component Innovation component Inpainted result

Fig. 2. Summary of our microtexture inpainting method The main idea of our method is
to fill the masked region with a conditional sample of a Gaussian model. So this method is less
about retrieving the initial image than computing another plausible sample of the texture model in
the masked region. The Gaussian model is estimated from the unmasked values, and conditionally
sampled knowing the values on a set C composed of a 3 pixel wide border of the mask. The conditional
sample is obtained by adding a kriging component (derived from the conditioning values) and an
innovation component (derived from an independent realization of the Gaussian model). The former
extends the long-range correlations and the latter adds texture details, in a way that globally preserves
the global covariance of the model. Though limited to microtextures, this algorithm is able to fill
both small and large holes, whatever the regularity of the boundary.

conditional sampling algorithm. Indeed, for Gaussian vectors, independence is equiv-172

alent to uncorrelatedness, which can be rephrased as orthogonality in the Hilbert173

space of square-integrable random variables. Therefore, conditional simulation of a174

zero-mean Gaussian vector F only requires to compute an orthogonal projection F ∗175

on a subspace of random variables (which corresponds to the conditional expectation176

given the known values) and to sample the orthogonal component F −F ∗. Following177

the presentation of [44], we will rely on the terminology which is traditionally used178

in “simple kriging estimation”: the conditional expectation F ∗ will be called “kriging179

component”, and F−F ∗ will be called “innovation component”. The role of these two180

components for conditional simulation is illustrated in Fig. 2. Let us mention that181

in the Gaussian case, solving the maximum a posteriori for the conditional model182

amounts to computing the conditional expectation (i.e. kriging component), which is183

very different from conditional sampling, as one can see on Fig. 2.184

To the best of our knowledge, microtexture inpainting has not been addressed185

in those terms in the past. Gaussian conditional simulation algorithm was used by186

Hoffman and Ribak [39] for cosmological constrained simulations with parametric187

Gaussian models. More recently, local Gaussian conditional models were used for188

structured texture synthesis in [59, 58]. In the monoscale version [59], Raad et al.189

suggest to progressively sample the texture with conditional sampling of local Gaus-190
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6 B. GALERNE, A. LECLAIRE

sian models estimated from the exemplar (with nearest neighbor search as in [27, 67]);191

they also propose a multiscale adaptation of this algorithm [58]. As for [27], this algo-192

rithm could also be adapted for inpainting, but, because of the progressively estimated193

local models, the global model is not Gaussian.194

Ordinary kriging was used by Chandra et al. [19] to interpolate sparsely sampled195

textural data. The first step of their procedure is to estimate a parametric Gaussian196

model by variogram fitting, and the second step is the computation of the kriging197

estimator (which is not a conditional sample). In comparison with our work, their198

estimation procedure can treat sparser data set (because the form of the variogram199

is imposed), but the interpolated image is not a satisfying texture sample because200

the innovation component is missing. Also, in the geostatistics literature, several201

authors have proposed generalized kriging algorithms for data prediction with various202

stochastic models [61, 20, 49]. In particular, in [60], Rue proposes a fast algorithm203

for conditional simulation in the particular case of Gaussian Markov random fields.204

Let us mention also that Almansa et al. [1] use generalized kriging for interpolation205

of digital elevation models (but do not address the parameter estimation issue). Also,206

let us refer the interested reader to [52] for a discussion on the links between texture207

synthesis and multiple-point geostatistics.208

1.4. Plan of the Paper. In Section 2, we explain the traditional algorithm for209

Gaussian conditional simulation (using a terminology that is derived from kriging es-210

timation). In Section 3, we apply this conditional sampling algorithm to microtexture211

inpainting. In particular, we discuss the estimation of a Gaussian model on a masked212

exemplar, and we also provide a Fourier based algorithm which allows to compute213

the kriging estimation even when the number of conditioning points is very large.214

Finally, in Section 4, we provide several texture inpainting experiments to illustrate215

the validity of our approach; in particular we show that our method can compete with216

state of the art inpainting methods on textural content.217

2. Gaussian Conditional Simulation. In this section, we recall the classical218

algorithm for conditional sampling of Gaussian random vectors. Following [44], we219

rely on a kriging framework that we introduce next.220

Notation. Let Ω be a finite set. Let (F (x))x∈Ω be a real-valued Gaussian221

vector, that is, a real-valued random vector for which any linear combination of the222

components is Gaussian. In this section, we assume that F has zero mean. The223

covariance of F is written224

(1) Γ(x, y) = Cov(F (x), F (y)) = E(F (x)F (y)), x, y ∈ Ω.225

For a set A ⊂ Ω and a function f : Ω → R we denote by |A| the cardinality of the226

finite set A, and f|A the restriction to A of the function f .227

We also introduce a subset C ⊂ Ω of conditioning points. Given prescribed values228

ϕ : C → R on C, conditional Gaussian simulation consists in sampling the conditional229

distribution of F given that F|C = ϕ. As we shall see later, this conditional sampling230

makes sense as soon as ϕ belongs to the support of the distribution of F|C , which is231

the range of the restricted covariance matrix Γ|C×C and denoted by Range(Γ|C×C).232

2.1. Simple Kriging Estimation. We define the simple kriging estimator233

at x ∈ Ω as the conditional expectation234

(2) F ∗(x) = E( F (x) | F (c) , c ∈ C ).235

This means that F ∗(x) is the best least-square estimation of F (x) that can be obtained236

as a measurable function of (F (c))c∈C . A standard result of probability theory [24]237
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GAUSSIAN TEXTURE INPAINTING 7

ensures that in the Gaussian case F ∗(x) is the orthogonal projection of F (x) on the238

subspace of linear combinations of (F (c))c∈C (for the L2-distance between square-239

integrable random variables). Hence, there exist coefficients (λc(x))c∈C such that240

(3) F ∗(x) =
∑
c∈C

λc(x)F (c).241

Such deterministic numbers (λc(x))c∈C are called the kriging coefficients. Notice242

that by definition, F ∗(x) = F (x) for every x ∈ C.243

Generally speaking, for a given x, there may be several possible sets of kriging244

coefficients i.e. several vectors (λc(x))c∈C which satisfy (3) (for example if there are245

two distinct points c1, c2 ∈ C such that F (c1) = F (c2)). But we will later give a246

canonical way to compute a valid set of kriging coefficients.247

2.2. Gaussian Conditional Sampling Using Kriging Estimation. The fol-248

lowing theorem expresses Gaussian conditional sampling using the kriging estimator.249

