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BIRATIONAL GEOMETRY OF FOLIATIONS ASSOCIATED TO SIMPLE

DERIVATIONS AND GENERALIZATIONS

GAËL COUSIN, LUÍS GUSTAVO MENDES, AND IVÁN PAN

Abstract. We propose a study of the foliations of the projective plane induced by simple
derivations of the polynomial ring in two indeterminates over the complex field. These corre-
spond to foliations which have no invariant algebraic curve nor singularities in the complement
of a line. We establish the position of these foliations in the birational classification of foliations
and prove the finiteness of their birational symmetries. Most of the results apply to wider classes
of foliations.

1. Introduction and results

A simple derivation (of the ring C[x, y]) is a polynomial vector field of C2 without zeroes and
without algebraic solutions.

The study of simple derivations is an active area of research in Algebra (e.g. [Sha77, Jor81,
Now94, MMON01, Cou03, BLL03, Now08, GL12, Kou12]). Most of these papers are dedicated
to the proof of simplicity of (families of) examples.

For any derivation D, the isotropy group Aut(D) is composed by the C-automorphisms ρ :
C[x, y] → C[x, y] which verify

ρD = Dρ.

Although there exist derivations with infinite group Aut(D), the main result of [MP16] is that
Aut(D) is trivial for any simple derivation.

Take ρ ∈ Aut(D), R : C2 → C2 the polynomial automorphism associated to ρ and let ωD be
the dual 1-form to the vector field D = f ∂x + g ∂y (i.e. ωD = g dx − f dy). Then ρD = Dρ is
equivalent to

R∗(ωD) = Jac(R) · ωD

where Jac(R) ∈ C∗ is the Jacobian determinant of R. A less restrictive condition is that

R∗(ωD) = c · ωD,

for some c ∈ C∗ (depending on R). This means that R preserves the algebraic foliation FD of
C2 associated to D (or to ωD), see Remark 2.1.
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We denote Pol(FD) the group consisting of polynomial automorphisms of C2 which preserve
the foliation FD. There is a natural homomorphism

Aut(D) →֒ Pol(FD).

In Section 8 we show that for each n ≥ 2 and B > 0 there are foliations FD of C2 associated to
simple derivations with an element T ∈ Pol(FD) of order n and degree greater or equal than B.

Let us denote F the foliation of the projective plane P2 = C2 ∪ L∞ which is the extension of
FD in C2. All along the paper, if D is a simple derivation, both FD in C2 and its extension F
in P2 are called foliations associated to simple derivations.

But the reader must be warned that, even if FD has no singularity, some singularity of F
along the line at infinity L∞ is unavoidable, see [Bru00, Prop. 1 p. 21]. Also beware that the
line at infinity L∞ may be invariant by F .

Denote Bir(F) the group of birational transformations of P2 which preserve a foliation F . If
F extends a foliation FD of C2, then there is a natural homomorphism

Pol(FD) →֒ Bir(F)

whose meaning is that a (non-linear) polynomial automorphism of C2 extends to a special type
of birational map of P2. Namely, a birational map with a unique (proper) point of indeterminacy
p ∈ L∞, whose net effect in P2 is to replace L∞ by the strict transform of the last exceptional
curve introduced in the elimination of the indeterminacy point.

Our first result is the following generalization of [MP16, Thm. 1].

Theorem A. Let F be a foliation associated to a simple derivation. The group Bir(F) is finite.

It is actually derived from next result which determines, in particular, the positions that
foliations associated to simple derivations may occupy in the birational classification of foliations,
cf. [Bru00, McQ01, Men00]. This classification is based on the birational invariant of foliations
called Kodaira dimension, denoted κ(F), whose range is κ(F) ∈ {−∞, 0, 1, 2}, see Section 2.

All along the paper we use the expression reduced singularity in the sense of Seidenberg’s
reduction of singularities, cf. Section 2. By a rational curve of C2 we mean an algebraic curve
whose projective closure has geometric genus zero. And by a Riccati foliation on P2 we mean
a foliation which, up to a birational modification of P2, is everywhere transverse to the general
fiber of a rational fibration; on says the fibration is adapted to such a foliation.

Theorem B. Let F be a foliation of the projective plane such that the restriction F|C2 has no
invariant rational curve.

i) Then κ(F) ≥ 0;
ii) If F|C2 has at most reduced singularities, then κ(F) ≥ 1;
iii) If F|C2 has no invariant algebraic curve, then κ(F) = 1 if and only if F is a Riccati foliation.
iv) The cases κ(F) ∈ {1, 2} are realized by foliations associated to simple derivations.
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Remark that case B− iii) includes the foliations associated to Shamsuddin derivations. Note
also that Theorem B applies to a class of foliations which is larger than the one of foliations asso-
ciated to simple derivations. In Section 6 we study the foliations associated to examples of simple
derivations found throughout the literature and discuss their birational equivalence. In Section 8,
we propose a construction of simple derivations D with arbitrary large (finite) Pol(FD).

Acknowledgements. We thank Charles Favre and Jorge Vitório Pereira for usefull discussions.

2. Preliminaries on foliations

The paper relies on concepts and results of the theory of singularities and birational geometry
of foliations on algebraic complex surfaces. We present the basic facts in this preliminary section
but along the paper, when necessary, we refer the reader to the corresponding sections of [Bru00]
or [Bru03], where the theory is masterfully explained by Marco Brunella.

First definitions. On a smooth complex surface X, a foliation F is given by an open covering
(Ui) of X and local vector fields vi ∈ H0(Ui, TX) with isolated zeroes such that there exist non
vanishing holomorphic functions (gij) on the intersections Ui ∩ Uj satisfying

vi = gijvj. (1)

The cocycle (gij) defines a line bundle T ∗F on X, its dual is denoted TF . Relation (1) means
that the family (vi) defines a section of T ∗F ⊗ TX and hence a sheaf map TF → TX. Two
data ((Ui), (vi)), ((U

′
j), (v

′
j)) are said to define the same foliation if the images of the associated

sheaf maps are the same. The line bundle TF is called the tangent bundle of the foliation and
its dual T ∗F is the cotangent bundle of F . The locus defined by the vanishing of the local vector
fields (vi) is called the singular locus of F , denoted Sing(F). As defined, the line bundle TF is
not canonically attached to F , but only its isomorphism class in Pic(X).

One may also consider foliations on normal singular complex surfaces. They are defined by
the datum of a foliation on the complement of the singular locus of the surface.

Rational vector fields and 1-forms. If X is smooth projective, TF possesses a non trivial rational
section and F can be given by a rational vector field X , hence in Pic(X) we have

TF = OX(div(X )).

On a suitable (Zariski) open covering the local vector fields vi are obtained by chasing the zeroes
and poles of X : vi = hX|Ui

, for a well chosen regular function h on Ui. This is how we associate

a foliation to a simple derivation: we have a preferred projective compactification of C2, namely
P2 = C2 ∪ L∞, (x, y) 7→ [1 : x : y], and a polynomial vector field on C2 extends to a rational
vector field on P2.

One can also define a foliation by local holomorphic 1-forms with isolated zeroes (ωi) that
vanish on the local vector fields (vi). If X is projective, such a family (ωi) is obtained by locally
chasing the zeroes and poles of a non trivial rational 1-form. Hence, on a smooth projective
surface, a foliation may be defined by either a non trivial rational 1-form or a a non trivial
rational vector field.
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Curves and foliations. A curve C is termed invariant by F or F-invariant if it is tangent to the
local vector fields defining F . When a compact curve C ⊂ X is not F-invariant we have the
very useful formula

T ∗F · C = tang(F , C) −C · C,

where tang(F , C) is the sum of orders of tangency between F and C, cf. [Bru00, Prop 2 p. 23].

If X = P2 is the projective plane, the degree of F is deg(F) ∈ Z≥0 defined as the number of
tangencies of F with a general projective line. In this case

T ∗F = OP2(deg(F) − 1).

