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Abstract We consider isotropic scalar diffusion boundary value problems
whose diffusion coefficients are piecewise constant with respect to a partition of
space into Lipschitz subdomains. We allow so-called material junctions where
three or more subdomains may abut. We derive a boundary integral equation
of the second kind posed on the skeleton of the subdomain partition that in-
volves, as unknown, only one trace function at each point of each interface.
We prove the well-posedness of the corresponding boundary integral equations.
We also report numerical tests for Galerkin boundary element discretisations,
in which the new approach proves to be highly competitive compared to the
well-established first kind direct single-trace boundary integral formulation. In
particular, GMRES seems to enjoy fast convergence independent of the mesh
resolution for the discrete second kind BIE.
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1 Introduction

We consider the second-order diffusion problem
−div(µ(x)∇u) = 0 in R3 ,

lim sup
|x|→∞

|x| |utot(x)− u∞(x)| < +∞ , (1)

for a given excitation field u∞, harmonic on all of R3. We focus on piecewise
constant real-valued diffusion coefficient functions µ ∈ L∞(R3). To describe
them more precisely, we introduce a partition Rd = ∪nj=0Ωj , where each sub-
domain Ωj , 1 ≤ j ≤ n, is a bounded Lipschitz domain. Then we assume that µ
is piecewise constant with respect to this partition, that is, for given numbers
µj > 0,

µ |Ωj = µj for all j ∈ {0, . . . , n} . (2)

Existence and uniqueness of solutions of (1) under suitable decay conditions
are well established [30, Chapter 8]. Problems like (1) arise, for instance, in
electrostatic models of dielectric bodies.

Boundary element methods based on reformulations of boundary value
problems as boundary integral equations (BIE) are a popular class of com-
putational techniques for problems like (1). A wealth of different BIE formu-
lations are known for pure Dirichlet, Neumann, or mixed second-order scalar
boundary value problems, and also transmission problems, that is, the case
n = 1 of (1), see [43, Chapter 3] or [22, Chapter 8]. A fundamental distinction
is made between first kind and second kind BIEs. Their properties and that
of related Galerkin boundary element methods are fairly well understood [43,
Chapter 4], also for electromagnetic wave propagation [4] and elasticity [30,
Chapter 10].

For the case n > 1 of (1), the genuine multi-subdomain case, it is mainly
first kind BIEs that have been proposed and investigated, see the seminal
work [39] (based on [17]) and surveys in [10,9, Section 3 each]. Counterparts
for time-harmonic electromagentic scattering, based on the Rumsey principle
[42] have been known as PMCHWT BIEs for a long time [5,32,24] and their
analysis has been accomplished in [3]. Polynomial Galerkin boundary element
methods built on these formulations have to deal with ill-conditioned linear
systems on fine meshes [43, Section 4.5] and, as a consequence, with slow con-
vergence of iterative solvers. Preconditioning techniques drawing on ideas from
domain decomposition like the Boundary Element Tearing and Interconnect-
ing method (BETI) [35,34,27,29], and Multi-Trace Formulations (MTF) [38,
37,8,9,7,25,10] are a remedy, but they entail rather complex algorithms.

Ill-conditioned Galerkin matrices are not an issue with second kind BIEs.
In simple settings, n = 1 for (1), and in the case of smooth geometries, the cor-
responding integral operators typically take the form of compact perturbations
of the identity [22, Chapter 3] and, in conjunction with usual discretisation
procedures (Galerkin, Nyström or collocation), yield well-conditioned matri-
ces.
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Only recently the authors have proposed suitable integral equations of the
second kind for genuine multi-subdomain problems. Initially, the focus was on
the Helmholtz equation −∆u − κ(x)2u = f in Rd, d = 2, 3 (with outgoing
radiation condition), where f is a source term, and the effective wave number
κ(x) is a constant κj > 0 in each Ωj . Note that here the variable coefficient
does not enter the principal part. For such wave propagation problems a so-
called Single-Trace Formulation of the second kind (2nd-kind STF) has been
proposed independently in [21] and [6,12]. A first extension of this approach
was proposed in [11], where the authors considered the case of a propagation
medium with impenetrable parts (homogeneous Dirichlet boundary condition
imposed on one of the Ωj ’s). In [13] the idea was successfully applied to multi-
subdomain transmission problems for the time-harmonic Maxwell equations
curl(curl E)−κ(x)2E = 0. In this case the zero-order term in the differential
operator does not represent a compact perturbation and new arguments are
needed to derive a 2nd-kind STF. All details can be found in the PhD thesis
[45].

