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Abstract

In this paper we propose an extension of Nitsche’s method for frictional contact in large elastic deformations. In
fact we develop an unbiased strategy in which no dissymmetry is considered between contact surfaces, conversely
to the master–slave strategy. This enables to take into account within the same formalism contact of two elastic
bodies as well as self–contact. We provide a numerical study of the performance and robustness of the method.

Keywords: large deformation contact, frictional contact and self-contact, Nitsche’s method, unbiased
formulation.

Introduction

Frictional contact problems involve difficulties from both theoretical and numerical viewpoints, especially
in large deformations, where complex geometrical and mechanical quantities depend on an a priori unknown
mapping between contact surfaces. Contact problems are inherently non–linear, even non–smooth, and involve
variational inequalities and constrained minimization. In the literature, many attempts have been developed
to deal with such problems using the finite element method. In most cases, the difficulty caused by the non-
differentiability of contact and friction laws is resolved with either a method of regularization, such as penalization
or augmented Lagrangian [1, 2], or a mixed method [3, 4].

Moreover, the spatial discretization of the problem produces difficulties at level of the calculation of mechanical
contact. Evaluating the quantities involved in the equations of mechanical contact is difficult when the two
boundaries are discretized. The most commonly used method is the node-to-surface (NTS) approach under a
master-slave configuration [5, 6]. The use of the NTS method involves a loss of accuracy in the calculation of
displacements and stresses in the contact area. This results from the amplification of spatial discretization errors
caused by the node-wise contact constraint enforcement. A way to overcome this problem is the use of the mortar
method which has been successfully applied to solve contact problems with finite deformations [7, 8]. In this
method, the enforcement of contact constraints is applied in a weak sense throughout the contact interface. The
calculation of contact can also be done by other ways such as contact domain methods [9, 10] and intermediate
mortar surface method [11]. A theoretical and algorithmic background for the contact between two deformable
bodies undergoing large deformations is detailed in, e.g., [12, 13].

In this paper we introduce a Nitsche’s method for the large deformation contact problem. Nitsche’s method
was originally proposed in [14] to take into account a Dirichlet condition weakly. It was adapted to bilateral
contact in [15, 16] and to unilateral contact in [17, 18]. This method aims at treating the interface conditions in a
weak sense, thanks to a consistent penalty term. So it differs from standard penalization techniques which are non-
consistent. Conversely to mixed method and augmented Lagrangian method, the proposed approach is primal;
this allows us to eliminate an outer augmentation loop as well as additional unknowns (Lagrange multiplier) and
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there is no inf-sup condition to satisfy. In [17, 18] a complete study of Nitsche’s method for frictionless unilateral
contact undergoing small deformations is presented. The well-posedness as well as the nominal convergence for
the H1– and L2–norms were proved. In [19] a Nitsche stabilized approach was introduced for frictional sliding
problem. In [18] were introduced some variants of the method, that a real parameter θ allows to encompass.
Namely, θ = 0 yields a non-symmetric simple version of Nitsche; when θ = 1 we recover a symmetric method
and to θ = −1 corresponds a skew-symmetric method that is much more robust regarding Nitsche’s parameter.
In this adaptation to the large strain case, we use a similar parameter to recover all the different variants. The
above remarks concerning this parameter θ remain true to some extent for large deformation contact. The main
difference between large and small strain is that, when θ 6= 0, the weak formulation and the tangent problem are
more difficult to obtain since they involve additional derivatives of the stress tensor.

The standard paradigm to treat the problem of two deformable bodies in contact is known as the master/slave
formulation (see, e.g., [12, 5, 13]): one distinguishes between a master surface and a slave one on which one
prescribes the non–penetration condition. With this paradigm important difficulties appear in the case of self–
contact and multi–body contact where it is impossible or impractical to a priori nominate a master surface and
a slave one. Automating the detection and the separation between slave and master surfaces in these cases may
generate a lack of robustness since it may create detection problems. To avoid these difficulties some unbiased
formulations for contact were proposed, see for instance [20]. For Nitsche’s method, an unbiased version for
contact and Tresca friction in the small strain framework was presented in [21]. In this previous work, the two
contact surfaces were treated symmetrically and the integration of contact/friction condition was made along
the two surfaces. This current study extends this unbiased formulation to large deformation contact and self–
contact with Coulomb friction. The reformulation of Coulomb friction follows the same path as in [22, 21]. Of
course no proof of well-posedness or convergence can be obtained with standard techniques for the problem under
consideration, but we test numerically the performance of our method in various situations.

Another major difficulty for large deformation contact comes from the mapping function relating the two
contact surfaces. Classically, a point of the first contact surface is mapped to the closest projection point on the
second one. Hence, the second surface normals ny govern the definition of the gap function and its kinematics.
This classical mapping will in the following be simply referred to as the projection strategy. In [23] this strategy
is compared with another one named ray-tracing, where a point of the first surface is mapped to the closest
intersection with the other surface along the first surface normal. Unlike projection the definition of the gap and
related quantities are governed by the first surface normal nx. The formulations presented for instance in [7, 24]
employ the classic projection approach, while [8, 25] present formulations that rely on the ray-tracing strategy.
According to [23] the ray-tracing is more stable since the expression of the directional derivative of the mapping
is quite simpler and expected to be smoother. Moreover, there are generally less special cases to treat when
dealing with ray-tracing rather than projection since the probability to come across a non regular point, like a
corner of the geometry or simply an element boundary, is negligible for the ray-tracing strategy while it is very
frequent for the projection. In the present paper, we formulate the method for both strategies and we provide a
numerical comparison between them.

In Section 1 we present the setting and notations for the problem under consideration: large deformation
contact with Coulomb friction and possibly self–contact. In Section 2 the Nitsche–based approximation is detailed,
particularly the variational formulation and the tangent problem. Section 3 is a numerical validation of the
method with several tests. The influence of Nitsche’s parameter for different variants is investigated numerically.

1. Problem setting

1.1. Notations
Let Ω ⊂ Rd be an open bounded set that denotes the reference configuration of one or several deformable

solids in a space of dimension d = 2 or 3. A deformed configuration Ωt of the considered solids can be defined
through a transformation ϕ which maps any point X of the reference configuration to a point x of the deformed
one (see Figure 1):

ϕ : Ω −→ Rd
X 7−→ x = ϕ(X).

