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Introduction

This paper will provide transparent arguments and proofs for results presented at the International Symposium on Symbolic and Algebraic Computation conference, Bath, 6-9 July, 2015 [START_REF] Bui | Hoang Ngoc Minh-Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras[END_REF].

For any composition, s = (s 1 , . . . , s r ), the polyzetas [START_REF]Cartier-Fonctions polylogarithmes, nombres polyzetas et groupes prounipotents[END_REF] (also called multiple zeta values [START_REF] Zagier | Values of zeta functions and their applications[END_REF]) are defined by the following convergent series ζ(s 1 , . . . , s r ) ∶=

n 1 >...>nr>0 n -s 1 1 . . . n -sr r , for s 1 > 1. (1) 
Any composition s ∈ (N + ) r can be associated to words of the form w = x s 1 -1 0 x 1 . . . x sr-1 0 x 1 ∈ X * x 1 (resp. w = y s 1 . . . y sr ∈ Y * ) [START_REF] Hoang | Petitot-Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF], where X * (resp. Y * ) is the free monoid generated by the alphabet X = {x 0 , x 1 } (resp. Y = {y s } s≥1 ) admitting 1 X * (resp. 1 Y * ) as unit. The weight of composition s is defined the positive integer s 1 + . . . + s r which correspond to the length, denoted by w (resp. the sum of indexes, denoted by (w)), of its associated word on X (Y ).

Using concatenation, shuffle and quasi-shuffle products, in Section 2,

1. we will recall the definition of Hopf algebras (Q⟨X⟩, •, 1 X * , ∆ ⊔⊔ , e) and (Q⟨Y ⟩, •, 1 Y * , ∆ , e).

2. we will equip X with the (total) ordering x 0 < x 1 and denoting LynX, the set of Lyndon words over X, the 1 PBW-basis {P w } w∈X * will be expanded over the basis {P l } l∈LynX , of the free Lie algebra Lie Q ⟨X⟩. Its dual basis {S w } w∈X * contains the pure transcendence basis of the algebra (Q⟨X⟩, ⊔⊔ , 1 X * ) denoted by {S l } l∈LynX [START_REF]Reutenauer-Free Lie Algebras[END_REF].

3. similarly, equipping Y with the (total) ordering y 1 > y 2 > y 3 > . . . and denoting LynY the set of Lyndon words over Y , the basis {Π l } l∈LynY , of the free Lie algebra of primitive elements 2 , and its associated PBW-basis {Π w } w∈Y * will be proposed. The dual basis {Σ w } w∈Y * is polynomial and contains also a pure transcendence basis of the algebra (Q⟨Y ⟩, , 1 Y * ) denoted by {Σ l } l∈LynY [START_REF] Bui | Hoang Ngoc Minh-Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. [START_REF] De | Monvel-Remark on divergent multizeta series[END_REF]. we then establish the two following expressions of the diagonal series

D X ∶= w∈X * w ⊗ w = ↳ l∈LynX exp(S l ⊗ P l ), (2) 
D Y ∶= w∈Y * w ⊗ w = ↳ l∈LynY exp(Σ l ⊗ Π l ). (3) 
From these, in Section 3, 1. we will consider two generating series of polyzetas 3 [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | Petitot-Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]:

Z ⊔⊔ ∶= ↳ l∈LynX X exp(ζ(S l )P l ) and Z ∶= ↳ l∈LynY {y 1 } exp(ζ(Σ l )Π l ).( 4 
)
1 PBW : Poincaré-Birkhoff-Witt. 2 P is a primitive element if ∆ (P ) = 1 Y * ⊗ P + P ⊗ 1 Y * . 3 The coefficients of Z ⊔⊔ (resp. Z ) represent the finite parts of the asymptotic expansions of the polylogarithms {Li w } w∈X * (resp. the harmonic sums {H w } w∈Y * ), at 1 (resp. at +∞), in the scale of comparison {(1z) -a log b ((1z) -1 )} a∈Z,b∈N (resp. {N a H b 1 (N )} a∈Z,b∈N ) [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF].

2 2. we have also defined a third one 4 , Z γ [START_REF] Costermans | Hoang Ngoc Minh-Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF], which satisfies, via Schützenberger's factorization 5 on the completed Hopf algebra [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] ,

Z γ = e γy 1 Z . (5) 
3. in order to identify the local coordinates of Z ⊔⊔ (and Z ), on a group of associators [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], we will rely on the following comparison (see [START_REF] Costermans | Hoang Ngoc Minh-Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF])

Z γ = B(y 1 )π Y (Z ⊔⊔ ), where B(y 1 ) = exp γy 1 - k≥2 (-1) k-1 ζ(k) k y k 1 . (6) 
Here,

π Y ∶ Q ⊕ Q⟪X⟫x 1 → Q⟪Y ⟫ is the linear projection 6 mapping x s 1 -1 0 x 1 . . . x sr-1 0
x 1 to y s 1 . . . y sr . By cancellation7 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], ( 5) and ( 6) yield the following identity

Z = B ′ (y 1 )π Y (Z ⊔⊔ ), where B ′ (y 1 ) = exp k≥2 (-1) k-1 ζ(k) k y k 1 . (7) 
4. simultaneously, algorithms will be also implemented in Maple to represent polyzetas 8 in terms of irreducible polyzetas producing algebraic relations among the local coordinates9 {ζ(S l )} l∈LynX X (and {ζ(Σ l )} l∈LynY {y 1 } ) [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF].

To end this section, let us point out some crucial points of our purposes :

1. Similar tables 10 for {ζ(l)} l∈LynX∖X have been obtained up to weight 10 [20],

12 [START_REF] Hoang | Bigotte-Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF] and 16 [START_REF] Wardi | Mémoire de DEA[END_REF]. These differ from the zig-zag relation among the moulds of formal polyzetas, due to Ecalle [START_REF] Gari | la dimorphie et l'arithmétique des multizêtas : un premier bilan[END_REF], i.e. the commutative generating series of symbolic polyzetas (Boutet de Monvel [START_REF] De | Monvel-Remark on divergent multizeta series[END_REF] and Racinet [START_REF] Espie | Racinet-Formal Computations About Multiple Zeta Values[END_REF] have also given equivalent relations for the noncommutative generating series of symbolic polyzetas, see also [START_REF]Cartier-Fonctions polylogarithmes, nombres polyzetas et groupes prounipotents[END_REF]) producing linear relations and base themselves on regularized double shuffle relation [START_REF] Blümlein | Vermaseren-The multiple zeta values data mine[END_REF][START_REF] Hoffman | Quasi-shuffle products[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF] and from identities among associators, due to Drinfel'd [START_REF]Drinfel'd-Quasi-Hopf Algebras[END_REF][START_REF]Drinfel'd-On quasitriangular quasi-hopf algebra and a group closely connected with gal(q q)[END_REF][START_REF] Furusho | The multiple zeta value algebra and the stable derivation algebra[END_REF].

