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ABSTRACT
We present dynamical models of NGC 4494, which we built using our iterative method
presented in a previous paper. These models are live N-body models consisting of equal-mass
particles, and they are in steady state as confirmed by a fully self-consistent evolution. Our
goals were of twofold. The first one – namely to test whether our iterative method could
indeed be used to construct galactic models following given observational constraints, both
photometric and kinematic – was fully achieved. Our method allowed us to go beyond a simple
spherical model and to make full sets of rotating, axisymmetric models without any limitations
to the velocity distribution. Our second goal was to understand the structure of NGC 4494
better, and more specifically to set constraints on its halo mass. For this we tried three families
of models: without halo, with a light halo and with a heavy halo, respectively. Our models
reproduce well the photometry and the kinematics, the latter except for specific regions where
some non-equilibrium or non-axisymmetric structure could be present in the galaxy (e.g. the
kinematically decoupled core). However, the lower-order moments of the velocity distribution
(up to and including the second order) do not allow us to discriminate between the three
haloes. On the other hand, when we extend the comparison to the higher-order moments of
the velocity distribution obtained from the long-slit data, we find that our light halo model
fits the data better than the no halo, or the heavy halo models. They also reproduce the shape
of the angular dependence of the PNe velocity dispersion in the outermost parts of the galaxy,
but not the amplitude of its azimuthal variation. This may imply that a more general class of
models, such as triaxial, may be necessary for a better fit.

Key words: methods: numerical – galaxies: elliptical and lenticular, cD – galaxies: individual:
NGC 4494 – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Dark matter around ordinary elliptical galaxies is one of the
hottest topics in dark matter studies today. The main goal is to
obtain sufficient constraints on the dark matter mass from ob-
served stellar kinematics. Traditional long-slit absorption line spec-
troscopy can only very rarely give kinematics outside 2Re, where
Re is the effective radius encompassing half the total light of the
galaxy (see e.g. Coccato et al. 2009). It is, nevertheless, possi-
ble to obtain line-of-sight velocities at larger radii using plane-
tary nebulae (PNe) because their strong emission line at 5007 Å
[O III] stands out against the faint galaxy background. It is usu-
ally assumed that PNe trace the kinematics of the underlying field

�E-mail: seger@mail.ru

stars.1 It is thus possible to obtain from the PNe the stellar kine-
matic parameters at the periphery of the galaxy, out to 5–7 Re

(Goudfrooij et al. 1994; Romanowsky et al. 2003; Douglas et al.
2007; de Lorenzi et al. 2008, 2009; Coccato et al. 2009; Napolitano
et al. 2009, hereafter N09).

Romanowsky et al. (2003) studied the kinematics in the outer
part of three ordinary elliptical galaxies, namely NGC 821, 3379
and 4494 (out to 4–6 Re), and found that their velocity dispersion
profiles decline nearly Keplerian-like at radii outside 2Re. They
modelled the observational data by means of spherical Jeans mod-
els and by means of orbit-based models [see Romanowsky et al.
(2003) for details] and they showed that their data are consis-
tent only with models with little or no halo. This result, in good

1Dekel et al. (2005), however, noted that observations of PNe can be biased
towards the kinematics of younger stars.
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agreement with what was already found for NGC 3379 by
Goudfrooij et al. (1994) and for NGC 4697 by Méndez et al. (2001),
is very surprising. Indeed, present theoretical and observational data
argue that ellipticals are formed from mergings of spirals, which are
known to have a considerable amount of dark matter (Bosma 2004,
and references therein). So, if the progenitors have a considerable
amount of dark matter, how can the merger product not have it?
Furthermore, this result is in conflict with the predictions of the
standard � cold dark matter �CDM cosmology.

Dekel et al. (2005) constructed elliptical galaxy models from
numerical simulations of mergers of a pair of disc galaxies. Their
resulting models have a ‘normal’ massive dark halo and a velocity
distribution with a high radial anisotropy in the outer parts. The
latter leads to a low observed (from most viewing angles) velocity
dispersion in the outer parts, which in turn leads to a low estimated
halo mass, contrary to the real dark halo mass of the model, which
is normal. In this way, Dekel et al. (2005) explain the results of
Méndez et al. (2001) and of Romanowsky et al. (2003) as due to
the velocity distribution in the merger remnant.

Since this velocity anisotropy is so crucial to the data interpre-
tation, Athanassoula (2005a) examined whether it was general, or
whether it depended on the specific mergers used. She examined
the velocity anisotropy in multiple mergers, as would occur e.g. in
groups. In such cases, a pair merger is not examined as an isolated
event, but a whole sequence of mergers is considered. This model
would be more realistic in groups, but is also in good agreement
with the standard �CDM cosmology. The result of such mergers is
compatible with the observed properties of elliptical galaxies (Weil
& Hernquist 1994, 1996; Athanassoula & Vozikis 1999). Concern-
ing the velocity anisotropy in the outer parts, she found that the
result is more complex than the single pair mergers would predict
and that the anisotropy depends strongly on the time between two
successive mergers. Thus, more work is necessary to establish how
general the result of Dekel et al. (2005) is. A similar conclusion
was reached by Douglas et al. (2007) who modelled the data of
NGC 3379 and argued that there are considerable discrepancies be-
tween the observations and dark-matter-dominated simulations and
re-iterate the question of whether NGC 3379 has the kind of dark
halo that the current �CDM paradigm requires.

de Lorenzi et al. (2008, 2009) constructed dynamical models of
NGC 4697 and 3379 using the χ 2-made-to-measure particle method
(Syer & Tremaine 1996; de Lorenzi et al. 2007) implemented in the
NMAGIC code. Their main result is that the observational data are
consistent with a fairly wide range of halo mass profiles, although it
was possible to place some limits on the halo mass. For NGC 4697,
de Lorenzi et al. (2008) found that models with a low-density halo
with vc(5Re) � 200 km s−1 are not consistent with the data, where
vc(5Re) is the total circular velocity at 5Re. This, however, is a
rather weak limit because even their model D with vc(5Re) ≈ 210
(see fig. 15 in de Lorenzi et al. 2008) has a very light halo which
contributes only about 35 per cent of the mass within 5Re. For the
galaxy NGC 3379, de Lorenzi et al. (2009) found that a model
without a halo, as well as a model with a heavy halo with vc(7Re) �
250 km s−1 would be excluded by the observational data, but only
at a 1σ confident level. So these constraints are not very strong.

The main problem in determining the halo mass profile from the
observed kinematics in elliptical galaxies is the well-known mass–
anisotropy degeneracy. The low-velocity dispersion on the periph-
ery of some elliptical galaxies can be explained either by nearly
isotropic models with a light halo or by radially anisotropic models
with a heavy halo. It is generally accepted that the mass–anisotropy
degeneracy can be broken by means of high-order moments of the

line-of-sight velocity distribution (LOSVD; Gerhard 1993; van der
Marel & Franx 1993). As shown in these papers, isotropic mod-
els have a Gaussian LOSVD, and radially anisotropic models have
centrally peaked LOSVD as well as long tails. So, these models
can be distinguished by means of high-order moments of LOSVD.
However, the highly radial anisotropic models presented in Dekel
et al. (2005) have a LOSVD with relatively weak deviations from
Gaussian (see supplementary information in Dekel et al. 2005).
Unfortunately, this means that, at least in some cases, breaking the
mass–anisotropy degeneracy can be very difficult, if not practically
impossible.

Let us also point out an obvious, but sometimes ignored, prob-
lem. From a mathematical point of view, it is possible to prove the
existence of a given type of model by simply constructing dynami-
cal models, but it is not possible to prove its non-existence. Let us,
for example, construct dynamical models of a real galaxy by means
of the NMAGIC method or by means of our iterative method (see
below). More specifically, let us construct an axisymmetric model
with some dark halo. If this satisfies all observational data, then
we have proven the existence of a model with such a halo agree-
ing with the observational data. But if we fail to construct such a
model, then formally we have not proven anything, since we cannot
exclude that our failure is due to the method itself, or to the fact
that we have not searched sufficiently. We would have needed to
prove that, if an equilibrium model with given parameters did exist,
then our method would construct it. This is not straightforwardly
proven for our iterative method, for the NMAGIC method or for any
other orbit-based method. Moreover, even if we did prove it, we
would have only proven that an axisymmetric model with this par-
ticular halo is excluded by the observational data. We would not
have proven anything about triaxial models, or about models with
a somewhat different halo mass profile. Consequently, the conclu-
sion of de Lorenzi et al. (2008, 2009) that the observational data of
NGC 4697 and 3379 are consistent with a wide range of halo masses
can be firmly believed. But, on the contrary, if one finds that a set of
models with a heavy dark halo do not agree with the observational
data, then one has at the best only an argument that the galaxies
in question have a light dark halo, or no halo. Unfortunately, this
is no proof, since another, more general, type of heavy halo could
perhaps have fitted the observations. It is thus very useful to try
different approaches to see whether this disagreement persists or
not. If more than one method lead to the same conclusion, then the
argument is considerably strengthened.