We define the displacement u relatively to the reference configuration as:

u(X) = ϕ(X)−X.
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Deformation of the solid can be considered either in equilibrium or as part of a quasi-static evolution. To deal
with Coulomb friction, a quasi-static process will be considered, and the static case can be viewed as a particular
case.

       

Ω

X

Y

NY

NX
y

ny

Γc

nx

x
Γt
c

Γt
c

Ωt

Ωt

Γc

Ω

ϕ = u+ Id

Figure 1: Basic notations for different quantities in reference and deformed configurations.

In the deformed configuration Ωt, at time t, different portions of the boundary ∂Ω of Ω may come into contact
and interact with each other. In order to express this interaction mathematically, it is convenient to consider a
restricted part of ∂Ω as the contact surface Γ, i.e. the surface where contact/friction phenomena may occur. As
in [21] we consider an unbiased formulation that does not distinguish between a master and a slave surface. The
case of self–contact is treated implicitly and there is no need to divide the self–contact surface. A non-penetration
condition on the deformed contact surface Γt can be expressed with the help of a mapping function relating a
point x to its mapping y. We denote by Γtc ⊂ Γt (resp. Γc ⊂ Γ) the set of points x (resp. X) in the deformed
(resp. reference) configuration, for which such a mapping Π exists:

Π : Γtc −→ Γt

x 7−→ y = Π(x).

Recall that surface points X, Y , x and y are of dimension d as well as the corresponding unit outward normal
vectors: NX , NY in the reference configuration and nx, ny in the deformed one.

The gradient of a quantity in the deformed (resp. reference) configuration will be noted ∇ (resp. ∇X). To
describe the deformation we introduce as usual the identity matrix of size d×d, denoted by I and the deformation
gradient F = I +∇Xu. We introduce as well

ε(u) =
1

2
(∇u+∇uT ) =

1

2
((∇Xu)F−1 + F−T (∇Xu)T ).

The jacobian of ϕ is denoted by J = detF. We introduce also the Cauchy-Green tensor C = FTF, and the
Green-Lagrange tensor E = 1

2 (C − I). We will note σ the Cauchy stress tensor, σ̂ = JσF−T the first Piola-
Kirchhoff stress tensor and S = JF−1σF−T the second Piola-Kirchhoff stress tensor. We define σ̂

N
= σ̂N

the contact stress on ∂Ω (where N is the outward unit normal to ∂Ω). To fix ideas we will consider a general
hyperelastic constitutive law, derived from a potential W that depends on the deformation through E (or C)
(see, e.g., [26, 27]), so that the second Piola-Kirchhoff stress is

S =
∂W

∂E
(E) = 2

∂W

∂C
(C),

with corresponding fourth-order elasticity tensor

C =
∂S

∂E
=

∂2W

∂E∂E
.
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We will need as well the isotropic tensor

I =
1

2
(ei ⊗ ej ⊗ ei ⊗ ej + ei ⊗ ej ⊗ ej ⊗ ei),

where ⊗ denotes the tensor product of two vectors, (ei)i=1,...,d is the canonical basis of Rd and where Einstein’s
summation convention is used. The tensor I has the property I : A = A for any symmetric second-order tensor
A (: denotes the double-dot product between two tensors). The operator Tn refers to the projection on the
tangent plane corresponding to normal vector n.

Since the choice of a constitutive law is not central in the description of the proposed contact approximation,
we will simply denote the global potential energy by J (·). For example, if considering simple equilibrium under
a gravity force, the potential energy is

J (u) =

∫
Ω

W (E) dX −
∫

Ω

ρ g · u dX,

where ρ is the density in the reference configuration and g is the gravity acceleration vector. Of course, additional
terms such as boundary loads, can be considered as well. Dirichlet conditions can also be prescribed, but, to
simplify the formulation, the treatment of Dirichlet conditions will be omitted in the following.

Moreover, we consider the following notations to simplify the mathematical presentation. The directional
derivative of a quantity A with respect to the displacement u in direction δu will be denoted by DA(u)[δu] or
even by DA[δu] if the argument of the quantity A is not ambiguous. This directional derivative is defined as

DA(u)[δu] = lim
ε→0

A(u+ ε δu)−A(u)

ε

when this limit exists. The projection onto R− is defined as:

[a]R− =

{
a if a ≤ 0 ,
0 if a > 0 ,

and the projection onto a ball centered at the origin and with a radius τ is:

PB(τ)(q) =

{
q if ‖q‖ ≤ τ ,
τ
q

‖q‖
otherwise,

where ‖ · ‖ is the euclidean norm on Rd.
The notation H(·) stands for the (multivalued) Heaviside function: for any x ∈ R,

H(x) =

 1 if x > 0,
[0, 1] if x = 0,

0 if x < 0.

1.2. The mapping and the gap function

In the problem setting above, it is assumed that a point x of the deformed contact surface is mapped to a
point y. Regarding this mapping, there are several possibilities. The most classic strategy is to define y as the
closest point projection of x onto the deformed surface Γc, like shown in Figure 2(a). We can refer to [12] for this
mapping. The main difficulty for using projection is the complicated expression of the tangent problem, that is
due to the derivative of the unit normal vector ny. The expression of this derivative can be found in [12, chapter
4]. However, this expression does not take into account the inter-element jumps.
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Figure 2: Illustration of projection and ray-tracing strategies.

An alternative strategy, corresponding to Fig. 2(b), is to define y as the closest intersection of the contact
surface with the line passing through point x and having direction vector nx. The latter strategy, which can be
referred to as ray-tracing, was studied in [23]. Gap functions corresponding to ray-tracing and projection with
respect to a point x(X) are respectively defined by:

g = nx · (y − x) , for ray-tracing (1)

and g = ny · (x− y) , for projection, (2)

with these scalar expressions being based on the corresponding vector relations:

y = x+ g nx , for ray-tracing (3)

and y = x− g ny , for projection. (4)

To obtain and to linearize a weak formulation associated to the non-penetration condition, we need the directional
derivatives of all quantities involved in (1) (resp. (2)) with respect to the displacement u in a virtual direction
δu: see [23] (resp. [12, 24]) for detailed expressions.