2. In the classical theory of finite-dimensional Lie groups, every ordered basis of the Lie algebra provides a system of local coordinates in a suitable neighborhood of the unity of the group via an ordered product of one-parameter groups corresponding to the ordered basis [START_REF] Wei | On global representation of the solution of linear differential equations as product of exponentials[END_REF]. In this work, we get a perfect analogue of this picture for Hausdorff groups, through Schützengerger's factorization, this doesn't depend on regularization (see the next remark). Moreover, through the bridge equation ( 6) relating two elements on these groups and by identification of local coordinates, in infinite dimension, of their L.H.S. and R.H.S. (which involve only convergent polyzetas) we get again a confirmation of Zagier's conjecture, up to weight 12. This is not a consequence of regularized double-shuffle relation (see the next remarks). 3. Of course, the generating series given in ( 4) and ( 5) induce, as already shown in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], three morphisms of (shuffle and quasi-shuffle) algebras, studied earlier in [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF][START_REF] Costermans | Hoang Ngoc Minh-Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] and constructed in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

ζ ⊔⊔ ∶ (Q⟨X⟩, ⊔⊔ , 1 X * ) → (R, ., 1 R ), (8) ζ ∶ (Q⟨Y ⟩, , 1 Y * ) → (R, ., 1 R ), (9) γ 
• ∶ (Q⟨Y ⟩, , 1 Y * ) → (R, ., 1 R ), (10) 
which satisfy, for any u = x s 1 -1

0 x 1 . . . x sr-1 0 x 1 ∈ x 0 X * x 1 and v = π Y (u), ζ ⊔⊔ (u) = ζ (v) = γ v = ζ(s 1 , . . . , s r ) (11) 
and the algebraic generators of length 1 satisfy (see Footnotes 3, 4)

ζ ⊔⊔ (x 0 ) = ζ ⊔⊔ (x 1 ) = ζ (y 1 ) = 0 and γ y 1 = γ. (12) 
Hence, ζ ⊔⊔ , ζ and γ • are characters of (shuffle and quasi-shuffle) Hopf algebras, and their graphs, written as series, respectively read [START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF][START_REF] Costermans | Hoang Ngoc Minh-Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] w∈X

* ζ ⊔⊔ (w)w = Z ⊔⊔ , w∈Y * ζ (w)w = Z , w∈Y * γ w w = Z γ (13)
and 11 14) By [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF], for any l ∈ LynX X and l ′ = π Y (l), one has on the other hand

Z ⊔⊔ = (ζ ⊔⊔ ⊗ Id X * )D X , Z = (ζ ⊗ Id Y * )D Y , Z γ = (γ • ⊗ Id Y * )D Y . 4. By (4), for any u, v ∈ LynX X and u ′ = π Y (u), v ′ = π Y (y), one has ζ ⊔⊔ (u)ζ ⊔⊔ (v) = ζ ⊔⊔ (u ⊔⊔ v) and ζ (u ′ )ζ (v ′ ) = ζ (u ′ v ′ ). (
i) ζ ⊔⊔ (x 1 ⊔⊔ l -x 1 l) = -ζ ⊔⊔ (x 1 l) = -⟨Z ⊔⊔ x 1 l⟩, ii) ζ (y 1 l ′ -y 1 l ′ ) = -ζ (y 1 l ′ ) = -⟨Z y 1 l ′ ⟩, iii) ⟨B ′ (y 1 ) y 1 ⟩ = 0.
This means that since [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF] is equivalent to (6) then, for the quasi-shuffle product, the regularization to γ is equivalent to the regularization to 0 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] and this yields immediately the family of regularized double shuffle relations considered in [START_REF] Hoang | Bigotte-Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Blümlein | Vermaseren-The multiple zeta values data mine[END_REF][START_REF] Espie | Racinet-Formal Computations About Multiple Zeta Values[END_REF][START_REF] Hoang | Petitot-Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF][START_REF] Wardi | Mémoire de DEA[END_REF] (see also [START_REF] De | Monvel-Remark on divergent multizeta series[END_REF][START_REF]Cartier-Fonctions polylogarithmes, nombres polyzetas et groupes prounipotents[END_REF][START_REF] Hoffman | Quasi-shuffle products[END_REF][START_REF] Ihara | Derivation and double shuffle relations for multiple zetas values[END_REF][START_REF] Waldschmidt | Hopf Algebra and Transcendental numbers, Zetafunctions, Topology and Quantum Physics[END_REF]). Our method is then quite different with [START_REF] De | Monvel-Remark on divergent multizeta series[END_REF][START_REF]Cartier-Fonctions polylogarithmes, nombres polyzetas et groupes prounipotents[END_REF][START_REF] Waldschmidt | Hopf Algebra and Transcendental numbers, Zetafunctions, Topology and Quantum Physics[END_REF] for which their authors suggest the simultaneous regularization the divergent polyzetas ζ ? (1) to the indeterminate 12 T . But by this way, they obtain relations among polyzetas which are formal because they depend mainly on numerical values 13 of T .

Background

Generalities

Let w = y s 1 . . . y s k ∈ Y * , the length and the weight of the word w are defined respectively by the numbers w = k and (w) = s 1 + . . . + s k .

Let us define the commutative product on 14 QY , denoted by µ (see [START_REF] Bui | Tollu-Combinatorics of φ-deformed quasi-shuffle Hopf algebras[END_REF][START_REF] Enjalbert | Hoang Ngoc Minh-Combinatorial study of Hurwitz colored polyzêtas[END_REF]),

∀y s , y t ∈ Y, µ(y s , y t ) = y s+t , (15) 
or its dual coproduct, ∆ µ , defined by

∀y s ∈ Y, ∆ µ y s = s-1 i=1 y i ⊗ y s-i (16) 
satisfying,

∀x, y, z ∈ Y, ⟨∆ µ x y ⊗ z⟩ = ⟨x µ(y, z)⟩. (17) 
Let Q⟨Y ⟩ be equipped by 1. The concatenation • (or by its associated coproduct, ∆ • ).

12 i.e. ζ ⊔⊔ (x 0 ) = ζ ⊔⊔ (x 1 ) = ζ (y 1 ) = T (to compare with [START_REF]Drinfel'd-Quasi-Hopf Algebras[END_REF]) and since T is transcendent over R then it can be suitable to be specialized to 0, as effectively done in [START_REF] Espie | Racinet-Formal Computations About Multiple Zeta Values[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF]. 13 Since the R-algebra of polyzetas is not a R[T ]-algebra then how to precise these values ? 14 QY denotes the Q-vector space generated by the alphabet Y , as a basis.

