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Abstract. In recent years there have been several attempts to build
white-box block ciphers whose implementations aim to be incompress-
ible. This includes the weak white-box ASASA construction by Bouil-
laguet, Biryukov and Khovratovich from Asiacrypt 2014, and the re-
cent space-hard construction by Bogdanov and Isobe from CCS 2015.
In this article we propose the first constructions aiming at the same
goal while offering provable security guarantees. Moreover we propose
concrete instantiations of our constructions, which prove to be quite ef-
ficient and competitive with prior work. Thus provable security comes
with a surprisingly low overhead.
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1 Introduction

White-Box Cryptography

The notion of white-box cryptography was originally introduced by Chow et
al. in the early 2000s [CEJO02a,CEJO02b]. The basic goal of white-box cryp-
tography is to provide implementations of cryptographic primitives that offer
cryptographic guarantees even in the presence of an adversary having direct
access to the implementation. The exact content of these security guarantees
varies, and different models have been proposed.

Ideally, white-box cryptography can be thought of as trying to achieve secu-
rity guarantees similar to a Trusted Execution Environment [ARM09] or trusted
enclaves [CD16], purely through implementation means —in so far as this is fea-
sible. Of course this line of research finds applications in many situations where
code containing secret information is deployed in non-trusted environments, such
as software protection (DRM) [Wys09,Gil16].
] Partially supported by the French ANR project BRUTUS, ANR-14-CE28-0015.
f Partially supported by the Direction Générale de l’Armement and by the Singapore
National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).



Concretely, the initial goal in [CEJO02a,CEJO02b] was to offer implemen-
tations of the DES and AES block ciphers, such that an adversary having full
access to the implementation would not be able to extract the secret keys. Un-
fortunately both the initial constructions and later variants aiming at the same
goal (such as [XL09]) were broken [BGEC04,GMQ07,WMGP07,DMRP12, . . . ]:
to this day no secure white-box implementation of DES or AES is known.

Beside cryptanalytic weaknesses, defining white-box security as the impossi-
bility to extract the secret key has some drawbacks. Namely, it leaves the door
open to code lifting attacks, where an attacker simply extracts the encryption
function as a whole and achieves the same functionality as if she had extracted
the secret key: conceptually, the encryption function can be thought of as an
equivalent secret key1.

This has led research on white-box cryptography into two related directions.
One is to find new, sound and hopefully achievable definitions of white-box cryp-
tography. The other is to propose new constructions fulfilling these definitions.

In the definitional line of work, various security goals have been proposed
for white-box constructions. On the more theoretical end of the spectrum, the
most demanding property one could hope to attain for a white-box construction
would be that of virtual black-box obfuscation [BGI+01]. That is, an adversary
having access to the implementation of a cipher would learn no more than they
could from interacting with the cipher in a black-box way (i.e. having access to
an oracle computing the output of the cipher). Tremendous progress has been
made in recent years in the domain of general program obfuscation, starting
with [GGH+13]. However the current state of the art is still far from practical
use, both in terms of concrete security (see e.g. [Hal15]) and performance (see
e.g. an obfuscation of AES in [Zim15]).

A less ambitious goal, proposed in [DLPR13,BBK14] is that an adversary
having access to the implementation of an encryption scheme may be able to
encrypt (at least via code lifting), but should remain unable to decrypt. This
notion is called strong white-box in [BBK14] and one-wayness in [DLPR13].
Such a goal is clearly very similar to that of a trapdoor permutation, and in-
deed known constructions rely on public-key primitives. As a consequence they
are no faster than public key encryption. An interesting way to partially cir-
cumvent this issue, proposed in [BBK14], is to use multivariate cryptography,
where knowledge of the secret information allows encryption and decryption at
a speed comparable to standard symmetric ciphers (although public key oper-
ations are quite slow). However multivariate cryptography lacks security reduc-
tions to well-established hard problems (although they are similar in flavor to
MQ), and numerous instantiations have been broken, including those of [BBK14]:
see [GPT15,DDKL15,MDFK15].

Finally, on the more modest but efficiently achievable end of the spectrum,
one can ask that an adversary having access to the white-box implementation
cannot produce a functionally equivalent program of significantly smaller size.
This notion has been called incompressibility in [DLPR13], weak white-box in

1 This can be partially mitigated by the use of external encodings [CEJO02a]
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[BBK14] and space-hardness in [BI15]2. This definition implies in particular that
it is difficult for an adversary to extract a short master key, which captures the
goal of the original white-box constructions by Chow et al. In addition, the
intent behind this approach is that large, incompressible code can more easily
be made resistant to code lifting when combined with engineering obfuscation
techniques [BBK14,BI15,Gil16]; and make code distribution more cumbersome
for a potential attacker.

As mentioned earlier, there is no known implementation of AES or DES
that successfully hides the encryption key. A fortiori there is no known way to
achieve incompressibility for AES, DES or indeed any pre-existing cipher. How-
ever recent constructions have proposed new, ad-hoc, and quite efficient ciphers
specifically designed to meet the incompressibility criterion [BBK14,BI15]. These
constructions aim for incompressibility by relying on a large pseudo-random ta-
ble hard-coded into the implementation of the cipher, with repeated calls to the
table being made during the course of encryption. The idea is that, without
knowledge of all or most of the table, most plaintexts cannot be encrypted. This
enforces incompressibility.

In [BBK14], the table is used as an S-box in a custom block cipher design.
This requires building the table as a permutation, which is achieved using an
ASASA construction, alternating secret affine and non-linear layers. Unfortu-
nately this construction was broken [DDKL15,MDFK15]. This type of attack is
completely avoided in the new SPACE construction [BI15], where the table is
built by truncating calls to AES. This makes it impossible for an adversary to
recover the secret key used to generate the table, based solely on the security of
AES. However this also implies that the table is no longer a permutation and
cannot be used as an S-box. Accordingly, in SPACE, the table is used as a round
function in a generalized Feistel network. While an adversary seeking to extract
the key is defeated by the use of AES, there is no provable resistance against an
adversary trying to compress the cipher.

We also remark that the standard formalization of white-box cryptography
is very close to other models. For example, the bounded-storage model considers
the problem of communicating securely given a long public random string which
the adversary is unable to store. Indeed, up to renaming, it is essentially the
same as the incompressibility of the key, and one of our design is inspired by a
solution proposed to this problem [Vad04]. Another model, even stronger than
incompressibility, is intrusion-resilience [?]. The goal is to communicate securely,
even when a virus may output any data to the adversary during the computa-
tions of both parties, as long as the total data leaked is somewhat smaller than
the key size. The disadvantage of this model is that it requires rounds of com-
munication (e.g. 9 rounds in [?]), while white-box solutions need only add some
computations.

2 Here, we lump together very similar definitions, although they are technically dis-
tinct. More details are provided in Section 2.1.
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Our Contribution

Both of the previously mentioned constructions in [BBK14,BI15] use ad-hoc
designs. They are quite efficient, but cannot hope to achieve provable security.
Our goal is to offer provable constructions, while retaining similar efficiency.

First, we introduce new formal definitions of incompressibility, namely weak
and strong incompressibility. Weak incompressibility is very close to incompress-
ibility definitions in previous work [BBK14,BI15], and can be regarded as a for-
malization of the space-hardness definition of [BI15]. Strong incompressibility on
the other hand is a very demanding notion; in particular it is strictly stronger
than the incompressibility definition of [DLPR13].

Our main contribution is to introduce two provably secure white-box con-
structions, named WhiteKey and WhiteBlock. We prove both constructions in
the weak model. The bounds we obtain are close to a generic attack, and yield
quite efficient parameters. Moreover we also prove WhiteKey in the strong model.

Previous work has concentrated on building white-box block ciphers. This
was of course unavoidable when attempting to provide white-box implementa-
tions of AES or DES. However, it was already observed in the seminal work of
Chow et al. that the use of white-box components could be limited to key en-
capsulation mechanisms [CEJO02a]. That is, the white-box component is used
to encrypt and decrypt a symmetric key, which is then used to encrypt or de-
crypt the rest of the message. This is of course the same technique as hybrid
encryption, and beneficial for the same reason: white-box component are typ-
ically slower than standard symmetric ciphers (albeit to a lesser extent than
public-key schemes).