Let us fix a set of coefficients (λc(x))x∈Ω,c∈C satisfying (3). For any ϕ : C → R,250

we denote by ϕ∗ the kriging estimation based on the values ϕ, defined for x ∈ Ω251

by ϕ∗(x) =
∑

c∈C λc(x)ϕ(c). With a slight abuse of notation, if ϕ : Ω → R, we will252

denote ϕ∗ = (ϕ|C)
∗.253

For the sake of completeness, we include the proof of the next standard result of254

probability theory (following [44]).255

Theorem 1. F ∗ and F −F ∗ are independent. Consequently, if G is independent256

of F and has the same distribution, then H = F ∗+(G−G∗) has the same distribution257

as F and satisfies H|C = F|C.258

Proof. Due to the orthogonal projection, (F ∗, F −F ∗) is a Gaussian vector whose259

components F ∗ and F − F ∗ are uncorrelated and thus independent.260

If ϕ|C ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ|C can thus be261

obtained with ϕ∗ + F − F ∗. In this decomposition, ϕ∗ will be called the kriging262

component and F − F ∗ will be called the innovation component.263

2.3. Expression of the Kriging Coefficients. In order to compute the kriging264

estimator at a point x ∈ Ω, one needs to compute the kriging coefficients (λc(x))c∈C265

introduced in (3). Recalling that F ∗(x) is the orthogonal projection of F (x) on the266

subspace Span(F (c), c ∈ C), we obtain267

(4) ∀c ∈ C, E(F ∗(x)F (c)) = E(F (x)F (c)) = Γ(x, c).268

Substituting the expression (3) of F ∗(x) we get that λ(x) = (λc(x))c∈C is a solution269

of the following |C| × |C| linear system270

(5) ∀c ∈ C,
∑
d∈C

λd(x)Γ(d, c) = Γ(x, c),271

which can be written in the more compact form λ(x)Γ|C×C = Γ|{x}×C using restric-272

tions of the covariance matrix Γ and where, by convention, we write the kriging273

coefficients λ(x) as a row vector. Conversely, any solution of this linear system gives274

a valid set of kriging coefficients satisfying (3).275

Aggregating the kriging coefficients in a |Ω| × |C| matrix Λ = (λc(x))x∈Ω,c∈C , the276

system characterizing the kriging coefficients can also be written ΛΓ|C×C = Γ|Ω×C .277

If the matrix Γ|C×C is invertible, the global system admits a unique solution Λ =278
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8 B. GALERNE, A. LECLAIRE

Γ|Ω×CΓ
−1
|C×C . In the case where Γ|C×C is not invertible, it is always possible to compute279

valid kriging coefficients with the pseudo-inverse Γ†|C×C . Indeed, since the system (5)280

has a solution1, then Γ|{x}×CΓ
†
|C×C is also a solution. Thus we can always consider281

the set of kriging coefficients given by282

(6) Λ = Γ|Ω×CΓ
†
|C×C .283

Once a set Λ of valid kriging coefficients has been computed, a conditional sample284

of F given F|C = ϕ can be obtained as285

(7) Λϕ+ F − ΛF|C ,286

where ϕ and F are written as column vectors.287

Remark: Let x ∈ Ω such that F (x) is independent of (F (c))c∈C . Then the right-288

hand side of (5) vanishes so that 0 is a valid set of kriging coefficients for F (x). This289

can also be seen on the conditional expectation: thanks to independence we have290

(8) F ∗(x) = E( F (x) | F (c) , c ∈ C ) = 0.291

More precisely, 0 is trivially a minimal norm solution, which corresponds to our canon-292

ical choice (λc(x))c∈C = 0× Γ†|C×C .293

2.4. Matrix Expression of the Conditional Simulation. From this expres-294

sion of the conditional sample, we will derive the usual expression of the Gaussian295

conditional distribution in matrix notation (as e.g. in [61, 58]).296

Let p = |C|, q = |Ω \ C| (where Ω \ C denotes the complement of C in Ω) and297

n = |Ω|. Let us introduce the matrices R =
(
Ip 0

)
∈ Rp×n, S =

(
0 Iq

)
∈ Rq×n,298

Using the first p indices for the elements of C, we can give block decompositions299

F =

(
F|C
F|Ω\C

)
=

(
RF
SF

)
, Γ =

(
Γ|C×C Γ|C×(Ω\C)

Γ|(Ω\C)×C Γ|(Ω\C)×(Ω\C)

)
=

(
RΓRT RΓST

SΓRT SΓST

)
.300

With such notation, if ϕ ∈ Range(Γ|C×C), a conditional sample of F given F|C = ϕ is301

given by Λϕ+ F − ΛRF. From this expression we get the conditional distribution302

(9) F | F|C = ϕ ∼ N
(

Λϕ , (In − ΛR)Γ(In − ΛR)T
)
.303

In particular we get the usual formula304

(10) E( SF | F|C = ϕ ) = SΛϕ = S

(
RΓRT

SΓRT

)
(RΓRT )†ϕ = SΓRT (RΓRT )†ϕ.305

For the conditional covariance, let us notice that the kriging system can be written306

as ΛRΓRT = ΓRT so that we have (I − ΛR)Γ(I − ΛR)T = Γ − ΛRΓ, and thus the307

conditional covariance of SF is308

(11) S(Γ− ΛRΓ)ST = SΓST − SΛRΓST = SΓST − SΓRT (RΓRT )†RΓST .309

Notice that in the conditional distribution, RF is by definition considered as constant,310

and thus the conditional covariance of the whole vector F is311

(12) Γ− ΛRΓ =

(
0 0
0 S(Γ− ΛRΓ)ST

)
.312

When the matrix RΓRT = Γ|C×C is non-singular, these expressions of the conditional313

expectation and variance are the same than in [61, 58].314

1The existence of such a solution directly comes from the existence of the orthogonal projection
of F (x) on the subspace spanned by the F (c), c ∈ C.
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GAUSSIAN TEXTURE INPAINTING 9

3. Microtexture Inpainting Algorithm. This section contains our main con-315

tribution which is how to use Gaussian conditional sampling to perform microtexture316

inpainting.317

We are given an input texture image u : Ω → R defined on a finite rectangular318

domain Ω ⊂ Z2. The values of u are known except on the mask M ⊂ Ω and we want319

to generate plausible values on the mask given the surrounding content. For that,320

we will sample a stationary Gaussian texture model (U(x))x∈Ω given the values of u321

outside M . More precisely, we consider a Gaussian model associated to an asymptotic322

discrete spot noise (ADSN), which we sample knowing the values on a conditioning323

set C which will be either C = Ω \M , or C = ∂wM the outer border of M with width324

w pixels (we take w = 3 in the experiments but we discuss this choice in Section 4.4).325