2. The shuffle product, i.e. the commutative product defined by [START_REF]Reutenauer-Free Lie Algebras[END_REF], for any

y s , y t ∈ Y and u, v, w ∈ Y * w ⊔⊔ 1 Y * = 1 Y * ⊔⊔ w = w, y s u ⊔⊔ y t v = y s (u ⊔⊔ y t v) + y t (y s u ⊔⊔ v) (18) 
or by its associated coproduct, ∆ ⊔⊔ , defined, on the letters by,

∀y s ∈ Y, ∆ ⊔⊔ y s = y s ⊗ 1 Y * + 1 Y * ⊗ y s (19) 
and extended so as to make it a homomorphism for the concatenation product. It satisfies

∀u, v, w ∈ Y * , ⟨∆ ⊔⊔ w u ⊗ v⟩ = ⟨w u ⊔⊔ v⟩. ( 20 
)
3. The quasi-shuffle product, i.e. the commutative product defined by [START_REF] Hoffman | Quasi-shuffle products[END_REF], for any y s , y t ∈ Y and u, v, w ∈ Y * ,

w 1 Y * = 1 Y * w = w, y s u y t v = y s (u y t v) + y t (y s u v) + µ(y s , y t )(u v) (21) 
or by its associated coproduct, ∆ , defined, on the letters by,

∀y s ∈ Y, ∆ y s = ∆ ⊔⊔ y s + ∆ µ y s (22) 
and extended so as to make it a homomorphism for the concatenation product. It satisfies

∀u, v, w ∈ Y * , ⟨∆ w u ⊗ v⟩ = ⟨w u v⟩. (23) 
Note that ∆ ⊔⊔ and ∆ are morphisms from Q⟨Y ⟩ for the concatenation but ∆ µ is not (for example ∆ µ (y 2 1 ) = y 1 ⊗ y 1 , whereas ∆ µ (y 1 ) 2 = 0). Hence, with the counit e defined by, for any P ∈ Q⟨Y ⟩, e(P ) = ⟨P 1 Y * ⟩, we get two pairs of mutually dual bialgebras

H ⊔⊔ = (Q⟨Y ⟩, •, 1 Y * , ∆ ⊔⊔ , e), H ∨ ⊔⊔ = (Q⟨Y ⟩, ⊔⊔ , 1 Y * , ∆ • , e), (24) 
H = (Q⟨Y ⟩, •, 1 Y * , ∆ , e), H ∨ = (Q⟨Y ⟩, , 1 Y * , ∆ • , e). ( 25 
)
Let us then consider the following diagonal series15 

D ⊔⊔ = w∈Y * w ⊗ w and D = w∈Y * w ⊗ w. (26) 
Here, in D ⊔⊔ and D , the operation on the right factor of the tensor product is the concatenation, and the operation on the left factor is the shuffle and the quasishuffle, respectively. By the Cartier-Quillen-Milnor and Moore (CQMM in the sequel) theorem [START_REF] Bui | Tollu-Combinatorics of φ-deformed quasi-shuffle Hopf algebras[END_REF], the connected N-graded, co-commutative Hopf algebra H ⊔⊔ is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which is Lie Q ⟨Y ⟩ :

H ⊔⊔ ≅ U (Lie Q ⟨Y ⟩) and H ∨ ⊔⊔ ≅ U (Lie Q ⟨Y ⟩) ∨ . (27) 
Hence, denoting (l 1 , l 2 ) the standard factorization 16 of l ∈ LynX X, let us consider

1. the PBW-Lyndon basis {P w } w∈Y * constructed recursively as follows [29] ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ P ys = y s for y s ∈ Y, P l = [P l 1 , P l 2 ] for l ∈ LynY Y, st(l) = (l 1 , l 2 ), P w = P i 1 l 1 . . . P i k l k for w=l i 1 1 ...l i k k , with l 1 ,...,l k ∈LynY, l 1 >...>l k . ( 28 
) Example 1. i) Considering on the alphabet Y ∶ P y 1 = y 1 , P y 2 = y 2 , P y 2 y 1 = y 2 y 1 -y 1 y 2 , P y 3 y 1 y 2 = y 3 y 1 y 2 -y 2 y 3 y 1 + y 2 y 1 y 3 -y 1 y 3 y 2 .
ii) Considering on the alphabet X = {x 0 , x 1 }, x 0 < x 1 ∶

P x 1 = x 1 , P x 0 x 1 = x 0 x 1 -x 1 x 0 , P x 0 x 2 1 = x 0 y 2 1 -2x 1 x 0 x 1 + y 2 1 x 0 , P x 2 0 x 2 1 x 0 x 1 = x 2 0 x 2 1 x 0 x 1 -x 2 0 x 3 1 x 0 + 2x 0 x 1 x 0 x 2 1 x 0 + 2x 1 x 0 x 1 x 0 x 0 x 1 -x 2 1 x 3 0 x 1 + x 2 1 x 2 0 x 1 x 0 -x 0 x 1 x 2 0 x 2 1 -2x 0 , 1x 1 x 0 x 1 x 0 + x 0 x 3 1 x 2 0 + x 1 x 3 0 x 2 1 -2x 1 x 2 0 x 1 x 0 x 1 -x 1 x 0 x 2 1 x 2 0 .
2. and, by duality 17 , the basis {S w } w∈Y * of (Q⟨Y ⟩, ⊔⊔ ), i.e.

∀u, v ∈ Y * , ⟨P u S v ⟩ = δ u,v . (29) 
This linear basis can be computed recursively as follows [START_REF]Reutenauer-Free Lie Algebras[END_REF] ⎧

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ S ys = y s , for y s ∈ Y, S l = y s S u , for l = y s u ∈ LynY, S w = S ⊔⊔ i 1 l 1 ⊔⊔ . . . ⊔⊔ S ⊔⊔ i k l k i 1 ! . . . i k ! for w = l i 1 1 . . . l i k k , with l 1 , . . . , l k ∈ LynY, l 1 > . . . > l k . (30) Example 2. i) Considering on the alphabet Y ∶ S y 1 = y 1 , S y 2 = y 2 , S y 2 y 1 = y 2 y 1 , S y 3 y 1 y 2 = y 3 y 2 y 1 + y 3 y 1 y 2 .
ii) Considering on the alphabet X ∶

S x 1 = x 1 , S x 0 x 1 = x 0 x 1 , S x 0 x 2 1 = x 0 x 2 1 , S x 2 0 x 2 1 x 0 x 1 = x 2 0 x 2 1 x 0 x 1 + 3x 2 0 x 1 x 0 x 2 1 + 6x 3 0 x 3 1 .
Similarly, by CQMM theorem, the connected N-graded, co-commutative Hopf algebra H is isomorphic to the enveloping algebra of its primitive elements:

Prim(H ) = Im(π 1 ) = span Q {π 1 (w) w ∈ Y * }, (31) 
where, for any w ∈ Y * , π 1 (w) is obtained as follows [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

π 1 (w) = w + (w) k=2 (-1) k-1 k u 1 ,...,u k ∈Y + ⟨w u 1 . . . u k ⟩ u 1 . . . u k . ( 32 
)
Note that (32) is equivalent to the following identity

w = k≥0 1 k! u 1 ,...,u k ∈Y * ⟨w u 1 . . . u k ⟩ π 1 (u 1 ) . . . π 1 (u k ). (33) 
In particular, for any y s ∈ Y , the primitive polynomial π 1 (y s ) is given by