1.3. Formulation of contact and friction conditions

The impenetrability constraint is stated mathematically as g(u) ≥ 0. To formulate the associated comple-
mentarity conditions, we need to consider the contact traction σ̂

N
(u) which we take to be the Piola traction at

point X. This traction is resolved as follows:

σ̂
N

(u) = σ̂n(u)nx + Tnx
σ̂

N
(u) = σ̂n(u)nx + σ̂t,

where nx is the outward normal to Γtc at x. When contact occurs (σ̂n < 0) the outward normal vectors nx and ny
are opposite. Thus, for projection the stress vector σ̂

N
is resolved at the projected point y according the normal

vector −ny, instead of nx. The quantity σ̂n(u) now represents the contact pressure at X, and must be negative.
The conditions for normal contact are:

g(u) ≥ 0 (5a)

σ̂n(u) ≤ 0 on Γc. (5b)

σ̂n(u)g(u) = 0 (5c)

Let γ be a given positive function. As in [28, 17, 18], the contact conditions (5a)-(5b)-(5c) are reformulated as

σ̂n(u) = [σ̂n(u) + γg(u)]R− . (6)

In the presence of friction, normal and tangential stresses at the contact interface are coupled through the
sliding velocity vector v. As in [23], we use the frame indifferent definition of velocity described in [29]. Adapted
to the current notation v(X) reads:

v(X) = ϕ̇(X)− ϕ̇(Y ) + g ṅ , (7)
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with dotted quantities representing time derivatives and n refers to nx for ray-tracing and −ny for projection.
Time discretization is based on a backward Euler approximation of the first expression in (7) which reads:

v(X) =
1

∆t
(ϕ(X)− ϕ(Y ) + g n)− 1

∆t
(ϕ0(X)− ϕ0(Y ) + g n0) , (8)

where ∆t > 0 is the time-step, and where ϕ0, n0 are respectively the deformation and the surface normal at the
previous time-step. Equation (8) can be then simplified further using (3) and (4):

v(X) = − 1

∆t
(ϕ0(X)− ϕ0(Y ) + g n0) . (9)

It should be underlined here that the mapping between points X and Y appearing in (9) corresponds to the
current deformation ϕ and not to the deformation ϕ0 at previous time-step.

The conditions of Coulomb friction can be written as follows:
‖σ̂t(u)‖ ≤ −F σ̂n(u) if v = 0,

σ̂t(u) = F σ̂n(u)
v

‖v‖
otherwise.

(10)

As presented in [22] for Tresca friction, we could reformulate the Coulomb friction condition using the projection
PB(τ). In fact, for a given positive function γ, the friction condition is equivalent to the non-smooth equation:

σ̂t(u) = PB(−F σ̂n(u))(σ̂t(u)− γv). (11)

To simplify the formulation, and following [23], we define the non-smooth operator Cγ,F as:

Cγ,F (σ, g, v, n) = [σ · n+ γ g]R− n+ PB(n,−F [σ·n+γ g]R− )(σ − γ v).

Unlike PB(τ) that represents a simple ball projection, here PB(n, τ) is the projection onto the tangent plane
defined by the normal n, followed by the projection onto a ball of radius τ , i.e. :

PB(n,τ)(q) =

 Tnq if ‖Tnq‖ ≤ τ ,

τ
Tnq

‖Tnq‖
otherwise.

(12)

As a result, contact and friction conditions, in the case of ray-tracing, are formulated as:

σ̂
N

= Cγ,F (σ̂
N
, g, v, nx). (13)

2. A Nitsche-based formulation for frictional contact

2.1. Weak formulation

We consider test functions δu ∈ V0, with V0 the space of all (smooth) admissible variations of u satisfying
possibly homogeneous Dirichlet conditions on the appropriate part of ∂Ω. The abstract weak formulation for
(frictional) contact is:

G(u; δu) =

∫
Γc

σ̂
N
· δu dΓ, ∀δu ∈ V0.

The expression G(u; δu) is the sum of the internal virtual work and of the virtual work of body or surface
external forces. This work is seen to balance the virtual work of the contact and friction forces acting on
Γc. In the considered case of hyperelastic bodies and simple equilibrium under a gravity force, there holds
G(u; δu) = DJ (u)[δu]. Thus, the above weak formulation reads:

DJ (u)[δu]−
∫

Γc

σ̂
N
· δu dΓ = 0, ∀δu ∈ V0. (14)
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Moreover, we apply the second Newton law: to each point X ∈ Γc, we require that the differential contact force
induced on Γc at the corresponding point Y be equal and opposite to that produced at X, i.e.

σ̂
N

(X) dΓX = −σ̂
N

(Y ) dΓY . (15)

Integrating with respect to Y instead of X, we obtain the following identities:∫
Γc

σ̂
N

(X) · δu(X) dΓX =

∫
Γc

σ̂
N

(Y ) · δu(Y ) dΓY

=
1

2

(∫
Γc

σ̂
N

(X) · δu(X) dΓX +

∫
Γc

σ̂
N

(Y ) · δu(Y ) dΓY

)
.

Using (15) we get: ∫
Γc

σ̂
N

(X) · δu(X) dΓX =
1

2

∫
Γc

σ̂
N

(X) ·
(
δu(X)− δu(Y )

)
dΓX .

We inject the above expression into (14) and get:

DJ (u)[δu]− 1

2

∫
Γc

σ̂
N
·
(
δu(X)− δu(Y )

)
dΓ = 0, ∀δu ∈ V0.

Let now θ ∈ R be a fixed parameter that we use to recover different variants of the Nitsche method, as in the
linear elastic setting (see, e.g., [18]). With the splitting

δu(X)− δu(Y ) =− 1

γ

(
γ(δu(Y )− δu(X)) + θDσ̂

N
[δu]

)
+
θ

γ
Dσ̂

N
[δu]

=− 1

γ
D
(
θσ̂

N
+ γ(u(Y )− u(X))

)
[δu] +

θ

γ
Dσ̂

N
[δu],

we obtain, for all δu ∈ V0,

DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ +

1

2

∫
Γc

1

γ
σ̂

N
· D
(
θσ̂

N
+ γ(u(Y )− u(X))

)
[δu] dΓ = 0. (16)

We inject finally the expression (13) into (16) and obtain, formally, our Nitsche’s based formulation for frictional
contact and the ray-tracing strategy:

DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N
, g, v, nx) · D

(
θσ̂

N
+ γ(u(Y )− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V0 .