After recalling the basics about the ADSN model, we discuss the estimation of326

such a model on a masked exemplar texture. Then we give an efficient and scalable way327

to compute the kriging estimator for the ADSN model by relying on conjugate gradient328

descent (numerical issues are discussed in the IPOL companion paper). Results of329

this algorithm on synthetic Gaussian textures and real images are given in the next330

section.331

3.1. ADSN Models. As shown in [66, 31], a convenient model for microtexture332

is given by the asymptotic discrete spot noise (ADSN). Given a function h : Z2 → R333

with finite support, the ADSN associated to h is the convolution of h with a normalized334

Gaussian white noise W on Z2, defined as335

(13) ∀x ∈ Z2, h ∗W (x) =
∑
y∈Z2

h(y)W (x− y).336

This Gaussian random field is stationary, has zero mean, and its covariance function337

is given by338

(14) ∀x, y ∈ Z2, E(h ∗W (x)h ∗W (y)) =
∑
z∈Z2

h(x− z)h(y − z) = (h ∗ h̃)(x− y),339

where h̃(z) = h(−z). The restriction on a finite Ω ⊂ Z2 of h∗W is a zero-mean Gaus-340

sian model (F (x))x∈Ω. Thanks to the simple convolutive expression of the ADSN,341

it can be efficiently sampled using the fast Fourier transform (FFT). Indeed, if we342

assume that the support of h is included in Ω, we can extend h by zero-padding to343

a twice larger domain Ω, convolve with a Gaussian white noise on Ω with periodic344

boundary conditions, and then crop the result on Ω. Similarly, the covariance func-345

tion Γ of U can be efficiently computed with a periodic convolution of zero-padding346

extensions of h and h̃.347

Alternatively, one can also consider a periodic ADSN model on the domain Ω.348

Given a function h : Ω → R, the periodic ADSN model is the convolution of h with349

a normalized Gaussian white noise W on Ω with periodic boundary conditions. The350

simulation of the periodic model is even easier since it only involves one periodic351

convolution (without need of prior zero-padding extension or posterior restriction).352

Apart from this slight gain of complexity, there is no general reason to favor the353

periodic model. The choice is often driven by the context of application; for example,354

non-periodic models are better suited for on-demand texture synthesis [33, 32]. We355

refer the interested reader to Chapter 2 of [46] for a fully detailed exposure regarding356

both ADSN models.357
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Extension to Color Images. ADSN models extend to color images by con-358

volving each color channel with the same white noise in (13). This gives an Rd-valued359

Gaussian random field F on Ω (where d is the number of channels, i.e. 3 for color360

images). Regarding the conditional simulation, a simple way to understand this ex-361

tension is to consider the Rd-valued random field F as a real-valued random field on362

Ω× {1, . . . , d}. The covariance matrix is then given by363

(15) ∀(x, j), (y, k) ∈ Ω× {1, . . . , d}, Γ((x, j), (y, k)) = E(Fj(x)Fk(y)).364

Even if this changes the covariance matrix, we keep the same notation for restrictions365

of the covariance matrix: for example, we still use the notation Γ|C×C for the covariance366

of F on C, but strictly speaking we should write Γ|(C×{1,...,d})×(C×{1,...,d}).367

3.2. Estimation of the Gaussian Model. If the image u : Ω → Rd were368

entirely available, the estimation procedure would be the same as for texture syn-369

thesis [31, 33], which is briefly recalled here. The expectation is estimated by ū =370
1
|Ω|
∑

x∈Ω u(x). Then, from u − ū we derive an ADSN model by computing the nor-371

malized spot tu = 1√
|Ω|

(u − ū) (extended by zero-padding). The microtexture u is372

then synthesized by sampling ū+ tu ∗W , with W a normalized Gaussian white noise.373

In the inpainting context, only the values on Ω\M are available. Thus, we choose374

a subdomain ω ⊂ Ω \M and we derive an ADSN model using the restriction v = u|ω.375

A simple way to do that is to consider the Gaussian model U = v̄ + tv ∗W where376

(16) v̄ =
1

|ω|
∑
x∈ω

v(x), tv(x) =

{
1√
|ω|

(v(x)− v̄) if x ∈ ω,

0 otherwise.
377

This choice amounts to estimate the texture covariance by cv = tv ∗ t̃ T
v , which writes378

(17) cv(h) =
1

|ω|
∑

x∈ω∩(ω−h)

(u(x+ h)− v̄)(u(x)− v̄)T ∈ Rd×d.379

This subdomain ω is not constrained to be a rectangle; for example, a canonical380

choice would be to consider ω = Ω\M . As will be observed in Section 4.2, this choice381

already gives good results in our inpainting framework. However, one must be aware382

that the geometry of ω may impact the quality of the estimation. We illustrate this383

effect in Fig. 3. In general, we observed that the performance of the naive estimator384

is surprisingly good provided that the mask is not too much irregular.385

We would like to point out here that designing more precise estimators of the386

covariance is an interesting question. In particular, at first sight one can be puzzled387

by the normalization of (17). A better normalized estimator c′v(h) would be obtained388

by replacing 1
|ω| by 1

|ω∩(ω−h)| in this formula. But a drawback of this new estimator is389

that it does not define a semi-definite positive estimator, and thus is not associated to390

a Gaussian model that could be sampled. A way to cope with this effect is to enforce391

semi-definite positiveness, which in the stationary case is equivalent to project on392

the non-negative orthant in Fourier domain. We have led some experiments in this393

direction, and they have shown that the resulting Gaussian model is not better than394

the one obtained with the naive estimator (both in terms of resynthesis or in terms395

of optimal transport distance between Gaussian models [33]). Indeed, the projection396

on the Fourier orthant has a dramatic impact on the model (in particular, it may397

significantly impact the estimation of the marginal variance).398
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Fig. 3. Estimation of an ADSN model on a masked exemplar. We illustrate with several
types of mask the estimation of the Gaussian model with the naive estimator (17) using ω = Ω \M .
We display in the first row the masked exemplar, in the second row a sample of the estimated ADSN
model, and in the third row a sample of the oracle ADSN model estimated from the unmasked
exemplar (generated with the same random seed). As one can see, in terms of synthesis, the naive
estimator produces nearly perfect results as soon as the mask complement contains a sufficiently
large connected region to capture the textural aspect. The worst case is encountered for very irregular
masks like the one shown in the third column (75% of masked pixels).

