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Abstract. The problem of clustering is to partition the dataset into
groups such that elements belonging to the same group are similar and
elements belonging to the different groups are dissimilar. The unsuper-
vised nature of the problem makes it widely applicable and also tough
to solve objectively. Clustering in the context of image data is referred
to as image segmentation. Distance based methods such as K-means fail
to detect the non-globular clusters and hence spectral clustering was
proposed to overcome this problem . This method detects the non glob-
ular structures by projecting the data set into a subspace, in which the
usual clustering methods work well. Gamma convergence is the study of
asymptotic behavior of minimizers of a family of minimization problems.
Such a limit of minimizers is referred to as the gamma limit. Calculating
the gamma limit for various variational problems has been proved use-
ful - giving a different algorithm and insights into why existing methods
work. In this article, we calculate the gamma limit of the spectral clus-
tering methods, analyze its properties, and compare them with minimum
spanning tree based clustering methods and spectral clustering methods.

1 Introduction

The problem of clustering is defined as - given a set of elements {xi}, partition
the set into non overlapping groups such that elements belonging to the same
group are “similar”, and elements belonging to different groups are “dissimilar”.
The importance of a solution to the problem of clustering is due to its wide range
of applications [15, 14, 1]. Clustering in image data is also referred to as image
segmentation. There exists several methods to solve the problem of clustering
[2, 10, 11, 18]. A comprehensive textbook on the subject is [1] . One of the most
commonly used clustering methods is K-means [2, 17]. However, it suffers from
the problem of not being able to detect the non-globular structures. Spectral
clustering methods were proposed to overcome this problem. Loosely speaking
spectral clustering methods embed the data in a lower dimensional subspace,
in which usual methods K-means clustering would be able to detect the non
globular clusters as well.

Recently, in [6], seeded clustering/segmentation methods in [7, 8, 12, 24] were
extended by taking the limit of minimizers. This is referred to as the Γ−limit



[19]. Γ−convergence is a tool to study the asymptotic behavior of families of
minimum problems [3]. The aim of Γ−convergence is to replace a family of
minimum problems with a single problem whose minima exhibits some interest-
ing properties. For instance in [6] it has been shown that the Γ−limit revealed a
new segmentation method which performs at least as well as graph cuts, random
walker and shortest paths, if not better.

In this article our aim is to calculate the Γ−limit of the ratio cut spectral
clustering. The Γ−limit of the ratio cut is referred to as PRcut and an algorithm
to calculate the PRcut has been proposed. Due to various numerical precision
errors and other constraints, a variant of the algorithm is implemented instead.
Thus, during the exposition, we stick to the philosophy that theory is developed
to be as general as possible, while the experiments are conducted with slightly
modified theory based on practical considerations such as “small” clusters de-
scribed later.

2 Background

Let {vi} be the given set of points in Rn which we would like to cluster.
Taking each of these points as vertices, one can construct a similarity graph
G = (V,E,W ) with vertex set V , edge set E, and W : E → R+ denotes weights
assigned to each edge. Here R+ denotes the set of positive real numbers. With
slight abuse of notation, we can write the weights as a |V | × |V | matrix, with
wij denoting the edge weight between vi and vj . The degree of a vertex, di is
given by

di =
∑
j

wij (1)

Let D be the diagonal matrix diag(d1, d2, · · · , dn). The Laplacian of a graph is
then defined by

L = D −W (2)

We know that the Laplacian is a symmetric positive-semi definite matrix, and
hence has non negative real eigenvalues, represented by 0 = λ0 ≤ λ1 ≤ · · · ≤
λn−1 [16]. The corresponding eigenvectors are denoted by (e0, e1, · · · , en−1). Let
A ⊆ V . Then the vector 1A(x) is given by

1A(x) =

{
1 if x ∈ A
0 otherwise

(3)

Let p be a real parameter. Let W (p) be the matrix such that W
(p)
ij = wp

ij . Let D(p)

denote the matrix as constructed in (1) with weights wp
ij . Let L(p) = D(p)−W (p).