Birational maps and foliations. Let X and Y be projective surface with at most normal singu-
larities and φ : X 99K Y is a birational map. If we have a foliation F on X given by the rational
vector field X , we can define a foliation φ∗F on Y as the one defined by the rational vector
field φ∗X . Conversely, from a foliation G on Y , one defines φ∗G := (φ−1)∗G. We say that the
foliations F and φ∗F are birationally equivalent and that φ∗F is a (birational) model of F .

Remark 2.1. In the case φ : P2
99K P2 is induced by a polynomial R automorphism of C2, if F

is given by a polynomial vector field X on C2, with isolated zeroes, the condition φ∗F = F is
tantamount to R∗X = hX ; for a suitable rational function h. However, as R is a polynomial
automorphism, the vector R∗X is a polynomial vector field on C2, with isolated zeroes. In
particular, the factor h is a constant c ∈ C∗.

Singularities. In a neighborhood of a singular point p ∈ X with local centered coordinates
x, y the foliation F is defined by a holomorphic vector field v = f(z, w) ∂

∂z
+ g(z, w) ∂

∂w
; with

f(0, 0) = g(0, 0) = 0. Denote λ1, λ2 the eigenvalues of the linear part (first jet) of (z, w) 7→
(f(z, w), g(z, w)). We say p is a reduced singularity of F if at least one of them, say λ2 is not
zero and if λ := λ1/λ2 6∈ Q>0; otherwise the singularity is non-reduced. A special case of non-
reduced singularity occurs when the linear part is the identity, in this case λ = 1, and we say p
is a radial point.

If λ 6= 0 we say that the singularity is non degenerate; otherwise we call it a saddle-node.

We say p is a Morse point if it is non degenerate and, in suitable coordinates, admits a local
holomorphic first integral of the form φ(z, w) = z2 + w2 + h.o.t.; note that for Morse points
λ = −1.

Reduction of singularities, relatively minimal models. A foliation F on a smooth surface is said
to be reduced if all its singularities are reduced. After Seidenberg [Sei68], foliations on smooth
projective surfaces always admit a reduction of singularities: a birational morphism Σ : M → X
obtained as a composition of blowing-ups such that F := Σ∗F is a reduced foliation. Such a
reduced model F is not unique. Indeed, by performing a blowing-up at either a non-singular point
or a reduced singularity the transformed foliation remains reduced. Doing such an “unnecessary”
blowing-up creates a foliated exceptional curve or F-exceptional curve: a rational curve of self-
intersection −1 whose contraction to a point q yields a foliated surface with at most a reduced
singularity at q. A reduced model F is called a relatively minimal model when it is free of
F-exceptional curves.
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Kodaira dimension. The Kodaira dimension κ(F) of F is defined by

κ(F) := lim sup
n→+∞

1

log n
log h0((T ∗F)⊗n).

This is a birational invariant with values in {−∞, 0, 1, 2} which is independent on the particular
reduced model. If κ(F) = 2, we say F is of general type. The birational classification of
foliations concerns the cases κ(F) ∈ {−∞, 0, 1}.

Zariski decomposition. If F is not birationally equivalent to a rational fibration, Miyaoka and
Fujita’s results assure that the cotangent line bundle T ∗F admits a so-called Zariski decompo-
sition [Bru00, p. 100]

T ∗F ′ ≡ N+P,

where

• ≡ means numerical equivalence,
• the positive part P is a nef Q-divisor (i.e. P · C ≥ 0 for every curve C)
• the negative part N =

∑
j αjNj is a Q+-divisor (αj ∈ Q+) and each connected compo-

nent of ∪jNj is contractible to a normal singularity.
• P ·Nj = 0, ∀j.

Nef model. If F is a relatively minimal (reduced) model of F and if F is not a rational fibration,

McQuillan’s theorem [Bru00, Thm.1, Chap. 8] assures that the support of N in T ∗F
′
≡ N+P

is a union of the so-called maximal F-chains.

A F-chain is a chain of invariant rational (−n)-curves, with n ≥ 2, which starts with a curve
containing just one singularity of F and where other components, if it has more than one, contain
two singularities, all singularities being reduced non-degenerate. The contraction of a F -chain
produces a rational surface singularity, more precisely, a cyclic quotient singularity. The induced
foliation on the resulting singular surface is called a nef model of F .

3. Proof of Theorem B − i)

The birational classification of foliations with κ(F) = −∞ ([Bru03] or [McQ01]) asserts that
this class is composed by rational fibrations and by foliations birationally equivalent to the so-
called Hilbert modular foliations. Hence, in order to prove the part (i) of Theorem B, we only
need to exclude Hilbert modular foliations.

We recall this notion. A Hilbert modular surface is defined (following [Bru03, p. 25]) as a
(possibly singular) projective surface Y containing a (possibly empty) curve C ⊂ Y \ Sing(Y )
such that:

i) each connected component of C is a cycle of smooth rational curves, contractible to a
normal singularity;
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ii) Y \ C is uniformised by the bidisc H×H, i.e. we have an isomorphism of analytic spaces

Y \ C ≃ YΓ := (H×H)/Γ

where Γ is a discrete subgroup of PSL(2,R)× PSL(2,R) ⊂ Aut(H×H);
iii) Γ is irreducible (i.e. does not contain a finite index subgroup of the form Γ1 × Γ2 with

Γj ⊂ PSL(2,R), j = 1, 2).

The natural singular foliations of the Hilbert modular surface Y which come from the horizontal
and vertical foliations by discs of H × H are called Hilbert modular foliations. Both foliations
leave invariant the curve C and, in the desingularization of the surface, they leave invariant the
exceptional divisors.

Theorem B − i) follows from the following result.

Proposition 3.1. Let F be an algebraic foliation of P2 such that F|C2 has no invariant rational
curve. Then F is not birationally equivalent to a Hilbert modular foliation.

Proof. Suppose by contradiction that F is birationally equivalent to a Hilbert modular foliation.
Let F be a relatively minimal model of F on a suitable smooth projective surface M . Then M
is the minimal desingularization of a Hilbert modular surface Y (cf. [Bru00, Th. 1 p. 75]) and
F is the transform of a Hilbert modular foliation on Y .

The hypothesis that F|C2 has no invariant rational curve implies that there are no cycles of
F-invariant rational curves on M . Then the Hilbert modular surface is

Y = YΓ = H×H/Γ,

for a discrete cocompact (hence lattice) irreducible subgroup Γ of (PSL(2,R))2.

Let
U := P2 \ (L∞ ∪ Sing(F)),

where Sing(F) is the singular locus of F . Then U is isomorphic to a non-empty Zariski open

set of M ′ and also U is isomorphic to a non-empty Zariski open set of ẎΓ, the complement of
the quotient singularities of YΓ. The morphism

π1(U) → π1(ẎΓ)

induced by the injection is surjective. As U is simply connected, so is ẎΓ.

By irreducibility of Γ, the subset F ⊂ H×H given by the points that have non trivial stabilizer
under Γ is discrete (cf. [Shi63]). The action of Γ on H × H can be restricted to an action on
(H×H) \ F . The quotient map

(H ×H) \ F → [(H ×H) \ F ]/Γ = ẎΓ

is then a covering, in the strict sense of topologists. As (H × H) \ F is simply connected, this

proves that the fundamental group of ẎΓ is isomorphic to Γ. But ẎΓ is simply connected, so Γ
is trivial, a contradiction. �

This result is quite sharp, a Hilbert modular foliation with exactly one invariant rational
curve in C2 is given in [MP05].
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4. Proof of Theorem B − ii)

Now F denotes a foliation of P2 = C2 ∪ L∞ such that its restriction F|C2 to C2 does not
admit invariant rational curves and has at most reduced singularities.

Remark 4.1. Recall that a degree zero foliation of the projective plane is a pencil of straight
lines. Also recall that a degree one foliation of the projective plane has at least two invariant
lines [Bru00, 2) p. 27], so at least one invariant affine line.