Initially, the present work was inspired by an article of N09, where
the authors presented a large amount of new observational data of
the ordinary elliptical galaxy NGC 4494, resulting in positions and
velocities of 255 PNe out to seven effective radii. They also pre-
sented new wide-field surface photometry from MMT/Megacam,
and long-slit stellar kinematics from VLT/FORS2. Using these data
they put constraints on the distribution of dark matter in this galaxy.
They constructed spherical dynamical models of the system using
two different methods, but both of them are based on Jeans equa-
tions. They argue that some dark matter is required by the data and
their best-fitting model has a relatively low halo mass.

In Rodionov, Athanassoula & Sotnikova (2009, hereafter RAS09)
we presented an iterative method for constructing equilibrium N-
body models with given properties. This method has already been
widely used to construct initial conditions for N-body simulations
(e.g. Rodionov & Orlov 2008; Machado & Athanassoula 2010)
and can also be directly used for constructing dynamical models
of real galaxies from observational data. In contrast with NMAGIC

models, our models consist of particles with equal masses. They

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 111–126

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/410/1/111/1032084 by C
N

R
S - ISTO

 user on 30 N
ovem

ber 2021



Dynamical models of NGC 4494 113

are in steady state and can be directly used in N-body simulations.
For example, we can directly check that the constructed model is
indeed in equilibrium. Also, we can easily calculate for this model
any parameter which can be directly obtained from the positions
and velocities of the particles.

In this article, we will apply our iterative method to the con-
struction of dynamical models of NGC 4494 from the observational
data presented in N09. We have two purposes. First, our intention is
to demonstrate that our iterative method can indeed be successfully
used to construct dynamical models of real galaxies. The second aim
is to return to the interesting question of the halo mass of NGC 4494,
using a different method from that of N09, to see whether results
can in any way depend on the method used. This is particularly
important since the discrepancy between the no-halo model of N09
and the observational data is not large (see upper panels of their
fig. 12).

We present the observational data in Section 2 and our method in
Section 3. In Section 4 we describe our models and compare them
to observations. We summarize and conclude in Section 5.

2 PREPARATION O F O BSERVATIONA L DATA

We use the same observational data as in N09. These include the
surface photometry, the stellar kinematics along the major and minor
axes obtained by means of long-slit spectroscopy, and velocities and
positions of 255 PNe (see N09). When constructing our models, we
use a physical system of units, i.e. kpc and M�. We adopt a distance
to NGC 4494 of 15.8 Mpc (see N09), so that 1 arcsec is equal to
0.0766 kpc. Our models can be easily rescaled to any other distance.
Let us assume we have an equilibrium model constructed for some
distance d1, and we want to rescale it to a distance d2 = Cd1.
To keep the surface photometry unchanged we need to rescale all
space coordinates of particles as r2 = Cr1. To keep the model in
equilibrium we need to change the mass of the model as M2 =
CM1. Particle velocities need not be changed, so all the observed
kinematic parameters are unchanged. The new total luminosity of
the galaxy is L2 = C2L1, so that the new mass-to-light ratio is
M2
L2

= 1
C

M1
L1

.
Let us now describe how we prepare the observational data for

use in our iterative method.

2.1 Surface photometry

We use the combined V-band surface photometry of NGC 4494
presented in table A1 of N09. These data are a combination of
HST-based observations of Lauer et al. (2005), ground-based CCD
observations of Goudfrooij et al. (1994) and the new observations
of N09.

We, furthermore, make the following simplifications. We assume
that the ellipticity ε is the same at all radii and equal to 0.162,
the mean value found in N09. We also assume that the shape of the
isophotes is precisely elliptical, so as not to introduce in the analysis
unconstrained high-order isophote shape parameters. The first two
rows of table A1 in N09 give the surface brightness as a function
of the intermediate axis Rm, measured in arcsec. This is related
to the ellipticity and to the major axis Ra by Rm = Ra

√
1 − ε.

We convert surface brightness in units of L�,V/pc2 (assuming an
absolute magnitude of the Sun in the V band M�,V = 4.8) and Rm

in parsec using the adopted distance of 15.8 Mpc.
Excluding the innermost region (Rm < 5 arcsec), this surface

brightness profile is fitted very well by the Sérsic law (Sérsic 1968)

I (Rm) = I0 exp
(−(Rm/as)

1/n
)

(1)

with parameters I0 = 41764 L�,V/pc2, as = 0.008809 kpc and n =
3.3 as shown by N09.

Numerically, the surface brightness profile is described as fol-
lows. Inside the region Rm < 0.46 kpc (≈6 arcsec), we interpolate
the tabular data linearly. In the region 0.46 kpc < Rm < 40 kpc
we adopt a Sérsic profile. In the region 40 kpc < Rm < 50 kpc
we truncate the Sérsic profile by means of a fifth-order polyno-
mial (Dehnen 2000b, equation 4). From the profile of the surface
brightness and the adopted value of ellipticity we can calculate the
two-dimensional distribution of surface brightness. The total lumi-
nosity of this model is LV = 2.36 × 1010 L�,V , or MV = −21.13.
We assume that the stellar mass-to-light ratio (M/L) is constant, in
which case the distribution of surface brightness equals the surface
mass distribution to within an unknown multiplier M/L.

2.2 Kinematical data

2.2.1 Symmetries and system of coordinates

In order to prepare the kinematical data so that they can be used by
our iterative method, we first need to define a system of coordinates
which will be used for the model and to assume what symmetries
the galaxy has.

In all the following, we will assume that the galaxy is axisym-
metric. Elliptical galaxies can well be triaxial (Binney & Tremaine
2008). Triaxial models, however, have extra free parameters that
add complexity to the modelling and are beyond the scope of this
paper.

Let us consider a Cartesian (X, Y , Z) coordinate system such that
the sky plane coincides with the XZ plane. We choose the Z-axis
so that it coincides with the minor axis of the projected image of
the galaxy and then the X-axis will coincide with the major axis.2

We assume that the rotation axis is perpendicular to the X-axis and
therefore in the YZ plane. This rotation axis is defined by its angle
α with the Z-axis. If α = 0 then the rotation axis coincides with the
Z-axis, so the galaxy is edge-on.

We also assume that the galaxy has a reflection symmetry with
respect to the plane of symmetry perpendicular to the rotation axis
and centred on the centre of coordinates (0, 0, 0). In that case, the
observed image of the galaxy will have a reflection symmetry about
both the X and the Z axes. The observed line-of-sight velocity distri-
bution will have a reflection symmetry about the X-axis. Also, the
observed line-of-sight velocity distribution will have a reflection
symmetry about the Z-axis, except for the velocity sign. It means
that the points (x, z) and (−x, z) will have the same line-of-sight ve-
locity dispersion and that their line-of-sight mean velocities will be
equal but with opposite sign. The velocity distribution in the points
(x, z) and (x, −z) will be fully identical. Consequently, if we know
the line-of-sight velocity distribution in any of the four quadrants,
we know it for the whole system. Similarly, if we assume such
symmetry then all the observed kinematical data can be ‘reduced’
to the first quadrant of the sky plane (x > 0, z > 0). So in a first
stage, we reduce all kinematical data to the first quadrant.

In our iterative method the input kinematical data should be
given as mean velocities and velocity dispersions in a set of two-
dimensional areas on the sky plane and we need to present the
observed velocities in this manner.

2 These are only the major and minor axes of the projected image, and the
real principal axes of the galaxy can, of course, be different.
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2.2.2 Long-slit spectra kinematics

Part of our kinematical data are obtained by means of long-slit
spectroscopy (Coccato et al. 2009) from spectra taken along the
major and the minor axes of the galaxy. The width of the slit was
1 arcsec. Thus, we have along each axis profiles of the rotation,
of the velocity dispersion, as well as two Gauss–Hermite moments
(h3 and h4; see Appendix A). When constructing the models we
will use the rotational velocity profiles along the major axis and of
the velocity dispersion along both principal axes (while the Gauss–
Hermite moments will be used for the analysis of the so constructed
models; see Section 4). We use these data almost ‘as is’ without any
parametrization. We only bin the data suitably.

Let us describe how we prepare the profile of the mean velocity
along the major axis. From Coccato et al. (2009) we get the table
containing values of the mean velocity for different points along the
major axis. So we have a set of pairs xi, vi, where xi is the coordinate
of the data point on the major axis and vi is the observed line-of-
sight mean velocity at this point. At first we ‘reduce’ these data to
the first quadrant (see the previous section). For the mean velocity
this implies multiplying xi and vi by −1 for each data point with
xi < 0. We need to convert these data into a set of two-dimensional
areas with known mean velocity. These long-slit data were obtained
from rather narrow zones along the major axis. We assign these data
to a wider zone. We assign the data along the major axis to the area
defined by x < 0.5 arcsec || ϕ < 10◦, where ϕ is the angle between
the current radius vector and the x-axis measured on the XZ plane,
and || is a logical OR. We divide this area along the x-axis into
the pieces so that each long-slit data point corresponds to a single
piece. We do this as follows. We sort the data points by xi. For each
data point we define two values as li = (xi−1 + xi)/2 and ui = (xi +
xi+1)/2. We set l1 = 0 and un = 2xn − un−1, where n is the number
of data points. For each data point we assign a two-dimensional
area defined as x > li && x < ui && (x < 0.5 arcsec || ϕ < 10◦),
where && is a logical AND. We then join some of these areas
in the following way. We create an N-body system with a surface
distribution of particles obtained from the surface photometry (see
Section 2.1). The number of particles is N = 500 000. For each area
we calculate the number of particles which are situated in this area.
If the number of particles in some area is less than 1000 then this
area is joined with a neighbouring area. The value of the velocity in
each composite area is calculated as the mean value of the velocities
of the constituent areas weighed by the number of particles in each
area. This way of binning the observational data is rather unusual
but it is convenient for us, because we make sure that in each area
there is a sufficient number of particles.