2.1 Spectral Clustering

This section briefly reviews spectral clustering methods. For more details please
refer to [23, 25, 20]. As noted before, spectral clustering methods work by embed-
ding the data into a lower dimensional subspace. The three main steps are - 1)



Given a set of points {vi} (dataset), construct a similarity graph with each point
as a vertex. 2) Construct the Laplacian for the obtained graph and calculate the
first k eigenvectors. The value of k is fixed based on the number of clusters one
would like to obtain. Let K be the matrix such that the ith column of K is the
ith eigenvector ei−1. 3) Using rows of the matrix K as new representation of the
points vi, use traditional clustering methods such as K-means to obtain the final
clusters. Note that as a part of K-means step, the algorithm is run several times
with random initialization of seeds.

Why does spectral clustering work? Although the definitive answer to this
question still remains open, there exists several analyses which provide insights
into this question [25]. One approach is to interpret the spectral clustering in an
optimization framework. One of the measures to validate the appropriateness of
the clusters is

cut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai) (4)

where W (A,B) =
∑

i∈A;j∈B wij , A denotes the complement of A in the vertex
set V . cut(., .) measures how dissimilar the clusters are by taking the sum of
the weights of the edges connecting distinct clusters. In practice minimizing
the cut(., .) does not give good results, since it generally separates one vertex,
and gives degenerate solutions. To solve this, it was proposed to use a slight
modification of the above cost function. Ratio-cut, [25], is given by

Ratio− cut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
(5)

where |Ai| is the cardinality of set Ai. It can be shown that minimizing the
Ratio−cut(., .) for k clusters is approximately equivalent to solving the following
optimization problem.

minimize
H∈Rn×k

Tr(HtLH)

subject to HtH = I
(6)

Here I is the identity matrix and L is the laplacian as defined in (2). From
the Rayleigh-Ritz theorem [16] we know that the solution to this optimization
problem is obtained by considering the first k eigenvectors of L as columns of
H.

2.2 Gamma Convergence

Let min{Fp(x) : x ∈ X ⊂ Rn} be a family of minimum problems. Let x∗p be a
minimum of Fp(x). We are interested in calculating the limit

x∗ = lim
p→∞

arg minFp (7)

In other words, we are interested in the limit of a sequence of minimizers of the
family {Fp(x)}. Note that there could be many such sequences. Now, consider a



special case where

Fp(x) =

n∑
i=1

αp
iQi(x) (8)

where 1 ≥ αn > αn−1 > · · · > α1 > 0., and Qi(x) are smooth functions. We also
assume that there exists a compact set C such that x∗p belongs to C for all p.
It turns out that, in this case, one can find a simple algorithm to calculate the
limit of minimizers as described in the following Thm. 1 [19]. Define

Mn = arg minQn(x) x ∈ C (9)

Recursively define for k = n− 1, n− 2, · · · , 0

Mk = arg minQk(x) x ∈Mk+1 (10)

Theorem 1. Let Fp(x) be as defined in (8) and x∗ be the Γ−limit. Then x∗ ∈
M1.

Refer to [19] for proof of Thm. 1. The main consequence of Thm. 1 is that
it provides a method to calculate an “approximate” Γ−limit. One starts at the
highest scale, optimizes the cost function at this scale, then moves on to the
lower scale and repeats the process. Theorem 1 essentially states that one can
obtain an approximate solution to the Γ−limit by this process. Approximate, in
the sense that the Γ−limit belongs to the set M1. The question of how good is
the approximation, needs to be analyzed in the specific case.

3 Gamma Limit of Ratio - Cut

In this section, we calculate the approximate Gamma limit of the Ratio-cut. A
few more notations are required. For a given graph G, let Gk denote the graph
(V,Ek,Wk). Ek ⊆ E denotes the set of edges whose weight is wk. According to
the existence of the edge with weight wk, Wk takes the values in {0, 1}. We refer
to this graph as scale graph/level graph at level k. Just as for the original graph,
one can construct a laplacian, Lk, for Gk. A point to observe is that the entries
in weight matrices of a level graph are either 1 or 0. We assume that the graph
has distinct weights w1 < w2 < · · · < wj , where j < |E|. Given the notation as
above, we have

Tr(HtLH) =

j∑
k=1

wkTr(H
tLkH) (11)

Drawing a parallel with the Γ−convergence framework, we have that Qk(H) =
Tr(HtLkH) and alphak = wk. We are thus interested in calculating the limit of

minimizers of
∑j

k=1 w
p
kTr(H

tLkH) as p→∞, subject to HtH = I
Let Pk denote the following optimization problem.

minimize
H∈Rn×m

Tr(HtLkH)

subject to HtH = I
(12)



Thanks to Thm. 1, we have the following method to calculate the Γ−limit
for spectral clustering.