π 1 (y s ) = y s + s i=2 (-1) i-1 l j 1 ,...,j i ≥1,j 1 +...+j i =s y j 1 . . . y j i . ( 34 
) Example 3. π 1 (y 1 ) = y 1 , π 1 (y 2 ) = y 2 -1 2 y 2 1 , π 1 (y 3 ) = y 3 -1 2 (y 1 y 2 + y 2 y 1 ) + 1 3 y 3 1 .
As previously, the expressions (34) are equivalent to

y s = i≥1 1 i! s 1 +...+s i =s π 1 (y s 1 ) . . . π 1 (y s i ), y s ∈ Y . ( 35 
)
Example 4.

y 1 = π 1 (y 1 ), y 2 = π 1 (y 2 ) + 1 2! π 1 (y 1 ) 2 , y 3 = π 1 (y 3 ) + 1 2! (π 1 (y 1 )π 1 (y 2 ) + π 1 (y 2 )π 1 (y 1 )) + 1 3! π 1 (y 1 ) 3 .
Now let us consider the (endo-)morphism of algebras φ ∶ (Q⟨Y ⟩, •) → (Q⟨Y ⟩, •) verifying φ(y k ) = π 1 (y k ), it can be shown that it this an automorphism of Q⟨Y ⟩. Then [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], i) φ realizes an isomorphism from the bialgebra (Q⟨Y ⟩, •, ∆ ⊔⊔ , e) to the bialgebra (Q⟨Y ⟩, •, ∆ , e). ii) we have the following commutative diagram 

Q⟨Y ⟩ ∆ ⊔⊔ / / φ Q⟨Y ⟩ ⊗ Q⟨Y ⟩ φ⊗φ Q⟨Y ⟩ ∆ / / Q⟨Y ⟩ ⊗ Q⟨Y ⟩. iii) ∆ ○ φ = φ ⊗ φ ○ ∆ ⊔⊔ . iv) H ≅ U (Prim(H )) and H ∨ ≅ U (Prim(H )) ∨ . v)
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ Π ys = π 1 (y s ) for y s ∈ Y, Π l = [Π l 1 , Π l 2 ] for l ∈ LynY Y, st(l) = (l 1 , l 2 ), Π w = Π i 1 l 1 . . . Π i k l k for w=l i 1 1 ...l i k k , with l 1 ,...,l k ∈LynY, l 1 >...>l k . (36) 
Example 5.

Π y 1 = y 1 , Π y 2 = y 2 -1 2 y 2 1 , Π y 2 y 1 = y 2 y 1 -y 1 y 2 , Π y 3 y 1 y 2 = y 3 y 1 y 2 -1 2 y 3 y 3 1 -y 2 y 2 1 y 2 + 1 4 y 2 y 4 1 -y 1 y 3 y 2 + 1 2 y 1 y 3 y 2 1 + 1 2 y 2 1 y 2 2 -1 2 y 2 1 y 2 y 2 1 -y 2 y 3 y 1 + 1 2 y 2 2 y 2 1 + y 2 y 1 y 3 + 1 2 y 2 1 y 3 y 1 -1 2 y 3 1 y 3 + 1 4 y 4 1 y 2 .
2. and, by duality, the basis {Σ w } w∈Y * of (Q⟨Y ⟩, ), i.e.

∀u, v ∈ Y * , ⟨Π u Σ v ⟩ = δ u,v . (37) 
This linear basis can be computed recursively as follows 19 [START_REF] Bui | Hoang Ngoc Minh-Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Σ ys = y s , for y s ∈ Y, Σ l = (☆) 1 i! y s k 1 +...+s k i Σ l 1 ...ln , for l = y s 1 . . . y s k ∈ LynY, Σ w = Σ i 1 l 1 . . . Σ i k l k i 1 ! . . . i k ! , for w = l i 1 1 . . . l i k k , with l 1 > . . . > l k ∈ LynY. (38) 
In (☆), the sum is taken over all {k 1 , . . . , k i } ⊂ {1, . . . , k} and all l 1 ≥ . . . ≥ l n such that (y s 1 , . . . , y s k ) * ⇐ (y s k 1 , . . . , y s k i , l 1 , . . . , l n ), where * ⇐ denotes the transitive closure of the relation on standard sequences, denoted by ⇐ [START_REF] Bui | Hoang Ngoc Minh-Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF].

Example 6.

Σ y 1 = y 1 , Σ y 2 = y 2 , Σ y 2 y 1 = y 2 y 1 + 1 2 y 3 , Σ y 3 y 1 y 2 = y 3 y 2 y 1 + y 3 y 1 y 2 + y 2 3 + 1 2 y 4 y 2 + 1 3 y 6 + 1 2 y 5 y 1 .
We insist on the fact that, the families {Σ l } l∈LynY and {S l } l∈LynX are basically different in the sense of they make two systems of local coordinate and two lists of irreducible elements (like Groebner-Lyndon basis, see below Table 1. In fact we have in general π X (Σ l ) ≠ S π X l , i.e. almost l ∈ LynY and π Y (S l ) ≠ Σ π Y l i.e. almost l ∈ LynX. This does not occur with the Lyndon words themselves, which was provided in [START_REF] Hoang | Petitot-Lyndon words, polylogarithms and the Riemann ζ function[END_REF], because π Y (l) ∈ LynY for any l ∈ LynX.

Local coordinates

Following Wei-Norman's theorem [START_REF] Wei | On global representation of the solution of linear differential equations as product of exponentials[END_REF], we know that for a given (finite dimensional) Lie group 20 G, its Lie algebra g, and a basis B = (b i ) 1≤i≤n of g, there exists a neighbourhood W of 1 G (in G) and n local coordinate k-valued 21 

analytic functions W → k, (t i ) 1≤i≤n
such that, for all g ∈ W ,

g = → 1≤i≤n
e t i (g)b i = e t 1 (g)b 1 . . . e tn(g)bn .

The proof relies on the fact that, (t 1 , . . . , t n ) → e t 1 (g)b 1 . . . e tn(g)bn is a local diffeomorphism from k n to G at a neighbourhood of 0.

Example 7 (Wei-Norman in finite dimensions). In order to perform the decomposition, we will "go back to identity" by computing MT DU = I, where I stands for the identity matrix and T is upper unitriangular, D diagonal strictly positive and U unitary, then M = U -1 D -1 T -1 will be the Iwasawa [START_REF]Bourbaki-Integration[END_REF] decomposition of M.

Let M ∈ Gl + (2, R) (Gl + (2,
1. (orthogonalization) we perform block-computation on the columns of M to obtain an orthogonal matrix M → a 11 a 12 a 21 a 22

1 t 1 0 1 = MT = a (1) 11 a (1) 12 a 
(1) 21 a

(1)

22 = C (1) 1 C 
(1)

2 = M 1 .
the both of columns are orthogonal if t 1 = -a 11 a 12 +a 21 a 22 a 2 11 +a 2 21 .