(17)

Remark 2.1. For projection we decompose σ̂
N

at point y instead of x and using the normal ny. The yielding
formulation reads:

DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂

N
, g, v, ny) · D

(
θσ̂

N
+ γ(u(Y )− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V0 .

(18)

In this case, the derivative of the gap is (following, e.g., [12, 23]):

Dg[δu] = ny · (δu(X)− δu(Y )).

This results allows us to get a symmetric variant of the Nitsche’s formulation in the frictionless case and when
θ = 1. This variant is similar to the formulation described in Proposition 2.5. When projecting on n = −ny, the
method reads indeed:

DJ (u)[δu]− 1

2

∫
Γc

1

γ
σ̂n · Dσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ

[
σ̂n + γ g

]
R−

(
Dσ̂n[δu] + γDg[δu]

)
dΓ = 0 ∀ δu ∈ V0 .
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Remark 2.2. A biased version of our Nitsche’s method is obtained by dividing the domain Ω into two bodies
Ω1 and Ω2 and the contact surface Γc into a master surface ΓMc and a slave one ΓSc . In this case the factor 1

2
disappears when applying the second Newton law because the integration is applied only on the slave surface. In
this case the method reads:

DJ (u)[δu]−
∫

ΓS
c

θ

γ
σ̂

N
· Dσ̂

N
[δu] dΓ

+

∫
ΓS
c

1

γ
Cγ,F (σ̂

N
, g, v, nx) · D

(
θσ̂

N
+ γ(u(Y )− u(X))

)
[δu] dΓ = 0 ∀ δu ∈ V0.

(19)

2.2. Directional derivative of the stress tensor

To make explicit each term in formulation (17), we need first the following results on the directional derivatives
of deformation tensors, that are obtained after simple computations (see, e.g. [27, Chapter 14]):

Proposition 2.3. The directional derivatives of F and E are:

DF(u)[δu] = ∇X(δu),

DE(u)[δu] = sym (FT (u)∇X(δu)) = FT (u) ε(δu)F(u),

where sym (·) denotes the symmetric part of a second order tensor.

The computation of the directional derivatives of stress tensors σ̂ and S is more involved and we recall their
expression below (see as well [27, Chapter 14]):

Proposition 2.4. The directional derivatives of S, resp. σ̂, are:

DS(u)[δu] = C(u) : FT (u)∇X(δu) = C(u) : FT (u) ε(δu)F(u). (20)

Dσ̂(u)[δu] = ∇X(δu)S(u) + F(u)(C(u) : FT (u)∇X(δu)). (21)

Proof: First, for an hyperelastic law, there holds in fact S(u) = S(E(u)) and we apply the chain rule:

DS(u)[δu] = DS(E(u))[DE(u)[δu]] =
∂S

∂E
(u) : DE(u)[δu].

Since C = ∂S
∂E and using Proposition 2.3 we get:

DS(u)[δu] = C(u) : sym (FT (u)∇X(δu)).

Then (20) is obtained with the above formula and the symmetry properties of C.
Using the relationship σ̂ = FS and applying the product rule yield, for Dσ̂(u)[δu]:

Dσ̂(u)[δu] = DF(u)[δu]S(u) + F(u)DS(u)[δu].

We use (20) and once again Proposition 2.3 to obtain (21). �

As an example, suppose that the constitutive law is those of a Saint-Venant-Kirchhoff material, i.e., that:

W (E) =
λ

2
(tr (E))2 + µ tr (E2),

where λ and µ are material parameters, see, e.g., [26, Chapter 5]. The associated second Piola-Kirchhoff stress
tensor and elasticity tensor are:

S = λtr (E)I + 2µE, C = λ I⊗ I + 2µI.

Let us detail the expression

Dσ̂(u)[δu] =∇X(δu)S(u) + F(u)(C(u) : FT (u)∇X(δu))

=∇X(δu) (λtr (E(u))I + 2µE(u)) + F(u)((λ I⊗ I + 2µI) : FT (u)∇X(δu)).

8



We compute separately

I⊗ I : FT (u)∇X(δu) = (I : FT (u)∇X(δu))I = tr (FT (u)∇X(δu))I,

and
I : FT (u)∇X(δu) = sym (FT (u)∇X(δu)).

This yields

Dσ̂(u)[δu] =∇X(δu) (λtr (E(u))I + 2µE(u))

+ F(u)(λ tr (FT (u)∇X(δu))I + 2µ sym (FT (u)∇X(δu)))

=λ
(
tr (E(u))∇X(δu) + tr (FT (u)∇X(δu))F(u)

)
+ 2µ

(
∇X(δu)E(u) + F(u) sym (FT (u)∇X(δu))

)
.

We finally obtain Dσ̂
N

(u)[δu] using relationship:

Dσ̂
N

(u)[δu] = Dσ̂(u)[δu]N,

since σ̂
N

= σ̂N . The same process can be applied for various constitutive laws. Note also that, for the numerical
solving, the tangent system involves the second order derivative: D2σ̂(u)[δu,∆u] (see 2.4).

This emphasizes the interest of the non-symmetric variant θ = 0 for which the method is simpler. As in the
small strain case [18, 21] the interest of the symmetric variant θ = 1 consists mostly in its derivation from a
potential (see 2.3) and the symmetry of the tangent problem, while the interest of the skew-symmetric variant
θ = −1 is its robustness respectively to the Nitsche parameter γ (see Section 3).

2.3. Energy potential and symmetric formulation for frictionless contact

In this section, we show, that, at least formally, a symmetric variant θ = 1 of Nitsche’s formulation, close to
(17), for frictionless contact derives from an energy potential. This result is summarized as:

Proposition 2.5. Let us define the energy potential JN(·) that takes into account the body deformation as well
as non-penetration formulated in a Nitsche’s manner:

JN(u) = J (u)− 1

4

∫
Γc

1

γ
σ̂2
n dΓ +

1

4

∫
Γc

1

γ
[σ̂n + γg]2R− dΓ , (22)

where γ > 0 is the Nitsche’s parameter, σ̂n is the normal stress in reference configuration (see Section 1.3) and
g is the gap function (see Section 1.2). The first-order optimality system associated to JN(·) reads:

DJ (u)[δu]− 1

2

∫
Γc

1

γ
σ̂nDσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ
[σ̂n + γg]R−D(σ̂n + γg)[δu] dΓ = 0 ∀ δu ∈ V0.