1. Let G be a graph with distinct weights w1 < w2 < · · · < wj . Let Mj+1 be
the set of the all n×m matrices.

2. For each k going from j to 1, let Mk be the set of solutions for arg minPk

which belong to Mk+1 .

The set M1 is the output of the method. Note that the above steps are not
implementable.

The main problem in finding an implementable version is to characterize all
the solutions for the problem in (12). Let λ(m) denote the mth smallest eigen-

value. Let Ak be the matrix [e1, e2, · · · el], where ei is the ith eigenvector, ordered
in increasing order of the corresponding eigenvalue. The number of eigenvectors
considered, l, are the number of eigenvalues less than or equal to λ(m). Let K
be the matrix

K =

[
Il1×l1 0

0 kl2×m−l1

]
(13)

where KtK = I. l2 is the number of eigenvalues equal to λ(m), and l = l1 + l2.
Let X be an orthogonal matrix such that XtX = I. Then,

Proposition 1. The set of all solutions to the optimization problem in (12) is
of the form AkKX.

Proposition 1 results in an algorithm which is implementable. However, one
requires to calculate all the eigenvectors at every stage, which is computationally
expensive. Proposition 2 results in an efficient implementation of the algorithm
as given in Alg. 1. We refer the result obtained by this algorithm as Power Rcut.
Also, G≥k denotes the graph with vertex set V and edge set E≥k = ∪i≥kEi.

Proposition 2. Given a graph G, Let G≥k denote the graph, whose vertex set
is V and edge set Ek containing all the edges whose weight is greater than or
equal to wk. At stage k, if A is a maximal connected component of G≥k, then 1A

is an eigenvector with eigenvalue 0 of the optimization problem (12).

The proofs for the propositions and details of simplification to obtain the
efficient Alg. 1 will be discussed in detail in a complete version of the paper
[4]. Observe that Alg. 1 only gives an element of the set to which the Γ−limit
actually belongs. The appropriateness of the solution thus obtained must be
proved, which Prop. 3 gives.

Proposition 3. Let x be the solution obtained by algorithm 1 and let x∗ be a
Γ−limit. Then

Fp(x∗) = Fp(x) for all p (16)

Where Fp is as given in (8), where Qi(x) = Tr(xtLix).

The above proposition implies that any Γ−limit, and the approximate one
calculated have the same cost. In the context of spectral clustering, this implies
that the solutions are equivalent and thus the solution obtained from Alg. 1 is a
good approximation. The proof of the above proposition will be detailed in later
work.



Algorithm 1 Efficient algorithm to compute Γ−limit for ratio-cut.

Input: A weighted graph, G, with distinct weights w1 < w2 < · · · < wj . Number of
clusters, m.

Output: N - A representation of the subspace spanned by the Γ−limit of the mini-
mizers.

1: Set k := j.
2: while Number of connected components of G≥k is greater than or equal to m do
3: Set k := k − 1 {We refer to this as an MST-Phase}
4: end while
5: ConstructN by stacking the vectors 1Ai/

√
|Ai| in columns, where Ai is a connected

component of G≥k.
6: Set l1 := 0 and l2 := number of connected components in G≥k

7: Consider the graph Gk and let Lk be the corresponding laplacian.
8: Set C = [N tLkN ]l2,l2
9: Calculate the first eigenvectors of eigenvalue problem whose eigenvalue is less than

or equal to λ(m).
Cx = λx (14)

10: Let A be the matrix obtained by stacking the eigenvectors as columns.
11: Construct Â as

Â =

[
Il1×l1 0

0 A

]
(15)

12: Update l1 and l2.
13: N := N × Â
14: Set k := k − 1
15: if k = 0 or number of columns of N is equal to m then
16: return N
17: else
18: Goto Step (7)
19: end if

4 Analysis with Experiments

In the rest of the article, we discuss how the algorithm works, its practical imple-
mentation and its similarities and dissimilarities with the MST based clustering
and spectral clustering methods.