In this context, the white-box component need not be a block cipher, and
our WhiteKey construction is in fact a key generator. That is, it takes a random
string as input and outputs a key, which can then be used with any standard
block cipher. Its main feature is that it is provably strongly incompressible.
Roughly speaking, this implies it is unfeasible for an adversary, given full access
to a white-box implementation of WhiteKey, to produce a significantly smaller
implementation that is functionally equivalent on most inputs. In fact, an effi-
cient adversary knowing this smaller implementation cannot even use it to dis-
tinguish, with noticeable probability, outputs of the original WhiteKey instance
from random.

However, WhiteKey is not invertible, and in particular it is not a block cipher,
unlike prior work. Nevertheless we also propose a white-box block cipher named
WhiteBlock. WhiteBlock can be used in place of any 128-bit block cipher, and is
not restricted to key generation. However this comes at some cost: WhiteBlock
has a more complex design, and is slightly less efficient than WhiteKey. Further-
more, it is proved only in the weak incompressibility model (essentially the same
model as that of SPACE [BI15]), using a heuristic assumption. Thus WhiteKey
is a cleaner and more efficient solution, if the key generation functionality suf-
fices (which is likely in most situations where a custom white-box design can be
used).
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Regarding the proof of WhiteKey in the strong incompressibility model, the
key insight is that what we are trying to build is essentially an entropy extractor.
Indeed, roughly speaking, the table can be regarded as a large entropy pool. If
an adversary tries to produce an implementation significantly smaller than the
table, then the table still has high (min-)entropy conditioned on the knowledge of
the compressed implementation. Thus if the key generator functions as a good
entropy extractor, then the output of the key generator looks uniform to an
(efficient) adversary knowing only the compressed implementation.

Furthermore, for efficiency reasons, we want our extractor to be local, i.e. we
want our white-box key generator to make as few calls to the table as possible.
Hence a local extractor does precisely what we require, and as a result our proof
relies directly on previous work on local extractors [Vad04]. Meanwhile our proofs
in the weak incompressibility model use dedicated combinatorial arguments.

Finally, we provide concrete instantiations of WhiteKey and WhiteBlock,
named PuppyCipher and CoureurDesBois respectively. Our implementa-
tions show that these instances are quite efficient, yielding performance com-
parable to previous ad-hoc designs such as SPACE. Like in previous work, our
instances also offer various choices in terms of the desired size of the white-box
implementation.

Related Work

We are aware of three prior incompressible white-box schemes [DLPR13],
[BBK14], [BI15]. In the first of these papers, incompressibility is formally de-
fined [DLPR13]. A public-key scheme is proven in the incompressible model: in
a nutshell, the scheme consists in a standard RSA encryption, except for the
fact that the public key is inflated by adding an arbitrary multiple of the group
order. This provably results in an incompressible scheme, which is also one-way
due to its public-key nature. However it is orders of magnitude slower than a
symmetric scheme (note that it is also slower than standard RSA due to the size
of the exponent).

On the other hand, the authors of [BBK14,BI15] propose symmetric encryp-
tion schemes aiming at incompressibility alone. These constructions naturally
achieve higher performance. The white-box construction of [BBK14] was broken
in [MDFK15,DDKL15]. The construction in [BI15] provides provable guarantees
against an adversary attempting to recover the secret key used to generate the
table. However no proof is given against an adversary merely attempting to com-
press the implementation. In fact the construction relies on symmetric building
blocks, and any such proof seems out of reach.

An independent work by Bellare, Kane and Rogaway was recently published
at Crypto 2016 [?]; its underlying goal and techniques are similar to our strong
incompressibility model, and the WhiteKey construction in particular. Although
the setting of [?] is different and no mention is made of white-box cryptogra-
phy, the design objective is similar. The setting considered in [?] is that of the
bounded-retrieval model [?], and the aim is to foil key exfiltration attempts by
using a large encryption key. The point is that encryption should remain secure
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in the presence of an adversary having access to a bounded exfiltration of the
big key. The exfiltrated data is modeled as the output of an adversarially-defined
function of the key with bounded output.

The compressed implementation plays the same role in our definition of
strong incompressibility: interestingly, our strong model almost matches big-
key security in that sense (contrary to prior work on incompressible white-box
cryptography, which is closer to our weak model). Relatively minor differences
include the fact that we require a bound on the min-entropy of the table/big key
relative to the output of the adversarially-defined function, rather than specifi-
cally the number of bits; and we can dispense with a random oracle at the output
because we do not assume that the adversary is able to see generated keys di-
rectly, after the compression phase. A notable difference is how authenticity is
treated: we require that the adversary is unable to encrypt most plaintexts, given
the compressed implementation; whereas the authors of [?] only enforce authen-
ticity when there is no leakage. A word-based generalization of the main result
in [?], as mentioned in the discussion of that paper, would be very interesting
from our perspective, likely allowing better bounds for WhiteKey in the strong
incompressibility model. Proofs of weak incompressibility, the WhiteBlock con-
struction, as well as the concrete design of the WhiteKey instance using a variant
of the extractor from [CMNT11], are unrelated.

As mentioned earlier in the introduction, the design of local extractors is also
directly related to our proof in the strong incompressibility model, most notably
[Vad04].

2 Models

2.1 Context

As noted in the introduction, the term white-box cryptography encompasses a
variety of models, aiming to achieve related, but distinct security goals. Here
we are interested in the incompressibility model. The basic goal is to prevent
an attacker who has access to the full implementation of a cipher to produce a
more compact implementation.

Incompressibility has been defined under different names and with slight
variations in prior work. It is formally defined as (λ, δ)-Incompressibility in
[DLPR13]. A very similar notion is called weak white-box in [BBK14], and space-
hardness in [BI15]. In [BBK14], the weak white-box model asks that an efficient
adversary, given full access to the cipher implementation, is unable to produce
a new implementation of the same cipher of size less than some security pa-
rameter T . In [BI15], this notion is refined by allowing the adversary-produced
implementation to be correct up to a negligible proportion 2−Z of the input
space. Thus a scheme is considered (T,Z)-space-hard iff an efficient adversary
is unable to produce an implementation of the cipher of size less than T , that
is correct on all but a proportion 2−Z of inputs. This is essentially equivalent
to the (λ, δ)-incompressibility definition of [DLPR13], where λ and δ play the
respective roles of T and 2−Z .
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In this work, we introduce and use two main notions of incompressibility,
which we call weak and strong incompressibility. Weak incompressibility may be
regarded as a formalization of space-hardness from [BI15]. As the names suggest,
strong incompressibility implies weak incompressibility (see the full version of
this paper [?]). The point of strong incompressibility is that it provides stronger
guarantees, and is a natural fit for the WhiteKey construction.

2.2 Preliminary Groundwork

To our knowledge, all prior work that has attempted to achieve white-box in-
compressibility using symmetric means3 has followed a similar framework. The
general idea is as follows. The white-box implementation of the cipher is actually
a symmetric cipher that uses a large table as a component. The table is hard-
coded into the implementation. To an adversary looking at the implementation,
the table looks uniformly random. An adversary attempting to compress the im-
plementation would be forced to retain only part of the table in the compressed
implementation. Because repeated pseudo-random calls to the table are made in
the course of each encryption and decryption, any implementation that ignores
a significant part of the table would be unable to encrypt or decrypt accurately
most messages. This enforces incompressibility.

To a legitimate user in possession of the shared secret however, the table is
not uniformly random. It is in fact generated using a short secret key. Of course
this short master key should be hard to recover from the table, otherwise the
scheme could be dramatically compressed.

Thus a white-box encryption scheme is made up of two components: an
encryption scheme, which takes as input a short master secret key and uses it to
encrypt data, and a white-box implementation, which is functionally equivalent,
but does not use the short master secret key directly. Instead, it uses a large table
(which can be thought of as an equivalent key) that has been derived from the
master key. This situation is generally formalized by defining a white-box scheme
as an encryption scheme together with a white-box compiler, which produces the
white-box implementation of the scheme.

Definition 1 (encryption scheme). An encryption scheme is a mapping E :
K × R × P → C, taking as input a key K ∈ K, possibly some randomness
r ∈ R, and a plaintext P ∈ P. It outputs a ciphertext C ∈ C. Furthermore it is
required that the encryption scheme be invertible, in the sense that there exists a
decryption function D : K × C → P such that ∀K,R, P,D(K,E(K,R, P )) = P .