(normalization) We

normalize M 1 , M 2 = C (1) 1 C (1) 2 ⎛ ⎝ 1 C (1) 1 0 0 1 C (1) 2 ⎞ ⎠ = M 1 D = M 1 e -log( C (1) 1 ) ⎛ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎠ -log( C (1) 2 ) ⎛ ⎜ ⎝ 0 0 0 1 ⎞ ⎟ ⎠ .

(unitarization)

As the columns of M 2 form an orthogonal basis and as det(M 2 ) > 0, one can write

M 2 = a (2) 11 a (2) 12 a 
(2)

21 a (2) 22 = cos(t 2 ) -sin(t 2 ) sin(t 2 ) cos(t 2 ) = e t 2 ⎛ ⎜ ⎝ 0 1 -1 0 ⎞ ⎟ ⎠ ,
and as M 2 is in a neighbourhood of I 2 , one has t 2 = arctan( a 21 a 11 ). )

0 1 -1 0 D -1 T -1 = e arctan( a 21 a 11 ) 0 1 -1 0 e log( C 1 ) 1 0 0 0 e log( C (1) 2 ) 0 0 0 1 e ⟨C 1 C 2 ⟩ C 1 2 0 1 0 0 .
One then gets a Wei-Norman decomposition of M with respect to the basis of the Lie algebra gl(2, R):

0 1 -1 0 , 1 0 0 0 , 0 0 0 1 , 0 1 0 0 .
Now, in infinite dimensions, i.e. here within the algebra of double series (whose support is Y * ⊗Y * ) endowed with the law ⊔⊔ ⊗•, we have Schützenberger's factorization(s) [START_REF]Reutenauer-Free Lie Algebras[END_REF] as a perfect analogue of Wei-Norman's theorem for the group of group-like series. For D ⊔⊔

D ⊔⊔ = ↳ l∈LynY exp(S l ⊗ P l ) ∈ H ∨ ⊔⊔ ⊗H ⊔⊔ ;
or with the law ⊗•, we also have the extension of Schützenberger's factorization for D is then [START_REF] Bui | Hoang Ngoc Minh-Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

D = ↳ l∈LynY exp(Σ l ⊗ Π l ) ∈ H ∨ ⊗H .
These can be used to provide a system of local coordinates on the Hausdorff group (i.e. group of group-like elements 22 ). Applying these factorizations to the multiple zeta functions ζ ⊔⊔ , ζ , or to Z ⊔⊔ and Z (which are all group-like), we have the representations 23Z ⊔⊔ = ↳ l∈LynX∖X e ζ(S l )P l , and

Z = ↳ l∈LynY ∖{y 1 } e ζ(Σ l )Π l .
It means that, all relations among polyzetas which can be seen here will be taken from relations among their local coordinates. Our method is due to identity [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF] to reduce relations between the two systems of local coordinates {ζ(S l )} l∈LynX and {ζ(Σ l )} l∈LynY .

Structure of polyzetas

Representations of polynomials on bases

The aim of this subsection is to provide a method to represent any polynomial of Q⟨Y ⟩ in terms of each base {P w } w∈Y * , {S w } w∈Y * , {Π w } w∈Y * or {Σ w } w∈Y * .

Recall that the bases {P w } w∈Y * and {Π w } w∈Y * are homogeneous and upper triangular, the bases {S w } w∈Y * and {Σ w } w∈Y * are homogeneous and lower triangular 24 . Without loss of generality we can assume that P ∈ Q⟨Y ⟩ is a homogeneous polynomial of weight n, we now represent P in terms of the basis {Σ w } w∈Y * by the following algorithm.

Algorithm 1

INPUT: A homogeneous polynomial P of weight n. OUTPUT: The representation of P in terms of the basis {Σ w } w∈Y * .

Step 1. We choose the leading term 25 of P , assumed λ 1 w 1 . Expressing the word w 1 as follows

w 1 = Σ w 1 + v<w 1 ,(v)=n α v v. (39) 
The polynomial P can now be rewritten in the form

P = λ w 1 Σ w 1 + v<w 1 ,(v)=n β v v. ( 40 
)
Step 2. We repeat Step 1 with P now understood as the polynomial ∑ v<w 1 ,(v)=n β v v, and so on until the last monomial which admits the smallest word of weight n, y n , and we really have y n = Σ yn . At last, by re-putting the coefficients, we will obtain the representation of the original in form that

P = v≤w 1 ,(v)=n λ v Σ v . ( 41 
)
Example 8. P ∶= 2y 1 y 2 -1 2y 3 .

Step 1. Since Σ y 1 y 2 = y 1 y 2 + y 2 y 1 + y 3 , we replace y 1 y 2 with Σ y 1 y 2 -y 2 y 1 -y 3 in P P = 2Σ y 1 y 2 -2y 2 y 1 -5 2y 3 .

24 w.r.t the words and the lexicographic ordering, for example, Σ w = w + ∑ v<w,(v)=(w) α v v. 25 This term includes the greatest word in the support of P and its coefficient.

Step 2. Since Σ y 2 y 1 = y 2 y 1 + 1 2y 3 , we replace y 2 y 1 with Σ y 2 y 1 -1 2y 3 in P P = 2Σ y 1 y 2 -2Σ y 2 y 1 -3 2y 3 .

Since y 3 = Σ y 3 , we thus get P = 2Σ y 1 y 2 -2Σ y 2 y 1 -3 2Σ y 3 .

Corollary 1. For any w ∈ Y * , we can represent

w = P w + u>w, u = w α 1 u P u = S w + u<w, u = w α 2 u S u , w = Π w + v>w,(v)=(w) β 1 v Π v = Σ w + v<w,(v)=(w) β 2 v Σ v .

Identifying the local coordinates

We now use the alphabet X = {x 0 , x 1 } ordered by x 0 < x 1 . Returning the formula [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF], with the bases {P w } w∈X * and {S w } w∈X * defined as ( 28) and ( 30), we will find relations among polyzetas by identifying on the bases as local coordinates. First, we expand B ′ in form of generating series of y 1 .

Lemma 1.

B ′ (y 1 ) = 1 + m≥2 B (m) y m 1 , with B (m) = ⌊m 2⌋ i=1 k 1 ,...,k i ≥2 k 1 +...+k i =m (-1) m-i ζ(k 1 ) . . . ζ(k i ) k 1 . . . k i ,
where ⌊m 2⌋ is the largest integer not greater than m 2.

PROOF -Expanding the exponential, one has successively

B ′ (y 1 ) = n≥0 1 n! k≥2 (-1) k-1 ζ(k) k y k 1 n = n≥0 1 n! k 1 ,...,kn≥2 (-1) k 1 +...+kn-n ζ(k 1 ) . . . ζ(k n ) k 1 . . . k n y k 1 +...+kn 1 = 1 + m≥2 ⎛ ⎜ ⎝ ⌊m 2⌋ n=1 1 n! k 1 ,...,kn≥2 k 1 +...+kn=m (-1) m-n ζ(k 1 ) . . . ζ(k n ) k 1 . . . k n ⎞ ⎟ ⎠ y m 1 = 1 + m≥2 B (m) y m 1 . ◻ Example 9. B (2) = - ζ(2) 2 , B (3) = ζ(3) 3 , B (4) = - ζ(4) 4 + ζ(2) 2 2 2 , B (5) = ζ(5) 5 -2 ζ(2) 2 ζ(3) 3 .