The other profiles are prepared in the same way. The data along
the minor axis are assigned to the area defined as z < 0.5 arcsec || ϕ >

80◦.
In our algorithm we do not use any information on the errors of

the data. But we will use binned long-slit data for figures, so, in
order to plot error bars, we need to calculate the errors of the binned
data. We calculate the error of a binned datum as e = 1

n3/2

∑
ei ,

where n is the number of original data points from which binned
datum was calculated, and ei are the errors of these data points.

2.2.3 PNe kinematics

We use the PNe data in the outer part of the galaxy, which long-slit
data cannot reach. More precisely, we use all PNe whose distance
from the galaxy centre Rxz = √

x2 + z2 is larger than 124 arcsec
(9.5 kpc).

We ‘reduce’ the PNe data to the first quadrant (see Section 2.2).
We divide the first quadrant into five zones with an equal opening
angle ϕ and use the ϕ angle of the individual PNe to place them
into the appropriate zone. The parameters of these five PNe groups
are shown in Table 1. For each group we define an area (ϕ(min) <

ϕ < ϕ(max)) && (R(min)
xz < Rxz < R(max)

xz ). These areas are shown
schematically in Fig. 1 and we will refer to these areas as A1, A2,
A3, A4, A5.

For each group (area) we calculate the mean velocity and the
velocity dispersion with the corresponding errors. We note that here
we take the standard deviation as the dispersion. For the calculation
of the standard deviation we use an unbiased estimator (Kenney &
Keeping 1951, p. 171), although for such relatively large samples
(n > 10, see Table 1), the use of an unbiased estimator is not
essential.

We want to draw attention to two features of the PNe velocity
distribution. The first feature is that the velocity dispersion at in-
termediate angles is noticeably higher than the velocity dispersion
along the major or the minor axes. The velocity dispersion in area
A3 is twice as high as in areas A1 or A5. This feature can be clearly
seen in the right-hand panel of fig. 7 in N09, where, except for the
inner areas, the iso-dispersion contours are elongated in a direction
intermediate between the two principal axes. Since this figure was
constructed under the assumption of triaxial symmetry, this pecu-
liarity remains true independent of the axisymmetric assumption.
The second feature is that the value of the mean velocity in A5 is
negative and that it is low in the intermediate areas A2, A3 and A4.
This feature can be explained by a twisting of the rotation axis in
the outer part of the galaxy (see the left-hand panel in fig. 7 in N09
and corresponding discussion), but cannot be reproduced by the

Table 1. Parameters of the five PNe groups. The first column gives the name of the corresponding area
(see Fig. 1) and the second and third ones give its lower and the upper azimuthal boundaries [ϕ(min)

and ϕ(max), respectively]. The remaining columns give parameters relevant to the group of PNe in the
corresponding area. Here n is the number of PNe, R

(min)
xz and R

(max)
xz are the minimal and the maximal

distance to the galaxy centre, V̄ is the mean velocity, 	V̄ is the error of the mean velocity, σ is the
velocity dispersion (standard deviation) and 	σ is error of the velocity dispersion.

Area ϕ(min) ϕ(max) n R
(min)
xz R

(max)
xz V̄ 	V̄ σ 	σ

(arcsec) (arcsec) (km s−1) (km s−1) (km s−1) (km s−1)

A1 0◦ 18◦ 11 166.3 297.1 72.7 15 49.7 11.2
A2 18◦ 36◦ 18 126.7 291.8 14.1 19.2 81.3 14
A3 36◦ 54◦ 17 131.1 378.9 21.9 25.5 105 18.8
A4 54◦ 72◦ 14 132 277.6 −2.64 24.5 91.8 18.2
A5 72◦ 90◦ 14 133.4 269.8 −24.7 14.3 53.4 10.6
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Figure 1. Five PNe areas. All PNe have been moved into the first quadrant.

models with an axisymmetric velocity distribution. We therefore
cannot take into account in the iterative process the mean velocity
from all regions. Since in axisymmetric systems there is no rotation
along the minor axis and since the value from the A1 area agrees
very well with the long-slit data (Fig. 3d), we will choose to use the
mean velocity from area A1.

3 ME T H O D

3.1 General outline

We want to construct an equilibrium N-body model of an elliptical
galaxy from its observational data. As described in the previous
section, for the galaxy under consideration we have surface pho-
tometry, a distance estimate and various line-of-sight kinematics.
Assuming that the stellar M/L is constant, we can obtain from the
surface photometry and the distance the surface mass distribution
to within an unknown multiplicative constant M/L. In the case of an
N-body model, this implies that we have the projected surface dis-
tribution of particles, but the mass of the individual particles is not
known (in our models all particles have the same mass). We note,
however, that the M/L cannot be arbitrary, because it is related to
the line-of-sight velocity dispersion in the central part of the galaxy
which we know from observations (see Section 3.4). We also as-
sume that the galaxy is axisymmetric. Observations do not give us
the inclination of the rotation axis, so this is a free parameter.

As result, our task is to construct an equilibrium N-body model
with the given projected surface distribution of particles and the
given line-of-sight kinematics. The total mass of the model is un-
known (M/L is unknown), but should be found somehow. The model
should be axisymmetric with a given axis of rotation. The last con-
dition is of course optional, but simplifies the modelling.

In RAS09, we presented an iterative method for constructing
equilibrium N-body models with given properties. The idea of
the iterative method is very simple. It relies on constrained, or
guided, evolution. We simply evolve the system while constraining
the desired system properties (see RAS09). Conceptually the same
method, with only relatively minor modifications, can be applied to
our present task.

Figure 2. The scheme of the iterative method which we use for constructing
the N-body model of an elliptical galaxy from the observed data.

The scheme of the modified iterative method which we use in this
work is outlined schematically in Fig. 2. We will first briefly describe
the whole method and then each part of the algorithm in detail. We
start by building an initial N-body model which has a rigid halo
and the desired projected surface distribution of the particles. The
distribution of particles along the line-of-sight can be arbitrary. The
velocities of the particles and the total mass of the system (M/L) can
also be arbitrary. This model will be the starting point for the iterative
procedure. At the start of each iteration we calculate the evolution
of the system over a short time. Then we put the model through
a specific procedure which adjusts the total mass of the system
(see Section 3.4) every second iteration. We then, if necessary,
impose the condition of axisymmetry about the given axis. We do
this in the usual way, i.e. by randomizing the particle azimuthal
angles. Next, we fix the surface distribution of the particles (see
Section 3.2). Finally, we fix the line-of-sight kinematics to agree
with the observations (see Section 3.3). We repeat this iteration
cycle a number of times until the velocity distribution and the total
mass of the system stop changing. The model at this stage is already
in equilibrium, or very close to it. To be sure of this, we calculate
the evolution of the system over a long time-scale (3 Gyr in this
article) after which we obtain the final model in stable equilibrium.
Let us stress that we consider this long time-scale evolution only as
a part of our algorithm for constructing equilibrium models.

In the axisymmetric case, we assume that the galaxy rotates about
the axis which lies in the Z–Y plane. This rotation axis is defined by
its angle α with the Z-axis. If α = 0 then the rotation axis coincides
with the Z-axis, so the galaxy is edge-on.

Having described the general outline of our method, we will now
describe each individual step.

3.2 Fixing the projected surface distribution of particles

Here, we will describe how we fix the projected surface distribution
of particles. We do this using a method very similar to that described
in RAS09 for fixing the particle mass distribution. The idea of that
algorithm is as follows. We start with an N-body system, which is
the result of a short evolution (Fig. 2) and to which we will refer
to as the ‘old’ system. We need to fix the mass distribution in this
model according to given constraints. We create a ‘new’ N-body
system with the desired mass distribution, and we ‘transfer’ the
velocity distribution from the ‘old’ to the ‘new’ model. The basic
idea of our velocity transfer algorithm is very simple. We assign to
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116 S. A. Rodionov and E. Athanassoula

the new-model particles the velocities of those particles from the old
model that are nearest to the ones in the new model. This algorithm
is described in detail in RAS09 (Section 2.4). We note that this
algorithm has a free parameter nnb – the number of neighbours.

It is very easy to modify this algorithm to fix only the projected
surface distribution of particles. We need to construct a ‘new’ N-
body system with a given surface distribution of particles. In the new
model only the x and z coordinates of the particles are defined. The
y-coordinates, the velocities and the mass of the particles should be
carried over from the old model. The total mass of the new system
is set equal to the total mass of the old system. We note again that
in our models all particles have the same mass. In the algorithm
described in RAS09 we ‘transfer’ from the old to the new model
only the velocities. In the present case, we need to ‘transfer’ also
the y coordinates of the particles. When we search for the nearest
particle we need to do so in the two-dimensional space X–Z. The
y-coordinate should not be taken into account because we copy it
from the old model particle to the new model particle together with
the velocities.