4.1 How the algorithm works?

Recall that the output of spectral clustering is a projection onto a subspace,
and thus the algorithm produces a representation of the points in a subspace
(denoted by N in algorithm 1) which is a gamma limit. We assume that we need
m clusters. In steps 2-4, we progressively add all the edges while there are at
least m connected components in the threshold graph G≥k. Thanks to Prop. 2
we know the first eigenvectors of the laplacian of the threshold graph are the
indicator vectors as in (3) where A denotes each of the connected components.
We construct the initial representation of the points N by taking the eigenvectors



in step 5. Steps 7-14 update the representationN with respect to the lower weight
edges. Note that, once the number of columns of the matrix N is equal to m,
we need not update the representation anymore, since any other representation
would just be an orthogonal transformation of the points and thus the clustering
results would not change. This condition is checked in steps 15-19.

One issue with the gamma limit is that the property of non-trivial clusters for
the Ratio-cut is not preserved in the limit. In the above algorithm, in practice,
we get a lot of outliers and this results in small clusters. To avoid this, in steps
2-4, instead of calculating the number of connected components, we calculate the
number of connected components whose size is greater than a given parameter
threshComp. At the moment the algorithm jumps out of the while loop, all the
components which have less than threshComp number of vertices are ignored.
Recall that after the representation of the points is obtained, one has to perform
K-means clustering to get the final partition. At this stage the ignored “small”
clusters can either be returned as a different cluster, or combined with one of
the larger clusters at random.

A simple application of the algorithm is illustrated in Fig. 1, where one can
see that the algorithm correctly detects the object (flower in this case). Since
small clusters are ignored, for the applications of image segmentation we do not
get closed contours for the segments. Thus, for image segmentation the clusters
are post-processed with an operator. Observe in Fig. 1(b) a few parts of the
flower are missing. In this case, simple operators such as an opening works well,
which gives the result as in Fig. 1(c). In general connected operators [22] preserve
contours and are better for the post-processing of the image. Another important
property of the Power Rcut clustering method is that, it results in smoother
contours compared to the spectral clustering method. This is illustrated in Fig.
1 (d) - (f).

4.2 Relation to MST-clustering

MST (Maximum Spanning Tree) based clustering is one of the earliest graph
based clustering approach [26, 13, 21, 5]. There exists several variations of the
method. We consider here the simplest method - (a) Construct an MST (b)
Iteratively remove the least weight edges until we get the required number of
clusters. One of the most useful properties of spectral clustering is its ability
to detect non-convex clusters in the data. This property is shared by the MST
based clustering methods as well.

However, the problem with MST based clustering is breaking ties between
edges of equal weight, which it does arbitrarily. Spectral clustering on the other
hand ensures a single clustering (up to the arbitrariness of k-means step). In this
sense, Power Rcut can be considered to be a method between these two clustering
methods. Power Rcut follows a similar procedure as MST based clustering, and
it breaks ties with spectral clustering on a subgraph. For example consider the
graph in Fig. 2(a). Power Rcut segments the graph into two equal clusters, Fig.
2(b). The same behavior is also exhibited by spectral clustering. MST based



(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original Image (Flower) (b) Power Rcut segment result (c) Power Rcut seg-
ment result post processing with opening (d) Original Image (Cameraman) (e) Con-
tours obtained by Power R cut and (f) Contours obtained by Normalized spectral
clustering.

clustering on the other hand segments the graph into non-equal parts since it
breaks the ties arbitrarily, Fig. 2(c).
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Fig. 2. (a) Basic Graph (b) Power Rcut Clustering (c) MST based clustering. Observe
that Power Rcut splits the graph into two equal halves, where as MST based clustering
does not.

This is because, Power Rcut takes into consideration the sizes of the cluster
while breaking ties. Consider another synthetic example in Fig. 3(a). An MST is
highlighted in bold edges in Fig. 3(a). Since MST based clustering would break
the ties randomly, it could result in clusters as in 3(b). Power Rcut clustering on
the other would definitely not give clusters as in 3(b). An example Power Rcut
clusters is given in 3(c).
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Fig. 3. (a) Basic Graph and MST edges highlighted in bold (b) Clustering with MST
(c) Power Rcut Clustering. Observe that Power Rcut clustering tries to split the graph
into equal parts.