3.2.1.

Identifying with respect to the basis {Π w } w∈Y * Using the duality of the bases, we rewrite [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF] as follows

v∈Y * ζ (Σ v )Π v = B ′ (y 1 ) v∈Y * ζ ⊔⊔ (π X (Σ v ))Π v , (42) 
where π X denotes the inverse of π Y (restricted to Q ⊕ Q⟨X⟩x 1 ). Moreover, we see that B ′ (y 1 ) is a series of a single letter (like a single variable), y 1 , and

y k 1 Π v = Π k y 1 Π v = Π y k 1 v , ∀k ≥ 1, v ∈ Y * .
We can then identify the coefficients in (42) and obtain:

Proposition 1. i) For any v ∈ Y * y 1 Y * , one has 26 ζ(Σ v ) = ζ(π X Σ v ). ii) For any v = y k 1 w ∈ Y * , k ≥ 1, w ∈ Y * y 1 Y * , one has ζ ⊔⊔ (π X Σ v ) + k m=2 B (m) ζ ⊔⊔ (π X Σ y k-m 1 w ) = 0. PROOF -From Lemma 1, we see that ⟨B ′ (y 1 ) y 0 1 ⟩ = 1, ⟨B ′ (y 1 ) y 1 ⟩ = 0 and ∀m ≥ 2, ⟨B ′ (y 1 ) y m 1 ⟩ = B (m) .
Using the basis {Π w } w∈Y * as a coordinate system, we identify the coefficients of the two sides in (42) and obtain the following statements (to be proved). ◻ Example 10.

1. For v = y 2 , ζ(Σ y 2 ) = ζ(S x 0 x 1 ). 2. For v = y 2 y 3 , ζ(Σ y 2 y 3 ) = ζ(S x 0 x 1 x 2 0 x 1 )-2ζ(S x 2 0 x 1 x 0 x 1 )-2ζ(S x 3 0 x 2 1 )+ζ(S x 4 0 x 1 ). 3. For v = y 3 1 , -1 2 ζ(S x 0 x 2 1 ) + 1 6 ζ(S x 2 0 x 1 ) + B (3) = 0. 4. For v = y 2 1 y 2 , ζ(S x 0 x 3 1 ) -ζ(S x 2 0 x 2 1 ) + 1 2 ζ(S x 3 0 x 1 ) + B (2) = 0.
3.2.2. Identifying with respect to the basis {P w } w∈X * Let us denote by 27 {P ′ w } w∈X * x 1 the reductions of {P w } w∈X * x 1 on Q ⊕ Q⟨X⟩x 1 . By applying the mapping π X on the two sides of (42) and using the duality of the bases, we can rewrite the regularization as follows

B ′ (x 1 ) u∈X * x 1 ζ ⊔⊔ (S u )P ′ u = u∈X * x 1 ζ (π Y S u )P ′ u . (43) 
Similarly, remarking that B ′ (x 1 ) is a series of a single letter, x 1 ,

x k 1 P u = P k x 1 P u = P x k 1 u , ∀k ≥ 1, u ∈ X * . Proposition 2. i) For any u ∈ X * x 1 X * , ζ(S u ) = ζ(π Y S u ). ii) For any u ∈ x 1 X * x 2 1 X * , ζ (π Y S u ) = 0. iii) For any u = x k 1 w ∈ X * , k ≥ 2, w ∈ X * x 1 X * , B (k) ζ(S w ) = ζ (π Y S u ).
PROOF -Similarly to Proposition 1, admitting the basis {P w } w∈X * as a coordinate system, we identify the coefficients of the two sides in (43) and then obtain the statements. ◻ Example 11.

1. For u = x 0 x 1 , ζ(S x 0 x 1 ) = ζ(Σ y 2 ). 2. For u = x 0 x 1 x 2 0 x 1 , ζ(S x 0 x 1 x 2 0 x 1 ) = ζ(Σ y 2 y 3 )+2ζ(Σ y 3 x 2 )+6ζ(Σ y 4 x 1 )-5ζ(Σ y 5 ). 3. For u = x 1 x 0 x 1 , ζ(Σ y 2 y 1 ) -3 2 ζ(Σ y 3 ) = 0. 4. For u = x 2 1 x 0 x 1 , B (2) ζ(S x 0 x 1 ) = 2ζ(Σ y 4 ) -ζ(Σ y 2 ) 2 -ζ(Σ y 3 y 1 ).

Algorithms to represent the structure of polyzetas

From Proposition 1 and 2, we really have relations among polyzetas represented on the bases {S w } w∈X * and {Σ w } w∈Y * . In fact, thanks to the formulas [START_REF] Waldschmidt | Hopf Algebra and Transcendental numbers, Zetafunctions, Topology and Quantum Physics[END_REF] and (38), we can easily represent these relations on the pure transcendence bases {S l } l∈LynX or {Σ l } l∈LynY respectively. In the two following algorithms, one uses these relations and the other one (Algorithm 3) uses as well the structures of shuffle and stuffle products, we will eliminate these relations, in weight, to find the structure of polyzetas represented on the bases {S l } l∈LynX and {Σ l } l∈LynY . The following two algorithms will be proceeded by recurrence on the weight of the words. The same result obtained will be shown in the next subsection.

Algorithm 2

This algorithm uses Proposition 1 and Algorithm 1 to establish polynomial relations among polyzetas on the basis {S l } l∈LynX or uses Proposition 2 and Algorithm 1 to establish relations among polyzetas on the basis {Σ l } l∈LynY . We display here the second case.

INPUT: A positive integer n.

OUTPUT: The representations of polyzetas of weight n in terms of irreducible elements of polyzetas on the transcendence basis {Σ l } l∈LynY .

Step 1. We set the list, denoted by X n , of all words 28 of weight 29 n of X * x 1 .

Step 2. For each w ∈ X n , we set the polynomial P ∶= π Y (S w ) in Q⟨Y ⟩ and thanks to Algorithm iii) If w ∈ x 0 X * x 1 LynX, we rewrite w in the form of Lyndon factorization, w = l i 1 1 . . . l i k k . By taking ζ(S l j ), j = 1..k from the data of lower weights, we make the relation

1 i 1 ! . . . i k ! ζ(S l 1 ) i 1 . . . ζ(S l k ) i k = ζ(P)
Step 3. We reduce the above relations to representations of polyzetas in terms of irreducible elements.