One explanation of the success of the naive estimator for regular masks is that399

in this case we have |ω∩(ω−h)|
|ω| ≈ 1 when h ≈ 0. Therefore the naive estimator is400

approximately well normalized around 0 and thus correctly estimates the covariance401

in a neighborhood of 0, which is the most important part for microtexture images.402

It might be possible to design more faithful estimators (e.g. using an expectation-403

maximization algorithm), but this challenging problem is beyond the scope of this404

paper.405

3.3. Kriging Estimation with Conjugate Gradient Descent. In this sec-406

tion, we propose an efficient way to compute a conditional sample of the ADSN model.407

The most difficult part consists in solving a large linear system involving the condi-408

tional values. This step is dealt with by using a conjugate gradient descent algorithm,409

which proves to be efficient even for very large images.410

In order to draw a conditional sample on the mask M , we introduce a set of411

conditioning points C ⊂ Ω \M . Ideally, we should choose C = Ω \M ; but we will412

see below that for computational and theoretical reasons, taking C = ∂wM (border413

of M with width w) may be useful. Of course, in the case where C ( Ω \M , we414

draw a conditional sample on Ω but we exploit only the restriction on M to get the415

inpainting result (in other words, on Ω \M we always impose the original image).416

As explained in the last section, after subtracting the estimated mean v̄, we417

can use the ADSN model (F (x))x∈Ω associated to the spot tv (which is a zero mean418

Gaussian vector). Using the framework of Section 2, we are able to draw a conditional419

sample (F (x))x∈Ω given F|C = u|C − v̄. With the notation of Section 2, such a420

conditional sample is given by421

(18) (u− v̄)∗ + F − F ∗ = Λ
(
(u− v̄)|C

)
+ F − Λ(F|C).422
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12 B. GALERNE, A. LECLAIRE

Let us explain how to efficiently apply the matrix Λ = Γ|Ω×CΓ
†
|C×C to a given ϕ ∈ RC .423

Let us begin with the multiplication by ΓΩ×C , which is easier. Assume that424

ψ = Γ†|C×Cϕ has been computed. Using the notation of Section 2.4, Γ|Ω×Cψ = ΓΨ,425

where Ψ = RTψ ∈ RΩ is the zero-padding extension of ψ. Now, since Γ is the426

covariance function of an ADSN model, it can be simply computed by convolution.427

More precisely, ΓΨ is the restriction on Ω of the convolution of Ψ by tv ∗ t̃v (with zero-428

boundary condition in the non-periodic ADSN, and periodic boundary conditions in429

the periodic ADSN).430

Computing A†ϕ where A = Γ|C×C is more costly. Assume for a moment that A431

is invertible. Then computing A−1ϕ amounts to solving a linear system of size p× p432

(where p = d|C|). Since A is symmetric positive-definite, this can be reduced to solv-433

ing two triangular systems thanks to the Cholesky factorization of A. Nevertheless,434

finding the Cholesky factorization of A requires O(p3) flops in general. Therefore,435

this direct method will only work for small values of p. This was a major limitation436

of our preliminary work presented in [34].437

To cope with this problem, we propose here to solve the linear system with a438

conjugate gradient descent algorithm, taking profit of the fact that applying the ma-439

trix A can be done efficiently. Indeed, computing Aψ amounts to extend ψ to Ω by440

zero-padding, convolve by tv ∗ t̃v and restrict the result on C. Besides, using a conju-441

gate gradient descent on the normal equations allows to cope with possibly singular442

matrices A.443

Following [42], we compute A†ϕ by performing a conjugate gradient descent on444

(19) f : ψ 7−→ 1

2
‖Aψ − ϕ‖2445

with initialization ψ0 = 0. This optimization procedure actually solves the normal446

equations ATAψ = ATϕ, which are equivalent to Aψ = ϕ when ϕ ∈ Range(A) (recall447

that the range of A and the kernel of AT are orthogonal subspaces). The algorithm448

is summarized below.449

Algorithm CGD: Conjugate gradient descent to compute A†ϕ
• Initialize k ← 0, ψ0 ← 0, r0 ← ATϕ−ATAψ0, d0 ← r0.
• While ‖rk‖ > ε, do

– αk = ‖rk‖2
dT
k ATAdk

– ψk+1 ← ψk + αkdk
– rk+1 ← rk − αkA

TAdk

– dk+1 ← rk+1 + ‖rk+1‖2
‖rk‖2 dk

– k ← k + 1
• Return ψk

Notice that in our case where A is symmetric, this Algorithm CGD is nothing450

but the classical algorithm for solving A2ψ = Aϕ. In this case, the range and kernel451

of A are orthogonal subspaces so that the convergence of the algorithm follows from452

the non-singular case (applied to the restriction of A2 to the range of A).453

Since the multiplication by A can be computed efficiently with the FFT, the454

complexity of Algorithm CGD with N iterations is O(N |Ω| log |Ω|). The main benefit455

of using this algorithm is that it allows to consider very large conditioning sets C.456

Of course, increasing C may increase the number of required iterations to obtain the457

solution at a given precision ε. But if the condition number of the system is low, we458
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will get a good approximation of the solution in a reasonable number of iterations. Let459

us mention that Algorithm CGD is theoretically expected to get the exact solution460

in a finite number of iterations, but this remark is not useful for our practical case461

because of the numerical errors caused by the FFT.462

Stopping criterion. The stopping criterion that we use in Algorithm CGD is463

‖rk‖ ≤ ε where the residual at iteration k is given by464

(20) rk = ATϕ−ATAψk,465

and where ‖rk‖ is the unnormalized `2-norm of rk ∈ R|C|. In practice, to keep a466

simple choice, we take ε := 10−3 and we also constrain the number of iterations to be467

less than kmax = 1000. The numerical behavior of this CGD algorithm is studied in468

the IPOL companion paper.469

3.4. Comments on the Kriging System.470

The matrix A is not necessarily invertible. Indeed, let us consider the case471

of a color periodic ADSN model on Ω estimated by (16). Then the DFT of the472

covariance operator Γ is given by473

(21) t̂v(ξ)t̂v(ξ)∗ =

{
1
|ω| v̂(ξ)v̂(ξ)∗ if ξ 6= 0

0 if ξ = 0
.474

As noted in [69], this matrix has rank ≤ 1 which constrains the rank of the ma-475

trix Γ (of size d|Ω| × d|Ω|) to be bounded by |Ω| − 1. Since A is a submatrix of Ω,476