After Theorem B − i), it suffices to exclude the possibility κ(F) = 0. By contradiction we
suppose

κ(F) = 0.

If F is a reduced foliation of the projective plane, then κ(F) = 0 implies T ∗
F = O and

deg(F) = 1, which contradicts Remark 4.1. Therefore, we have a non-reduced singularity
p ∈ L∞. Denote p1, . . . , pk ∈ L∞ the non reduced singularities of F .

Let Σ : M → P2 be a reduction of singularities of F composed by blowing-ups of points af-
fecting only non-reduced singularities (in order to not introduce unnecessary foliated exceptional
curves). Denote the reduced foliation in M by F . Denote by Epi the exceptional line of the first

blowing-up affecting pi, i = 1, . . . , k, and by Ep the corresponding strict transform in M . Note
that the reduction of singularities Σ may include additional blowing-ups.

Now let us denote by

q : M → M ′

a (finite, possibly trivial) sequence of blowing downs of foliated exceptional curves (and only
them) and by

F
′
:= q∗F

the foliation obtained in M ′, which is a relatively minimal model of F in M ′.

Claim 4.2. There exists a non reduced singularity p ∈ L∞ of F such that the pencil of lines of
P2 passing through p defines a fibration π′ : M ′ → P1.

Proof. If q : M → M ′ is the identity, then any pi verifies the required property. Then we assume
q 6= id. We assert that q starts by contracting the strict transform L∞ ⊂ M of the line at infinity
L∞. To justify this, we first remark that Epi cannot be a F-exceptional curve. Indeed, if the

effect of Σ on pi is just one blowing-up, say σ, then Epi = Epi and this is not σ∗F-exceptional
(remember that pi is not reduced). If the effect of Σ on pi includes extra blowing-ups, then
the self-intersection of the (−1)-curve Epi decreases to ≤ −2 and so it cannot correspond to a

F-exceptional curve.

In particular L∞ is F-invariant and that line is affected by exactly two blowing-ups. After
the first contraction is done, possibly new foliated exceptional curves are created and contracted
by q in a domino effect (compare Example 6.5).

We distinguish two cases:
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• Case 1: there are exactly two non-reduced points of F in L∞, i.e. k = 2;
• Case 2: there is exactly one non-reduced point of F in L∞, i.e. k = 1.

In both cases, if some Epi (resp. Ep1) is not transformed into a foliated exceptional curve,
and so contracted by q, then p = pi is the required point.

Finally, we assume that every Epi is contracted and show it eventually gives a contradiction.

On Case 1:

After Ep1 and Ep2 have been introduced no extra blowing-up composing Σ affects the line at

infinity. Then Ep1 and Ep2 become (−2)-curves after blowing up points in Ep1 and Ep2 . Next
figure illustrates the situation.

L oo
(−1)

E
p1

(−1)

(−1)

Ep2

(1)

p

p1

σ

σ
p

2

Ep1

(−2)

(−2)

E

(−1)

(−1)

Loo
(−1)

σ

σ

L oo

2

By contracting first L∞ and then one of the Epi , we see the other one becomes a (0)−curve:
contradiction.

On Case 2:

In this case one must blow up an infinitely near point of L∞ in Ep1 , r say. Then Ep1 is a

(−n)-curve with n ≥ 2 which intersects the strict transform Er in M of the exceptional line Er

associates to r.

For q to contract Ep1 , we need n = 2 and Er to be F -invariant. Moreover, since q contracts

L∞ then at least one of the blowing-ups composing Σ is done at a point t ∈ Er. So Er is a
(−2)-curve which is part of a chain of curves contracted by q.
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Next Figure illustrates the situation.

L oo

E

(1)

σ

L oo
(0)

(−1)
Ep (−2)

σ

(−1)
Er

pE

C

(−2)

(−1)

ooL (−1)

L oo
(−1)

Er
p1

p1

1 1
(−2)

Hence q contracts L∞, Er and Ep1 , and transforms C into a curve C of self-intersection 1 (see
next figure).

E

(−2)

Loo
(−1)

r

q

E

Er (−1)

C

C

Ep

q Ep1 (−1) q

C

(−1)

(0)C

(1)

p1

1 (−2)

(−2)

(−1)

The birational map
φ := (q ◦ σ−1) : P2 //❴❴❴ P2

is a quadratic Cremona transformation with a unique “proper” indeterminacy point in L∞.

Since κ(F) = κ(F
′
) = 0 and F

′
is reduced we get deg(F

′
) = 1. In particular F

′
has two

invariant projective lines, by Remark 4.1. But the restriction

φ|C2 = φ|P2\L∞

is an isomorphism sending F|C2 to F
′
|P2\C , which contradicts that F|C2 has no invariant rational

curve. �

Consider the fibration π′ : M ′ → P1 given by Claim 4.2.

Claim 4.3. The foliation F
′
is a Riccati foliation, with π′ an adapted fibration.
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Proof. Denote p the point associated to π′ in Claim 4.2. Let L be a general fiber of π′. We must

prove tang(L,F
′
) = 0. By contradiction, we suppose tang(L,F

′
) > 0.

On one hand, we know F
′
is not a rational fibration. Hence we have a Zariski decomposition

(cf. Section 2)

T ∗F
′
≡ N+P.

Since F
′
is a relatively minimal model we know that the support of N =

∑
αjNj is a union of

maximal F-chains. Since we have κ(F) = 0, from McQuillan’s theorem [Bru00, Thm.2, Chap.
9] we deduce

P ≡ 0.

On the other hand, every F
′
-invariant rational curve either coincides with the strict transform

of L∞ in M ′ (if this curve was not collapsed by q) or is the strict transform of some exceptional
component of Σ. Note that such a component intersects L if and only if it equals q(Ep).

Since T ∗F
′
· L = N · L ≥ 1 then Nj0 = q(Ep) for some j0, so N · L = αj0 . But according to

[Bru00, pp. 109− 110], one has 0 < αj0 < 1; yielding 0 < tang(F
′
, L) < 1. This contradicts the

integrality of tang. �

Let σ : (X,R) → (P2,F) be the blowing-up of the point given by Claim 4.2, denote π : X → P1

the ruling of X, E the exceptional divisor and Lσ
∞ the strict transform of L∞. For convenience,

we normalize π to have π−1([0 : 1]) = Lσ
∞.

Claim 4.4. The foliation R is a Riccati foliation, the fibration π is adapted to R.

Proof. We have a factorization Σ = σ ◦ Σ0. Let F be a fiber of π. If L is sufficiently general, it
possesses a neighborhood on which q ◦Σ−1

0 is a biholomorphic map. By Claim 4.3, we conclude
tang(L,R) = 0. �

Claim 4.5. The only possible R-invariant rational curves in X are E and Lσ
∞.

Proof. Recall that X \ (Lσ
∞ ∪ E) is isomorphic to C2 via σ, so that no other rational curve is

R-invariant. �

After Brunella [Bru03], by a rational P1-bundle map (over the identity of the basis), biholo-
morphic outside the fiber Lσ

∞, we transform the Riccati foliation (X,R, π) into a nef Riccati
foliation (X0,R0, π0). The wording “nef Riccati foliation” means the local structure of R0

around any fiber of π0 is of one of the types (a), (b), (c), (d), (e) below (Figure adapted from
[Bru03, p. 20]).
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q1

q 2

(c)

p1

p2

p

  (b)(a)

p1

p
2

(d) (e)

q
1

q
2

p

(a) the foliation is transverse to π and S is smooth;
(b) the surface S admits two quotient singular points q1, q2 of the same order k ≥ 2 and the

fiber is not invariant by the foliation;
(c) there are two possibilities: either p1, p2 are non degenerate singularities, or p is an unique

saddle-node with Milnor number 2 whose strong separatrix is transverse to the vertical
fiber, S being smooth in both cases;

(d) there are two saddle-nodes with Milnor number m whose strong separatrix is given by
the vertical fiber, S being smooth;

(e) the surface S admits two quotient singularities with same order equal to 2 and Fnef

admits a saddle node with Milnor number m whose strong separatrix is in the vertical
fiber.