(23)

Proof: Let us write the optimality system associated to JN(·):

DJN(u)[δu] = DJ (u)[δu]− 1

2

∫
Γc

1

γ
σ̂nDσ̂n[δu] dΓ +

1

4

∫
Γc

1

γ
D[σ̂n + γg]2R− [δu] dΓ = 0 ∀ δu ∈ V0.

To obtain (23) there remains to compute:

D[σ̂n + γg]2R− [δu] = 2[σ̂n + γg]R−D[σ̂n + γg]R− [δu]
= 2[σ̂n + γg]R−H

(
− (σ̂n + γg)

)
D
(
σ̂n + γg

)
[δu]

= 2[σ̂n + γg]R−D(σ̂n + γg)[δu],

where we used properties D[A(u)]R− [δu] = H(−A(u))DA(u)[δu], for any application A : u 7→ A(u) ∈ R as well
as H(−x)[x]R− = [x]R− for any x ∈ R. �

The expression of the derivative Dσ̂n[δu] is detailed previously in 2.2 while for Dg[δu], we can refer to [23,
Section 3] both for ray-tracing and projection techniques.
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Remark 2.6. We can introduce θ ∈ R, as in section 1.3. We only modify slightly system (23) as below:
DJ (u)[δu]− 1

2

∫
Γc

θ

γ
σ̂nDσ̂n[δu] dΓ

+
1

2

∫
Γc

1

γ
[σ̂n + γg]R−D(θσ̂n + γg)[δu] dΓ = 0 ∀ δu .

(24)

2.4. Finite element approximation and tangent system

A standard Galerkin procedure can be applied by choosing a finite element space for the displacement, i.e.,
V h0 ⊂ V0 to account for any possible Dirichlet condition. We consider in what follows that γ is a positive piecewise
constant function on the contact interface Γc which satisfies

γ|K∩Γc
=

γ0

hK
,

for every element K that has a non-empty intersection of dimension d − 1 with Γc, where hK is the size of the
element K and γ0 is a positive given constant. Note that the value of γ on element intersections has no influence.

Then, the finite element approximation of System (17) reads:
DJ (uh)[δuh]− 1

2

∫
Γc

θ

γ
σ̂h

N
· Dσ̂h

N
[δuh] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂h

N
, g, vh, nx) · D

(
θσ̂h

N
+ γ(uh(Y )− uh(X))

)
[δuh] dΓ = 0 ∀ δuh ∈ V h0 ,

(25)

where σ̂h
N

= σ̂
N

(uh), Dσ̂h
N

[δuh] = Dσ̂
N

(uh)[δuh] and vh is a finite element approximation of the velocity v.
The system (25) is Lipschitz-continuous with respect to uh and piecewise C1–continuous. This means that it is
sufficiently regular to be solved with a generalized Newton method. The tangent system is provided below. Each
Newton step consists in finding ∆uh solution to:

D2J (uh)[δuh,∆uh]

−1

2

∫
Γc

θ

γ
Dσ̂h

N
[∆uh] · Dσ̂h

N
[δuh] dΓ − 1

2

∫
Γc

θ

γ
σ̂h

N
· D2σ̂h

N
[δuh,∆uh] dΓ

+
1

2

∫
Γc

1

γ

(
∂σCγ,F Dσ̂hN [∆uh] + ∂gCγ,F Dg[∆uh] + ∂vCγ,F Dvh[∆uh] + ∂nCγ,F Dnx[∆uh]

)
· D
(
θσ̂h

N
+ γ(uh(Y )− uh(X))

)
[δuh] dΓ

+
1

2

∫
Γc

1

γ
Cγ,F (σ̂h

N
, g, vh, nx) ·

(
θD2σ̂h

N
[δuh,∆uh] + γ∇Xδuh(Y )DY [∆uh]

)
dΓ

= −DJ (uh)[δuh] +
1

2

∫
Γc

θ

γ
σ̂h

N
· Dσ̂h

N
[δuh] dΓ

−1

2

∫
Γc

1

γ
Cγ,F (σ̂h

N
, g, vh, nx) · D

(
θσ̂h

N
+ γ(uh(Y )− uh(X))

)
[δuh] dΓ ∀ δuh ∈ V h0 ,

(26)

where D2J (uh)[δuh,∆uh] is the second directional derivative of J(uh). From (9) the derivative Dvh[∆uh] can
be evaluated as:

Dvh[∆uh] =
1

∆t

(
FY 0DY [∆uh]−Dg[∆uh]n0

)
, (27)

where FY 0 is the deformation gradient at the previous time-step, evaluated at point Y . All partial derivatives
∂σC, ∂gC, ∂vC and ∂nC of the function C are provided in [23, Appendix A] with small changes of notations since
the negative part [x]−(= −[x]R−) is used in [23] instead of the projection onto R−.

For the ray-tracing strategy, we refer to [23] for the exact expression of Dg[∆uh], Dnx[∆uh] and and DY [∆uh].
For the projection strategy, the tangent system is the same, replacing nx by ny. In this case Dg[∆uh] is simple
to compute but the expression of Dny[∆uh] is quite intricated. Therefore we neglect this term in the tangent
system and in the expression of DY [∆uh]. Using (4) Dy[δu] reads:

Dy[δu] = δu(X)−Dg[δu] ny − g Dny[δu] ' δu(X)−Dg[δu] ny .
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Moreover there also holds (see, e.g., [23])

Dy[δu] = δu(Y ) + FY DY [δu], Dg[δu] = ny · (δu(X)− δu(Y )) .

Finally, for the projection strategy, when neglecting Dny[δu], we can take:

DY [δu] ' F−1
Y (I− ny ⊗ ny) (δu(X)− δu(Y )) . (28)

We note that for projection, even when calculating the exact expression of the derivatives, the discrete method
will not be stable because of the non-continuity of the normal vector ny(X) in terms of the position X since the
projection is not a continuous operator.