The next lemma will give another way to find the relations among the family {ζ ⊔⊔ (S w )} w∈X * and the family {ζ (Σ w )} w∈Y * . Lemma 2. For any

l 1 , l 2 ∈ LynX X (resp. l 1 , l 2 ∈ LynY {y 1 }), one has ζ(S l 1 ⊔⊔ S l 2 ) = ζ(π Y (S l 1 ) π Y (S l 2 )) (resp. ζ(Σ l 1 Σ l 2 ) = ζ(π X (Σ l 1 ) ⊔⊔ π X (Σ l 2 ))). For any w ∈ x 0 X * x 1 or w ∈ x 1 x 0 X * x 1 (resp. w ∈ Y * y 2 1 Y * ), one has ζ ⊔⊔ (S w ) = ζ (π Y (S w )) (resp. ζ (Σ w ) = ζ ⊔⊔ (π X (Σ w ))).
PROOF -Remark that, for any w ∈ X * , S w = w + ∑ v<w α v v and if l ∈ LynX X then l ∈ x 0 X * x 1 . Relying on properties of polyzetas on words ζ(l [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] , we get the expected results. ◻ Example 12. For l 1 = x 0 x 1 , l 2 = x 2 0 x 2 1 (in LynX) and l 1 = y 2 , l 2 = y 3 y 1 (in LynY ):

1 ⊔⊔ l 2 ) = ζ(π Y (l 1 ) π Y (l 2 )) and ζ ⊔⊔ (x 1 ⊔⊔ l) = ζ (y 1 π Y (l))
ζ(S x 0 x 1 )ζ(S x 2 0 x 2 1 ) = ζ(Σ y 2 )ζ(Σ y 3 y 1 ) - 1 2 ζ(Σ y 2 )ζ(Σ y 4 ), ζ(Σ y 2 )ζ(Σ y 3 y 1 ) = ζ(S x 0 x 1 )ζ(S x 2 0 x 2 1 ) + 1 2 ζ(S x 0 x 1 )ζ(S x 3 0 x 1 ).
For w = x 1 x 2 0 x 1 (in x 1 x 0 X * x 1 ) and w = y 1 y 3 (in y 1 Y * ):

0 = 1 2 ζ(Σ y 2 ) 2 + ζ(Σ y 3 y 1 ) -2ζ(Σ y 4 ) and 0 = - 1 2 ζ(S x 0 x 1 ) 2 + ζ(S x 2 0 x 2 1 ) + ζ(S x 3 0 x 1 ).

Algorithm 3

This algorithm uses Lemma 2 and Algorithm 1 to establish polynomial relations among polyzetas on the basis {S l } l∈LynX or the basis {Σ l } l∈LynY . We display here the second case.

INPUT: A positive integer n.

OUTPUT: The representations of polyzetas of weight n in terms of irreducible elements of polyzetas on the transcendence basis {Σ l } l∈LynY .

Step 1. We set a list, denoted by X n , all words of weight n in x 0 X * x 1 or x 1 x 0 X * x 1 .

Step 2. We establish polynomial relations of weight n as follows. For each w ∈ X n , we make a polynomial P in Q⟨Y ⟩ by the way:

i) If w ∈ LynX then P ∶= π Y (S l 1 ) π Y (S l 2 ) -π Y (S l 1 ⊔⊔ S l 2 ), where (l 1 , l 2 ) is the standard factorization of w. ii) If w = x 1 w 1 then P ∶= π Y (S x 1 ) π Y (S w 1 ) -π Y (S x 1 ⊔⊔ S w 1 ). iii) If w = l i 1 l . . . l i k k , l 1 , . . . , l k ∈ LynX, l 1 > . . . > l k then P ∶= π Y (S l 1 ) i 1 . . . π Y (S l k ) i k -π Y (S l 1 ⊔⊔ . . . ⊔⊔ S l k ).
Thanks to Algorithm 1, we represent ζ(Σ P ) in terms of {ζ(Σ l )} l∈LynY (here, ζ(Σ l ) are taken from the data of lower weights). At last, we make the relation ζ(Σ P ) = 0.

Step 3. We reduce the above relations to representations of polyzetas in terms of irreducible elements.

These algorithms produce homogeneous polynomial relations among local coordinates {Σ l } l∈LynY (resp. {S l } l∈LynX ). Each identity is indexed by a Lyndon word and are not identities of the following forms (the tautologies)

ζ(Σ l ) = ζ(Σ l ) and ζ(S l ) = ζ(S l ). (44) 
Replacing "=" by " →" in these homogeneous polynomial relations, we obtain a noetherian rewriting system among {Σ l } l∈LynY (resp. {S l } l∈LynX ) in which irreducible terms are polyzetas yielding tautologies as in (44) and they are viewed as algebraic generators of the algebra of convergent polyzetas [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

Results

The following results were computed by our package in Maple [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF] thanks to Algorithm 2 (or Algorithm 3). 

Representations of polyzetas in terms of irreducible polyzetas on the basis

{Σ l } l∈LynY ∖{y 1 } Weight 3 ζ(Σ y 2 y 1 ) = 3 2 ζ(Σ y 3 ) (45) Weight 4 ζ(Σ y 4 ) = 2 5 ζ(Σ y 2 ) 2 (46) ζ(Σ y 3 y 1 ) = 3 10 ζ(Σ y 2 ) 2 (47) ζ(Σ y 2 y 2 1 ) = 2 3 ζ(Σ y 2 ) 2 (48) Weight 5 ζ(Σ y 3 y 2 ) = 3ζ(Σ y 3 )ζ(Σ y 2 ) -5ζ(Σ y 5 ) (49) ζ(Σ y 4 y 1 ) = -ζ(Σ y 3 )ζ(Σ y 2 ) + 5 2 ζ(Σ y 5 ) (50) ζ(Σ y 2 2 y 1 ) = 3 2 ζ(Σ y 3 )ζ(Σ y 2 ) - 25 12 ζ(Σ y 5 ) (51) ζ(Σ y 3 y 2 1 ) = 5 12 ζ(Σ y 5 ) (52) ζ(Σ y 2 y 3 1 ) = 1 4 ζ(Σ y 3 )ζ(Σ y 2 ) + 5 4 ζ(Σ y 5 ) (53) Weight 6 ζ(Σ y 6 ) = 8 35 ζ(Σ y 2 ) 3 (54) ζ(Σ y 4 y 2 ) = ζ(Σ y 3 ) 2 - 4 21 ζ(Σ y 2 ) 3 (55) ζ(Σ y 5 y 1 ) = 2 7 ζ(Σ y 2 ) 3 - 1 2 ζ(Σ y 3 ) 2 (56) ζ(Σ y 3 y 1 y 2 ) = - 17 30 ζ(Σ y 2 ) 3 + 9 4 ζ(Σ y 3 ) 2 (57) ζ(Σ y 3 y 2 y 1 ) = 3ζ(Σ y 3 ) 2 - 9 10 ζ(Σ y 2 ) 3 ( 

Conclusions of the results

Let denote Z n the Q-vector space generated by polyzetas of weight n and d n its dimension. From the above representations, we obtain their bases as follows:

• n = 2, d 2 = 1, Z 2 = span Q {ζ(Σ y 2 )} = span Q {ζ(S x 0 x 1 )} • n = 3, d 3 = 1, Z 3 = span Q {ζ(Σ y 3 )} = span Q {ζ(S x 2 0 x 1 )} • n = 4, d 4 = 1, Z 4 = span Q {ζ(Σ y 2 ) 2 } = span Q {ζ(S x 0 x 1 ) 2 }
Here, we get a perfect analogue of this geometrical picture for the Hausdorff groups (in shuffle and stuffle Hopf algebras) through Schützengerger's factorization, this does not depend on the regularization of shuffle and quasi-shuffle.