Claim 4.6. i) The fiber π−1
0 ([0 : 1]) is an R0-invariant fiber, of type (d), with multiplicity

m = 2.
ii) The bundle T ∗R0 is trivial.

Proof. By Claim 4.5, π−1
0 ([0 : 1]) is the only possibly invariant fiber. We review the possible

types for F := π−1
0 ([0 : 1]). If F is of type (a), the foliation R0 is everywhere transversal to the

rational fibration and trivializes the corresponding P1-bundle. The basis of the fibration being
P1, R0 should be a rational pencil, which is impossible.

As all the other fiber are of type (a) and P1 \ {[0 : 1]} is simply connected, the fiber F has
trivial local monodromy. The fibers of type (b) or (c) have non-trivial monodromy. Consequently
F cannot be of these types.

To consider the last two cases (d) and (e), we recall the following formula for the degree of
the Q-divisor π0∗(T

∗R0) (see [Bru03, p. 20]):

deg (π0∗(T
∗R0)) =

{
−2 + m+1

2 in case (e)
−2 +m in case (d)

(2)

There is a correspondence between deg(π0∗(T
∗R0)) being negative, zero or positive and κ(F) =

−∞, 0, 1, respectively.
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Since in our case deg(π∗(T
∗R0)) = 0, in the case (e) we obtain m = 3, an odd number,

contradicting [Bru00, p. 56].

In case (d) we obtain Milnor number m = 2 for both saddle-nodes. We have just proved i).
For ii), we use the formula for the cotangent bundle in [Bru00, p. 57] and obtain

T ∗R0 = π∗OP1(−2) +OX0
(2F ) = OX0

.

�

The surface X0 is a smooth rational surface equipped with a regular ruling π0, it is therefore
a Hirzebruch surface X0 = Fn with n ≥ 0.

Claim 4.7. i) The fibration π0 is not the trivial P1-bundle over P1.
ii) The negative section is R0 invariant, it is the transform of Ep ⊂ X in X0.

Proof. i). Suppose by contradiction X0 ≃ P1 × P1. Call vertical the fibration π0 adapted to the
Riccati foliation, the second ruling is termed horizontal. Denote by H1,H2 the two horizontal
lines passing through the two saddle-nodes in π−1

0 ([0 : 1]). One of them, say H1, is not R0-
invariant. Passing by a singularity of a foliation produces a tangency, so

1 ≤ tang(R0,H1)

= tang(R0,H1)−H1 ·H1

= T ∗R0 ·H1,

contradicting the triviality of T ∗R0.

ii). If the negative section s is not invariant, using the tangency formula as above, we get
0 ≤ tang(R0, s) = s · s; contradiction. Claim 4.5 says that the only possible invariant section is
the transform of Ep in X0, whence the conclusion. �

Claim 4.8. By rational P1-bundle maps (over the identity of the basis), biholomorphic outside
the fiber over [0 : 1], we can transform (X0,R0, π0) in (X1,R1, π1), a nef Riccati foliation with
T ∗R1 = OX1

and X1 a Hirzebruch surface with a (−1)-section invariant by R1.

Proof. This is performed by induction, using the following flip: start by blowing up the saddle-
node on F which lies outside the negative section; denote by D the exceptional curve produced
by this. The intersection point of D with the strict transform F of F is a Morse point. Then
we contract F obtaining a Hirzebruch surface on which D becomes an invariant fiber, again
with two saddle-nodes of Milnor number 2, exactly as before, see the picture below. The self-
intersection of the invariant section diminishes of 1 in this process. As the multiplicity of the
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fiber of type (d) does not change, the tangent bundle remains trivial.

F

(−n)

(0) F

sn

sn

σ

sn

sn

D
(−1)

(−1)

(−n)

σ

(−n+1)

D(0)

sn

sn

Cn−1CnCn

nd

�

Now denote by F0 the foliation of P2 obtained from R1 by contracting the (−1)-curve in X1

to a point r ∈ P2. The sequence of transformations P2 σ−1

99K X → X0 → X1 → P2, extends
an automorphism of C2, so that F0 should have no invariant rational curve in C2. We reach a
contradiction and conclude the proof of Theorem B− ii) by the conjunction of Remark 4.1 and
next claim.

Claim 4.9. The foliation F0 is a degree one foliation of P2.

Proof. Let δ be a general line in P2, denote δ̄ its strict transform in X1. If δ does not pass
through r, we have tang(R1, δ̄) = tang(F0, δ). The first member is

tang(R1, δ̄) = δ̄ · δ̄ + T ∗R1 · δ̄ = 1 + 0 = 1

and the second is deg(F0). Whence the conclusion. �

5. Proof of Theorem B − iii)

In this section we assume κ(F) = 1. According to the birational classification of foliations
[Bru00, Th. 1. p. 118], and taking into account that F is not birationally conjugate to a fibration,
we know that F is either a Riccati foliation or a turbulent foliation; recall that the definition of
turbulent foliation is obtained from the one of Riccati foliation by replacing “rational fibration”
with “elliptic fibration” (see page 2).

Therefore the proof of Theorem B − iii) is equivalent to the exclusion of the turbulent case.

This will be done in Proposition 5.3, using the notion of a transversely affine foliation. Con-
sider a foliation F on a surface X given by ω = 0 where ω is a rational 1-form on X. We say F
is transversely affine if there exists a closed rational 1-form η such that

dω = ω ∧ η.

Remark 5.1. If ω̃ = gω is another 1-form defining F , then η̃ := η − dg/g is closed and satisfies
dω̃ = ω̃ ∧ η̃, so that this definition is independent of the defining 1-form ω.
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The following has already been noticed in [Per03, Prop. 22], we give a slightly different proof.

Proposition 5.2. Every turbulent foliation is a transversely affine foliation.

Proof. As transverse affine structures may be transported by birational transformations, stable
reduction [Bru00, Prop. 6 p. 69] and [CLNL+07, Th. 2.21 p. 37] reduce the proof to the case
where the foliation F is transverse to the general fiber of an elliptic fiber bundle π : X → C.

Let X∗ be the complement of the set of invariant fibers, and F = π−1(b) ⊂ X∗ a fiber. Using

the foliation to identify nearby fibers, we obtain a multiform submersion X̃∗ → F which defines

the foliation; it lifts to a submersion f : X̃∗ → C to the universal cover of F ≃ C/Λ. By
construction the monodromy group of f fixes the lattice Λ and must lie in Aff(C). Hence the
monodromy of df is linear (contained in C∗). In particular, if v is a rational vector field on X
which is not tangent to F , the meromorphic function

g = df(v) : X̃∗ → C

has the same monodromy as df and

ω :=
df

g

is a well defined meromorphic 1-form on X∗, tangent to F . We have

dω = −
df ∧ dg

g2
= ω ∧ η,

with η = −dg
g

a well defined closed meromorphic one form on X∗.

It remains to show that the pair (ω, η) extends meromorphically in the neighborhood of any
F-invariant fiber of π. Let U ≃ D × F be such a neighborhood, D a disc. Let (z, w) ∈ D × C

represent the elements of U , z = 0 corresponding to the invariant fiber. We have a local equation
of the form

dw =
dz

A(z)
,

for F , with A(z) holomorphic in D. Let b be a point in D, if the coordinate w is well chosen, in
D∗ × F , the submersion f expresses as

f(z, w) = w −

∫ z

b

ds

A(s)

and

df = dw −
dz

A(z)

is meromorphic at z = 0, so as g; we have the required extension property. �

Proposition 5.3. Let F be a foliation on P2 ≃ C2∪L∞. If F is a turbulent foliation of Kodaira
dimension 1, then it possesses an invariant curve outside L∞.