Proposition 4. If at a threshold t, we have that G≥t has exactly m clusters,
then MST clustering and Power Rcut clustering results in the same clusters.

Power Rcut clustering and MST based clustering are in fact closely related
as suggested by the Prop. 4. The proof follows from the following observation -
for any two vertices belonging to the same connected component has the same
value in the embedded space, and hence belong to the same cluster. Since, we
require m clusters, and there are m connected components, the k-means step
results in each of these m components as a cluster.

4.3 Relation to Spectral Clustering

The Power Rcut solution can also be interpreted as being obtained by spectral
clustering on every level graph Gk. Since, the first few eigenvectors are the indi-
cator of the connected components, this gives a heuristic explanation for steps
2-4 in algorithm 1. This points out the similarity between Power Rcut solution
and spectral clustering.

In low noise conditions, spectral clustering and Power Rcut clustering results
are similar. However, as noise level increases, spectral clustering will not be able
to identify the regions anymore. In Fig. 4(a),(b) and (c) data points are sampled
from two concentric circles with noise. Fig. 4(c) shows the results obtained by
spectral clustering are shown. Notice that the structure of the two circles is not
preserved. Fig. 4(a) show the results obtained with Power Rcut. To generate the
results of Power Rcut, as a post processing step, we assign each of the points the
“small” clusters to the closest cluster, which results in Fig. 4(b) . Although not
perfect, Power Rcut results preserve some structure. For a quantitative view we
calculate the Fowlkes-Mallows(FW) scores, given by the formula

Score =
TP√

(TP + FP )
√

(TP + FN)
(17)

Where TP is true positives, FP is false positives and FN is false negatives. The
FW scores for various noise levels is plotted in Fig. 4(d). Note that Power Rcut
performs better in high noise scenarios compared to spectral clustering.
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Fig. 4. Data is sampled from two concentric circles with noise. The clusters obtained
are represented by red dots and blue circles. (a) Power Rcut clustering. The green
stars indicate the “noise” clusters obtained. (b) Power Rcut clustering obtained by
adjusting the noise clusters to the nearest cluster. (c) Spectral clustering (d) Fowlkes-
Mallows scores for varying noise. The dashed line indicates spectral clustering score
and continuous line indicate Power Rcut score. The higher the score, the better the
procedure.

5 Conclusion And Future Work

In this article we outlined the basics of spectral clustering and discussed the
concept of Γ−convergence. Important results to calculate the Γ−limit of Ratio-
cut were outlined and the algorithm to calculate the gamma limit was obtained.
The correctness of the algorithm was shown via a proposition. The similarities
and dissimilarities between Power Rcut, MST clustering and Spectral clustering
are analyzed stating the result that Power Rcut clustering is a specific kind
of MST clustering. Power Rcut clustering was shown to be superior to MST
clustering in dealing with ramp effects of the image, and superior to spectral
clustering in noisy scenarios.



Note that none of the steps in spectral clustering methods indicate directly
as to why spectral clustering methods could obtain non-convex clusters. This
has been an open question for a long time. We believe that, the fact that gamma
limit of spectral clustering is a method close to MST clustering provides an
insight into this question. In particular, this provides a bridge between spectral
clustering and MST clustering and allows us to dive into the question of why
spectral methods work.

Note that the algorithm starts with combining the edges of highest weight
until the number of clusters are obtained. This can be interepreted as a greedy
method of “combining all the points which definitely belong to the same cluster”,
thus reducing the size of the dataset and allowing for faster computation. This
in theory can also be done in parallel. This can allow spectral clustering to be
applicable in the case of large datasets and also have efficient implementations.
The error bounds and the exact algorithm to do this are a subject of future
research.

In [9], the authors study in depth hierarchies and their equivalence with MST.
Observe that the Alg. 1 is inherently hierarchical. The question of how Alg. 1 is
related to the concepts in [9] is also a subject of future research.
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