Rank(A) ≤ |Ω| − 1. In particular, if the conditioning set is sufficiently big so that477

d |C| ≥ |Ω|, then A cannot be invertible.478

The vector ϕ = u|C − ū may not be in the range of A. Indeed, if A is not479

invertible, the conditioning values could be out of the range of A. However, if the480

masked texture has been drawn from the oracle Gaussian distribution N (0,Γ) (as in481

the experiments of Section 4.1), then ϕ ∼ N (0,Γ|C×C) is almost surely in the range482

of A = Γ|C×C . Anyway, ϕ /∈ Range(A) is not a problem for applying Algorithm CGD483

because taking Aϕ implicitly cancels the component on the kernel of A.484

Notice also that if the estimated ADSN model is well adapted to the masked485

texture, then it is likely that ϕ is close to the range of A. In practice, the distance486

of ϕ to the range of A is bounded by the norm of the residual obtained with the direct487

conjugate gradient method:488

(22) ‖ϕ−Aψk‖ ≥ dist
(
ϕ,Range(A)

)
.489

3.5. Complete Algorithm. To end this section, we summarize our microtex-490

ture inpainting algorithm. In Algorithm CGD the matrix A = Γ|C×C is not formed491

explicitly, and we only need to apply it efficiently with the FFT-based algorithm.492

Also, if one is not interested in the kriging and innovation components but only in493

the inpainting result, then only one instance of gradient descent is needed since the494

output only depends on495

(23) (u− v̄ − F )∗ = Γ†|C×C(u|C − v̄ − F|C).496

The overall complexity of this algorithm is O(kmax|Ω| log |Ω|) where kmax is the497

number of iterations used in the gradient descent algorithm. The overall number of498
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FFTs required by the whole inpainting process (whose detailed computation can be499

found in the IPOL companion paper) is (4kmax + 6)d FFTs. Using our C implemen-500

tation (involving parallel computing, in particular for the FFT) run with a modern501

computer (Intel i7 processor @2.60GHz with 4 cores), the whole inpainting process502

takes about 20 seconds for a 256× 256 and 1000 iterations of CGD.503

Algorithm: Microtexture inpainting

Input: Mask M ⊂ Ω, texture u on Ω \M , conditioning points C = ∂3M .

- Choose a subdomain ω ⊂ Ω \M for the estimation (by default, ω = Ω \M)

- From the restriction v of u to ω, compute

v̄ =
1

|ω|
∑
x∈ω

v(x), tv =
1√
|ω|

(v − v̄)1ω

- Draw a Gaussian sample F = tv ∗W
- Compute ψ1 = Γ†|C×C(u|C − v̄), ψ2 = Γ†|C×CF|C
(Algorithm CGD with A = Γ|C×C , ε = 10−3 and kmax = 1000 iterations)

- Extend ψ1 and ψ2 by zero-padding to get Ψ1 and Ψ2

- Compute
(u− v̄)∗ = tv ∗ t̃Tv ∗Ψ1 (kriging component)

F ∗ = tv ∗ t̃Tv ∗Ψ2 (innovation component)

Output: Fill M with the values of v̄ + (u− v̄)∗ + F − F ∗

4. Results and Discussion.504

4.1. Inpainting with an Oracle Model. First, we propose a validation exper-505

iment to confirm that Gaussian conditional simulation can be applied to constrained506

microtexture synthesis. For that, we consider a non-masked texture image u on which507

we estimate an oracle ADSN model as explained in Section 3.2. We compute one real-508

ization of this oracle ADSN model (with a random seed s1), on which we put a mask509

M . Then we perform conditional sampling of the values in the masked region (with510

a random seed s2 6= s1), based on a set of conditioning points C, which is taken to be511

either C = Ω \M or C = ∂3M . This amounts to applying our inpainting algorithm,512

except that we use an oracle model.513

The results are reported in Fig. 4 for a square mask and in Fig. 5 for more514

irregular masks (obtained as level sets of white or correlated noise). Notice that in515

all these experiments, the result is visually perfect, in the sense that the inpainted516

texture is visually similar to a realization of the global ADSN model. Therefore, with517

our conjugate gradient descent scheme, the error made in the resolution of the linear518

system has only a negligible visual impact. Another important point raised by the519

results of Fig. 4 is that conditioning on the two different sets C = Ω \M and C = ∂3Ω520

give very similar results. This illustrates that this inpainting scheme truly respects521

the covariance structure (and in particular the long-range correlations) even if the522

conditioning border is thin. Increasing further the conditioning border only adds523

some redundancy in the conditional model (and worsens the kriging system condition524

number). See Section 4.4 for a more detailed analysis of this parameter.525

Let us remark that the results obtained in Fig. 5 with irregular masks look im-526
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ADSN Input C = Ω \M C = ∂3M

Fig. 4. Inpainting Gaussian textures with the oracle Gaussian model - regular masks.
The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian
model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From
left to right, we show a sample of the oracle model, the masked input, and the inpainted results
obtained for C = Ω \M or C = ∂3M . The inpainted results are visually perfect in the sense that
they cannot be distinguished from a sample of the oracle model. This is true both for C = Ω\M and
C = ∂3M which shows that conditioning on C = ∂3M is practically sufficient.

pressive at first sight since a wide majority of pixels are masked; but one should recall527

that in this experiment the oracle ADSN model is estimated on the unmasked exem-528

plar, which makes the inpainting problem much simpler (compare with the results of529

Section 4.2).530

In the experiment of Fig. 6, we show that Gaussian conditional simulation with an531

oracle model can be used to extrapolate textural content defined on a thin domain. In532

this case, the simulated conditional Gaussian vector is very high-dimensional, which533

illustrates the benefit of having a scalable algorithm based on gradient descent (and534

not on explicit computation of the covariance operators).535

4.2. Inpainting with an Estimated Gaussian Model. In this section, we536

provide experimental results which show that our algorithm is able to inpaint holes537

in microtextures, whatever the size of the hole, and with only minimal requirements538

on the hole regularity. In contrast with the last section, the Gaussian model is now539

estimated from the masked exemplar. We will show that the naive estimation tech-540

nique explained in Section 3.2 and illustrated in Fig. 3 leads to satisfying inpainting541
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ADSN Input 1 Output 1 Input 2 Output 2

Fig. 5. Inpainting Gaussian textures with the oracle Gaussian model - irregular masks.
The masked input has been inpainted with Gaussian conditional simulation using an oracle Gaussian
model (estimated from the unmasked exemplar texture) based on conditioning values on C ⊂ Ω. From
left to right, we display a sample of the oracle model, a first masked input (the mask is obtained as an
excursion set of a Gaussian process) and the corresponding inpainting result, and a second masked
input (the pixels are masked independently with probability 0.8). Again, these inpainted results are
visually perfect since they look exactly like a realization of the global ADSN model.
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Input Extrapolated Baseline