Proof. By contradiction, suppose F possesses no invariant algebraic curve in C2 = P2 \ L∞.
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By Proposition 5.2, F is transversely affine. The assumption on non existence of invariant
curves allows to use [CP14, Corollary B], to infer that F is given by the pullback ω of a 1-form

ω0 = dy + (a(x) + b(x) y) dx, a, b ∈ C[x]

under a polynomial map C2 → C2, which extends as a rational map H0 : P
2
99K P2.

Denote G the foliation of P2 induced by ω0. From its equation, observe that G|C2 has no
singularities. As F|C2 , G|C2 possesses no algebraic invariant curves.

There exist sequences of blowing-ups ΣX : X → P2, ΣY : Y → P2 in the source and the target
of H0 such that

• The foliations Fred := Σ∗
XF and R := Σ∗

Y G have at most reduced singularities.
• There exists an elliptic fibration fX : X → P1 adapted to the turbulent foliation Fred.
• There exists a rational fibration fY : Y → P1 adapted to the Riccati foliation R.
• The rational map H : X 99K Y such that ΣY ◦H = H0 ◦ΣX is actually a morphism (i.e.
holomorphic).

By the already proved items i) and ii) of Theorem B, we must have κ(R) ≥ 1. As for every
Riccati foliation κ(R) ≤ 1, we have

κ(R) = 1.

By Lemma 5.4 below, qY is the Iitaka fibration ([Bru00, p.116]) of the cotangent divisor T ∗R.
Similarly qX is the Iitaka fibration of the cotangent divisor T ∗Fred.

From the remark in [Bru00, p. 29] it follows T ∗Fred = H∗(T ∗R)⊗OX(D) for D an effective
divisor on X (see also the proof of [Tou03, Lemme 3.2.8])

Then, Lemma 5.5 below yields that H maps the fibers of fX in the fibers of fY : for general
c ∈ P1, there exists r(c) ∈ P1 such that H

(
f−1
X (c)

)
⊂ f−1

Y (r(c)).

Consider, for general c, the following restriction of H,

Hc : f
−1
X (c) → f−1

Y (r(c)).

Denote R ⊂ X and B ⊂ Y the ramification and branching curves of H, namely

R := {x ∈ X; det(dxH) = 0}, B := H(R).

The map Hc is étale outside R.

Let L∞ be the strict transform of L∞ in the sequence of blowing-ups pY . If B has R-invariant
components, they must be contained in L∞ or in the exceptional divisor of pY , because G
possesses no invariant curve in C2. Denote Binv the union of these components. Notice that
the general fiber of fY intersects Binv at most once, because fY is induced by the coordinate
fibration x on C2.

We Assert that for a general c, the curve f−1
Y (r(c)) does not intersect B \Binv.

After proving this assertion we obtain that, for general c, the map Hc ramifies at most over
one point of f−1

Y (r(c)) ≃ P1, contradicting that f−1
X (c) is elliptic.
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We conclude by proving this Assertion. First, remark that any non R-invariant component
of B is a curve transverse to the general fiber of fY and has a finite number of tangencies with
R. Therefore we have, for general c:

(1) For any point p′ ∈
(
f−1
Y (r(c)) \Binv

)
∩B, B is transverse to both f−1

Y (r(c)) and R at p′;

(2) for any point p ∈ f−1
X (c)∩R, H writes as (s, t) 7→ (S, T ) = (sℓ, t), with ℓ > 1, in suitable

local coordinates centered at p.

Take c such that we have (1) and (2). Suppose we have a point p′ = H(p) in f−1
Y (r(c))∩B\Binv.

In the adapted coordinates (S, T ) of (2), the leaf of R through p′ has a local equation T =
λ1S+o(S), λ1 ∈ C and the fiber f−1

Y (r(c)) passing through p′ expresses as T = λ2S+o(S), λ2 ∈ C.

Thus in the neighborhood of p, their pull-backs have equation t = λis
ℓ + o(sℓ) and are tangent

at (s, t) = (0, 0) because ℓ > 1. Meaning p is a tangency point between Fred and f−1
X (c).

As fX is an adapted fibration for Fred, this cannot happen for c general enough. �

For the reader’s convenience, we prove two facts that belong to the birational theory of
foliations and varieties.

Lemma 5.4. Let F be a reduced foliation on a projective manifold X, with κ(F) = 1. Suppose
F is a Riccati or a turbulent foliation, with adapted fibration f : X → C. Then f is the Iitaka
fibration of T ∗F .

Proof. Let F be the general fiber for a fibration f adapted to F . Lemma 5.5 shows that the
Iitaka fibration associated to F is the fibration f . The proof of [Bru00, Theorem 1 p. 118] shows
T ∗F⊗m = O(nF + D) for an effective divisor D and suitable integers m,n > 0. Lemma 5.5
(with L = idX) allows to deduce that both divisors F and T ∗F have the same Iitaka fibration,
yielding the conclusion. �

In our context, next Lemma should be applied in the case of (foliated) Kodaira dimension 1.

Lemma 5.5. Let L : X1 → X2 be a morphism between projective manifolds. Let D1,D2 be
divisors on X1 and X2, respectively. Suppose these divisors have equal positive Iitaka dimension.
Take k > 0 big enough so that pi : Xi 99K PΓ(Xi,O(Di)

⊗k)∗ is the Iitaka fibration of Di, i = 1, 2.
Suppose D1 = L∗D2 +D with D effective. Let r ◦ q be the Stein factorization of p2 ◦ L. Then q
is the Iitaka fibration of D1.

Proof. Choosing a nontrivial global section s ∈ Γ(X1,O(D)) we have an injection

φk : Γ(X2,O(D2)
⊗k) → Γ(X1,O(D1)

⊗k)

σ 7→ (L∗σ)⊗ s⊗k

and the following diagram commutes, with φ∗
k onto.
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X1

L

��

p1
//❴❴❴ PΓ(X1,O(D1)

⊗k)∗

φ∗

k

��

X2
p2

//❴❴❴ PΓ(X2,O(D2)
⊗k)∗

Restricting the maps, with S = p1(X1), T = p2(X2), we get the following.

X1

L
��

p1
//❴❴❴ S

��
��

X2
p2

//❴❴❴ T

The map S → T is onto. As dimS = dimT , it must be a generically finite map. Uniqueness
in Stein factorization yields q = g ◦ p1 for some birational map g : S → S′. This yields
the conclusion, because the Iitaka fibration is defined only up to birational transforms in the
target. �

To explains the limits of Proposition 5.3, we present a turbulent foliation with κ(F) = 1
having exactly one rational invariant curve in C2.

Example 5.6. Consider the pencil of cubics E in the projective plane generated by the cuspidal
cubic

C : y2 + x3 = 0.

and the line at infinity L∞ taken with multiplicity 3, whose general element is an elliptic curve.
Also consider the pencil of rational cuspidal cubics (Cλ) in the projective plane

Cλ : y2 = λx3.

For E there is a unique indeterminacy point q ∈ L∞, which is an inflexion point for the general
elements of the cubic pencil. After nine blowing-ups at q and at suitable infinitely near points
we obtain a minimal elliptic fibration π : M → P1, having exactly two singular fibers. One fiber
is the strict transform of the cuspidal cubic (type II in Kodaira’s notation) and the other fiber
has nine rational components (type II∗): the strict transforms L∞ of L∞ and E1, E2, . . . , E8

of the exceptional lines of the first eight blowing-ups. Denote by M ′ the surface obtained from
M after three blowing-ups, first at the point coming from (0, 0) ∈ C2, which produces the strict
transform C of C, and the other ones in order to separate C from its tangent line.