Definition 2 (white-box encryption scheme). A white-box encryption sch-
eme is defined by a pair of two encryption schemes:

E1 : K ×R×P → C
E2 : T ×R× P → C

3 This excludes the incompressible construction from [DLPR13], which is based on a
modified RSA.
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together with a white-box compiler C : K → T , such that for all K ∈ K,
E1(K, ·, ·) is functionally equivalent to E2(C(K), ·, ·).

In the definition above, E1 can be thought of as a standard encryption scheme
relying on a short (say, 128-bit) master key K, while E2 is its white-box imple-
mentation, relying on a large table T derived from K. To distinguish between
E1 and E2, we will sometimes call the first scheme the cipher, and the second
the (white-box) implementation.

2.3 Splitting the Adversaries

A white-box scheme is faced with two distinct adversaries:

– The black-box adversary only has black-box access to the scheme. She at-
tempts to attack the cipher with respect to some standard black-box security
notion.

– The white-box adversary has full access to the white-box implementation. She
attempts to break incompressibility by producing a smaller implementation
of the scheme.

The black-box adversary can be evaluated with respect to standard security
notions such as IND-CCA. The specificity of white-box schemes is of course the
second adversary, on which we now focus. The white-box adversary itself can be
decomposed into two distinct adversaries:

– The compiler adversary attempts to recover the master keyK of E1 given the
implementation E2. This is the adversary that succeeds in the cryptanalyses
of many previous schemes, e.g. [BGEC04,GMQ07,DDKL15,MDFK15]. More
generally this adversary attempts to distinguish C(K) for K ←$ K from a
uniform element of T .

– Finally, the implementation adversary does not attempt to distinguish T ,
and instead regards T as uniformly random. She focuses purely on the white-
box implementation E2. She attempts to produce a functionally equivalent
(up to some error rate specified by the security parameters), but smaller
implementation of E2.

Nicely enough, the three black-box, compiler and implementation adversaries
target respectively the E1, C, and E2 components of the white-box scheme (hence
their name). Of course the two white-box adversaries (targeting the compiler
and implementation) break incompressibility, so they can be captured by the
same security definition (as in [DLPR13]). However it is helpful to think of the
two as separate adversaries, especially because they can be thwarted by sepa-
rate mechanisms. Moreover it is clear that resistance to both adversaries implies
incompressibility (the dichotomy being whether the table can be efficiently dis-
tinguished from random).

The authors of [BI15] introduce a new general method to make sure that the
compiler adversary fails, i.e. C(T ) is indistinguishable from uniform. Namely,
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they propose to generate the table T by truncating the output of successive calls
to AES (or some other fixed block cipher). In this scenario the master key K
of E1 is the AES key. Assuming AES cannot be distinguished from a uniformly
random permutation, and the truncated output is (say) at most half of the
original cipher, then the table T is indistinguishable from a random function.

2.4 Weak Incompressibility

As noted in the previous section, using the technique from [BI15], defeating
the compiler adversary is quite easy, and relies directly and provably on the
security of a standard cipher. As a result, our security definition (and indeed,
our constructions) focus on the implementation adversary.

The weak incompressibility notion we define below is very close to the space-
hardness notion of [BI15], indeed it is essentially a formalization of it. Like in
[BBK14,BI15], the definition is specific to the case where the table T is actually
a table (rather than an arbitrary binary string) which implements a function (or
permutation) T : I → O, and can be queried on inputs i ∈ I.

We write weak incompressibility as ENC-TCOM: ENC reflects the fact that
the adversary’s ultimate goal is to encrypt a plaintext. TCOM stands for table-
compressed, as the adversary is given access to a compressed form of the table.
This is of course weaker than being given access to a compressed implementation
defined in an arbitrary adversarially-defined way, as will be the case in the next
section.

In the following definition, the encryption scheme should be thought of as
the white-box implementation E2 from the previous sections. In particular the
“key” is a large table.

Definition 3 (Weak incompressibility, ENC-TCOM). Let E : T ×R×P
denote an encryption scheme. Let s, λ denote security parameters. Let us further
assume that the key T ∈ T is a function T : I → O for some input and output
sets I and O. The encryption scheme is said to be τ -secure for (s, λ, δ)-weak
incompressibility iff, with probability at least 1− 2−λ over the random choice of
T ∈ T (performed in the initial step of the game), the probability of success of
an adversary running in time τ and playing the following game is upper-bounded
by δ.

1. The challenger B picks T ∈ T uniformly at random.
2. For 0 ≤ i < s, the adversary chooses qi ∈ I, and receives T (qi) from the

challenger. Note that the queries are adaptive.
At this point the adversary is tasked with trying to encrypt a random mes-
sage:

3. The challenger chooses P ∈ P uniformly at random, and sends P to the
adversary.

4. The adversary chooses C ∈ C. The adversary wins iff C decrypts to P (for
key T ).
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In other words, a scheme is (s, λ, δ)-weakly incompressible iff any adversary
allowed to adaptively query up to s entries of the table T can only correctly
encrypt up to a proportion δ of plaintexts (except with negligible probability
2−λ over the choice of T ). Note that (s, λ, δ)-weak incompressibility matches
exactly with (s,− log(δ))-space-hardness in [BI15]. The only difference is that
our definition is more formal, as is necessary since we wish to provide a security
proof. In particular we specify that the adversary’s queries are adaptive.

It should also be noted that the adversary’s goal could be swapped for e.g.
indistinguishability in the definition above. The reason we choose a weaker goal
here is that it matches with prior white-box definitions, namely space-hardness
[BI15] and weak white-box [BBK14]. Moreover it makes sense in white-box con-
texts such as DRM, where an attacker is attempting to create a rogue encryption
or decryption algorithm: the point is that such an algorithm should fail on most
inputs, unless the adversary has succeeded in extracting the whole table (or close
to it), and the algorithm includes it.

It is noteworthy that in our definitions, “incompressibility” is captured as
a power given to the adversary. The adversary’s goal, be it encryption or in-
distinguishability, can be set independently of the specific form of compressed
implementation she is allowed to ask for. This makes the definition conveniently
modular, in the spirit of standard security notions such as IND-CCA.

2.5 Strong Incompressibility

We now introduce a stronger notion of incompressibility. This definition is strong-
er in two significant ways.

1. First, there is no more restriction on how the adversary can choose to com-
press the implementation. In the case of weak incompressibility, the adver-
sary was only allowed to “compress” by learning a portion of the table. With
strong incompressibility, she is allowed to compress the implementation in
an arbitrary way, as long as the table T retains enough randomness from the
point of view of the adversary (i.e. she does not learn the whole secret).

2. Second, the adversary’s goal is to distinguish the output of the encryption
function from random, rather than being able to encrypt. This requirement
may be deemed too demanding for some applications, but can be thought of
as the best form of incompressibility one can ask for.

We denote strong incompressibility by IND-COM because the ultimate goal
of the adversary is to break an indistinguishability game (IND), given a com-
pressed (or compact) implementation of their choice (COM). We actually give
more power to the adversary than this would seem to imply, as the adversary is
also given the power to query plaintexts of her choice after receiving the com-
pressed implementation.

Note that in the following definitions, f is not computationally bounded, so
generating the tables via a pseudorandom function is not possible.
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Definition 4 (Strong incompressibility, IND-COM). Let E : T × R × P
denote an encryption scheme. Let µ denote a security parameter. Let us further
assume that the key T ∈ T is chosen according to some distribution D (typically
uniform). The scheme E is said to be (τ, ε)-secure for µ-strong incompressibility
iff the advantage of an adversary A running in time τ and playing the following
game is upper-bounded by ε.

1. The adversary chooses a set S and a function f : T → S, subject only to the
condition that for all s ∈ S, the min-entropy of the variable T conditioned on
f(T ) = s is at least µ. The function f should be thought of as a compression
algorithm chosen by the adversary.

2. Meanwhile the challenger B picks T ∈ T according to the distribution D
(thus fixing an instance of the encryption scheme).