3.3 Fixing the line-of-sight kinematics

Let us first describe an algorithm for fixing the line-of-sight mean
velocity for the case where we do not assume any symmetry in the
system. Our task is as follows. We have an N-body system and some
two-dimensional area on the sky plane where we need to fix the line-
of-sight mean velocity to the observed value. In our models the sky
plane coincides with the XZ plane, so the line-of-sight velocity is
the velocity along the Y-axis. The given area is a two-dimensional
area in the XZ plane, so when we search the particles which belong
to the given area we do it regardless of y-coordinates of the particles.
We denote by v̄y the desired value of the line-of-sight mean velocity
in the given area and by v̄′

y the mean value of the y velocities of
all particles in the area. We need to change somewhat the particle
velocities so that v̄′

y becomes equal to v̄y . This is achieved by setting
the new y velocity component of particle i in the given area to

vyi = v′
yi + (v̄y − v̄′

y) , (2)

where v′
yi is the current value of the ith particle and vyi is the

corrected ith particle y velocity.
The algorithm for fixing the line-of-sight velocity dispersion is

very similar. Let us denote by σ y the desired value of the line-
of-sight velocity dispersion in the area under consideration. In the
given area we calculate the current value of the line-of-sight velocity
dispersion σ ′

y and the current value of the line-of-sight mean velocity
v̄′

y . The new y velocity component of particle i in the given area is
set as

vyi = (v′
yi − v̄′

y)
σy

σ ′
y

+ v̄′
y . (3)

Let us now consider a galaxy with the following symmetries
(as described in Section 2.2). The galaxy is axisymmetric, with a
symmetry axis which lies in the YZ plane, and also has a reflection
symmetry with a plane of symmetry perpendicular to the axis of
symmetry and containing the centre of coordinates (0, 0, 0). In this
case, if we know the line-of-sight velocity distribution in the single
quadrant then we know it for the whole system (see Section 2.2
for details). So, if we assume such a symmetry then all observed
kinematical data can be ‘reduced’ to the first quadrant (x > 0,
z > 0).

In the case of such a symmetry, the task of fixing the line-of-
sight kinematics is as follows. We have some two-dimensional area

in the first quadrant of the sky plane for which we have the line-
of-sight mean velocity and/or the line-of-sight velocity dispersion.
We need to fix these kinematic parameters in the given area taking
into account the discussed symmetries. We invert the sign of vy for
each particle with x < 0 and then we flip all particles to the first
quadrant, i.e. we set x = |x| and z = |z| for each particles. Now
we can apply the algorithms for fixing the line-of-sight kinematic
parameters which we described in the first part of this section. We
then flip all particles back to their original positions and invert the
sign of vy for each particle with x < 0.

3.4 Adjusting the total stellar mass

Since we have no a priori knowledge of the total stellar mass in the
galaxy, we have to construct our models assuming that the stellar
M/L is unknown. In our case this implies that the total mass of
the system is unknown. This of course raises questions. Does an
equilibrium model with properties in agreement with observations
exist for a unique value of the mass? Or for a range of values?
For example, for a given equilibrium, spherical, isotropic model
with known projected surface distribution of particles and line-of-
sight velocity dispersion in the centre of the model, the total mass
of the model would be uniquely determined. But in our case it is
not so obvious. Moreover, as we will show, models with different
inclinations of the rotation axis have slightly different total masses
(see Table 2, for example models AL0 and AL45). So if we do not
fix the inclination of the rotation axis then the total mass may well
not be unique.

Nevertheless, we need to find some value of the total mass for
which we can construct the equilibrium model. The straightforward
way to solve this problem is to construct a series of models with
different total masses and choose the one which, according to some
definition, is closest to equilibrium, or to find ranges of values
for which the resulting equilibrium model is in agreement with
the observational constraints. This, however, would be excessively
time consuming, due to the large number of models that need to be
constructed.

We will, therefore, use a different algorithm, in which we adjust
the total mass during the iterative process (Fig. 2). As we described

Table 2. Stellar M/L and relative halo mass for the con-
structed models. The first column gives the name of the
model, the second and third columns the stellar mass-to-
light ratios in V and B bands, M/LV and M/LB, respectively.
The fourth and fifth columns give the ratio of the halo mass,
Mh(x), to the stellar mass, M∗(x), both calculated within a
sphere of radius x = Re and x = 5Re, respectively.

Model M/LV M/LB
Mh(Re)

M∗(Re)

Mh(5Re)

M∗(5Re)

AN0 4.16 4.82 0 0
AL0 3.55 4.11 0.13 0.96
AH0 2.76 3.22 0.36 2.52
AN45 4.23 4.90 0 0
AL45 3.73 4.32 0.12 0.90
AH45 3.15 3.65 0.30 2.18
BN0 4.21 4.89 0 0
BL0 3.55 4.12 0.13 0.96
BH0 2.89 3.35 0.35 2.41

BN45 4.27 4.95 0 0
BL45 3.81 4.41 0.11 0.88
BH45 3.19 3.69 0.30 2.16
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Dynamical models of NGC 4494 117

earlier, in each iterative step we let the system evolve on a short
time-scale (Fig. 2). We calculate in the beginning and in the end
of this evolution the velocity dispersion along the line-of-sight in
some given part of the system, which we denote by σ 1 and σ 2,
respectively. In all experiments described here this given part was a
sphere with radius equal to 10 kpc. We note that the value of σ 1 is
partly defined by the given line-of-sight velocity dispersion which
we fix on the previous stage of the iteration (see Fig. 2). On the other
hand the value of σ 2 is influenced by the total mass of the model. So,
if we choose a value of total mass which is not appropriate and we
do not change it during the iterative procedure, then σ 1 and σ 2 will
be different after any number of iterations. We want to construct
the equilibrium model so that the values of σ 1 and σ 2 are close, so
we adjust the total mass in the system by multiplying all velocities
by a factor of σ 1/σ 2 and the masses of all the particles by a factor
of σ 2

1 /σ 2
2 . By trial and error we found that the iterations converge

faster if we adjust the total mass not at every iteration but only every
second iteration.

For a model without dark halo this means that, if the system at the
end of the evolution was in equilibrium, then the rescaled system
will also be in equilibrium, but will have the line-of-sight velocity
dispersion in the selected part of the model equal to σ 1. For models
with halo this explanation is of course not valid, but this is not a
serious drawback since there will be further iterations to bring the
system to equilibrium. We thus used this algorithm for constructing
all our models, including models with dark halo, and it worked
well in all cases. That is, all these models constructed by means
of the iterative method with this mass-adjusting algorithm were in
equilibrium. But, we note that it is possible that for models with
a very massive halo dominating the central part of the galaxy, this
algorithm may not work and the iterations would not converge. In
such cases, one would have to resort to the straightforward but very
time-consuming algorithm described above.

4 MO D E L S

4.1 Description of the models

We constructed models with three types of halo. The first type is
models without halo. The second and third types are rigid NFW
haloes (Navarro, Frenk & White 1996, 1997) with density profile

ρ(r) = ρs

(r/rs)(1 + r/rs)2
, (4)

where ρs and rs are the characteristic density and scale radius of the
halo. The second type was found in N09 to be the best-fitting NFW
halo for this galaxy (see section 4.2.5 in N09). This is a relatively
light halo with parameters ρs = 0.0019 M� pc−2 and rs = 32 kpc,
i.e. a concentration parameter cvir ≈ 8 and a virial mass Mvir ≈
1012 M� (see N09). The third type is a relatively massive halo
with parameters ρs = 0.00522 M� pc−2 and rs = 26.5 kpc. N09
found that a model with such massive halo is a relatively poor fit
of the observational data (see their section 4.2.5). Since we use a
totally different approach, we include this model to test whether this
conclusion is method-dependent or not. This halo has cvir = 12.3
and Mvir = 2 × 1012 M�.

Another parameter of our models is the angle α defining the
inclination of the rotation axis (see Section 3). We construct models
for two values of the angle α, namely 0◦ and 45◦.

As we discussed in Section 2.2.3 the azimuthal variation of the
PNe velocity dispersion presents an interesting feature in the outer
parts. Namely, the velocity dispersions in areas close to the principal

axes (areas A1 and A5) are considerably smaller than in intermediate
areas (areas A2, A3 and A5). It is not clear whether such a feature
can be reproduced by an equilibrium axisymmetric system. So we
construct two sets of models. In the first ones, which we denote as
‘A’, we do not try to model this feature. Thus, we ask the iteration
method to fit the following quantities:

(i) the projected surface distribution of the particles (see Sec-
tion 2.1).

(ii) the radial profile of the mean velocity along the major axis
obtained from long-slit spectroscopy.

(iii) the radial profiles of the velocity dispersion along the ma-
jor and minor axes obtained from long-slit spectroscopy (see Sec-
tion 2.2.2).

(iv) the mean velocity in area A1 obtained from PNe kinemat-
ics. Note that we do not fix the mean velocity in other areas (see
Section 2.2.3).

(v) the velocity dispersion in the two PNe areas A1 and A2,
which are close to the major and minor axes, respectively.