For (Cλ) there are two base points, one (also) at q ∈ L∞ and the other at (0, 0) ∈ C2.
Three blowing-ups at infinity are enough to separate the cuspidal cubics of (Cλ) at infinity. And
two additional blowing-ups at points infinitely near to (0, 0) are enough to produce a rational
fibration. Therefore the surface M ′ is endowed with both: i) a rational fibration obtained
from (Cλ) and ii) a non-minimal elliptic fibration.

Consider now the degree 4 foliation F on P2 associated to the 1-form on C2 given by

ω = d(y2 + x3) + (y2 + x3)(3ydx− 2xdy).
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Note that F leaves invariant L∞. From [Lor94, Lemme IV.2] it follows that the unique algebraic
leaves of F are C and L∞. We have

ω ∧ d(y2 + x3) = 6 (y2 + x3)2dx ∧ dy,

which means F and E are tangent exactly along C ∪ L∞. The transform F ′ of F in M ′ is then
a turbulent foliation whose adapted elliptic fibration is obtained from E .

On the other hand, an explicit computation shows that F ′ is tangent to the rational fibration
of M ′ along the (−2)-curve E3 ⊂ M ′. Hence, if Fr is a general fiber of the rational fibration,

T ∗F ′ · Fr = tang(F , Fr)− Fr · Fr = tang(F ′, Fr) > 0.

We assert that κ(F) = 1. Otherwise, T ∗F ′ ≡ N is supported on the union of F ′-chains. More
precisely, there are two F ′-chains consisting of the following two chains of (−2)-curves:

L∞, E1, E2 and E4, . . . , E8.

We then check T ∗F ′ · Fr = N · Fr = 0: contradiction.

6. Proof of Theorem B − iv) and birational geometry of examples

In this section we give examples of foliations F of P2 which are associated to simple deriva-
tions and whose Kodaira dimension satisfies κ(F) ∈ {1, 2}. In every case we describe the cor-
responding reduction of singularities and give a nef model. Moreover, we show some birational
(non-)equivalences between examples.

We will provide diagrams to illustrate the reduction of singularities and nef models. The
following conventions are used in the examples.

• The affine coordinates (x, y) ∈ C2 correspond to the point (x0 : x1 : x2) = (1 : x : y) ∈ P2.
• We denote as (σi) the sequence of blowing-ups of points composing of a given foliation
F and (pj) the sequence of contractions composing the morphism ρ : M → S to a nef
model Fnef of F .

• In the figures, we use nd, sn, m, r, nil for non-degenerate, saddle-node, Morse, radial
and nilpotent singularities, respectively (cf. Section 2).

• The line at infinity x0 = 0 will be denoted by L and any strict transform always by L,
except in the figures, see next point.

• In the figures, we use the same symbol for each exceptional curve and its strict transforms
under other blowing-ups, but the self-intersection numbers indicated in parentheses (n)
will help to avoid confusions.

• The bracket [m] denotes the multiplicity of the fiber (z = 0) of the Riccati foliation
locally defined by zmdw + (a(z)w2 + b(z)w + c(z)) dz, with a, b, c holomorphic at z = 0.

We start with examples having κ(F) = 1. Part of these examples are associated to Shamsuddin
derivations, see [Sha77]. These are derivations of the form

D = ∂x + (a(x)y + b(x))∂y , a, b ∈ C[x].

The associated foliation is given by ω = dy − (a(x)y + b(x)) dx. It is a special Riccati foliation.
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Example 6.1. Consider the foliation F of the projective plane associated to

ω = (xy + 1) dx − dy,

called Bergman’s example in [Cou03]. The extended foliation F of P2 has degree 2. The point
at infinity (1 : 0 : 0) is a saddle-node with Milnor number m = 3 whose strong separatrix is the
line at infinity L : x0 = 0; in particular L is F-invariant. At (0 : 1 : 0) there is a a quadratic
singularity: the blowing-up at this point produces a Riccati foliation on F1, leaving invariant
the exceptional curve E1. There is just one singular point along E1, a saddle-node with Milnor
number m = 3 with strong separatrix L and weak separatrix E1. This is already a nef model
in F1. The multiplicity of L as an invariant fiber and the formula for the cotangent bundle of
[Bru00, p. 57] enable us to compute

T ∗Fnef = −2L+ 3L = O(L) and κ(F) = 1.

L

σ1

L(0)

E1
(−1)

[3]

(1)

sn

sn

Example 6.2. From [GL12] we consider the foliation of degree 2 in the projective plane associated
to

ω = (1 + x (2x+ y))dy + 2x(2x+ y)dx = 0

The singularities along L are a saddle-node at (0 : 1 : 0) and a non-reduced (quadratic) singu-
larity at (−1 : 2 : 0). The affine lines 2x+ y = c are completely transverse to the foliation. One
blowing-up at (−1 : 2 : 0) is enough to reduce the singularity and produces a Riccati foliation.
The exceptional line is invariant and has a saddle-node. L is the unique invariant fiber. This is
already a nef model. The multiplicity of L as a invariant fiber is 3 and we compute

T ∗Fnef = O(−2L) + 3L = O(L), κ(F) = 1.

Example 6.3. From [Now94] we consider the foliation of degree 3 in the projective plane of
Shamsuddin type given by

ω = (yx2 + xy + x2)dx− dy = 0.

At (1 : 0 : 0) there is a saddle-node with Milnor number m = 4 whose strong separatrix is
L. At the vertical infinity there is a cubic singularity. The blowing-up at this point produces
a Riccati foliation relatively to the vertical lines. The exceptional line E1 is invariant and the
unique singularity along E1 is a saddle-node with Milnor number m = 4 with weak separatrix
E1 and strong separatrix L. This curve is the unique invariant fiber and its multiplicity as
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invariant fiber is 4. The foliation on F1 is already a nef model. The cotangent line bundle can
be computed as above,

T ∗Fnef = O(−2L) + 4L = O(2L) and κ(F) = 1.

Example 6.4. Consider the Shamsuddin type foliation of degree 4 in the plane associated to

ω = ((x3 + 1)y + 5x4 − x3 − 2x2 + 4x)dx− dy = 0.

At (1 : −5 : 0) there is a saddle node with Milnor number m = 5. At (0 : 1 : 0) there is a quartic
singular point (algebraic multiplicity = 4). The foliation obtained after blowing up this point
is Riccati, having just one singular point along E1 which is saddle-node with Milnor number
m = 5, with weak separatrix E1 and strong separatrix L.

The foliation on F1 is already a nef model. The multiplicity of L as invariant fiber is 5 and
again the cotangent line bundle can be computed as

T ∗Fnef = O(−2L) + 5L = O(3L) and κ(F) = 1.

Example 6.5. From [Now94, Ex 13.3.7 p. 154] we have a foliation of degree 8 of Shamsuddin
type

ω = ((x3 + 1)y + x8 + 3x5 + 1)dx− dy = 0.

At (0 : 1 : 0) there is a highly degenerate singularity (with algebraic multiplicity = 8). The blow
up of the foliation at this point produces a Riccati foliation, but the reduction of singularities
is not completed yet. It needs four additional blowing-ups. From the second blown up point to
the fifth the algebraic multiplicity is = 2. Along the fifth exceptional line E5 there are three
singular points: two saddle-nodes with Milnor numberm = 5 and one Morse point. The foliation
obtained is reduced but not a relatively minimal model.

To obtain a relatively minimal model we contract L, E2, E3 and E4, in this order.

L(0)

L(1)

σ1

E1(−1) σ
2

L(−1)

E1(−2)

[9]

[9]

[8]
E2(−1)

(−2)

(−2)

(−2)[5]

E
1

sn
sn

m

m

m

m

1
2

1E

E (0)

[5]

sn

sn

m

E5 L(−1)(−5)

(−5)

4σ
σ3

σ5 [6]

[7]

[8]

E
4

E
3

E2
4

3

L(−1)
[9]

5

q
q

q

q
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As we contract foliated exceptional curves with Morse points, the strict transform of E5 contains
just two saddle-nodes. In this example the relatively minimal model is already a nef model (on
the Hirzebruch surface F5).

