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Regularization in L 1 for the Ornstein-Uhlenbeck semigroup

Let γn be the standard Gaussian measure on R n and let (Qt) be the Ornstein-Ulhenbeck semigroup. Eldan and Lee recently established that for every non-negative function f of integral 1 and any time t the following tail inequality holds true:

where Ct is a constant depending on t but not on the dimension. The purpose of the present paper is to simplify parts of their argument and to remove the (log log r) 4 factor.

Résumé

Soit γn la mesure Gaussienne standard sur R n et soit (Qt) le semigroupe d'Ornstein-Ulhenbeck. Eldan et Lee ont montré récemment que pour toute fonction positive f d'intégrale 1 et pour temps t la queue de distribution de Qtf vérifie γn({Qtf > r}) ≤ Ct (log log r) 4 r √ log r , ∀r > 1 où Ct est une constante dépendant seulement de t et pas de la dimension. L'objet de cet article est de simplifier en partie leur démonstration et d'éliminer le facteur (log log r) 4 .

Introduction

Let γ n be the standard Gaussian measure on R n and let (Q t ) be the Ornstein-Ulhenbeck semigroup: for every test function f

Q t f (x) = R n
f e -t x + 1 -e -2t y γ n (dy).
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Nelson [START_REF] Nelson | The free Markoff field[END_REF] established that if p > 1 and t > 0 then Q t is a contraction from L p (γ n ) to L q (γ n ) for some q > p, namely for q = 1 + e 2t (p -1).

The semigroup (Q t ) is said to be hypercontractive. This turns out to be equivalent to the logarithmic Sobolev inequality (see the classical article by Gross [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF]).

In this paper we establish a regularity property of Q t f assuming only that f is in L 1 (γ n ).

Let f be a non-negative function satisfying

R n f dγ n = 1,
and let t > 0. Since Q t f ≥ 0 and

R n Q t f dγ n = R n f dγ n = 1,
Markov inequality gives

γ n ({Q t f ≥ r}) ≤ 1 r ,
for all r ≥ 1. Now Markov inequality is only sharp for indicator functions and Q t f cannot be an indicator function, so it may be the case that this inequality can be improved. More precisely one might conjecture that for any fixed t > 0 (or at least for t large enough) there exists a function α satisfying lim r→+∞ α(r) = 0 and

γ n ({Q t f ≥ r}) ≤ α(r) r , (2) 
for every r ≥ 1 and for every non-negative function f of integral 1. The function α should be independent of the dimension n, just as the hypercontractivity result stated above. Such a phenomenon was actually conjectured by Talagrand in [START_REF] Talagrand | A conjecture on convolution operators, and a non-Dunford-Pettis operator on L 1[END_REF] in a slightly different context. He conjectured that the same inequality holds true when γ n is replaced by the uniform measure on the discrete cube {-1, 1} n and the Orstein-Uhlenbeck semigroup is replaced by the semigroup associated to the random walk on the discrete cube. The Gaussian version of the conjecture would follow from Talagrand's discrete version by the central limit theorem. In this paper we will only focus on the Gaussian case.

In [START_REF] Ball | L 1 -smoothing for the Ornstein-Uhlenbeck semigroup[END_REF], Ball, Barthe, Bednorz, Oleszkiewicz and Wolff showed that in dimension 1 the inequality (2) holds with decay

α(r) = C √ log r ,
where the constant C depends on the time parameter t. Moreover the authors provide an example showing that the 1/ √ log r decay is sharp. They also have a result in higher dimension but they loose a factor log log r and, more importantly, their constant C then tends to +∞ (actually exponentially fast) with the dimension. The deadlock was broken recently by Eldan and Lee who showed in [START_REF] Eldan | Regularization under diffusion and anti-concentration of temperature[END_REF] that (2) holds with function

α(r) = C (log log r) 4 √ log r ,
with a constant C that is independent of the dimension. Again up to the log log factor the result is optimal.