For the second set of models, which we denote by ‘B’, we take
into account all available information. We therefore try to fit the
velocity dispersion in all five PNe areas separately. This introduces
a considerable extra difficulty because of the peculiar PNe velocity
distribution. As already mentioned, such a fit may, of course, not
be possible with models such as ours, i.e. with models that are both
axisymmetric and in equilibrium. It is, nevertheless, important to try
for at least two reasons. First it is useful in all cases to try and fit all
available data, since only that can tell us how far off the attempted
fit is from reality. Secondly, since we allow the model total freedom
regarding the velocity anisotropy, a fit may be found, in which case
an interesting effect of anisotropy would be revealed.

We will, therefore, discuss in total 12 models, which we will
denote as follows. The first symbol in the name of the model denotes
the set (A or B) and the second denotes the halo. Here ‘N’ is for
models without halo, ‘L’ is for models with a relatively light NFW
halo (ρs = 0.0019 M� pc−2, rs = 32 kpc) and ‘H’ is for models
with a relatively massive NFW halo (ρs = 0.00522 M� pc−2, rs =
26.5 kpc). The last number in the model name denotes the angle α

of the rotation axis inclination.
Let us now discuss in some detail how we construct these mod-

els. There is considerable freedom in choosing the initial model,
from which the iterative search will start. Our basic initial model
is a model with the given surface distribution of particles (gener-
ated using the rejection method), and with zero velocities. The y
coordinates of the particles were chosen as random numbers from
the interval [−1, 1] and the initial mass was chosen according to
M/LV = 1. These choices are of course totally ad hoc, but this
does not matter since other values, although starting the iterative
procedure (see Fig. 2) from a different initial model, lead to essen-
tially the same final model. In practice, there is only one significant
property of this initial model, namely whether it is rotating (or not).
Indeed, if we start the iterative search from a rotating, rather than
a non-rotating initial model, we will end up with a model that is
different, albeit not in all properties. A rotating initial model can be
constructed as follows. We first take the basic non-rotating initial
model and put it in the iterative procedure (see Fig. 2). After a rela-
tively small number of iterations, the model becomes close to steady
state. We then choose the axis of rotation and set, for all particles,
the azimuthal velocity with respect to the chosen axis equal to the
circular velocity. We have thus obtained a rotating initial model.

Models with α = 45 constructed from rotating and non-rotating
initial models are practically identical. Non-inclined models
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118 S. A. Rodionov and E. Athanassoula

(α = 0), however, are slightly different. In particular, there is a
difference in rotation in areas far from major axis. We note that we
fix the mean line-of-sight velocity only in areas close to major axis
(long-slit data along major axis and mean velocity in A1 area). It is
not surprising that models constructed from initially rotating models
rotate slightly faster in areas far from major axis. But this difference
is not sufficiently significant to warrant further discussion.

Here, we will discuss models constructed from the rotating initial
model. Each model was constructed as follows. At first we construct
a basic non-rotating initial model with N = 300 000 particles. We
put this model into the iterative procedure and make 100 iterations
with relatively low precision. This is possible because each itera-
tion is very short and errors do not accumulate (RAS09). We use the
fast N-body code GYRFALCON (Dehnen 2000a, 2002) with an inte-
gration step and a softening length equal to dt = 1/212 Gyr and ε =
0.05 kpc, respectively.3 The tolerance parameter for GYRFALCON was
set to θ t = 0.9 and the duration of each iteration to ti = 0.05 Gyr.
Using this constructed model, we create the rotating initial model
with N = 500 000 particles. Again, we put this model into the iter-
ative procedure and make 500 iterations. The integration step and
the softening length were taken as dt = 1/214 Gyr and ε = 0.02 kpc,
respectively. The duration of each iteration and the tolerance pa-
rameter for GYRFALCON were chosen as in the previous stage. The
final stage of our procedure is a free evolution over a time-scale of
3 Gyr (see Section 2), with parameters dt = 1/215 Gyr, ε = 0.02 kpc
and θ t = 0.6. We would also like to mention that before fixing the
parameters to these values, we made a number of tests, such as
increasing the number of particles up to tenfold, and did not find
any significant improvements in the fits.

The stellar mass-to-light ratio and relative mass of the dark
halo inside one and five effective radii, respectively, are shown in
Table 2. According to N09, the value of the effective radius Re =
48.2 arcsec ≈ 3.69 kpc. We use photometry in the V band, so for us
it is more straightforward to calculate the mass-to-light fraction in
V-band M/LV . To compare our results with N09 we also calculate
mass-to-light fraction in B-band M/LB. We assume that (B − V) is
0.65 for the Sun and 0.81 for NGC 4494 (see N09). We note that, if
we change the adopted distance, the mass-to-light ratio will also be
changed (see Section 2). For all models, there is considerably less
halo mass than stellar mass within 1Re. For models with a ‘light’
halo, the mass of the dark matter inside 5Re is approximately equal
to the mass of the stellar component, while for model with a ‘heavy’
halo the mass of dark matter inside 5Re is more than twice that of
the stellar component.

4.2 Discussion of the first set of models

4.2.1 Basic comparison

When constructing our first set of models, models A, we use only
velocity information from the vicinity of the principal axes. In par-
ticular, we take into account the velocity dispersion in PNe areas
A1 and A5 and ignore observations in areas A2, A3, A4. In so
doing we want to demonstrate that our method can be used to con-
struct galactic models following given observational constraints,
both photometric and kinematic.

3 We use a system of units where the unit of length is ul = 1 kpc, the
unit of velocity is uv = 1 km s−1, the unit of mass is um = 1010 M� and
consequently the unit of time is ut ≈ 0.98 Gyr. For simplicity, all time values
in this papers are presented with the assumption that ut = 1 Gyr.

Let us first discuss models AN0, AL0 and AH0, which have an
inclination angle α = 0, i.e. their rotation axis is parallel to the sky
plane. Our results for these models are summarized in Table 2 and
Figs 3 and 4. In order to increase the resolution and reduce the noise
in our figures we use a trick described by Athanassoula (2005b).
We stack 10 snapshots closely spaced in time, with 	t = 10 Myr,
and we calculate all values for this combined snapshot. This allows
us to reduce the noise in our plots quite significantly.

Since we include rotation, we compare models to observations
separately for mean velocities and for velocity dispersions, and do
not fold these two quantities into a single root mean square velocity
vrms = √

v2 + σ 2 (N09).
In general, there is a good agreement between the models and

the observational data which were used by the iterative method for
constructing them (Fig. 3). We get an excellent fit of the density
profile (panels a and b). We also get good agreement with the mean
velocities on the major axis except for radii within the centremost
region (panels d and e) and with the velocity dispersion on major and
minor axes (except for the bump at radii between 60 and 90 arcsec;
see panels f and g). All these agreements hold for all three models,
i.e. models AN0, AL0 and AH0. Also all our models fit very well
mean velocity of PNe in area A1 (panel h). Velocity dispersion in
PNe areas will be discussed later in this section. Let us now discuss
in more detail the parts where the models fail to reproduce the
observations.

(i) As many other ellipticals, NGC 4494 has a kinematically de-
coupled core. This is clear not only from the mean velocity, but also
from the velocity dispersion profiles along the major and minor
axes. Such features are believed to be out of equilibrium, e.g. due
to a merger with a small companion that reached the Galactic Cen-
tre by dynamical friction. Furthermore, the material in this region
may not be axisymmetrically distributed and/or have a different ori-
entation from the remaining galaxy. Arguments in favour of these
possibilities are that the density distribution near the centre does not
follow the Sérsic law and that the profile of the mean velocity does
not have the shape expected for axisymmetric mass distributions in
equilibrium. Departures from axisymmetry and from equilibrium
are beyond the scope of this paper. It is thus normal that neither
N09 – with a spherically symmetric non-rotating equilibrium model
– nor we – with an axisymmetric, rotating or non-rotating equilib-
rium model – reproduce the structure in the innermost part. Models
including kinematically detached cores are beyond the scope of both
studies.

(ii) The velocity dispersion profiles have a bump along both the
major and minor axes in the area between 60 and 90 arcsec (panels
f and g of Fig. 3). N09 considered the long-slit data as kinematical
constraints only up to 60 arcsec, where they considered them as
more accurate. But their plots clearly show that their models have
no such bump in the 60 to 90 arcsec region. We kept all the long-slit
data as constraints, but none of our models reproduced this bump. It
is possible that in NGC 4494 this bump is transient, presumably due
to some collision event and thus cannot be reproduced by the Jeans
method, or by our iterative method, which can only find equilibrium
solutions. This, together with the previous discussion on the centre-
most area, argues that some regions of NGC 4494 are not in exact
steady state, as often observed and as could be expected in the
framework of the �CDM paradigm.