Remark 2.7. For the non-symmetric variant θ = 0, the tangent system can be substantially simplified as:

D2J (uh)[δuh,∆uh]

+
1

2

∫
Γc

(
∂σCγ,F Dσ̂hN [∆uh] + ∂gCγ,F Dg[∆uh] + ∂vCγ,F Dvh[∆uh] + ∂nCγ,F Dnx[∆uh]

)
·
(
δuh(Y )− δuh(X)

)
dΓ +

1

2

∫
Γc

Cγ,F (σ̂h
N
, g, vh, nx) ·

(
∇Xδuh(Y )DY [∆uh]

)
dΓ

= −DJ (uh)[δuh]− 1

2

∫
Γc

Cγ,F (σ̂h
N
, g, vh, nx) ·

(
δuh(Y )− δuh(X))

)
dΓ ∀ δuh ∈ V h0 .

(29)

3. Numerical tests and validation

Formulation (25) has been implemented in the open-source finite element library GetFEM++1. It corresponds
to solving System (26) within a (semi–smooth) Newton loop. We test and compare both unbiased and biased
versions, as well as variants corresponding to different values of θ = −1, 0, 1. Except in 3.6, the mapping strategy
used is always the ray-tracing.

As a first example, the simulation of a two-dimensional patch test with non-matching meshes allows to check
the capability of the formulation to exactly transmit constant normal stresses between two contacting surfaces,
regardless of their discretization. The second test is the two-dimensional Hertz contact problem that assesses
the capability of the approximation to capture a known contact pressure profile in a restricted contact area with
non-matching meshes. Further two-dimensional examples are classic problems found in the large sliding contact
literature and aim at testing the performance of the proposed method. Finally, simulation of contact between two
hollow cylindrical tubes, including self-contact, is presented in order to evaluate the performance of the method in
three dimensions and for the self-contact case. In reference [23] the projection and the ray-tracing strategies are
presented with a general discussion. We complement here this discussion with a numerical comparaison between
the two mapping strategies.

3.1. Taylor patch test

The patch test originally proposed in [30], investigates the ability of contact formulations to exactly transmit
constant normal tractions between two contacting surfaces, regardless of their discretization. However, note
that a patch test does not provide any information about the stability of an algorithm and and is not relevant
when considering contact between deformable and rigid bodies. Among available patch tests, we choose the
one depicted in Figure 3, that is similar to the test used in [31] and [32]. An elastic body rests on a smooth
elastic foundation having the same dimensions. A uniform distributed load p = 1 KPa is applied on the upper
surface of the solid. A two dimensional plain strain analysis is considered with a Saint Venant-Kirchhoff material.
Corresponding elastic parameters are: E = 2 · 105 MPa and ν = 0.3. Frictionless contact is considered.

We compare the performance of our Nitsche-based method with some other discretizations of contact. The
transferred contact stress is measured on the lower contact surface. We compare the obtained pressure profile
with those computed using a simple nodal approximation, with an augmented lagrangian method (see [23]) as well
as a mortar method (see [8]). For Nitsche’s method, we compared biased and unbiased versions. For the biased

1http://download.gna.org/getfem/html/homepage/index.html
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Figure 3: Taylor patch test configuration.

method, as well as for other contact methods, the slave surface is the upper one. The parameters for Nitsche’s
method are: θ = 0 and γ0 = E. Both linear and quadratic quadrangular finite elements were considered, with
5 elements on the top body and 6 on the bottom one (see Figure 3). The test is performed with 4 integration
points per element for Q1 quadrangular elements and 6 points for Q2 elements. Results are depicted in Figure 4.

(a) Linear approximation (4 integration points) (b) Quadratic approximation (6 integration points)

Figure 4: Pressure profile along the contact surface for different contact methods .

We observe from Figure 4 that, despite the coarse mesh, Nitsche’s method passes the patch test with a
very low error rate in its two versions. For both versions the accuracy is comparable even though the unbiased
method seems to pass better the patch test for linear and quadratic elements. Remark that the nodal method
does not pass the test neither for linear nor for quadratic approximation. The augmented lagrangian integral
method and the mortar method have almost the same accuracy. Comparing the precision for quadratic and linear
approximation, it is clear that all the methods pass the test better with linear elements. This is observable for
Nitsche’s method, integral and nodal approximations of contact. The advantage of Nitsche’s method, compared
to the augmented Lagrangian and mortar-type formulations, is that the error decreases faster when the edges
are subdivised for numerical integration: with 4 integration points per edge for Q1 elements, we get a maximum
relative error for contact pressure of 0.14% for Nitsche’s method, while we obtain 0.42% with mortar.
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3.2. Hertz contact

We consider the case of a half-disc of radius R = 10 mm pressed onto a plane elastic foundation. For the sake
of simplicity, we consider a material law of Saint-Venant-Kirchhoff type. The elastic modulus is E = 105 MPa,
and the Poisson ratio is set to ν = 0.3. The half-disc’s top side is clamped and lowered vertically. For all the
tests we compare the approximated solution to the Hertz one for a small rate of loading going from 0 to 0.5 mm
in ten steps equally spaced. The tests were performed with both linear and quadratic triangular finite elements
. The test is performed first with γ0 = E, θ = 0 and the unbiased variant.

The diagrams in Figure 5 correspond to the pressure profiles at the 10th load-step obtained with two and
three quadrature points per element. The vertical green arrows correspond to values of the contact pressure field
at quadrature points. The blue line represents the analytically calculated Hertz’s pressure profile for the corre-
sponding normal load obtained in the simulation. Diagrams in the first row correspond to a linear approximation
of the displacement while the results in the second row refer to a quadratic approximation of the displacement.
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(a) Linear approximation (2 integration points)
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(b) Quadratic approximation (2 integration points)
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(c) Linear approximation (3 integration points)
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(d) Quadratic approximation (3 integration points)

Figure 5: Contact pressure for Hertz problem with unbiased Nitsche’s method.

A first observation is that the method approximates well the Hertz problem and no problem is encountered
with the release of the nodes for inactive contact elements. For linear approximation, two quadrature points
per element edge appear to be sufficient for numerical integration whereas 3 points allow a better accuracy for
the quadratic approximation. The linear approximation is accurate only for a sufficiently fine mesh because the
pressure profile is not linear along the contact surface.