Exploring 2nd-kind STF for Maxwell’s equations taught us how to deal
with variable coefficients in the principal part of the partial differential equa-
tions. This is exactly the situation we face with (1) and the present contribu-
tion elaborates the corresponding extension of the 2nd-kind STF. We arrive
at integral equations reminiscent of so-called direct single integral equations as
presented in [28].

The outline of this article is as follows. In Section 2 we describe precisely
the geometry and the boundary value problem under consideration in the re-
mainder of this article. In Section 3 we review basic definitions and results
related to Sobolev spaces, trace operators, and the variational theory of the
Laplace operator in free space. In Section 4 we introduce a functional frame-
work well adapted to dealing with trace functions in a multi-subdomain context
and, in the following section, we briefly review classical results on potential
theory. In Section 6 we derive the new formulation for problems of the form
(1), and we establish its well-posedness. This formulation then admits a varia-
tional formulation where trial functions are sought in single-trace spaces, and
test functions are chosen in some complementary subspace. In Section 7 we
rewrite this formulation so as to simplify the functional framework. With this
reformulation, both trial and test functions are chosen in the same variational
space consisting in trace functions defined on a cartesian product of interfaces.
In this functional framework, each trace function belongs to a Sobolev space
with (non trivial) fractional exponent. In Section 8, we show that the same
formulation can still be considered in an even simpler framework based on
square integrable traces. The final section presents 3D numerical experiments
for the Galerkin boundary element discretisation of our new integral equations.
The results highlight the competitiveness of our formulation compared to the
more classical first kind approach. In particular, we always observe excellent
conditioning of the Galerkin matrices generated by our new method.
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Remark 1 In spite of slight modifications due to the peculiarity of the Green’s
function of the Laplacian in two dimensions, our algorithms and the analysis
can be easily adapted to problems set in R2. Nevertheless, we focus on the 3D
setting for the sake of clarity.

2 Setting of the problem

Recall the partition of free space R3 := ∪nj=0Ωj where the Ωj ’s are Lipschitz
domains. We assume that each Ωj is bounded except Ω0. In the sequel we shall
refer to the boundary of each subdomain by Γj := ∂Ωj , and also set Γj,k :=
Γj∩Γk = ∂Ωj∩∂Ωk for reference to interfaces. The union of all interfaces, the
skeleton, will be denoted by Σ := ∪nj=0 Γj = ∪0≤j<k≤n Γj,k. We are interested
in solutions of (1), which should be understood in the weak sense, i.e., utot
belongs to the Sobolev space1 H1

loc(R3) and satisfies
´
R3 µ∇utot∇vdx = 0 for

all v ∈ H1
comp(R3). Using the change of unknown u = utot − u∞, Problem (1)

is equivalent to the transmission problem


u ∈ H1

loc(R3) with

∆u = 0 in Ωj , ∀j = 0 . . . n ,

lim sup|x|→∞ |x| |u(x)| < +∞ ,

(3a)

{
µj∂nju|Γj + µk∂nku|Γk = −(µjgj + µkgk) ,

u|Γj − u|Γk = 0 on Γj ∩ Γk, ∀j, k = 0, . . . , n ,
(3b)

where u|Γj (resp. ∂nju|Γj := nj ·∇u|Γj ) designates the traces of u on Γj (resp.
the normal flux of ∇u at Γj) taken from the interior of Ωj , the vector field
nj is the normal to Γj directed toward the exterior of Ωj , and the right hand
side in (3b) is given by

gj := ∂nju∞|Γj j = 0 . . . n. (4)