(iii) The ellipticity of model AN0 agrees on average with the
mean observed value (panel c). However, models AL0 and AH0
have bigger ellipticity values than observed in their outermost parts.
This is partly due to the fact that these two models have slightly
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Dynamical models of NGC 4494 119

Figure 3. Comparison of models AN0, AL0 and AH0 with the observational data. (a) and (b) show the dependence of nxz on Rxz, where nxz is the number
of particles in concentric cylindrical shells and Rxz = √

x2 + z2. The thick solid line shows the profile calculated for a model with the input data prepared
as described in Section 2.1. Panel (c) shows the ellipticity profiles of the models projected on the sky plane (XZ plane), calculated with the IRAF task ELLIPSE.
Panels (d) and (e) show the profile of the mean velocity along the major axis and panels (f) and (g) the profiles of the velocity dispersion along the major and
minor axes, respectively. In (d) and (f), together with the long-slit data, we show PNe data in area A1 which is close to the major axis (see Fig. 1). The value
calculated for this area is assigned to radius (R(min)

xz +R
(max)
xz )/2 (Table 1). In panel (g), together with the long-slit data, we show the PNe data in area A5 which

is close to the minor axis. In panels (d), (f) and (g) the observed data are binned as described in Section 2.2.2. Panel (h) shows the mean line-of-sight velocity
calculated for the five PNe areas (see Section 2.2.3). Note that only the mean velocity in area A1 is used for constructing the models we use. Panel (i) shows the
line-of-sight velocity dispersion calculated for the five PNe areas. Only dispersions in areas A1 and A5 are used for the construction of A models. The radial
profiles for models AN0, AL0 and AH0 are given by solid, dashed and dotted lines, respectively. The open squares show the long-slit data, not binned for panel
(e), and binned as discussed in Section 2.2.2 for the remaining panels. The filled circles show the PNe data, which were used as observational constraints for
these models, and the X signs the remaining PNe data.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 111–126

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/410/1/111/1032084 by C
N

R
S - ISTO

 user on 30 N
ovem

ber 2021



120 S. A. Rodionov and E. Athanassoula

Figure 4. Radial profiles of velocity anisotropy for models AN0, AL0 and

AH0. The velocity anisotropy parameter is calculated as β = 1− σ 2
ϕ

σ 2
r

, where

σ r and σϕ are the velocity dispersion in the radial and the ϕ direction,
respectively, in a spherical coordinate system.

boxy isophotes at their periphery, which we believe to be connected
to the very high velocity anisotropy in their periphery (Fig. 4), i.e.
to be linked to the radial orbit instability. As already mentioned, our
algorithm for model construction includes a self-consistent N-body
evolution on a relatively long time-scale (Fig. 2), so that our models
can ‘feel’ such instabilities. Let us, however, underline that this
effect is relatively small and the isophote boxyness is rather subtle.
As a result the difference with the average ellipticity is of the order
of only 0.05, i.e. much smaller than the corresponding difference
for spherical models, such as those of N09.

We can conclude that our models reproduce well the projected
surface density, the mean apparent ellipticity, the mean velocities
and their dispersions (the latter though not over the full radial and
angular extent of the galaxy). The corresponding fits are no worse
than the N09 models. The discrepancies between our models and
observations occur mainly in regions whose data were not consid-
ered by N09.

Fig. 4 shows the radial profile of the velocity anisotropy for our
α = 0 models and clearly illustrates the degeneracy between mass
and anisotropy. These three models have different halo masses, but
the same stellar density profile and observed kinematics (Fig. 3) and
this is possible because they have different velocity anisotropies. As
was expected, radial anisotropy is increasing with halo mass (see
Fig. 4).

The inclined models AN45, AL45 and AH45 are considerably
different from the previously discussed AN0, AL0 and AH0 models,
as they have an intrinsic ellipticity of 0.35. The quality of the fits,
however, is very similar (Fig. 5).

Seen the size of the error bars and the small effect of the halo mass
on the density and velocity radial profiles, it is not possible from the
above comparisons alone to rule out any of the models, or even to set
a strong preference to one rather than another. The only exception
is the ellipticity profiles, which are considerably better fitted by the
haloless models AN0 and AN45 (Figs 3 and 5). On the contrary,
all models with dark halo have in their outer parts slightly boxy

isophotes (presumably due to their higher velocity anisotropy) and
a higher than mean observed ellipticity. In our modelling, however,
we use only the mean value of the ellipticity and not the full profile.
Also we do not use high-order isophote shape parameters, so we
enforce our models to have precise elliptical isophotes. NGC 4494
has a negative a4 isophote-shaped parameter on periphery, i.e. boxy
isophotes (see appendix A in N09). So we cannot rule out models
with dark haloes relying only on the fact that they have slightly
boxy isophotes in their outer parts.

Models without dark halo fit perfectly the velocity dispersion of
the PNe that have been used as observational constraints, i.e. in
regions close to the major and minor axes [see panel (i) of Figs 3
and 5]. Model AL45, however, with a relatively light dark halo, also
fits the observational data along the major and minor axes rather
well, while AL0 fits only slightly worst [see panels (i) of Figs 3 and
5]. Seen the error bars, even model AH45 with a relatively massive
dark halo cannot be ruled out.

4.2.2 Higher-order moments of the velocity distribution

When we constructed the models, we did not use the higher-
order moments of the velocity distribution as observational con-
straints. It is thus interesting to compare the third- and fourth-order
moments of the velocity distribution of our models to those of
the observational data. Moreover, such moments may help break
the mass–anisotropy degeneracy and were used by N09 to argue
for the need of a low-mass halo. At the periphery of the galaxy, we
have kinematical information only from the PNe. We thus calcu-
late the skewness and the kurtosis in the five PNe areas (Fig. 1) and
compare them to the corresponding model values, calculated for our
models as described in Appendix B. It should, however, be noted
that the number of PNe is very small and that this affects the higher-
order moments more. Thus, even assuming a Gaussian velocity dis-
tribution, the uncertainties for skewness and kurtosis are very big,
while without this assumption the uncertainties are formally infinite
(Appendix B).

One of the advantages of our models is that we can easily calculate
any parameters for them. This will allow us now to calculate for
our models exactly the same high-order moments of the velocity
distribution as for observations. We can thus calculate two Gauss–
Hermite moments (h3 and h4) along the major and minor axes of
the galaxy, as described in Appendix A, and compare them with the
corresponding profiles from long-slit spectroscopy. The results are
given in Figs 6 and 7 for α = 0 and α = 45, respectively. These
figures clearly show which of the higher-order moments depend on
the halo mass and in which way.

The most interesting of the Gauss–Hermit moment profiles is
probably the h3 profile along the major axis. This is visibly different
for models with different halo mass [see panels (a) of Figs 6 and
7], the most massive halo having the highest h3 values and AN0
the lowest. The best fit seems to be for the intermediate-halo mass.
To establish this we calculated the χ 2, excluding the region of the
kinematically decoupled core, and normalized it by the number of
data points. We find that for α = 0, the values are 3.9, 0.4 and 5.7 for
models with no halo, light halo and heavy halo, respectively. The
corresponding numbers for α = 45 are 2.4, 0.8 and 1.8, respectively.
These numbers show a preference for the models with light halo,
and argue, albeit weakly, for a preference for α = 0. The profile of h4

along the major axis also shows some dependence with halo mass,
but much less so than the corresponding h3 profile [panel (d) of
Figs 6 and 7]. Profiles along the minor axis for both Gauss–Hermite
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Dynamical models of NGC 4494 121

Figure 5. As in Fig. 3, but for models AN45, AL45 and AH45.

moments show no clear dependence on halo mass [panels (b) and
(e) of Figs 6 and 7], except for the h4 profiles in the outermost parts,
where, however, there are no long-slit data. In the central part of the
model, i.e. inside ∼30 arcsec, all our models have h4 values which
are clearly less than those of the observations for both axes [Panel
(a) of Figs 6 and 7] and this is true also for the h3 major axis profiles.
This could again be linked to the kinematically decoupled core.

The kurtosis values calculated in each of the PNe areas for all
‘A’ models are, for practical purposes, almost the same [panels
(f) in Figs 6 and 7], the differences being much smaller than the
observational errors. The situation with the skewness is the same

[panels (c) in Figs 6 and 7]. We therefore do not believe that the
comparisons in panels (c) and (f) of Figs 6 and 7 can be used to
distinguish between models of different mass.

To summarize, the h3 profiles along the major axis provide some
arguments in favour of models with a light halo (particularly AL0
and AL45), in good agreement with what was found by N09.

4.3 Discussion of the second set of models

As discussed in Section 2.2.3, the velocity distribution of the PNe
has an interesting feature, namely that the velocity dispersion near
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122 S. A. Rodionov and E. Athanassoula

Figure 6. Comparison of higher moments of the velocity distribution of models AN0, AL0 and AH0 with the observational data. Panels (a) and (b) show
profiles of the h3 Gauss–Hermite moment along the major and minor axes, respectively (calculated as described in Appendix A). Panel (c) shows an estimate
of the skewness G1 calculated for the five PNe areas (calculated as described in Appendix B). (d) and (e) show profiles of the h4 Gauss–Hermite moment along
the major and minor axes, respectively. (f) shows an estimate of the kurtosis G2 calculated for five PNe areas. These estimations of the model skewness and
the kurtosis are ‘reduced’ to a sample size equal to the number of PNe in the corresponding areas (see Appendix B). The error bars in panels (c) and (f) were
calculated assuming a Gaussian distribution function (see Appendix B). The symbols and line styles are as in Fig. 3.

the principal axes (regions A1 and A5) has much smaller values than
the velocity dispersions in the intermediate areas (regions A2, A3
and A4). When building the models presented in the previous sec-
tion, we did not use this as an observational constraint and ignored
observations in intermediate areas. As results all our ‘A’ models
have almost the same dispersion in all PNe areas [see panels (i)
in Figs 3 and 5], so they obviously fail to reproduce observational
data in intermediate areas. Here, we consider more realistic models
(‘B’ models) for the construction of which we used all available
observational data, to see whether the tangential variation of the
velocity dispersion can be reproduced by rotating axisymmetric
models.