In this article we revisit the argument of Eldan and Lee. We shall simplify some steps of their proof and short cut some others. As a result, we are able to remove the extra log log factor. We would like to make clear though that this note does not really contain any new idea and that the core of our argument is all Eldan and Lee's.

Main results

Recall that γ n is the standard Gaussian measure and that (Q t ) is the Ornstein-Uhlenbeck semigroup, defined by [START_REF] Ball | L 1 -smoothing for the Ornstein-Uhlenbeck semigroup[END_REF]. Here is our main result.

Theorem 1. Let f be a non-negative function on R n satisfying R n f dγ n = 1 and let t > 0. Then for every r > 1

γ n ({Q t f > r}) ≤ C max(1, t -1 ) r √ log r ,
where C is a universal constant.

As in Eldan and Lee's paper, the Ornstein-Ulhenbeck semigroup only plays a rôle through the following lemma. Lemma 2. Let f : R n → R + . For every t > 0, we have

∇ 2 log(Q t f ) ≥ - 1 2t id, pointwise.
Proof. This is really straightforward: observe that (1) can be rewritten as

Q t f (x) = (f * g 1-ρ )(ρ x),
where ρ = e -t and g 1-ρ is the density of the Gaussian measure with mean 0 and covariance (1 -ρ)id. Then differentiate twice and use the Cauchy-Schwarz inequality. Details are left to the reader.

What we actually prove is the following, where Q t does not appear anymore.

Theorem 3. Let f be a positive function on R n satisfying R n f dγ n = 1. Assume that f is smooth and satisfies

∇ 2 log f ≥ -β id (3)
pointwise, for some β ≥ 0. Then for every r > 1

γ n ({f > r}) ≤ C max(β, 1) r √ log r ,
where C is a universal constant.

Obviously, Theorem 3 and Lemma 2 altogether yield Theorem 1.

Let us comment on the optimality of Theorem 1 and Theorem 3. In dimension 1, consider the function

f α (x) = e αx-α 2 /2 .
Observe that f α ≥ 0 and that R f α dγ 1 = 1. Note that for every t ≥ 1 we have

γ 1 ([t, +∞)) ≥ c e -t 2 /2 t ,
where c is a universal constant. So if α > 0 and r ≥ e then

γ 1 ({f α ≥ r}) ≥ c exp -1 2 log r α + α 2 2 log r α + α 2 .
Choosing α = √ 2 log r we get

γ 1 ({f α ≥ r}) ≥ c r √ log r .
Since (log f α ) = 0 this shows that the dependence in r in Theorem 3 is sharp.

Actually this example also shows that the dependence in r in Theorem 1 is sharp. Indeed, it is easily seen that

Q t f α = f αe -t ,
for every α ∈ R and t > 0. This implies that f α always belongs to the image Q t . Of course, this example also works in higher dimension: just replace f α by

f u (x) = e u,x -|u| 2 /2
where u belongs to R n .

Theorem 4. Let X be a random vector having density f with respect to the Gaussian measure, and assume that f satisfies (3). Then for every r > 1

P (f (X) ∈ (r, e r]) ≤ C max(β, 1) √ log r .
Theorem 4 easily yields Theorem 3.

Proof of Theorem 3. Let G be standard Gaussian vector on R n and let X be a random vector having density f with respect to γ n . Then using Theorem 4

P[f (G) > r] = +∞ k=0 P f (G) ∈ (e k r, e k+1 r] ≤ +∞ k=0 (e k r) -1 E f (G) 1 {f (G)∈(e k r,e k+1 r]} = +∞ k=0 (e k r) -1 P f (X) ∈ (e k r, e k+1 r] ≤ +∞ k=0 (e k r) -1 C max(β, 1)
log(e k r)

≤ C e e -1 1 r max(β, 1) √ log r ,
which is the result.

The rest of the note is devoted to the proof of Theorem 4.