The solution of this problem depends on the Nitsche’s parameter γ in the sense that similarly to the small
strain case studied in [18, 21] the convergence of the method is influenced by the parameter γ0 and this dependency
differs for different values of θ. We provide in Table 1 the average (along the loading steps) of the pressure error
and of the required Newton iterations yielding convergence with a maximum of 50 iterations for all steps, for
different values of γ0 and θ. The test is performed for P2 triangular elements, with and without friction.
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Table 1: Average of contact pressure error and number of Newton’s iterations for Hertz contact.
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0 E
100 8.5 14.4
E 4.6 2.4

100 · E 20.7 6.8

-1 E
100 5.3 3.3
E 4.3 3.1

100 · E 9.2 4

1 E
100 29.8 59
E 30 64

100 · E 11.2 4.1

As for small strain [18, 21] the influence of Nitsche’s parameter γ0 depends on θ. It is remarkable that the
skew-symmetric version θ = −1 remains the most robust one and converges whatever is the value of γ0. In this
case the obtained pressure profile approximates well the theoretical one. This is also observed in [18] for small
deformations and a mathematical proof is provided in that case. The symmetric version θ = 1 is the most sensitive
one and it converges only when γ0 is large enough. Comparing θ = 0 to θ = 1, we remark that the simple version
θ = 0 is more robust regarding γ0 since it converges for a wider range of values for γ0. Nevertheless, convergence
is lost when γ0 becomes too small. The same behavior is observed in the frictional case. Additionally let us
mention that when γ0 is very large, convergence of the Newton algorithm is more difficult to achieve, especially
for frictional contact. This is related to the fact that, when taking γ0 too large, the problem becomes stiff and
ill-conditioned (see, e.g., [33]).

3.3. Shallow ironing

The third numerical example to be presented is the so-called shallow ironing test. An indenter with a circular
arc shaped bottom edge is pressed against an elastic block and is forced to slide along the block length. This
example can also be found for instance in [7, 23]. In this test we investigate the transmission of the force in
vertical and horizontal directions when the contact surface evolves. We compare essentially the frictionless and
the frictional case to test the accuracy of method when approximating a friction problem. Figure 6 shows the
initial geometry with the different dimensions in mm. For the two contacting bodies a neo-Hookean material
behavior is considered, with Young’s moduli equal to 68.96 · 108 MPa and 68.96 · 107 MPa for the indenter and
the block, respectively, and Poisson’s ratio of 0.32 for both parts. The considered two-dimensional system is
solved under the plane strain assumption. As in [23], we consider a quasi-static load. For t ∈ [0, 1], a vertical
displacement of 1 mm is performed in 10 steps. Then, when t ∈ [1, 2], we perform an horizontal displacement
along the block in 500 equal steps, each of 0.02 mm. The three computed deformed configurations are presented
in Figure 6 with a plot of the Von-Mises stress distribution, which demonstrate the finite deformations involved
in the ironing process. This result and the curves of Figure 7 correspond to a friction coefficient F = 0.3 and
quadratic rectangular finite elements. We use three quadrature points per segment for numerical integration.
Parameters for the unbiased Nitsche’s method are: γ0 = Eindenter, θ = 0.
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Figure 6: Initial geometry and deformed configuration of the shallow ironing example with contour plot of the Von-Mises
stress in the frictionless case, at t = 1, t = 1.5 and t = 2.

Figure 7 shows the evolution of the total horizontal and vertical force components between the contacting
bodies during the whole simulation. During the first phase of pressing the indenter into the slab, the curves are
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Figure 7: Evolution of the vertical and horizontal components of the contact forces for shallow ironing.

smooth and the two bodies stick together. Starting the horizontal movement, the vertical as well as the horizontal
reaction forces increase a bit until a limit is reached. At this stage the block starts sliding over the slab. An
oscillation is observed for the vertical and horizontal reaction forces. This oscillation decreases when refining the
mesh. This is due to the fact that the finite element mesh of the block has to slip around the right corner of the
indenting body. Note however that these observed oscillations for vertical and horizontal force, even with only
three quadrature points, remain still small, compared to similar results presented in [7]. Comparing the results of
the present study with those reported in [23, 7], one can note that the qualitative behavior is very well captured.
The results are close to those obtained in [23] but there are important quantitative differences with [7]. The
vertical force in Figure 7 is slightly lower than in [7], while the reported horizontal force is significantly lower
compared to the aforementioned reference. At time 1.5 s for example, the ratio between the horizontal and vertical
force can be estimated to 0.53, based on the results reported in [7] and 0.304 according to [23]. The obtained
ratio with our Nitsche’s unbiased method is 0.3014, which is very close to the result of [23] where an integral
augmented mixed method is used. The contact stress distribution is in agreement with common understanding
of system mechanics and if we calculate the angle between the resulting stress vector along the contact surface
at t = 1.5 and the resulting surface normal, we get 15.36◦. This appears to be very close to the friction angle of
16.7◦ corresponding to the given coefficient of friction of 0.3. For the frictionless case, a zero horizontal force is
predicted correctly for the symmetric position at t = 1.5, and it goes for negative values near the edge.

3.4. Contact of an elastic half-ring

In the fourth example, contact between an elastic ring undergoing large deformations and an elastic block is
considered. As in reference [34], both parts are assumed to exhibit neo-Hookean material behavior with Poisson’s
ratio equal to 0.3. The elastic half-ring is assembled from outer and inner rings with the same thickness of 5
mm. The outer ring has a Young modulus of 103 MPa and the inner one is assumed to be 100 times stiffer. The
Young modulus is of 300 MPa for the block. The inner radius of the half-ring is equal to 90 mm. The block is
260 mm long and 50 mm high. The rectangular block is fixed at its bottom edge, while the ends of the half-ring
are horizontally fixed and vertically displaced by a total distance of 70 mm in 140 steps of size 0.5 mm. Figure
8 shows the initial geometry and four deformed configurations at different time-steps. The deformations are
obtained without and with friction coefficient F = 0.5. The coarsest mesh used in the calculations is made of 64
elements along the ring circumference and 1 element across each ring layer, while the block is discretized with 52
by 10 quadrilateral elements, in length and height directions respectively. Parameters for Nitsche’s method are:
γ0R

= ERext, γ0B
= EB, θ = 0.
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Figure 8: Deformation of the elastic half ring without friction (left) and with F = 0.5 (right) for Q2 elements, after a
loading of 25, 45, 60 and 70 mm.
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This example allows us to test the accuracy of the Nitsche method in the case of heterogeneous materials
and high friction forces. To compare the computed deformation with previous results from other methods, we
measure the vertical displacement of the ring’s mid-point. This displacement along the load steps is plotted in
Figure 9, both for frictionless and frictional contact.