In general, both sets of models are very similar, with differences
only at the periphery of the galaxy. Furthermore, the quality of the
fit to the observation data is also similar. Thus, to save space, we
show only a very restricted set of figures. Fig. 8 shows the velocity
dispersion calculated in the five PNe areas for our B models.

We find that only non-inclined models with a dark halo (i.e. mod-
els BL0 and BH0) reproduce this feature, and even only partially.
Namely, the velocity dispersions near the principal axes (areas A1
and A5) are too high, while at the middle (region A3) it is marginally
too low. Thus, we were able to qualitatively reproduce the form of
the azimuthal variation, but not quantitatively, since the model am-

plitude is lower than necessary to fit the observations. For these
models, we cannot make specific comparisons with N09, because
the latter did not try and reproduce this feature.

We can thus conclude that, although our models reproduce most
of the observed features well, they fail to fully reproduce the velocity
distribution of PNe. We will discuss possible explanations in the
next section.

5 C O N C L U S I O N S

We used our iterative method (RAS09) to construct dynamical mod-
els of NGC 4494. One of the advantages of our method is that the
models are produced in the form of N-body snapshots with equal-
mass particles, which can be directly used in N-body simulations.
This, for example, allows us to directly check whether the con-
structed model is in steady state and to calculate any quantities, or
parameters of these models, which can then be compared to obser-
vations. As already discussed in Section 3 (see also Fig. 2), after the
main part of the iterative method, we let our models evolve freely
on a time-scale of 3 Gyr, and then we calculate the quantities to be
compared with the observational data. Since the aim of this evolu-
tion is to check whether the models we constructed are indeed in
steady state, we used the same halo as when building the model, i.e.
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Dynamical models of NGC 4494 123

Figure 7. Comparison of higher moments of the velocity distribution of models AN45, AL45 and AH45 with observations. The values shown are the same as
in Fig. 6.

Figure 8. Comparison of the line-of-sight velocity dispersion calculated for the five PNe areas in the ‘B’ models with observational data. Panel (a) refers to
models BN0, BL0 and BH0 and panel (b) to models BN45, BL45 and BH45.

a rigid halo. This evolution clearly showed that all our models are in
a steady state. For the sake of completeness, however, we also tried
simulations with a live halo and find no considerable differences
from the rigid halo simulations, arguing that in these cases there is
not much interaction between the dark and the stellar matter.

We used the observational data given by N09, namely surface
photometry, stellar kinematics along the major and minor axes as
obtained by means of long-slit spectroscopy, and velocities and
positions of 255 PNe (see N09). We use PNe data only in the
outer part of the galaxy where long-slit data are absent. The surface
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124 S. A. Rodionov and E. Athanassoula

photometry gives us the surface distribution of particles but not the
total mass of the system because the mass-to-light ratio is unknown.
Our algorithm automatically adjusts the total mass of the model
(Section 3).

We constructed models with three types of halo, all of which were
already discussed in N09. The first type is models without halo. The
second type of halo is a relatively light NFW halo, which N09 found
to be the best-fitting NFW for NGC 4494. The third type of halo
is a relatively heavy NFW halo. We, furthermore, constructed two
sets of models: models ‘A’ and models ‘B’. These two sets have
only one difference. When constructing models ‘A’ we used as
observational constraints only the PNe in areas close to the principal
axes, neglecting information on the velocity distribution of the PNe
in intermediate areas. On the contrary, in order to construct models
‘B’ we used all available information.

One important goal in making the ‘A’ models was to demonstrate
the ability of our method to construct equilibrium models with given
observation constraints. This was fully achieved. In general, there
is a good agreement between our models and the observational data
concerning the projected surface density, the mean apparent ellip-
ticity, the mean velocities and their dispersions (except for specific
radial ranges, where some non-equilibrium or non-axisymmetric
structure could be present in NGC 4494). We showed that our mod-
els reproduce observation data not worse than N09 models. But our
models have the added advantage that they are live, non-spherical,
rotating N-body systems.

A further goal was to see whether it was possible to set constraints
on the dark halo mass with our models. If we do not take into account
the high-order moments of the velocity distribution, then the best
models are the models without dark halo. This, however, is only
a slight preference and models with a light halo and even models
with a heavy halo cannot be rejected. It is thus necessary to try
higher-order moments. We found that the major axis profile of the
third-order moments shows the strongest dependence on the halo
mass and that the best fit was for the models with the light halo.
This is in agreement with what N09 found for their models, though
with a different technique.

N09 found that a heavy halo gives worst fits to the data, without
referring to higher-order moments, i.e. from the root mean square
velocity profile, which is a combination of the mean velocity and
the dispersion. This, however, is not the case for our models. For
example, model AH45, which has a heavy halo, fits all low-order
moments of the velocity distribution very well. These two results
taken together show that there are no simple spherical models fitting
the lower order models, but that there can well be more general
models that do. Thus, our model which is axisymmetric, rather than
spherical, rotating and inclined with respect to the line of sight has
no difficulty with the lower-order moments. When we place the
bar higher, i.e. when we ask our models to fit also the third and
fourth-order moments, we find that the models with heavy haloes
do worse than the models with lower mass haloes, as we described
in Section 4.2.2. This does not necessarily mean that there are no
heavy halo models that fit the third- and fourth-order moments. It
can simply mean that it is necessary to consider a yet more general
model, e.g. a triaxial one, in order to get such a fit. In other words,
one has to be careful not to extrapolate a given result further than
the class of models for which it was derived. This, of course, makes
it very difficult to set any strong constraints to the halo mass in
NGC 4494, and to ellipticals in general.

N09 found that some halo is required by comparing the kurtosis
of their model with that of the PNe velocity distribution at the
outermost parts of NGC 4494. Again, this is not the case for our

models. It is the h3 radial profile along the major axis that proved in
our case to be more sensitive to the halo mass, and thus allowed us
to set some preference for the light halo model, in agreement with
what was found by N09 for the fourth-order moment.

When constructing and analysing the ‘A’ models we ignore the
PNe data at angles intermediate between the major and the minor
axes. Since this is rather ad hoc, we built the ‘B’ models, in which
all PNe data were used as observational constraints. By doing so,
we wanted to test whether we could make models which repro-
duced the azimuthal variation of the velocity dispersion, i.e. which
have relatively low values near the principal axes and considerably
higher ones in between. Although we were able to built models that
qualitatively reproduce this feature, we were unable to reproduce
it quantitatively, i.e. our models always display a lower amplitude
of this variation than the observations. There are several possible
explanation to this.

It should first be noted that the observational data at the periphery
of NGC 4494 is very sparse. We have only around 15 PNe in each of
our PNe areas (see Table 1). So even the formal uncertainties of the
PNe dispersions in these areas are rather big. Moreover, there could
still be some contamination in the PNe sample (see section 2.2 in
N09), which would further increase the uncertainties. As a result,
there is still a considerable probability that the observations do not
contradict, e.g. model BL0 (see Fig. 8a, error bars are one σ ).

There is, of course, always the possibility that a model which
fully reproduces the observations exists, but that our method failed
to construct it. We made very extensive searches, and we do not
believe that this possibility is likely, but, strictly speaking, we cannot
exclude it. Furthermore, the observations point to other, more likely
alternatives, which we discuss below.

(i) In our models the halo is spherical. It is likely that models with
an axisymmetric or a triaxial halo would reproduce observations
better. Note, however, that this alternative cannot help the models
without a dark halo.

(ii) Our models are axisymmetric, while, as discussed in Sec-
tion 2.2.3, the velocity distribution in the galaxy is not fully ax-
isymmetric. It would thus have been better to consider more gen-
eral types of models, for example, triaxial models or models with
even less symmetry. This, however, would introduce further free
parameters and is beyond the scope of this paper.

(iii) It is possible that the outer parts of NGC 4494 are not in
a steady state. As we already discussed, there is evidence that
NGC 4494 is not exactly in a steady state. If there are transient
features in the innermost and perhaps in part some of intermediate
part of the galaxy (the kinematically decoupled core and between 60
and 90 arcsec), then such features can also be present at its periphery.
Moreover, the dynamical time-scale at the periphery is much longer
than in the intermediate part, so that any non-equilibrium structures
will tend to equilibrium much slower than in regions further in.

(iv) Seen the low number of PNe in the periphery of the galaxy,
the uncertainties are very large and therefore the constraints in these
regions very loose. It might therefore not be necessary to dismiss a
model if the fits in these regions are poor.