3. The adversary receives f(T ). At this point the adversary is tasked with break-
ing a standard IND-CPA game, namely:

4. The adversary may repeatedly choose any plaintext P ∈ P, and learns E(T,
R, P ).

5. The adversary chooses two plaintext messages P0, P1 ∈ P, and sends (P0, P1)
to B.

6. The challenger chooses a uniform bit b ∈ {0, 1}, randomness R ∈ R, and
sends E(T,R, Pb) to the adversary.

7. The adversary computes b′ ∈ {0, 1} and wins iff b′ = b.

It may be tempting, in the previous definition, to allow the adversary to first
query E, and choose f based on the answers. However it is not necessary to
add such interactions to the definition: indeed, such interactions can be folded
into the function f , which can be regarded as an arbitrary algorithm or protocol
between the adversary and the challenger having access to T . The only limitation
is that the min-entropy of T should remain above µ from the point of view of
the adversary. It is clear that a limitation of this sort is necessary, otherwise the
adversary could simply learn T .

Furthermore, while a definition based on min-entropy may seem rather im-
practical, it encompasses as a special case the simpler space-hard notion of [BI15].
In that case the table T is a uniform function, and f outputs a fixed propor-
tion 1/4 of the table. The min-entropy µ is then simply the number of unknown
output bits of the table (namely 3/4 of its output).

The WhiteKey construction that we define later on is actually a key gener-
ator. That is, it takes as input a uniformly random string and outputs a key.
The strong incompressibility definition expects an encryption scheme. In order
for the WhiteKey key generator to fulfill strong incompressibility, it needs to be
converted into an encryption scheme. This is achieved generically by using the
generated key (the output of WhiteKey) with a conventional symmetric encryp-
tion scheme, as in a standard hybrid cryptosystem. For instance, the plaintext
can be XORed with the output of a pseudorandom generator whose input is the
generated key. Strictly speaking, when we say that WhiteKey satisfies strong
incompressibility, we mean that this is the case when WhiteKey is thus used
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as a key generator in combination with any conventional symmetric encryption
process.

Note that this does not enforce authenticity. For instance, if the generated
key is used as an input to a stream cipher, forgeries are trivial. More generally
it is not possible to prevent existential forgeries, as the adversarially compressed
implementation could include any fixed arbitrary valid ciphertext. However uni-
versal forgeries can be prevented. This is naturally expressed by the following
model. The model actually captures the required goal in previous definitions
of incompressibility, in fact the model as a whole is essentially equivalent to
incompressibility in the sense of [DLPR13].

Definition 5 (Encryption incompressibility, ENC-COM). Let E : T ×
R × P denote an encryption scheme. Let µ denote a security parameter. Let
us further assume that the key T ∈ T is chosen according to some distribution
D (typically uniform). The scheme E is said to be (τ, ε)-secure for µ-strong
incompressibility iff the advantage of an adversary A running in time τ and
playing the following game is upper-bounded by ε.

1. The adversary chooses a distribution D with min-entropy at least µ on P.
2. The adversary chooses a set S and a function f : T → S, subject only to the

condition that for all s ∈ S, the min-entropy of the variable T conditioned on
f(T ) = s is at least µ. The function f should be thought of as a compression
algorithm chosen by the adversary.

3. Meanwhile the challenger B picks T ∈ T according to the distribution D
(thus fixing an instance of the encryption scheme).

4. The adversary receives f(T ).
At this point the adversary is tasked with forging a message, namely:

5. The adversary samples a plaintext M ∈ P from the distribution D.
6. The adversary may repeatedly choose any plaintext P ∈ P, and learns E(T,

R, P ).
7. The adversary wins iff she can compute a C ∈ C such that D(T,C) =M .

This model can also be fulfilled by the WhiteKey scheme, if we derive the
required randomness from H(P )+ r where H is a random oracle, P is the plain-
text, and r is a uniform value of µ bits added to the encryption. The decryption
starts by recovering the key, and then checks if the randomness used came from
H(P ′, r) where P ′ is the decrypted plaintext. This naturally makes any encryp-
tion scheme derived from a key generator resistant to universal forgeries.

Remark that it is necessary in the model to have the forged message gener-
ated independently of f(T ), otherwise one can simply put an encryption of the
message in f(T ).

Finally, observe that ENC-COM is stronger than ENC-TCOM, as ENC-
TCOM it is the special case of ENC-COM where the adversary’s chosen function
f does nothing more than querying T on some adaptively chosen inputs, and
returning the outputs.
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3 Constructions

In this section, we present two constructions that are provably secure in the weak
white-box model ENC-TCOM of Section 2 (cf. Definition 3): the WhiteBlock
block cipher, and the WhiteKey key generator. WhiteKey is also provable in the
strong model. We also propose PuppyCipher and CoureurDesBois as con-
crete instantiations of each construction, using the AES as underlying primitive.

3.1 The WhiteBlock Block Cipher

The general idea of WhiteBlock is to build a Feistel network whose round func-
tion uses calls to a large table T . An adversary who does not extract and store a
large part of this table should be unable to encrypt most plaintexts. For that pur-
pose, it is important that the inputs of table calls be pseudo-random, or at least
not overly structured. Otherwise the adversary could attempt to store a struc-
tured subset of the table that exploits this lack of randomness. In WhiteBlock,
the pseudo-randomness of table calls is enforced by interleaving calls to a block
cipher between each Feistel round.

Concretely, WhiteBlock defines a family of block ciphers with blocks of size
b = 128 bits, and a key of size κ = 128 bits4. The family is parameterized
with a size parameter which corresponds to the targeted size of a white-box
implementation. In principle, this size can be anything from a few dozen bytes
up to ≈ 264 bytes, but we will mostly restrict this description to the smallest
case considered in this article, which has an implementation of size 221 bytes.

Formally, we define one round of WhiteBlock (with tables of input size 16
bits) as follows. Let Ak denote a call to the block cipher A with key k, and
T i : {0, 1}16 → {0, 1}64 denote the i-th table. The Feistel round function is
defined by:

F : {0, 1}64 → {0, 1}64,
x63 . . . x0 7→ T 3(x63 . . . x48)⊕ T 2(x47 . . . x32)⊕ T 1(x31 . . . x16)⊕ T 0(x15 . . . x0)

and one round of WhiteBlock with key k is defined as:

Rk : {0, 1}128 → {0, 1}128
x127 . . . x0 7→ Ak

(
((x127 . . . x64)⊕F(x63 . . . x0))||x63 . . . x0

) .
A full instance of WhiteBlock is then simply the composition of a certain number
of independently-keyed round functions, with the addition of one initial top call
to A: WhiteBlockk0,...kr : {0, 1}128 → {0, 1}128, x 7→ Akr ◦Rkr−1 ◦ · · · ◦ Rk0(x).
We give an illustration of this construction (omitting the outer sandwiching calls
to A) in Figure 3.1.

4 This generalizes well to other sizes.
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Fig. 3.1. The WhiteBlock construction, with tables on t bits, without the outer calls
to A. We have t′ = (b/2) mod s, c = b(b/2)/tc.

Constructing the tables. For WhiteBlock instances with small tables, the
most efficient way to implement the cipher is simply to use the white-box imple-
mentation, i.e. use a table-based implementation of F (this will be clear from
the results of Section 5). In that case, it is easy to generate the tables “perfectly”
by drawing each entry uniformly at random, either by using a suitable source of
randomness (in that case, no one may be able to compress the tables) or by using
the output of a cryptographically-strong PRG seeded with a secret key. In the
latter case, the owner of the secret knows how to compactly represent the tables,
but this knowledge seems to be hard to exploit in a concrete implementation.

For larger instances, it is not true anymore that the fastest implementation
is table-based, and it may be useful in some contexts to be able to compute the
output of a table more efficiently than by querying it. Surely, if one knows how
to compactly represent a table, it is desirable that he would be able to do so, at
least for large tables. In that respect, drawing the tables at random would not
be satisfactory anymore.

Consequently, the tables used in WhiteBlock are generated as follows. Let
again T i : {0, 1}16 → {0, 1}64 be such a table (in the 16-bit case), then an
instance of it is defined with two parameters k ∈ {0, 1}128, c ∈ {0, 1}128−16 as
T (x) 4= bAk(c||x)c64, with b·c64 denoting the truncation to the 64 lowest bits.

An instance of WhiteBlock can thus always be described and implemented
compactly when knowing k and c. Of course this knowledge is not directly ac-
cessible in a white-box implementation, where a user would only be given the
tables as a whole.