The multiplicity of E5 as invariant fiber and the formula for the cotangent bundle gives

T ∗Fnef = O(−2) + 5E5 = O(3L) and κ(F) = 1.

Example 6.6. This example is not of Shamsuddin type but is of Riccati type. From [MMON01]
(see also [Cou08]) we consider the foliation of degree 2 in the projective plane associated to

ω = dx− (x2 + y)dy = 0.

At the horizontal infinity point there is a radial point (Milnor number m = 1), whose blowing-
up produces a Riccati foliation completely transverse to the exceptional line E1. There is a
nilpotent singularity at the vertical infinity point whose Milnor number is m = 6 (thanks to
Darboux’s formula in the plane). The blowing-up at the nilpotent point produces an invariant
exceptional curve E2 having just one quadratic singularity, at the intersection with L at infinity.
The blowing-up at this quadratic singularity produces three singularities along E3: two of them
being non-degenerate and reduced singularities, placed at the intersections of E3 with L and
E2, and a third one being a saddle-node, with strong separatrix E3. We assert that the Milnor
number of this saddle-node is m = 4: indeed, it follows from the diagram on the top of [Bru00,
p. 56] and the fact that a nilpotent point in P2 has m = 6.

The foliation obtained is not a nef model. The morphism ρ = ρ2◦ρ1 contracts two (−2)-curves
and produces a singular surface with two quotient singularities q1, q2 along the strict transform
of E3 (where there is also a saddle-node with Milnor number m = 4).

nil

r

σ1

E 1

E2

[3]

L (−1)

(−1)

(−1)

2σ

σ3

sn
E (−2)

E3(−1)

L (−2)

nd

nd

[3]

2

1

2

E
1
(−1) q

1

sn

L(1)

2q
E

1
(−1)

ρ

ρ

In this nef model of the foliation, the computation of the degree of π∗(T
∗F) ∈ Pic(P1)⊗Q gives:

deg(π∗(T
∗Fnef )) = −2 +

4 + 1

2
=

1

2
> 0 and κ(F) = 1.

All the remaining examples have κ(F) = 2.
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Example 6.7. Consider the foliation F of degree deg(F) = 2 in the projective plane associated
to the following equation in C2:

ω = x (1 + xy) dx− (1 + xy + x3) dy = 0

which was taken from [CDGBM10, Prop. 1.3]. The line at infinity is not invariant and there
is just one saddle-node with Milnor number m = 7 at infinity. So the singularity of F is
reduced. The cotangent line bundle is T ∗F = O(1) and κ(F) = 2. As there is no curve with
negative self intersection in P2, F is its own nef model. The group Pol(F|C2) contains the
linear automorphism Lj(x, y) 7→ (j · x, j2 · y) where j is a primitive cubic root of the unity and
L∗
j(ω) = j2 · ω. The affine line x = 0 is transverse to the foliation and, for c 6= 0, the affine lines

x = c have one movable tangency.

Example 6.8. From [Now08], we have a family of foliations Fk of degree k ≥ 2 in the plane
associated to simple derivations. It is defined by the family of 1-forms

ωk = (yk + x)dx− dy, k ∈ N∗.

For k = 2 this coincides with Example 6.6, up to permutation of (x, y).

We assert that κ(Fk) = 2 for all k ≥ 3. At the vertical infinity point, each Fk has a radial
point p. The exceptional line of the blow up at p belongs to the contact divisor between the
transformed foliation and the rational fibration of Σ1(p). For simplicity, let’s focus on the case
k = 3. The reduction of singularities of F3 is made up of 4 blowing-ups at quadratic singularities
of the foliation. The fourth blowing-up introduces E4 having a saddle-node and 2 extra non-
degenerated reduced points (at the intersections of E4 with the strict transforms of E2 and E3).
The Zariski decomposition of the cotangent line bundle is

T ∗F3 ≡ P +
1

4
E3 +

1

2
L+

1

3
E2.

The nef model is obtained after contraction of the support of N and introduces two quotient
singularities of the surface q1, q2.
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Since the 4 blown up singularities were quadratic (l(F) = 2), we can compute

T ∗F3 · T
∗F3 = (deg(F3)− 1)2 −

4∑

i=1

(lpi(F3)− 1)2 = 4− 4 = 0

Combining this with

N ·N = (
1

4
E3 +

1

2
L+

1

3
E2)

2 = −
3

8
−

1

3
< 0

and the fact that P · N = 0 in the Zariski decomposition, the conclusion is that P · P > 0.
Therefore the so called numerical Kodaira dimension is 2 and also κ(F3) = 2.

Example 6.9. From [Jor81] we have a foliation F of degree 3 in the projective plane associated
to

ω = y3 dy − (1− xy) dx.

At (0 : 1 : 0), there is a quadratic singularity whose reduction is composed by 3 blow ups. The
foliation has κ(F) = 2 and its nef model is not much different than the one of Example 6.8. At
last, we remark that the affine lines y = c, c 6= 0, exhibit one movable tangency point with the
foliation (at the intersection of y = c and y = 1

x
). The affine line y = 0 is completely transverse

to the foliation, a property that will be useful in Section 8.

Example 6.10. From [Kou12] we have examples of foliations Fr,s,g in the projective plane with
degrees deg(Fr,s,g) = s+ 1, defined for r, s ∈ N such that r + 2 ≤ s and g ∈ C∗ by

ωD := (xys + g) dx − yr dy.

We have a singular point at (0 : 1 : 0) with algebraic multiplicity ℓ(Fr,s,g, p) = s. At (0 : 0 : 1),
there is a singular point with algebraic multiplicity 3. Except for y = 0, all horizontal affine lines
exhibit one movable contact point with the restricted foliation Fr,s,g|C2 . However, the affine line
y = 0 is completely transversal to the foliation.

Example 6.11. According to [Oda95], the foliations in the plane associated to

ω := (f(x) · y + g(x)) dx + y dy = 0, f, g ∈ C[x]

do not have algebraic solutions in C2 if three conditions are satisfied: i) f, g 6= 0, ii) deg(f) ≥

deg(g) and iii) f
g
is not constant. These foliations do not have singularities in C2 exactly when

g(x) = c ∈ C∗. Therefore, to produce foliations associated to simple derivations it suffices to
take g(x) = c ∈ C∗ and f ∈ C[x]. In this case, the affine line y = 0 is everywhere transverse
to the foliation while general horizontal lines y = c exhibit deg(f) tangencies with the foliation.
And the line at infinity is invariant by the extended foliation.

Now we establish some birational (non)-equivalences among the Examples.

Proposition 6.12. i) Example 6.2 is linearly equivalent to a foliation of Shamsuddin type.
ii) Examples 6.4 and 6.5 are equivalent by a polynomial automorphism of degree five.
iii) The foliations of Example 6.1 and Example 6.3 are not birationally equivalent.

Proof.
i). With the linear change of variables y = u− 2v, x = v, from the equation of Example 6.2 we
obtain

η = 2dv − (1 + vu)du
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which is of Shamsuddin type.

ii).We start with the nef model of Example 6.5 in the Hirzebruch surface F5. After an elementary
transformation we pass to F4 keeping the saddle-nodes and the multiplicity [5] of the unique
invariant fiber. This is shown in next figure.

E (−5)

sn

sn

F

[5]

(0)

E (−5)

F (−1)

Eq(−1)

(−4)E

Eq (0)

q

sn

qσ

σ
[5]

sn

sn

sn

nd

After this we perform three more elementary transformations to obtain a foliation of F1 and
then, after contraction of the (−1)-section, we arrive in the projective plane. The pair of saddle-
nodes on the invariant vertical fiber of F5 is transformed in a pair of singularities along an
invariant projective line of a degree 4 foliation.