Preliminaries: the stochastic construction

Let µ be a probability measure on R n having density f with respect to the Gaussian measure. We shall assume that f is bounded away from 0, that f is C 2 and that ∇f and ∇ 2 f are bounded. A simple density argument shows that we do not lose generality by adding these technical assumptions.

Eldan and Lee's argument is based on a stochastic construction which we describe now. Let (B t ) be a standard n-dimensional Brownian motion and let (P t ) be the associated semigroup:

P t h(x) = E[h(x + B t )],
for all test functions h. Note that (P t ) is the heat semigroup, not the Ornstein-Ulhenbeck semigroup. Consider the stochastic differential equation

X 0 = 0 dX t = dB t + ∇ log(P 1-t f )(X t ) dt, t ∈ [0, 1]. ( 4 
)
The technical assumptions made on f insure that the map

x → ∇ log P 1-t f (x)
is Lipschitz, with a Lipschitz norm that does not depend on t ∈ [0, 1]. So the equation ( 4) has a strong solution (X t ). In our previous work [START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF] we study the process (X t ) in details and we give some applications to functional inequalities. Let us recap here some of these properties and refer to [4, section 2.5] for proofs.

Recall that if µ 1 , µ 2 are two probability measures, the relative entropy of µ 1 with respect to µ 2 is defined by 

H(µ 1 | µ 2 ) = log dµ 1 dµ 2 dµ 1 , if µ 1 is
v t = ∇ log P 1-t f (X t ).
Using Itô's formula it is easily seen that

d log P 1-t f (X t ) = v t , dB t + 1 2 |v t | 2 dt.
Therefore, for every t ∈ [0, 1]

P 1-t f (X t ) = exp t 0 v s , dB s + 1 2 t 0 |v s | 2 ds . (5) 
Combining this with the Girsanov change of measure theorem one can show that the random vector X 1 has law µ (again we refer to [START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF] for details). Moreover we have the equality

H(µ | γ n ) = 1 2 E 1 0 |v s | 2 ds . (6) 
Also, if (u t ) is any drift and if ν is the law of

B 1 + 1 0 u t dt, then H(ν | γ n ) ≤ 1 2 E 1 0 |u s | 2 ds . (7) 
So the drift (v t ) is in some sense optimal. Lastly, and this will play a crucial rôle in the sequel, the process (v t ) is a martingale. Eldan and Lee introduce a perturbed version of the process (X t ), which we now describe. From now on we fix r > 1 and we let

T = inf{t ∈ [0, 1], P 1-t f (X t ) > r} ∧ 1
be the first time the process (P 1-t f (X t )) hits the value r, with the convention that T = 1 if it does not ever reach r (note that our definition of T differs from the one of Eldan and Lee). Now given δ > 0 we let (X δ t ) be the process defined by

X δ t = X t + δ T ∧t 0 v s ds.
Since T is a stopping time, this perturbed process is still of the form Brownian motion plus drift:

X δ t = B t + t 0 (1 + δ1 {s≤T } )v s ds.
So letting µ δ be the law of X δ 1 and using [START_REF] Talagrand | A conjecture on convolution operators, and a non-Dunford-Pettis operator on L 1[END_REF] we get

H(µ δ | γ n ) ≤ 1 2 E 1 0 (1 + δ 1 {s≤T } ) 2 |v s | 2 ds = 1 2 E 1 0 |v s | 2 ds + δ + δ 2 2 E T 0 |v s | 2 ds . ( 8 
)
4 Proof of the main result

The proof can be decomposed into two steps. Recall that r is fixed from the beginning and that X δ 1 actually depends on r through the stopping time T . The first step is to prove that if δ is small then µ and µ δ are not too different.

Proposition 5. Assuming (3), we have

d T V (µ, µ δ ) ≤ δ (β + 1) log r,
for every δ > 0, where d T V denotes the total variation distance.