Fig. 6. Gaussian texture extrapolation with an oracle Gaussian model. From left to
right: input images, extrapolated texture (C = ∂3M), baseline result (obtained with an independent
ADSN realization on the mask). The images are of size 621× 427. The extrapolation by Gaussian
conditional simulation has succeeded since the letters cannot be retrieved in the resulting image. In
contrast, with the baseline method, the border of the extrapolated region is still visible (essentially
because of the low frequency component).

results except in the case where the mask is made of randomly scattered pixels. In542

all the experiments shown in this section, we took C = ∂3M .543

Let us first comment the results of Fig. 7, which were partially available in the544

preliminary version of this work [34]. In this preliminary work, we suggested to545

manually choose a rectangle subdomain ω for the estimation of the Gaussian model.546

In the following figures, the manually chosen subdomains ω are displayed with a red547

box on the masked texture. Now we also apply the automatic naive procedure which548

consists in taking ω = Ω \M . As one can see in Fig. 7, these first inpainting results549

are satisfying (the holes can hardly be distinguished in the inpainted image). Also,550

one can observe that the results are comparable when using the manually chosen ω551

or the canonical choice ω = Ω \M . So when inpainting an image which is made of552

only one texture, setting ω = Ω \M is always a reasonable choice.553

In Fig. 8, we show some results of our algorithm for several microtextures and554

macrotextures, with various types of masks. As one can observe, the results with555

microtextures are globally very satisfying; the most difficult case being the irregular556

mask of the third column, for which the Gaussian model cannot be properly estimated.557

Surprisingly, we also obtained quite convincing results on more structured textures.558

To end this section, we show that our algorithm can be used to inpaint textural559

parts of more general images. For example, on Fig. 9, we used it to remove some560

undesirable details located in a region composed of one homogeneous microtexture. In561

such a case, one must manually specify the subdomain ω on which the Gaussian model562

is estimated in order to take only values in the desired texture region. Of course, the563

mask must also be provided by the user. But after that, our algorithm can be applied,564

without needing any additional parameter. One nice feature of our algorithm is that565

the synthesized texture is naturally blended in the surrounding content, which is not566

necessarily the case with other state of the art inpainting techniques (see Section 4.5567

for a more detailed comparison).568
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Fig. 7. Examples of microtexture inpainting - circular holes. From left to right, we display
an original microtexture, a masked version with a circular hole, the inpainting result obtained with
a manually chosen ω, and the inpainted result with the automatic choice ω = Ω \M . The manually
chosen subdomain ω (which serves for the estimation of the ADSN model) is delimited by a red
box on the masked exemplar. The inpainting is satisfactory because the output has similar aspect
than the original unmasked texture while being different on the mask. Notice that both manual and
automatic choices of ω give very similar results.

4.3. Computing and Visualizing the Kriging Coefficients. In order to569

better understand the conditional simulation, it is interesting to visualize the kriging570

coefficients. Heuristically speaking, every non-zero coefficient λc(x) corresponds to571

a position x whose value F (x) depends on F (c) in the conditional simulation. We572

can thus expect the correlations of the adopted Gaussian model to be reflected in the573

kriging coefficients.574

First, let us explain how to visualize (λc(x))x∈Ω for a fixed c ∈ C. Since Λ =575

Γ|Ω×CΓ
†
|C×C , we have576

(24) (λc(x))x∈Ω = Λδc = Γ|Ω×CΓ
†
|C×Cδc,577

where we used the notation δc = (1c=d)d∈C . Thus, to compute (λc(x))c∈C , we just578

use our algorithm on a Dirac input.579

In a dual manner, one can also visualize (λc(x))c∈C for each x ∈ Ω. For that, we580

simply notice that581

(25) (λc(x))c∈C = ΛT δx = Γ†|C×CΓ|C×Ωδx,582

where δx = (1x=y)y∈Ω. So the computation of these coefficients can be done in a583

similar fashion, except that the covariance convolution Γ|C×Ω is performed before584

pseudo-inverse computation (with Algorithm CGD).585

In the case of the inpainting application, we get the coefficients shown in Fig. 10.586

These results clearly indicate that the correlations captured in the Gaussian model587

are reflected by the large kriging coefficients. We can also observe on this figure that588

the kriging coefficients are not positive in general.589
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Fig. 8. Examples of textural inpainting. We present results of our inpainting method for
several textures and masks. From top to bottom (rows 1-3 and rows 4-6), we display a masked input,
the inpainted result, and a sample of the estimated ADSN model (which is useful to exhibit the limit
of the Gaussian model). On rows 1-3, we display results on microtextures, while on rows 4-6 we
display results on more structured textures. The results on microtextures are visually pleasing, except
for the irregular mask of the third column. The results on macrotextures are of course not as perfect
(in particular, for the wood example of the bottom of fourth column, the mask is still visible on
close examination). Nevertheless, it is surprising that our method (based on Gaussian synthesis)
still gives convincing results on some macrotextures.

4.4. Impact of the Size of the Conditioning Border. In this section, we590

investigate the impact of changing the size of the conditioning border. Again, an ideal591

setting would be to choose C = Ω\M , but then the kriging system is very large. Here592

we will confirm that taking C = ∂wM is sufficient, and we will precisely examine the593

variation of the conditional model when increasing the width w of the border.594

In order to give a quantitative comparison, we suggest to compute distances595

between the conditional models, which are basically Gaussian random vectors on M .596

A possible way to perform this comparison is to rely on the L2-optimal transport597

distance between Gaussian models; this distance has already been used in several598
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Fig. 9. Inpainting textural parts of an image. From top to bottom, we display the original
image (of size 768 × 577), the masked input (the Gaussian model has been estimated in the sub-
domain ω delimited by the red box), and the inpainted result. Our algorithm is able to synthesize
microtexture content which naturally blends with the surrounding context.
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Fig. 10. Visualizing Kriging coefficients. In the first column, we display the masked input.
For the three other columns: in the first row, we display the kriging coefficients (λc(x))x∈M for
different positions of the conditioning pixel c ∈ C (drawn in red); in the second row, we display
the kriging coefficients (λc(x))c∈C for different positions of the pixel x ∈ M (drawn in red). So in
the first row, we can observe the values that will be more impacted by a given conditioning point c,
and in the second row, we can observe the conditioning values which contribute most in conditional
sampling at a given position x. The kriging coefficients are obtained from an oracle model estimated
on the unmasked exemplar and we took C = ∂3M . The color map is renormalized in each case. It
is interesting to remark that the vertical correlations captured by this texture model are reflected by
larger kriging coefficients.