The net effect in the plane can be described concretely by means of a polynomial isomorphism
of C2. Indeed,

η := ((x3 + 1)y + 5x4 − x3 − 2x2 + 4x)dx− dy

defines the foliation of Example 6.4 and, if R : C2 → C2 is

(x, y) 7→ (x , y + x5 + 2x2 + 1)

then R∗(η) is the 1-form of Example 6.5.

iii). A way to see this is to use the birational invariant g(F) of [Men00, p. 139]. In Example 6.1
and Example 6.3 the invariants are g(F) = 2 and g(F) = 3, respectively. �

Proposition 6.12 − ii) illustrates the general issue of finding the simplest (of least degree)
plane birational model for foliations of the plane or derivations. Algorithmic procedures toward
this objective would be of great utility.

7. Proof of Theorem A

In the language of foliations Theorem A takes the following form.

Theorem 7.1. Let F be a foliation of P2 that the restriction F|C2 has neither algebraic invariant
curves nor non-reduced singularities. The group Bir(F) is finite.

Proof. We proceed by contradiction: suppose Bir(F) is infinite. From our assumption on alge-
braic invariant curves, F cannot have a rational first integral. We have two cases: either
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(1) there exists a birational model (X, F̃) of (P2,F) such that Aut(F̃) = Bir(F̃) or

(2) for every birational model (X, F̃), the inclusion Aut(F̃) ⊂ Bir(F̃) is strict.

In case (2), we may apply [CF03, Th. 1.1] to (X, F̃), as fibrations are excluded we have one
of the following situations.

(i) There exists a non trivial holomorphic vector field on X̃ defining a one parameter sub-

group of Aut(F̃) or

(ii) the surface X̃ is generalized Kummer surface (see [CF03, Ex. 1.1]), X̃ is a quotient of

an abelian surface A and F̃ lifts to A as a linear foliation G.

In case (1), we may apply [CF03, Th. 1.2]. Since fibrations are excluded, we are in the situation

of [CF03, Ex. 1.3], in particular up to passing to a birational model (X, F̃),

(iii) the surface X is a finite quotient of S = P1 × P1 and F̃ lifts to a foliation G of S given
by a differential form αwdz + βzdw, for some α, β ∈ C.

In cases (ii) and (iii) the foliation G has Kodaira dimension 0. By the remark in [Bru00, p.

29] or the proof of [Tou03, Lemme 3.2.8], this forces κ(F̃) ≤ 0 and contradicts Theorem B.

So we only need to derive a contradiction from situation (i) to complete the proof. Moreover,

if the vector field is tangent to F̃ , we may use [Bru00, Prop. 6.6 iii)] to see that F̃ is a
Riccati foliation with two distinct adapted fibrations and consequently κ(F) = 0, contradicting
Theorem B.

The conclusion is given by the following argument, proposed by Jorge Pereira. If the vector
field is not tangent to F̃ consider its image X̃ in P2, consider also a rational 1-form ω defining
the foliation. The form η = ω

ω(X̃)
is closed, by the computation [PS02, Proof of Cor. 2] inherited

from [CM82]. The poles of η give F-invariant algebraic curves, so that η has no poles in C2.
Subsequently, the first integral

∫ x

⋆
η has no monodromy and gives a rational first integral for F ,

contradiction. �

8. Polynomial symmetries of foliations associated to simple derivations

Consider a foliation F of the projective plane P2 = C2 ∪ L∞ with two properties:

a) F is associated to a simple derivation,
b) there exists some affine straight line completely transversal to the foliation F|C2 .

Proposition 8.1. Given n ≥ 2 and B > 0, there exists a foliation G associated to a simple
derivation and an element in Pol(G|C2) of order n and degree greater than B.

Actually the construction below starts from any foliation F satisfying a) and b). These
properties are verified in all examples of Section 6, so that we have plenty of examples.

Proof. Let F be a foliation satisfying a) and b). Up to an affine transformation, we can suppose
that the line in b) is x = 0. Consider the n to 1 rational map φn : C2 → C2 given by φn(x : y) =
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(xn, y). The foliation F is defined by the (rational extension to P2 of the) polynomial 1-form

ω = a(x, y)dx + b(x, y)dy. The map φn extends to a birational map φ̂n : P2
99K P2.

Let G0 = φ̂∗
nF . It is defined by (the extension to P2 of) φ∗

n(ω) = a(xn, y)d(xn) + b(xn, y)dy.
Since the affine line x = 0 is supposed to be completely transverse to F , we know G has no
singularity along x = 0. Note also that in C2 \ {x = 0} the map φn(x, y) = (xn, y) is a local
isomorphism, so the pull-back does not introduce any singularity. Any algebraic G0|C2-invariant
curve would descend to an F|C2 -invariant curve, so that no such curve exists.

Hence G0 is associated to a simple derivation.

Let ξ be a primitive n-th root of unity. The linear automorphism Tξ(x, y) = (ξ · x, y) clearly
preserves G0 and has order n. Note however that Tξ 6∈ Aut(Dn) for the derivation Dn dual to
φ∗
n(ω), because T ∗

ξ (φ
∗
n(ω)) = φ∗

n(ω) and Jac(Tξ) = ξ 6= 1.

Now, for any polynomial τ ∈ C[x], consider the automorphism of C2 defined by

Pτ (x, y) = (x , y + τ(x))

and set G := P ∗
τ G0. If the polynomial τ(ξ · x)− τ(x) has degree d ≥ 1, (e.g. if degx(τ) = d and

(d, n) = 1) the map

Γξ,τ (x, y) := P−1
τ ◦ Tξ ◦ Pτ (x, y) = (ξ · x , y + τ(ξ · x)− τ(x))

defines a polynomial automorphisms of degree d and order n in Aut(G), which completes the
proof. �

Example 8.2. We examplify the construction given in the proof of Proposition 8.1. Starting
from Example 6.1

ω = (xy + 1)dx − dy

and taking n = 2, so φ2(x, y) = (x2, y). We obtain a foliation G0 defined by the 1-form φ∗
2(ω) =

(2x3y + 2x) dx − dy and admiting the linear automorphism

T (x, y) = (−x, y).

Now, we consider the automorphism Pτ (x, y) = (x, y + x3) and define

Ω := P ∗
τ (φ

∗
2(ω)) = (2x3y − 2x6 + 3x2 + 2x)dx− dy.

Then the involution Γξ,τ = Γ−1,x3 : (x, y) 7→ (−x, y − 2x3) preserves Ω.

At last, note that the foliations we have constructed in the proof of Proposition 8.1 do not
have minimal degree in their birational classes, due to the fact that the automorphism Pτ has
positive degree. In other terms, such foliations are not primitive in the sense of [CD15]. On the
other side, the foliation of Example 6.7 is primitive but the exhibited automorphism is linear.

This raises the following question.

Are there non-linear polynomial automorphisms of primitive foliations associated to simple
derivations ?

By [Bru99, Cor. p 293], such automorphisms would necessarily be conjugated to automor-
phisms of the form (x, y) 7→ (ax+ P (y), by + c) with a, b ∈ C∗, c ∈ C and P ∈ C[y].
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graphs], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000, available online
at www.impa.br/opencms/pt/biblioteca/pm/PM_16.pdf.

[Bru03] Marco Brunella, Foliations on complex projective surfaces, Dynamical systems. Part II, Pubbl. Cent.
Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, pp. 49–77.

[CD15] Dominique Cerveau and Julie Déserti, Action of the Cremona group on foliations on P2
C: some

curious facts, Forum Math. 27 (2015), no. 6, 3697–3715.
[CDGBM10] D. Cerveau, J. Déserti, D. Garba Belko, and R. Meziani, Géométrie classique de certains feuilletages
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[Lor94] Frank Loray, Feuilletages holomorphes à holonomie résoluble, Ph.D. thesis, Rennes 1, 1994.
[McQ01] Michael McQuillan, Non-commutative mori theory, preprint IHES M/00/15 (2000) (revised:M/01/42

(2001)) (2001), 1–142.
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