The second step is to argue that f (X δ 1 ) tends to be bigger than f (X 1 ). An intuition for this property is that the difference between X δ 1 and X 1 is somehow in the direction of ∇f (X 1 ). Proposition 6. Assuming (3), we have

P f (X δ 1 ) ≤ r 1+2δ e -4 ≤ P(f (X 1 ) ≤ r) + (β + 4)δ 2 log(r),
for all δ > 0.

Remark. Note that both propositions use the convexity hypothesis (3).

It is now very easy to prove Theorem 4. Since X 1 has law µ, all we need to prove is

P(f (X 1 ) ∈ (r, er]) ≤ C max(β, 1) √ log r .
We choose δ = 5 2 log r .

almost surely. We shall use this inequality several times in the sequel. Recall that X 1 has law µ and that X δ 1 has law µ δ . Taking expectation in the previous inequality and using (10) we get

H(µ δ | µ) ≤ H(µ δ | γ n ) -H(µ | γ n ) -δ E T 0 v 1 , v s ds + βδ 2 2 E T 0 |v s | 2 ds .
Together with ( 6) and ( 8) we obtain

H(µ δ | µ) ≤ -δ E T 0 v 1 -v s , v s ds + (1 + β)δ 2 2 E T 0 |v s | 2 ds .
Now since (v t ) is a martingale and T a stopping time we have

E v 1 , v s 1 {s≤T } = E |v s | 2 1 {s≤T }
for all time s ≤ 1. This shows that the first term in the previous inequality is 0.

To bound the second term, observe that the definition of T and the equality (5) imply that

T 0 v s , dB s + 1 2 T 0 |v s | 2 ds ≤ log r,
almost surely. Since (v t ) is a bounded drift, the process ( t 0 v s , dB s ) is a martingale. Now T is a bounded stopping time, so by the optional stopping theorem

E T 0 v s , dB s = 0.
Therefore, taking expectation in the previous inequality yields

E T 0 |v s | 2 ds ≤ 2 log r,
which concludes the proof.

Proof of Proposition 6

The goal is to prove that P f (X δ 1 ) ≤ r 1+2δ e -4 ≤ P(f (X 1 ) ≤ r) + δ 2 (β + 4) log r.

Obviously P f (X δ 1 ) ≤ r 1+2δ e -4 ≤ P(f (X 1 ) ≤ r) + P f (X δ 1 ) ≤ r 1+2δ e -4 ; f (X 1 ) > r
Now recall the inequality (11) coming for the weak convexity of log f and rewrite it as log f (X δ 1 ) ≥ K 1 + 2δK T + Y where (K t ) is the process defined by

K t = log(P 1-t )(f )(X t ) = t 0 v s , dB s + 1 2 t 0 |v s | 2 ds,
and Y is the random variable

Y = -2δ T 0 v s , dB s + δ T 0 v 1 -v s , v s ds - βδ 2 2 T 0 |v s | 2 ds.
Recall that the stopping time T is the first time the process (K t ) exceeds the value log r if it ever does, and T = 1 otherwise. In particular, if

K 1 = log f (X 1 ) > log r then K T = log r. So if f (X 1 ) > r then f (X δ 1 ) > r 1+2δ e Y .
Therefore P f (X δ 1 ) ≤ r 1+2δ e -4 ; f (X 1 ) > r ≤ P(Y ≤ -4). So we are done if we can prove that P(Y ≤ -4) ≤ (β + 4)δ 2 log r.

(12)

There are three terms in the definition of Y . The problematic one is

δ T 0 v 1 -v s , v s ds.
We know from the previous section that it has expectation 0. A natural way to get a deviation bound would be to estimate its second moment but it is not clear to us how to do this. Instead we make a complicated detour.

Lemma 8. Let Z be an integrable random variable satisfying E[e Z ] ≤ 1. Then

P(Z ≤ -2) ≤ -E[Z].
Remark. Note that E[Z] ≤ 0 by Jensen's inequality.