Concrete parameters for various instances of WhiteBlock. We need to
address two more points before finishing this high-level description of WhiteBlock:
1) given the size of the tables, how many rounds r are necessary to obtain a secure
white-box construction; 2) how to generate the multiple round keys k0, . . . kr.
The answer to 1) is provided by the analysis of the construction done in the full
paper, specifically [?, Theorem 3]. By instantiating the formula from the theorem
with concrete parameters, we obtain the results given in Table 3-1. As for 2), we
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simply suggest to use independent keys (as both their generation process and
the cost of storing the precomputed subkeys are negligible w.r.t. the generation
and storage of the tables). There is some flexibility in the framework and one
can for instance consider using a tweakable block cipher instead, as we do in our
actual instantiation of WhiteBlock presented next.

Instance WB size #
Tables/round

WB security #rounds

WhiteBlock 16 221 B 4 112 bits @ 1/4 18
WhiteBlock 20 224.6 B 3 108 bits @ 1/4 23
WhiteBlock 24 228 B 2 104 bits @ 1/4 34
WhiteBlock 28 232 B 2 100 bits @ 1/4 34
WhiteBlock 32 236 B 2 96 bits @ 1/4 34

Table 3-1. Number of rounds for WhiteBlock instances with tables of selected input
sizes from t = 16 to 32 bits, at a white-box security level of 128−t bits for a compression
factor of 4. Black-box security is 128 bits in all cases.

PuppyCipher: WhiteBlock in practice. So far WhiteBlock has been de-
scribed from an abstract point of view, where all components are derived from
a block cipher A. In practice, we need to specify a concrete cipher; we thus de-
fine the PuppyCipher family as an instantiation of WhiteBlock using AES128
[DR02] for the underlying block cipher. Furthermore, though relying on a secure
block cipher is an important argument in the proof of the construction, one can
wish for a less expensive round function in practice. Hence we also define the
lighter, more aggressive alternative “Hound” which trades provable security for
speed. The only differences between PuppyCipher and Hound are:

1. The calls to the full AES128 are traded for calls to AES128 reduced to five
rounds (this excludes the calls in the table generation, which still use the
full AES).

2. The round keys kr . . . k0 used as input to A are simply derived from a unique
key K as ki

4
= K ⊕ i. Note that using a tweakable cipher such as KIASU-

BC [?] would also be possible here.

In Section 5, we discuss the efficiency of PuppyCipher and Hound imple-
mented with the AES instructions, for tables of 16, 20, and 24-bit inputs.

3.2 The WhiteKey key generator

In WhiteBlock, we generated pseudo-random calls to a large table by interleaving
a block cipher between table calls. If we are not restricted by the state size of
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a block cipher, generating pseudo-random inputs for the table is much easier:
we can simply use a pseudo-random generator. From a single input, we are then
able to generate a large number of pseudo-random values to be used as inputs
for table calls. It then remains to combine the outputs of these table calls into
a single output value of appropriate size. For this purpose, we use an entropy
extractor. More details on our choice of extractor are provided in the design
rationale below.

We now describe the WhiteKey function family, which can in some way be
seen as an unrolled and parallel version of WhiteBlock, with some adjustments.
As with WhiteBlock, we describe the main components of WhiteKey for use with
a 128-bit block cipher and tables of 16-bit inputs, but this generalizes easily to
other sizes.

Thus WhiteKey uses a table T : {0, 1}16 → {0, 1}128. Let n denote the
number of table calls (which will be determined later on by security proofs),
t
4
= dn/8e and d 4= d√ne. At a high level, the construction of WhiteKey can be

described by the following process: 1) from a random seed, generate t 128-bit
values using a block cipher A with key k in counter mode; 2) divide each such
value into eight 16-bit words; 3) use these words as n inputs to the table T
(possibly ignoring from one to seven of the last generated values), resulting in
n 128-bit values Qi,j , 0 ≤ i, j ≤ d = d√ne (if n is not a square, the remaining
values Qi,j are set to zero); 4) from a random seed, generate d 128-bit values ai
and d 128-bit values bi using A with key k′ in counter mode; 5) the output of
WhiteKey is

∑
i,j Qi,j · ai · bj , the operations being computed in F2128 .

Let us now define this more formally. We write Atk(s) for the t first 128-bit
output blocks of A in counter mode with key k and initial value s. We write Cn
for the parallel application of n ≤ 8× t tables T : {0, 1}16 → {0, 1}128 (written
here in the case n = 8× t for the sake of simplicity):

Cn : {0, 1}t×128 → {0, 1}n×128
xt128−1xt128−2 . . . x0 7→ T (xt128−1 . . . xt128−16)|| . . . || T (x15 . . . x0)

We write Sn for the “matrixification” mapping; taking d 4= d√ne (here with
n = 57, for a not too complex general case):

Sn : {0, 1}n×128 →Md(F2128)

xn128−1xn128−2 . . . x0 7→

 x127 . . . x0 x255 . . . x0 · · · x1023 . . . x896
...

...
. . .

...
xn128−1 . . . xn128−128 0 · · · 0

 .

Finally, we write E the “product” mapping:

E : Fd2128 × Fd2128 ×Md(F2128)→ F2128

a, b,Q 7→∑
i,j Qi,j · ai · bj

We can then describe an instance of WhiteKey parametered by (k1, s1, k2, s2)

over t and n values as WhiteKeyt,nk1,s1,k2,s2
4
= E ◦Adk2(s2) ◦ A

d
k2(s2 + d) ◦ Sn ◦ Cn

◦At(k1, s1) (using a Curried version of E for simplicity of notations).
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Constructing the tables. The table used in an instance of WhiteKey is built
in the same way as for WhiteBlock. The only difference is that the output of A
is not truncated and the full 128 bits are used.

Design rationale of WhiteKey The first part of the scheme consists in se-
lecting a fraction of the secret that needs to be accessed, which is a necessary
step. The fastest way to implement this part is to access the secret in parallel at
locations that are thus determined independently.

The second part is to derive a short key from the table outputs, which are
of high min-entropy. The standard way to build a key derivation function is to
use a hash function [?]. However it is slow, since even a fast hash function like
BLAKE2b takes 3 cycles per byte on modern processors [?]. Instead, we decided
to use an extractor, which has also the advantage to be unconditionally secure
for a uniform seed. The extractor literature focused primarily on reducing the
number of seed bits and maximizing the number of extracted bits, because of
their importance in theoretical computer science; see [?] for a survey. In our
case, we want to extract only a few bits and speed is the principal concern. The
approach recommended by [BDK+11] is to generate pseudo-random elements in
a large field using a standard pseudorandom generator (say, AES-CTR) and to
compute a dot product with the input. The main problem of this extractor is that
it uses a seed which is very large, and it takes about as much time to generate
it (with AES-NI) as to use it. Hence, we decided to use the extractor introduced
in [CMNT11], which has a seed length about the square root of the length of
the input. Since we can evaluate

∑
i,j Qi,jaibj with about one multiplication and

one addition in the field per input value, the computation of the extractor takes
essentially the same time. Indeed, the complexity of the extractor is similar to
GHASH.

Another possibility for the extractor is to increase the degree, for instance
use

∑
i,j,kQi,j,kaibjck. While this approach, proposed by [?], is indeed sound

and allows to reduce the seed further, the best bound we know on the statistical
distance of the output is about q−1/2 when working over Fq. The main problem
is that the tensor decomposition of Qi,j,k does not have the needed properties,
so that Coron et al. use a generic bound on the number of zeroes, which must
account for elliptic curves and therefore a deviation of q−1/2 is required. The spe-
cific case of

∑1
k=0

∑
i,j Qi,j,kaibjck can probably be tackled using linear matrix

pencil theory, at the cost of a much more difficult proof.

Concrete parameters for various instances of WhiteKey. Once the size
of an instance of WhiteKey has been chosen (i.e. the output size of the table
T ), the only parameter that needs to be determined is the number of calls to
the tables n, and thus the number of output blocks t of A. This is obtained by
instantiating the formula of [?, Theorem 2] for a given white-box security. We
give the parameters for instances of various sizes in Table 3-2. The tables used in
these instances have the same input size as the ones of the WhiteBlock instances
of Table 3-1, but they are twice as large because of their larger output size, which

17



impacts the size of a white-box implementation similarly. On the other hand, a
single table is used in WhiteKey, whereas up to four (for input sizes of 16 bits
and more) are necessary in WhiteBlock.