works about texture synthesis [69, 33]. Let us recall that, given two Gaussian models599

µX = N (mX ,ΣX), µY = N (mY ,ΣY ), this distance is defined as600

(26) dOT(µX , µY ) = inf E(‖F −G‖2)601

where ‖ · ‖ is the standard Euclidean norm, and where the infimum extends over all602

couples of random vectors (F,G) such that F ∼ N (mX ,ΣX) and G ∼ N (mY ,ΣY ).603

As shown in [25], in the Gaussian case, this distance is given by the explicit formula604

(27) dOT(µX , µY )2 = ‖mX −mY ‖2 + Tr(ΣX) + Tr(ΣY )− 2Tr
(

(ΣXΣY )1/2
)
.605

We will use this distance to compare the conditional models obtained with sev-606

eral conditioning sets C. More precisely, we consider a gray-level exemplar texture607

u : Ω→ R on which we estimate an oracle model N (ū,Γ) and on which we put a608

mask M ⊂ Ω. Then, we consider the reference conditional model µ∞ = N (m∞,Σ∞)609

obtained with C∞ = Ω \M , and the conditional models µw = N (mw,Σw) obtained610

with Cw = ∂wM (border of M with width w pixels). Using the expressions found in611

Section 2.3 and Section 2.4, we recall612

mw = Γ|M×CwΓ†|Cw×Cw(u− ū)|Cw , Σw = Γ|M×M − Γ|M×CwΓ†|Cw×CwΓ|Cw×M .613

For our experiment, we choose a reasonably small texture so that all these covariance614

matrices can be explicitly built and stored (relying on standard numerical routines for615

pseudo-inverse and square roots computation2). Once computed the Gaussian models616

2The pseudo-inverse is only computed up to a given precision. But, following the remark at
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Fig. 11. Quantative study of the conditional models depending on the conditioning set C.
We computed the distance between the reference conditional model (obtained for C∞ = Ω \M) and
the conditional models (obtained for Cw = ∂wM), see (28). On the same diagram, we also show the
distance between the mean and covariance components separately. On the right diagram, we display
the conditioning number of the kriging system. When w increases, the conditional model slowly gets
closer to the reference model, and the conditioning number increases.

µw = N (mw,Σw), we plot the function617

(28) w ∈ {1, . . . , 20} 7−→ dOT(µw, µ∞)

σu
√
|M |

,618

where σu is the marginal standard deviation of the oracle model. Notice that we619

normalize the distance by σu
√
|M | in order to get a number which reads as a single-620

pixel value on a scale that is adapted to the expected variation of the texture model.621

We also report separately the distances between the mean values and the covariance622

matrices, i.e.623

d(mw,m∞) = ‖mw −m∞‖,624

d(Σw,Σ∞)2 = Tr(Σw) + Tr(Σ∞)− 2Tr
(

(ΣwΣ∞)1/2
)
,625

626

The results can be observed in Fig 11. One can observe a global tendency of these627

distances to decrease when the conditioning border gets larger. But we do not observe628

a sudden plunge of the value (even if the covariance distance decreases a bit quicker629

for w < 5). Also, an interesting fact raised by these graphs is that the marginal630

error made when replacing C∞ by Cw is in general less than one σu. Notice also that631

when w increases, the kriging system become more and more ill-conditioned, which632

corroborates the numerical results given in Section 3.4.633

We also propose in Fig. 12 a more qualitative experiment. This qualitative study634

is important to examine the quality of the inpainting result around the mask border635

(which is not reflected through the marginal L2 error between two conditional models).636

For several values of the border width w = 1, 3, 5, we inpaint a texture image (with637

the oracle Gaussian model), and we compare the results with the one obtained in the638

ideal case C∞ = Ω \M . In order to give per-pixel comparison, we used the same639

random seed for the conditional sampling. Apart from the visual results, we also640

report the distance between the mean values of the corresponding conditional models641

(normalized by σu
√
|M |d where d is the number of channels).642

the end of Section 3.4, we checked that after conditional simulation with the approximate kriging
coefficients, the covariance matrix of the global Gaussian model is the desired one up to an error of
`∞-norm less than 10−15.

This manuscript is for review purposes only.



GAUSSIAN TEXTURE INPAINTING 23

w = 1 w = 3 w = 5 w =∞

d = 0.3621 d = 0.33398 d = 0.3058

d = 0.23967 d = 0.21926 d = 0.20396

Fig. 12. Qualitative study of the conditional models depending on the conditioning set C.
From left to right, we display the inpainting results obtained for C being a border of M of width
w = 1, 3, 5 pixels, and also the limit solution C = Ω \M . In the first row, we display the sample
of the conditional model, and on the second row the mean value of the conditional model (kriging
component). In both rows, we compute the standard `2-distance to the image shown on the right

(normalized by σu
√
|M |d). See the text for additional comments.

It is interesting to notice that the kriging components look very different with643

w = 5 and w =∞. Indeed, when the conditioning set gets larger, the kriging com-644

ponent depends on a larger number of random variables, and thus has an increased645

stochastic nature. This explains why the distance between the Gaussian models (or646

their mean or covariance functions) does not quickly tend to zero when w increases.647

Still, as reflected by the example of Fig. 12 and as observed in all our experiments,648

the inpainting result is already good for w = 3 (in particular, for many textures, this649

value is sufficient to naturally blend the inpainted domain in the context).650

To conclude this section, we confirm that taking C = ∂3M is in general sufficient651

for our inpainting purpose. Besides, growing C adds redundancy in the kriging system,652

and also increases the stochastic nature of the kriging component.653

4.5. Comparisons. In this section, we compare our microtexture inpainting654

algorithm with many recent inpainting techniques, and in particular with patch-based655

state-of-the-art methods.656

First, in Fig. 13, we compare our method with two very famous methods, namely,657

total variation (TV) based inpainting [18], and the patch-based method of Criminisi658

et al [21]. As could be expected, the TV inpainting method is not appropriate for659

this example, because the water texture in this image is not of bounded variation.660

In contrast, much better results are obtained with our method or the one of Crim-661

inisi et al. Compared to [21], our result seems a bit more stochastic, maybe even662

too stochastic in the upper part of the inpainted domain. This clearly reflects one663

limitation of our model, which is stationarity. Indeed, the water texture outside the664

mask is not exactly stationary since it exhibits less variation in the top of the image.665

On Fig. 14 and Fig. 15, we compare our Gaussian inpainting algorithm with666

several patch-based methods. On the first rows of Fig. 14, one can observe that667
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Original TV inpainting [18]

Our result Criminisi et al. [21]

Fig. 13. Comparison with [18, 21]. In the first row, we display the original image (taken
from [21]) on the left, and on the right the result of TV inpainting [18] (obtained with the implemen-
tation available at [35]). In the second row, on the left we show the result of Gaussian inpainting
(with a model estimated in the red box), and on the right the result of the patch-based method of [21].
As one can see, the TV inpainting is not able to preserve texture. In contrast, the method of [21] is
truly able to generate textural content, but may lead to repetition artifacts.