Moreover, through the bridge equation ( 6) which relates two elements on these groups and an identification of the local coordinates of the L.H.S. and R.H.S. of [START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF] which involve only convergent polyzetas as local coordinates, we get, up to weight 12,

• a confirmation of the Zagier's dimension conjecture,

• two families of irreducible polyzetas (i.e two algebraic bases for polyzetas), which are not due to the regularized double-shuffle relations (and we do not need any regularization). This implementation will be used, in our forthcoming up work, to determine the asymptotic expansions of harmonic sums via Euler-Maclaurin formula.

1

 1 we represent ζ(P) in terms of {ζ(Σ l )} l∈LynY . By taking the representations of ζ(Σ l )'s from the data of lower weights, we make representation in terms of irreducible elements for ζ(P) and proceed to establish a polynomial relation as follows: i) If w ∈ LynX then we store ζ(P) to the variable ζ(S w ), ii) If w = x 1 u, u ∈ x 0 X * x 1 then we make the relation ζ(P) = 0.

Weight 3 ζ(S x 0 x 2 1 ) = ζ(S x 2 0 x 1 ) 2 1x 1 )x 1 ) 3 1x 1 )x 0 x 1 ) 3 -

 3112113113 ) = -ζ(S x 2 0 x 1 )ζ(S x 0 x 1 ) + 2ζ(S x 4 0 + ζ(S x 2 0 x 1 )ζ(S x 0 x 1 ) ) = -ζ(S x 2 0 x 1 )ζ(S x 0 x 1 ) + 2ζ(S x 4 0 x 0 x 1 ) 3 -ζ(S x 2 0 x 1 ) 2 (79) ζ(S x 0 x 5 1 ) = 8 35 ζ(S x 0 x 1 ) 3(80)

  the dual bases {Π w } w∈Y * and {Σ w } w∈Y

* of respectively U (Prim(H )) and U (Prim(H )) ∨ can be obtained as images, by respectively φ and φ-1 , of respectively {P w } w∈Y * and {S w } w∈Y * . More precisely, 1. the PBW-Lyndon basis {Π w } w∈Y * for U (Prim(H )) constructed recursively as follows 18
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  R) denote the connected component of 1 in the Lie group Gl(2, R) (it is the group of matrices with positive determinant)

	M =	a 11 a 12 a 21 a 22

  Representations of polyzetas in terms of irreducible polyzetas on the basis {S l } l∈LynX∖X

					58)
	ζ(Σ y 4 y 2 1 ) = ζ(Σ y 2 2 y 2 1 ) = ζ(Σ y 3 y 3 1 ) = ζ(Σ y 2 y 4 1 ) =	3 10 11 63 1 21 17 50	ζ(Σ y 2 ) 3 -ζ(Σ y 2 ) 3 -ζ(Σ y 2 ) 3 ζ(Σ y 2 ) 3 +	3 4 1 4 3 ζ(Σ y 3 ) 2 ζ(Σ y 3 ) 2 16 ζ(Σ y 3 ) 2	(59) (60) (61) (62)
	3.4.2.				

The coefficients of Z γ represent the finite parts of the asymptotic expansions of {H w } w∈Y * , in the scale of comparison {N a log b (N )} a∈Z,b∈N[START_REF] Costermans | Hoang Ngoc Minh-Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF]. Here, γ denotes the Euler's constant.

Also called MRS factorization after Mélançon, Reutenauer and Schützenberger.

It can be extended to Q⟪X⟫ with the convention π Y (w) = 0 for each w ending by x 0 .

Not by specification γ to 0.

running on a computer Core(TM)i5-4210U CPU @ 1.70GHz, up to weight 12[START_REF] Bui | Hoang Ngoc Minh-Computation tool for algebra of q-deformed quasi-shuffle products and representations of structure of MZVs[END_REF].

Since, in (4), only convergent polyzetas arise then we do not need any regularization process.

They form a Gröbner basis of the ideal of polynomial relations among the convergent polyzetas and the ranking of this basis is based mainly on the order of Lyndon words[START_REF] Hoang | Bigotte-Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Hoang | Petitot-Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Wardi | Mémoire de DEA[END_REF]. For that, this basis is also called Gröbner-Lyndon basis.

They are group-like :∆ ⊔⊔(Z ⊔⊔ ) = Z ⊔⊔ ⊗ Z ⊔⊔ , ∆ (Z ) = Z ⊗ Z , ∆ γ (Z γ ) = Z γ ⊗ Z γ .

Of course, we have (set theoretically) D ⊔⊔ = D , but their structural treatments will be different.

A couple of Lyndon words (l 1 , l 2 ) is called the standard factorization of l if l = l 1 l 2 and l 2 is the smallest nontrivial proper right factor of l (for the lexicographic order).

The dual family, i.e. the set of coordinates forming a basis in the algebraic dual which is here the space of noncommutative series, but as the enveloping algebra under consideration is graded in finite dimensions (by the multidegree), these series are in fact multi-homogeneous polynomials.

In other words, the family {Π w } w∈Y * is the images of the family {P w } w∈Y * by the isomorphism of bialgebras φ[START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

In other words, the family {Σ w } w∈Y * is the image of the family {S w } w∈Y * by the (linear) automorphism φ-1[START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

Real (with k = R) or complex (with k = C).

See footnote above.

These series are, in fact, characters for ⊔⊔ (resp. )

The dual bases {P l } l∈LynX and {S l } l∈LynX are computed by[START_REF] Milnor | Moore-On the structure of Hopf algebras[END_REF],[START_REF] Waldschmidt | Hopf Algebra and Transcendental numbers, Zetafunctions, Topology and Quantum Physics[END_REF].

As x 0 X * x 1 or Y * y 1 Y * are disjoint, the unique notation ζ(P ) is used here to replace ζ ⊔⊔ (P ) or ζ (P ) if the polynomial P only contains convergent words.

w = π X (π Y P w ), ∀w ∈ X * . Note that π Y P w = π Y w = 0, ∀w ∈ X * x 0 .

Note that, there are 2 n-1 words of weight n.

In the alphabet X, the weight of a word is understood as the length of that word.

• n = 5, d 5 = 2,

We can see that, these dimensions satisfy the formula 

1 ) Table 1.

It means that they are the two different families of irreducible polyzetas.

Conclusion

In the classical theory of (finite-dimensional) Lie groups, every ordered basis of the Lie algebra provides a system of local coordinates of a suitable neighbourhood of the unity (of the group) via an ordered product of one-parameter groups corresponding to the (ordered) basis.