Instance WB size # Table/block WB security #Table calls
(#blocks)

WhiteKey 16 220 B 8 112 bits @ 1/4 57 (8)
WhiteKey 20 224 B 6 108 bits @ 1/4 55 (10)
WhiteKey 24 228 B 5 104 bits @ 1/4 53 (11)
WhiteKey 28 232 B 4 100 bits @ 1/4 51 (13)
WhiteKey 32 236 B 4 96 bits @ 1/4 49 (13)

Table 3-2. Number of table calls for WhiteKey instances with tables of selected input
sizes from 16 to 32 bits, at a white-box security level of 96 to 112 bits for a compression
factor of 4. Black-box security is 128 bits in all cases.

CoureurDesBois: WhiteKey in practice. Similarly to WhiteBlock and
PuppyCipher, we define the CoureurDesBois family as a concrete instan-
tiation of WhiteKey. It simply consists in using AES128 for A and a specific
representation for F2128 , e.g. F2[x]/x

128 + x7 + x2 + x+ 1 (the “GCM” field).
Unlike PuppyCipher, the components of CoureurDesBois are not cas-

caded multiple times; hence we cannot hope for a similar tradeoff of provable
security against speed. However, the main advantage of CoureurDesBois com-
pared to PuppyCipher is that it lends itself extremely well to parallelization.
This allows to optimally hide the latency of the executions of AES and of the
queries to the table in memory.

We further discuss the matter in Section 5, where we evaluate implemen-
tations of CoureurDesBois with AES instructions for tables of 16 to 24-bit
inputs.

4 Security Proofs

For both the WhiteBlock and WhiteKey constructions, we provide proofs in the
weak incompressibility model. These proofs provide concrete bounds, on which
we base our implementations. This allows direct comparison to previous work
[BBK14,BI15]. Moreover in the case of WhiteKey, we provide a proof in the
strong incompressibility model. This proof shows the soundness of the general
construction in a very demanding model. However we do not use it to derive the
parameters of our constructions.

Recall that weak incompressibility (Definition 3) depends on three param-
eters s, λ, δ: essentially if the number of outputs of the table known to the
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adversary is s, then (s, λ, δ)-incompressibility says that with probability at least
1 − 2−λ, the adversary is unable to encrypt more than a ratio δ of plaintexts,
no matter which s table outputs she chooses to learn. If inputs to the table are
t-bit long, then α = s2−t is the fraction of the table known to the adversary. We
can fix α = 1/4 as in [BI15], hence s = α2t. In that case weak incompressibility
essentially matches (s,− log(δ))-space hardness from [BI15], and − log(δ) can be
thought of as the number of bits of white-box security.

However we do not claim security for δ = 2−128, which would express 128
bits of white-box security. Instead, we claim security for δ = 2−128+t. Thus for
larger table of size ≈ 228, white-box security drops to around 2100. We believe
this is quite acceptable.

The reason we claim only 128−t bits of white-box security rather than 128 is
a result of our security proofs, as we shall see. This should be compared with the
fact that an adversary allowed to store s table inputs could use the same space
to store s outputs of the whole scheme (within a small constant factor λ/t in
the case of WhiteBlock). Such an adversary would naturally be able to encrypt
a proportion s2−λ of inputs. Since s = 2t/4, with a small constant factor 1/4,
this yields the 128− t bits of white-box security achieved by our proofs.

Our security claims are summarized in tables 3.1 and 3.2.

4.1 Proofs of weak incompressibility

We provide proofs of bothWhiteKey andWhiteBlock in the weak incompressibil-
ity model. In the case of WhiteKey, a proof is also available in the strong incom-
pressibility model. However the proof of WhiteKey for weak incompressibility
is fairly straightforward, yields better bounds (as one would expect), and also
serves as a warm-up for the combinatorially more involved proof of WhiteBlock.
The bulk of the proofs for WhiteKey and WhiteBlock are given in the full pa-
per [?]. In this section, we provide some context and a brief outline.

Weak incompressibility of WhiteKey. First note that if the AES in counter
mode used in the initial layer of WhiteKey is modeled as a pseudo-random gener-
ator (PRG), the proof is quite straightforward. Indeed, we are then free to regard
the inputs of table calls as uniformly random (after paying the PRG advantage
of an adversary against counter mode AES). It follows that the adversary has
probability α of knowing the output of each individual table call, where α is the
proportion of the table she has queried, regardless of which particular inputs
she chose to query. Since the extractor in the last layer of the scheme is linear,
as soon as the adversary is missing one table output, the global output of the
scheme is uniformly random from her point of view.

However we focus on a different route for the proof, where the initial layer of
the scheme is modeled as a pseudo-random function (PRF) rather than a PRG.
The main reason we do this is that the resulting proof will be much closer to the
proof of WhiteBlock, and serve to prepare it.
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We thus view the initial layer of WhiteKey as being comprised of a PRF
generating the inputs of the table calls. Using standard arguments, this pseudo-
random function can be replaced by a random function; the effect this has on
the weak incompressibility adversary is upper-bounded by the distinguishing
advantage of a real-or-random adversary against the PRF.

In the weak incompressibility game, the adversary learns the output of the
table on some adaptively chosen inputs. By nature of white-box security, any
keying material present in the PRF is known to the adversary (formally, in our
definition of white-box encryption scheme this keying material would have to
be appended to the table T of the white-box implementation, and could be
recovered with a single or few queries). Hence the adversary can choose which
table inputs she queries based on full knowledge of the initial PRF.

On the other hand, for a given PRF input, as soon as the adversary does not
know a single output of the table, due to the linearity of the final layer of the
construction, the output has full 128-bit entropy from the point of view of the
adversary.

Thus the core of the proof, is to show that, with high probability over the
random choice of the PRF, for the best possible choice of s table inputs the
adversary chooses to query5, most PRF outputs still include at least one table
input that is unknown to the adversary. We explicitly compute this upper bound
in the complete proof.

More precisely, [?, Theorem 2] shows:

log (Pr [µ(s) ≥ k]) ≤ 2t − k log
(
k

ρ

)
− (n− k) log

(
n− k
n− ρ

)
(1)

where:

– n = 2λ is the size of the input space of WhiteKey;

– t is the number of bits at the input of a table;

– s is the number of table entries stored by the adversary;

– ρ = 2λ(s/2t)m, with m the number of table calls in the construction;

– k is the maximal number of inputs the adversary may be able to encrypt;
– and µ(s) is the maximal number of WhiteKey inputs that can be encrypted

with storage size s; it is a random variable over the uniform choice of the
initial PRF (A in counter mode, in the previous description).

We want this bound to be below −λ. We are now interested in what this
implies, in terms of number of table calls m necessary to achieve a given security
level. As noted earlier, the bound imposes k ≈ 2t. For simplicity we let k = 2t,
which means we achieve λ−t bits of white-box security (i.e. δ = 2t−λ in the sense

5 In this respect, the adversary we consider is computationally unbounded.
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of Definition 3). We can also fix s/2t = 1/4 for the purpose of being comparable
to [BI15].

The term (n− k) ln ((n− k)/(n− ρ)) is equivalent to ρ − k as k/n tends to
zero6. Since we are looking for an upper bound we can approximate it by k. This
yields a probability:

2t
(
1− k2−t

(
log

(
k

ρ

)
− 1

))
= 2t

(
1− k2−t (log(k)− λ+ 2m− 1)

)
= −2t (log(k)− λ+ 2m)

In the end, we get that m only needs to be slightly larger than λ−log(k)
2 .

Indeed, as long as this is the case, the 2t factor will ensure that the bound is
(much) lower than −128.

This actually matches a generic attack. If the adversary just stores s = 2t/4
random outputs of the table, then on average she is able to encrypt a ratio 2−2m

of inputs. This imposes 2−2m < k2−λ, so m > (λ− log(k))/2. When testing our
parameter choices against Equation 1, we find that it is enough to add a single
table call beyond what the generic attack requires: in essence, [?, Theorem 2]
implies that no strategy is significantly better than random choices.

Weak incompressibility of WhiteBlock. The general approach of the proof
is the same as above. However the combinatorial arguments are much trickier,
essentially because table calls are no longer independent (they depend on table
outputs in the previous round.). Nevertheless an explicit bound is proven in the
full paper.