Any of the three first alternatives would necessitate a more general
model than what we have considered here. Triaxial models could, at
least in principle, be built, but the number of free parameters would
increase so that more observational constraints would be necessary.
However, neither our techniques, nor other techniques discussed so
far can build non-equilibrium models. This could be done only by
N-body simulations, which, however, would have an extraordinarily
unwieldy free parameter space.
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To summarize, we were able to reach our first goal, i.e. we showed
that our iterative method (RAS09) can be used for building models
with given observational constraints. Concerning our second goal,
i.e. to set strict constraints on the halo mass of NGC 4494, we
can only claim a more limited success. Comparing the third-order
moments of our model velocity distribution with the observations,
we find that it is the light halo model that gives the best fit. Even
this, however, does not fit all available data, and it could be that
a more general model (e.g. triaxial) is necessary. It is, however,
not possible to extend the preference of light haloes to these more
general models, without actually making them and analysing their
properties. It could thus well be that it is another type of model
(such as with no halo, or with a heavy halo) that gives the best fits
in such a case. Thus the present set of models, although showing
a preference for a light halo, cannot set a very strict constraint to
the halo mass of NGC 4494, particularly seen the sparseness of the
PNe in the outermost parts.
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APPENDI X A : CALCULATI ON O F
G AU S S – H E R M I T E M O M E N T S IN TH E C A S E
O F N-BODY SYSTEMS

Let us now describe how we calculate the Gauss–Hermite mo-
ments in the case of N-body systems. Both van der Marel &
Franx (1993) and Gerhard (1993), independently, discuss the use of
Gauss–Hermite moments to measure the deviations of the observed
velocity distribution from a Gaussian, but with different normaliza-
tion of the Hermite polynomials. Here, we use the normalization of
Gerhard (1993).

The Hermite polynomials are defined as

Hn(x) = (−1)n ex2 dn

dxn
(e−x2

). (A1)

The sequence of Hermite polynomials satisfies the recursion

Hn+1 = 2xHn − 2nHn−1 (A2)

and the first three Hermite polynomials are

H0 = 1, H1 = 2x, H2 = 4x2 − 2. (A3)

The set of functions defined as

un(x) = (2n+1n!π)−1/2Hn(x) exp(−x2/2) (A4)

obey the orthogonality relation∫ +∞

−∞
un(x)um(x)dx = δn

m

2π1/2
. (A5)

Thus this set of functions is a complete orthogonal system.
The Gauss–Hermite moments for some function l(v) are defined

as

hn = 2π1/2γ −1
h

∫ +∞

−∞
l(v)un(w)dv , w ≡ (v − Vh)/σh, (A6)

where Vh, σ h �= 0 and γ h �= 0 are free parameters. The function l(v)
can be approximately calculated by means of a truncated Gauss–
Hermite series

l(v) ≈ γh

σh

Nh∑
i=0

hiui(w), (A7)

where Nh is the number of terms used (see Gerhard 1993; van der
Marel & Franx 1993 for more details).

In the case of an N-body system, we need to solve the following
problem. We have the set of values v1, v2, . . . , vN , and we need to
calculate the Gauss–Hermite moments of the distribution function
l(v) of these values. For example, if we need to calculate Gauss–
Hermite moments for the line-of-sight velocity distribution in some
area of an N-body system then vi is the line-of-sight velocity of
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each particle in this area. In this case, the Gauss–Hermite moments
for the function l(v) can approximately be calculated as

hn = 2π1/2

γhN

N∑
i=1

un(wi) , wi ≡ (vi − Vh)/σh. (A8)

We use this equation as the definition of Gauss–Hermite moments
for our discrete case.

To compare Gauss–Hermite moments with the observations, we
need to choose the free parameters Vh, σ h and γ h as observer would
do. These free parameters should be chosen so as to give h0 = 1,
h1 = h2 = 0 (van der Marel & Franx 1993). From (A3), (A4), (A8)
for n = 1 and the condition h1 = 0, we have

h1 = 0 ⇔ Vh =
∑N

i=1 vi exp
(−w2

i /2
)

∑N
i=1 exp

(−w2
i /2

) . (A9)

From (A3), (A4) (A8) for n = 2 and the condition h2 = 0, we have

h2 = 0 ⇔ σ 2
h = 2

∑N
i=1(vi − Vh)2 exp

(−w2
i /2

)
∑N

i=1 exp
(−w2

i /2
) . (A10)

We note that wi ≡ (vi − Vh)/σ h, so (A9) and (A10) cannot be solved
directly. We solve (A9) and (A10) together, by means of iterations.
Initially, we set Vh equal to the mean value of vi, σ h equal to the
standard deviation of vi and γ h = 1. A single iteration is as follows

V
(new)
h =

∑N
i=1 vi exp

(−w2
i /2

)
∑N

i=1 exp
(−w2

i /2
)

σ
(new)
h =

(
2

∑N
i=1(vi − Vh)2 exp

(−w2
i /2

)
∑N

i=1 exp
(−w2

i /2
)

)1/2

. (A11)

After finding the appropriate Vh and σ h values, we can easily cal-
culate the last free parameter as γ new

h = h0.

APPENDIX B: CALCULATION O F SKEWNESS
AND KURTOSIS FOR A SMALL SAMPLE

In the outer parts of the galaxy, we have information about the line-
of-sight velocity distribution only from PNe observations. Our task
is to compare the velocity distribution of the PNe in some area on
the sky plane with the velocity distribution in a constructed N-body
model (see Fig. 1). More precisely, our task can be formulated as
follows. We have two random samples which we denote here as
‘A’ and ‘B’. Sample ‘A’ with size na consists of the line-of-sight
velocities of the PNe in the selected area. Sample ‘B’ with size nb

consists of the line-of-sight velocities of model particles in the same
area. We need to assess the probability that these two samples were
generated from the same distribution function. This can be achieved
by comparing moments calculated for these two samples.

Here, we will discuss the comparison of the skewness and kurto-
sis calculated for these two samples. In our case the number of PNe
in a given area (the size of the sample A) is small, not exceeding 18
(Table 1). On the other hand, the size of sample B, i.e. the number of
particles in a given area of constructed model, is rather large, and is
about 104. So we need to compare high-order moments calculated
for small and for large samples. Of course, for a sample as small as
A the uncertainties of the estimators of the higher-order moments
are rather large. Moreover, we cannot calculate these uncertainties

without making an assumption about the distribution function. If we
assume, for example, a Gaussian distribution, then we can calculate
these uncertainties (Joanes & Gill 1998), but if we do not assume a
priori any distribution function then the uncertainties are formally
infinite. Furthermore, in the general case all commonly used esti-
mators of the sample skewness and kurtosis are biased (Joanes &
Gill 1998). For small samples this bias can be very large, especially
for the kurtosis (see tables 2 and 3 in Joanes & Gill 1998). Conse-
quently, for sample A the bias can be rather large. The bias depends
on the size of the sample and for sample B (which is rather large) the
bias is negligibly small. If both of our samples are generated from
the same distribution function then the expected values of kurtosis
(and skewness) for these two samples can differ significantly. We
can solve this problem reducing sample ‘B’ to a smaller sample
size.

Let us now describe how we calculate kurtosis. The skewness is
calculated in the same way. Let us have some estimator of sample
kurtosis. For sample A we simply calculate the value of kurtosis Ka

using the chosen estimator. For sample B we calculate the value of
the kurtosis ‘reducing’ the sample size to that of sample A, i.e. na.
We randomly get na members from sample B and calculate for this
sub-sample the kurtosis k1. We repeat this Nk times and calculate k1,
k2 . . . kNk

(in this article Nk = 100 000). We denote the mean value
of ki as K

na
b and the standard deviation of ki as σ

na
b . Let fb(x) be

the distribution function corresponding to sample B. For the chosen
kurtosis estimator we can construct the distribution function gb(x)
of the sample kurtosis for samples with size na generated from fb(x).
We note that K

na
b is approximately equal to the expected value of

gb(x) and σ a
b is approximately equal to the standard deviation of

gb(x). For example, if the sample A was also generated from the
distribution function fb(x), then K

na
b would be the expected value

and σ
na
b the standard deviation of the kurtosis of sample A.

We use Ka as measure of the kurtosis of sample A, Ka
b as measure

of the kurtosis of sample B and σ a
b as measure of the standard

deviation. We note that the main value for us is τ = |Ka −Ka
b |/σ na

b .
Joanes & Gill (1998) discussed three different estimators of the
kurtosis. For our analysis, however, it does not matter which of the
three we use because it can be proven that the value of τ is the same
for all of them. To calculate the sample skewness and the sample
kurtosis we use the estimators G1 and G2, discussed in Joanes &
Gill (1998). These estimators are unbiased in the case of a normal
distribution.

As we noted above, we cannot calculate uncertainties of estima-
tors of kurtosis or skewness without making an assumption about
the distribution function. The value σ a

b is the standard deviation of
the estimation of the kurtosis or the skewness for sample A (obser-
vation) assuming that it is from the same distribution function as
sample B (model). So this value depends on the model. We also can
calculate the standard deviations σ a

n of the estimation of kurtosis
or skewness for sample A assuming that its distribution function
is Gaussian (Joanes & Gill 1998). For our models in general, the
value of σ a

n is less than that of σ a
b . The difference, however, is not so

strong. The maximum difference is σ a
b /σ a

n ≈ 1.3 and σ a
b /σ a

n ≈ 1.4
for the skewness and the kurtosis, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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