Gaussian inpainting gives nearly perfect results on microtextures (which could be668

expected since the Gaussian model is well adapted to such content). Also, the last669

rows of Fig. 14 show that the results obtained on macrotextures, although not perfect,670

are still quite convincing in comparison to patch-based methods. Even if Gaussian671

inpainting is not able to preserve salient geometric features, it has two important672

benefits: the synthesized content is smoothly blended in the input data, and the673

synthesized content does not suffer from repetition artifacts. But of course, Gaussian674

inpainting will clearly fail if one tries to inpaint a very thick hole in a highly non675

Gaussian texture (because the human visual system is able to discriminate between676

a highly structured texture and its ADSN counterpart).677

All these remarks are confirmed with the results of Fig. 15 which provides a678

comparison of these methods on a difficult textural inpainting problem. This striking679

example clearly exhibits the benefits and drawbacks of each method. With Gaussian680

inpainting, the color distribution and frequential content are precisely respected, and681

long-range correlations are preserved (as can be seen in the kriging component), but682

complex geometric structures are not properly synthesized as they would be with683

a patch-based method. In contrast, with patch-based methods, we observe some684
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repetition artifacts which can be explained in the same way as the growing garbage685

effect which was already brought up by the seminal paper [27]. There may also be686

other artifacts which are more specific: on the result of [3], the inpainted domain is a687

bit too blurry and the border of the inpainted domain is still clearly visible; and on688

the result of [55], after close examination of the inpainted domain, we can perceive689

small seams which are due to changes in the offsets used for region pasting.690

5. Conclusion. In this paper, we proposed a stochastic inpainting method based691

on Gaussian conditional simulation. It is able to inpaint holes of any shape and size692

in microtexture images while precisely respecting a random texture model. Gaussian693

texture inpainting shares of course some limitations with Gaussian texture synthesis,694

but we have illustrated on many texture images that this simple approach competes695

with state-of-the-art inpainting algorithms in terms of visual results (but not in com-696

putational time).697

As discussed in the paper, we have proposed a very simple procedure for esti-698

mating a Gaussian texture model from a masked exemplar texture. Numerical ex-699

periments show that this naive technique gives good results provided that the mask700

complement contains a sufficiently plain piece of texture. Still, we believe that it701

would be interesting to dispose of a more robust estimation technique amenable to702

deal with very irregular masks (which amounts to estimating the texture covariance703

from sparsely sampled data). This may be rephrased as parameter estimation with704

hidden variables and might be addressed with an expectation-maximization technique,705

but keeping the computational cost of such a procedure seems very challenging.706

A promising (but equally challenging) direction for future work is to extend condi-707

tional simulation to non-stationary models in order to address inpainting of images of708

natural scenes. It is likely that for such images, one should use a deterministic method709

for extension of geometric structures, coupled with a (conditional) stochastic step to710

complete the textural content. Such a model would build another bridge between711

variational and stochastic inpainting, thus shedding another light on the question712

whether inpainting should be considered as minimizing a functional or sampling a713

large-scale distribution.714
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ods on a difficult textural inpainting problem. On the first row, from left or right, we display the
masked input, the result of our method, together with the corresponding kriging component. On the
second row, we display the results of variational non-local inpainting [3] (obtained with the online
implementation of [30] using the NLmeans option), the result of [15] (obtained with the publicly
available G’MIC plugin for GIMP [65]), and the result of [55]. Again, we observe on this example
that Gaussian inpainting fills the hole with a truly stochastic content which respects the second-
order statistic of the texture (in particular the color distribution and the power spectrum), but fails
to reproduce the geometric features in contrast to patch-based methods. The second row precisely
highlights typical artifacts associated to state-of-the-art patch-based methods: with [3] the inpainted
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[21] A. Criminisi, P. Pérez, and K. Toyama, Region filling and object removal by exemplar-based767

image inpainting, IEEE Transactions on Image Processing, 13 (2004), pp. 1200–1212.768
[22] L. Demanet, B. Song, and T. Chan, Image inpainting by correspondence maps: a determin-769

istic approach, Applied and Computational Mathematics, 1100 (2003), p. 99.770
[23] A. Desolneux, L. Moisan, and S. Ronsin, A compact representation of random phase and771

Gaussian textures, in Proceedings of ICASSP, 2012, pp. 1381–1384.772
[24] J. Doob, Stochastic processes, Wiley, 1990.773
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[57] G. Peyré, Texture Synthesis with Grouplets, IEEE Transactions on PAMI, 32 (2010), pp. 733–848
746, doi:10.1109/TPAMI.2009.54.849

[58] L. Raad, A. Desolneux, and J. Morel, A Conditional Multiscale Locally Gaussian Texture850
Synthesis Algorithm, Journal of Mathematical Imaging and Vision, (2016), pp. 1–20.851

[59] L. Raad, A. Desolneux, and J.-M. Morel, Conditional Gaussian Models for Texture Syn-852
thesis, in Proceedings of Scale Space and Variational Methods in Computer Vision, 2015.853

[60] H. Rue, Fast sampling of Gaussian Markov random fields, Journal of the Royal Statistical854
Society: Series B (Statistical Methodology), 63 (2001), pp. 325–338.855

[61] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications, CRC Press,856
2005.857

[62] C. Schönlieb, Partial Differential Equation Methods for Image Inpainting, Cambridge Uni-858
versity Press, 2015.859

[63] J. Sun, L. Yuan, J. Jia, and H. Shum, Image completion with structure propagation, in ACM860
Transactions on Graphics, vol. 24, ACM, 2005, pp. 861–868.861

[64] A. Telea, An image inpainting technique based on the fast marching method, Journal of Graph-862
ics Tools, 9 (2004), pp. 23–34.863
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