However, what we prove is only that w.h.p., for most inputs to WhiteBlock,
during the computation of the output, at least two table calls at different rounds
are unknown to the adversary. Since table outputs cover half a block, this implies
that at two separate rounds during the course of the computation, 64 bits are
unknown and uniform from the point of view of the adversary. At this point
we heuristically assume that for an efficient adversary, this implies the output
cannot be computed with probability significantly higher then 2−128. In practice
the bottleneck in the bound provided by the proof comes from other phenomena,
namely we prove 128− t bits of security for t-bit tables. Nevertheless this means
our proof is heuristic.

More precisely, [?, Theorem 3] shows:

log (Pr [µ(s) ≥ k]) ≤ 2t + k

(
λ+m

(
1− 1

k
− 1

r

)
log
( s
2t

))
where:

– λ is the input size of WhiteBlock;

6 In fact, simple functional analysis shows that we can bound the right-hand term by
4(ρ− k) provided αm < 1/2 and k < 4n, which will always be the case.
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– t is the number of bits at the input of a table;

– r is the number of rounds;

– m is the total number of table calls in the construction (m 4
= b(λ/2)/tc · r);

– s is the number of table entries stored by the adversary;

– k is the maximal number of inputs the adversary may be able to encrypt;

and µ(s) is the maximal number of WhiteBlock inputs that can be encrypted
with storage size s; it is a random variable over the uniform choice of the round
permutations Aki .

We are now interested in what this bound implies, in terms of number of
rounds r to achieve a given security level. Observe that the bound requires
k ≈ 2t. For simplicity we let k = 2t, which means we achieve λ − t bits of
white-box security (i.e. δ = 2t−λ in the sense of Definition 3). We can also fix
s/2t = 1/4 for the purpose of being comparable to [BI15]. Observe that 1/k is
negligible compared to 1/r. Let c = b(λ/2)/tc be the number of table calls per
round. Then our bound asks:

λ− 2m

(
1− 1

r

)
= λ− 2c(r − 1) < 0

Indeed, as long as this value is negative, the preceding k = 2t factor will ensure
that the bound is (much) lower than −128. We get:

r >
λ

2c
+ 1

We can compare this bound with the previous generic attack, where the
adversary stores table outputs at random. As we have seen, this attack implies
m > (λ−log(k))/2, so r > (λ−log(k))/(2c). Instead our proof requires r > λ

2c+1.
Thus the extra number of rounds required by our security proof, compared to
the lower bound coming from the generic attack, is less than log(k)/(2c) + 1: it
is only a few extra rounds (and not, for instance, a multiplicative factor).

4.2 Proof of strong incompressibility

We first prove that
∑
i,j Qi,jaibj ∈ Fq is a strong extractor. This extractor comes

mostly from Coron et al. [CMNT11, Section 4.2] but we tighten the proof.

Definition 6. A family H of hash functions h : X 7→ Y is ε-pairwise indepen-
dent if ∑

x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

Y

)
≤ ε|X|2

Y
.
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The next lemma is a variant of the leftover hash lemma, proven in [Sti02,
Theorem 8.1].

Lemma 1. Let h ∈ H be uniformly sampled, and x ∈ X be an independent ran-
dom variable with min-entropy at least k. Then, the statistical distance between
(h(x), h) and the uniform distribution is at most√

|Y |2−k + ε.

We now prove that our function is indeed pairwise independent.

Lemma 2. Let H = F2n
q , X = Mn(Fq) and Y = Fq. Then, the function

ha,b(Q) =
∑
i,j Qi,jaibj = atQb is 11q−n-pairwise independent.

Proof. We first count the number of a, b such that
∑
i,j Qi,jaibj = atQb = 0. Let

Q be a matrix of rank r. Then, there exist r vectors u, v such that Q =
∑r−1
k=0 uiv

t
i

and the ui as well as the vi are linearly independent. Thus,

atQb =

r−1∑
k=0

atuiv
t
ib

and therefore, by a change of basis, this form has the same number of zeros as

r−1∑
k=0

aibi

which is q2n−1 + q2n−r − q2n−r−1.
Now, there are

∏r−1
k=1

(qn−qk)2
qr−qk matrices of rank r. We deduce :

∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

Y

)
=

n∑
r=1

(
(q−r − q−r−1)q−n2

r−1∏
k=0

(qn − qk)2
qr − qk

)
≤

n∑
r=1

q−rq−n
2

q2nr−r
2
∞∏
k=1

1

1− 1/qk

≤2− 1/q

1− 1/q
q−n

∞∏
k=1

1

1− 1/qk

≤11q−n

Hence, if the input of our extractor has at least 2µ bits of entropy, the
generated key will be essentially uniform. The proof for the security of sampling
the seed from a pseudorandom generator (from which we cannot build a public-
key primitive) is in [BDK+11]. We now prove that the input has indeed a lot of
entropy.
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Lemma 3. Let f : [n] 7→ [0; 1] be of average µ. Then, the average of the image
k uniform elements is at least µ− δ, except with probability

exp(− k2δ2/2

k/4 + δµ/3
).

Proof. This is the result of Bernstein’s inequality (see [BLB04, Theorem 3]),
since the variance of all terms is at most 1/4 and they are all positive.

We now use a lemma of Vadhan [Vad04, Lemma 9] :

Lemma 4. Let S be a random variable over [n]t with distinct coordinates and
µ, δ, ε > 0, such that for any function f : [n] 7→ [0; 1] of average (δ−2τ)/ log(1/τ),
we have that the probability that the average of the image of the t positions given
by S is smaller than (δ − 3τ)/ log(1/τ) is at most ε.

Then, for every X of min-entropy δn over {0, 1}n, the variable (S,XS) where
XS is the subset of bits given by S is ε + 2−Ω(τn) close to (A,B) where B
conditioned on A = a has a min-entropy (δ − τ)t.

Finally, it is clear that if a sampling done with a pseudorandom generator
instead of a uniform function leads to a low min-entropy key, we have a distin-
guisher on the pseudorandom generator.

5 Implementation

In this section, we evaluate the efficiency of PuppyCipher {16,20,24}, Hound
{16,20,24} and CoureurDesBois {16,20,24}, when implemented with the AES
and PCLMULQDQ instructions (the latter being only used for the finite field
arithmetic of CoureurDesBois) on a recent Haswell CPU. For each algorithm,
we tested table-based white-box implementations and “secret” implementations
where one has the knowledge of the key used to generate the tables.

The number of rounds we choose was directly deduced from proofs in the
weak model (cf. Sections 3 and 4). Since this model essentially matches that of
previous work [BBK14,BI15], this allows for a direct comparison.

The processor on our test machine was an Intel Xeon E5-1603v3, which has
a maximal clock frequency of 2.8GHz and a 10MB cache (which is thus larger
than the implementation sizes of the ‘16 instances). The machine has 32GB of
memory, in four sticks of 8GB all clocked at 2133MHz. All measurements were
done on an idle system, without Turbo Boost activated7. As a reference, we first
measured the performance of AES128 implemented with the AES instructions,
given in Table 5-1. We give the average (Avg.) number of clock cycles and the
standard deviation (Std. Dev.) for one execution, both in the transient and
steady regime (in practice, when performing series of independent runs, the
transient regime only corresponds to the first run of the series). The average
and standard deviation are computed from 25 series of 11 runs. The figures
7 As a matter of fact, this CPU does not have Turbo Boost support.
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obtained from this test are coherent with the theoretical performance of the AES
instruction set (even if slightly better): on a Haswell architecture, the aesenc
and aesenclast instructions are both given for a latency of 7 cycles, and the
cost of a single full AES128 is dominated by the 10× 7 calls to perform the 10
rounds of encryption.

Transient Avg. Transient Std. Dev. Steady Avg. Steady Std. Dev.

AES128 79 3.6 68 2.4

Table 5-1. Performance of a single call to AES128 with AES instructions on a Xeon
E5-1603v3. All numbers are in clock cycles.

5.1 PuppyCipher

Writing a simple implementation of PuppyCipher is quite straightforward. The
main potential for instruction-level parallelism (ILP) are the calls to the tables
(or the analogous on-the-fly function calls); the rest of the cipher is chiefly se-
quential, especially the many intermediate calls to the (potentially reduced)
AES. This parallelism is however somewhat limited, especially starting from
PuppyCipher 24 where only two parallel calls to the tables can be made.