Proof. Simply write

E e Z ≥ E e Z 1 {Z>-2} ≥ E (Z + 1) 1 {Z>-2} = E[Z] -E Z 1 {Z≤-2} + 1 -P(Z ≤ -2) ≥ E[Z] + P(Z ≤ -2) + 1. So if E[e Z ] ≤ 1 then P(Z ≤ -2) ≤ -E[Z].
Lemma 9. Let Z be the variable

Z = -δ T 0 v s , dB s + δ T 0 v 1 -v s , v s ds - (β + 1)δ 2 2 T 0 |v s | 2 ds.
Then P(Z ≤ -2) ≤ δ 2 (β + 1) log r.

Proof. As we have seen before the first two terms in the definition of Z have expectation 0 and

E[Z] = - (β + 1)δ 2 2 E T 0 |v s | 2 ds ≥ -δ 2 (β + 1) log r.
By Lemma 8 it is enough to show that E[e Z ] ≤ 1. To do so, we use the Girsanov change of measure formula. The process (X δ t ) is of the form Brownian motion plus drift:

X δ t = X t + δ T ∧t 0 v s ds = B t + t 0 (1 + δ1 {s≤T } )v s ds,
Note also that the drift term is bounded. Therefore, Girsanov's formula applies, see for instance [5, chapter 6] (beware that the authors oddly use the letter M to denote expectation). The process (D δ t ) defined by

D δ t = exp - t 0 (1 + δ 1 {s≤T } ) v s , dB s - 1 2 t 0 (1 + δ 1 {s≤T } )v s 2 ds
is a non-negative martingale of expectation 1 and under the measure Q δ defined by dQ δ = D δ 1 dP the process (X δ t ) is a standard Brownian motion. In particular

E[f (X δ 1 )D δ 1 ] = E[f (B 1 )] = 1.
Now use inequality (11) once again and combine it with equality (5) written at time t = 1. This gives exactly

f (X δ 1 ) D δ 1 ≥ e Z .
Therefore E[e Z ] ≤ 1, which concludes the proof.

We now prove inequality (12). The idea being that the annoying term in Y is handled by the previous lemma. Observe that Putting everything together we get (12), which concludes the proof.

Y = Z -δ

T 0 v 2 T 0 |v s | 2 0 v s , dB s ≥ 1 + P δ 2 2 T 0 |v s | 2 ds ≥ 1 .v s , dB s 2  = δ 2 E T 0 |v s | 2 δ 2 2 T 0 |v s | 2

 0202012021202202 s , dB s -δ 2 ds. So P(Y ≤ -4) ≤ P(Z ≤ -2) + P δ T Recall that T 0 v s , dB s has mean 0 and observe that ds ≤ 2δ 2 log r.So by Tchebychev inequalityP δ T 0 v s , dB s ≥ 1 ≤ 2δ 2 log r.Similarly by Markov inequality P ds ≥ 1 ≤ δ 2 log r.

  absolutely continuous with respect to µ 2 (and H(µ 1 | µ 2 ) = +∞ otherwise). Also in the sequel we call drift any process (u t ) taking values in R n which is adapted to the natural filtration of (B t ) (this means that u t depends only on (B s ) s≤t ) and satisfies

1 0 |u t | 2 ds < +∞, almost surely. Let (v t ) be the drift
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For this value of δ, Proposition 6 gives P(f (X δ 1 ) ≤ e r) ≤ P(f (X 1 ) ≤ r) + 25 4

β + 4 log r ,

whereas Proposition 5 yields

.

Combining the two inequalities we obtain

which is the result.

Remark. We actually prove the slightly stronger statement:

.

Proof of the total variation estimate

We actually bound the relative entropy of µ δ with respect to µ. Recall that log f is assumed to be weakly convex: there exists β ≥ 0 such that

pointwise.

Proposition 7. Assuming (9), we have

for all δ > 0.

This yields Proposition 5 by Pinsker's inequality.

Proof. Observe that