Figure 9: Vertical displacement of the half-ring middle point for different mesh sizes.

Figure 8 shows that the loaded half-ring compresses initially the elastic block on its central contact surface, as
expected. At this stage the frictional and frictionless cases are quite similar and the central mid-point of the half-
ring moves downwards. This is observable on Figure 9 until an amount of imposed displacement of 20 to 25mm
is reached. This corresponds to the first deformed configuration in Figure 8. Subsequently, the tracked point
is lifted progressively until 45mm of displacement. Then, in the interval between 45mm and 60mm , the lifting
speed of the half-ring middle point peaks in absence of friction when it remains low in the frictional case because
of extensive sliding between the ring and the block. In the remaining part of the simulation the tracked point
keep on moving up, but with a lower speed in both cases. The results with coarse and refined meshes are very
similar for the frictionless case, and also for the frictional one but only until 50 mm of displacement. In the last
20 mms of the simulation, a remarkable difference between the two approximations is observed, when considering
friction. This could be due to the important sliding forces since we do not get that error in the frictionless
case. As for Hertzian contact, Nitsche’s parameter γ0 needs to be large enough for stability and convergence,
but when it is too large the problem stiffens: some elements are inverted and convergence is difficult to achieve.
The optimal values of γ0 are those near the Young modulus E. For γ0 = E we obtain an average of Newton’s
iterations of 4.45 for frictionless contact and 4.44 for frictional contact. With a fine mesh the convergence speed
is similar with a slight difference for the frictional case since the average in that case is 5.05.

3.5. Crossed Tubes with self-contact

The last numerical example is the crossed tubes test. In this example we simulate contact between two
crossed hollow elastic cylinders. Each of the tubes has an outer diameter of 24 mm, a wall thickness equal to 0.8
mm and a length equal to 100 mm. Neo-Hookean material behavior is considered for both tubes, with material
parameters corresponding to Poisson’s ratio equal to 0.3 and Young moduli of E1 = 105 MPa for the lower tube
and E2 = 104 MPa for the upper one. The tubes are forced into contact through Dirichlet conditions applied at
their ends. The upper tube is displaced vertically for a total distance of 40 mm divided into 80 equal load steps.
Since the enforced displacement is large, the deformations of the tubes are large and we observe a self-contact
configuration on the less rigid tube. So this test allows us to validate our method in case of self-contact. Since
the geometry as well as the boundary conditions are symmetric, it is sufficient to model only one quarter of the
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considered structure. The actually modeled portion of each tube is colored in Figure 10 and it is discretized using
16 by 24 by 2 three-dimensional elements in the length, circumferential and radial directions respectively.

Figure 10: Geometry and mesh of the crossed tubes in their initial configuration.

The presented solution is based on an approximation of the geometry and of the displacement with quadratic
hexahedral elements. The unbiased Nitsche method with θ = 0 is considered to deal with self-contact. The
results of Figure 11 correspond to the frictionless case with a Nitsche’s parameter γ0 = E1 for the lower tube
and γ0 = E2 for the upper one. Figure 11 depicts the calculated deformed configurations for the 30th, 60th
and 80th load steps. Figure 12 shows the evolution along the loading steps of required Newton’s iterations for
the frictionless case and for a friction coefficient F = 0.3. Despite the increase of the required iterations when
self-contact occurs, Newton’s algorithm converges in general within a few iterations. The required iterations
number for convergence increases from the 45th load step. This is due to the onset of self-contact.
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Figure 11: Deformation and Von-Mises contour plot of the two crossed tubes test without friction for a loading of 20, 30
and 40 mm.
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Figure 12: Crossed tubes test: required Newton’s iterations per load step with (F = 0.3) and without friction.

3.6. Projection and ray-tracing

For contact problems, the choice of mapping strategy influences directly the performance and the robustness
of the method. In this last part we compare the two presented mappings from a numerical viewpoint. The
comparison is made through two tests: two-dimensional Hertz’s contact and three-dimensional crossed tubes.

(a) Ray-tracing (b) Projection

Figure 13: Illustration of ray-tracing and projection from the upper interface to the lower one and Von mises pressure
profiles for Hertz contact.

At first, we illustrate in Figure 13 the difference between ray-tracing and projection for Hertz problem and
we present the deformation and the effort distribution obtained by using the two mappings. The two strategies
solve well Hertz contact problem, but to compare them, we provide for each one the average number of Newton
iterations yielding convergence as well as the mean pressure error along the ten steps of loading. The test is
performed with different values of θ, with and without friction. For sake of briefness, we choose only the value
of γ0 = E and the unbiased version of the method.
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Table 2: Mean contact pressure and number of Newton’s iterations for projection and ray-tracing strategy, for the Hertz
test with γ0 = E and the unbiased Nitsche’s method.
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0 0 2.7 3.34
0.3 2.8 3.4

-1 0 3.4 3.36
0.3 3.3 3.46

1 0 No convergence -
0.3 No convergence -

Projection
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0 0 5.9 3.39
0.3 6.5 3.35

-1 0 6.3 3.36
0.3 6.5 3.45

1 0 No convergence -
0.3 No convergence -

A first observation is that the accuracy of the approximation is the same for the two mappings, meaning that
the choice of the mapping does not influence strongly the quality of the solution. When θ = 1 we do not reach
convergence since γ0 is not large enough. So the two strategies seem to have the same response regarding Nitsche’s
parameter. In addition, the difference in terms of Newton’s iterations is clearly observable for different values of
θ. Ray-tracing allows a convergence twice faster than projection. This may be due to the non-exactitude of the
tangent problem for projection in which we neglected the directional derivative of ny term. A similar difference
of convergence speed is observed for the crossed tubes test in Figure 14. If we apart the influence of self-contact,
the number of iterations is almost two times higher for projection. The smoothness of the contact surfaces in
both tests does not allow to study robustness regarding some special cases detailed in [23].

Figure 14: Required Newton’s iterations per load step for the crossed tubes test without friction, for the ray-tracing and
projection mapping strategies.
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