In all implementations, we precompute the sub-keys for the calls to AES
(including calls potentially made to emulate the tables). Not doing so would
only add a negligible overhead.

The performance measurements were done in a setting similar to the reference
test on AES128 from above. We give the results for PuppyCipher {16,20,24} in
Table 5-2 and for Hound {16,20,24} in Table 5-3. In both tables, we also express
the performance in the steady regime as the number of equivalent AES128 calls
(Eq. A) with AES instructions on the same platform (taken to be 68 cycles, as
per Table 5-1) as it is a block cipher with similar expected (black-box) security,
and as the number of equivalent ephemeral Diffie-Hellman key exchanges with
the FourQ elliptic curve (Eq. F), one of the fastest current implementation of
ECDHE [CL15] (measured at 92000 cycles on the Haswell architecture), as there
is some overlap in what white-box and public-key cryptography try to achieve.

Discussion. As it was mentioned in Section 3, for a small white-box implemen-
tation such as the one of PuppyCipher 16, table-based implementations may
be the most efficient way of implementing the cipher, especially as the entire
tables can usually fit in the cache. However, from a certain size on, the random
RAM accesses inherent to such implementations cost more than recomputing
the necessary outputs of the tables (when the secret is known).

It is quite easy to estimate how much time is spent in RAM accesses compared
to the time spent in calls to the (potentially reduced) AES. Indeed, knowing the
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Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

PC 16 (white-box) 2960 130 2800 70 41 0.030
PC 16 (secret) 4140 60 3940 10 58 0.043

PC 20 (white-box) 13660 1000 11500 1190 169 0.125
PC 20 (secret) 4810 60 4540 100 67 0.049

PC 24 (white-box) 27570 1410 23390 1340 344 0.25
PC 24 (secret) 6760 120 6600 60 97 0.072

Table 5-2. Performance of a single call to PuppyCipher {16,20,24} (“PC”) on a Xeon
E5-1603v3. All numbers are in clock cycles, rounded to the nearest ten. The “white-
box” instances are table-based, and the “secret” instances uses on-the-fly computations
of the tables on their queried values. All calls to AES use the AES instructions.

Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

HD 16 (white-box) 2300 180 2190 130 32 0.024
HD 16 (secret) 3520 80 3280 2 48 0.036

HD 20 (white-box) 11870 980 9940 1030 146 0.11
HD 20 (secret) 4000 230 3700 65 54 0.040

HD 24 (white-box) 26540 1450 21740 1230 320 0.24
HD 24 (secret) 5490 60 5360 60 79 0.058

Table 5-3. Performance of a single call to Hound {16,20,24} (“HD”) on a Xeon E5-
1603v3. All numbers are in clock cycles, rounded to the nearest ten. The “white-box”
instances are table-based, and the “secret” instances uses on-the-fly computations of
the tables on their queried values. All calls to AES use the AES instructions.

number of rounds and the cost of one AES execution, one can subtract this
contribution to the total. For instance, based on the cycle counts in the steady
and transient regimes, for PuppyCipher 24, at least 2380 = 35 × 68 and at
most 2765 = 35 × 79 cycles are expected to be spent in AES instructions; the
real figure in this case is about 2690 cycles, for an average cost per AES call of
77 cycles. All in all, this means that in steady regime, close to 90% of the time is
spent in RAM accesses. This is understandingly slightly more for the Hound 24
variant, where RAM accesses represent about 93% of the execution time.

It is also interesting to look at how many RAM accesses can effectively be
done in parallel. As two to four table calls are independent every round, we
may hope to partially hide the latency of some of these. For PuppyCipher 24,
removing one of the two table accesses decreases the cycle count to 19400 on
average. This means that the second table call only adds less than 4000 cycles.
Put another way, using a single table per round, one table access takes 490 cycles
on average, but this goes down to an amortized 300 cycles when two tables
are accessed per round. In the end, the 68 table access of PuppyCipher 24
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only cost an equivalent 42 purely sequential accesses. A similar analysis can be
performed for PuppyCipher 20 and PuppyCipher 16, where the 69 and 72
parallel accesses cost 31 and 23 equivalent accesses respectively.

Comparison with SPACE. We can compare the performance of PuppyCi-
pher with the one of SPACE-(16,128) and SPACE-(24,128), which offer similar
white-box implementation sizes as PuppyCipher 16 and PuppyCipher 24 re-
spectively [BI15]. As the authors of SPACE do not provide cycle counts for their
ciphers but only the number of necessary cache or RAM accesses, a few assump-
tions are needed for a brief comparison. Both SPACE instances need 128 table
accesses, which is much more than the 72 of PuppyCipher 16 and 68 of Pup-
pyCipher 24. However, there is an extra cost in PuppyCipher due to the many
AES calls, which need to be taken into account. On the other hand, the table
accesses in SPACE are necessarily sequential, which is not the case for Puppy-
Cipher, and we have just seen that parallel accesses can bring a considerable
gain. It is thus easiest to use our average sequential access times as a unit. In
that respect, PuppyCipher 24 and Hound 24 cost on average 48 = 23390/490
and 44 = 21790/490 table accesses, which is significantly less than the 128 of
SPACE-(24,128). Similarly, we measured one sequential table access for Puppy-
Cipher 16 to take 59 cycles on average, and we thus have a cost of 47 = 2800/59
and 37 = 2190/59 for table accesses for PuppyCipher 16 and Hound 16.

The performance gap reduces slightly when one considers the case of “se-
cret” implementations. As the tables of SPACE use the AES as a building block,
the cost of a secret SPACE (24-128) implementation should correspond to ap-
proximately 128 sequential calls to AES; the corresponding PuppyCipher and
Hound implementations cost an equivalent 97 and 79 AES respectively.

5.2 CoureurDesBois

The main advantage of CoureurDesBois compared to PuppyCipher (as far
as efficiency is concerned) is the higher degree of parallelism that it offers. Unlike
PuppyCipher, the calls to AES can be made in parallel, and there is no limit
either in the potential parallelism of table accesses. Because the output of the
tables are of a bigger size, there is also fewer accesses to be made. Consequently,
we expect CoureurDesBois to be quite more efficient than PuppyCipher.

A consequence of the higher parallelism of CoureurDesBois is that there
are more potential implementation tradeoffs than for PuppyCipher. In our
implementations, we chose to parallelize the AES calls up to four calls at a
time, and the table accesses (or equivalent secret computations) at the level of
one block (i.e. from eight parallel accesses for CoureurDesBois 16 to five for
CoureurDesBois 24). The final step of CoureurDesBois also offers some
parallelism; we have similarly regrouped the calls to AES used for randomness
generation by four, and the finite field multiplications are regrouped by rows of
eight.

The results for CoureurDesBois {16,20,24} are given in Table 5-4.
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Tr. Avg. Tr. Std. Dev. St. Avg. St. Std. Dev. Eq. A Eq. F

CDB 16 (white-box) 3190 460 2020 20 29.7 0.022
CDB 16 (secret) 3100 380 2150 30 31.6 0.023

CDB 20 (white-box) 7880 880 4700 600 69.1 0.051
CDB 20 (secret) 4060 460 2900 20 42.6 0.032

CDB 24 (white-box) 17360 980 11900 610 175 0.13
CDB 24 (secret) 4470 560 3050 30 44.9 0.033

Table 5-4. Performance of a single call to CoureurDesBois {16,20,24} (“CDB”)
on a Xeon E5-1603v3. All numbers are in clock cycles, rounded to the nearest ten.
The “white-box” instances are table-based, and the “secret” instances uses on-the-fly
computations of the tables on their queried values. All calls to AES use the AES
instructions.

Discussion. We can notice a few things from these results. First, Coureur-
DesBois is indeed more efficient than PuppyCipher; for instance, Coureur-
DesBois 24 is about twice as fast as Hound 24. Second, the performance gap be-
tween secret and white-box implementations is somewhat smaller for the smaller
instances of CoureurDesBois; on the other hand, the gap between transient
and steady regime performance is slightly bigger than for PuppyCipher.

As pointed out above, more tradeoffs are possible in implementing Coureur-
DesBois than for PuppyCipher. As a result, it would be interesting to evaluate
alternatives in practice.

Implementations of our schemes will be made available at http://whitebox4.
gforge.inria.fr/.
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