3 Elementary function spaces

To discuss the regularity properties of the solution to Problem (3), we need
to introduce further notation regarding function spaces. We shall consider
functions defined on volumic Lipschitz subsets ω ⊂ R3, but also functions
defined on the boundaries of such domains i.e. on Lipschitz manifolds. For
these definitions and in terms of notations, we follow [30, Chap.3] as well as
[1,43] that can be consulted for more details.

1 Throughout we use standard notations for Sobolev spaces as found, for instance, in [30].
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3.1 Volumic function spaces

Beside the usual (integer and fractional) Sobolev spaces Hs(ω), s ∈ R, we write
Hs(div, ω) := {v ∈ Hs(ω)|div(v) ∈ Hs(ω)} with ‖v‖2Hs(div,ω) := ‖v‖2Hs(ω) +

‖div(v)‖2Hs(ω) (in the sequel H(div, ω) = Hs(div, ω) with s = 0), and use

the space H1+s(∆,ω) := {v ∈ Hs(ω)|∇v ∈ Hs(div, ω)} equipped with the
corresponding natural norm

‖v‖2H1+s(∆,ω) = ‖v‖2H1+s(ω) + ‖∆v‖2Hs(ω).

Recall that According to Theorem 3.30 and Theorem 3.33 of [30], for s ∈
(−1/2,+1/2), the space H−s(ω) is the topological dual to H+s(ω). With 〈 , 〉
we denote the duality pairing between Hs(ω) and H−s(ω).

3.2 Trace spaces

Recall [30, Lemma 3.35] that the Dirichlet trace ϕ 7→ ϕ|∂ω induces a continuous
and surjective map sending H1+s(ω) onto H1/2+s(∂ω) for s ∈ (−1/2, 1/2). We
remind (see e.g. [43, Thm 2.7.7]) that the normal flux trace p 7→ n·p|∂ω can be
extended by continuity to an operator mapping Hloc(div, ω) onto H−1/2(∂ω).
We shall actually need a sharper version of this continuity result.

Lemma 1
Consider any Lipschitz open set ω ⊂ R3 with bounded boundary, denoting n the
normal vector field to ∂ω. For any s ∈ (−1/2,+1/2) the normal flux operator
p 7→ n·p|∂ω extends as a linear operator mapping continuously and surjectively
Hs

loc(div, ω) onto Hs−1/2(∂ω), and it is characterised by the Green’s formula

ˆ
ω

p·∇v+v div(p) dx = 〈v|∂ω,n·p|∂ω〉 ∀p ∈ Hs
loc(div, ω), ∀v ∈ H1−s

comp(ω).

Proof:
Let B ⊂ R3 refer to a ball with radius sufficiently large to garantee that

∂ω ⊂ B. Define O := B ∩ ω so that O is bounded and ∂ω ⊂ ∂O. Fix s ∈
(−1/2,+1/2), and recall that there exists a continuous lifting operator R :
H1/2−s(∂ω) → H1−s(ω) such that R(v)|∂ω = v for all v ∈ H1/2−s(∂ω), see
for example [16, Lemma 4.2]. Using a cut-off function if necessary, one can
consider in addition that supp{R(v)} ⊂ O for all v ∈ H1/2−s(∂ω). Next, for
any p ∈ Hs

loc(div, ω) define the functional ϕp by

ϕp(v) :=

ˆ
ω

p · ∇R(v) + R(v) div(p) dx ∀v ∈ H1/2−s(∂ω).

Due to the regularity properties of p, and the continuity of R, the functional
ϕp continuously maps H1/2−s(∂ω) into C i.e. ϕp ∈ Hs−1/2(∂ω), and it depends
continuously on p in the norm of Hs(div,O). Moreover it does not depend on
the precise choice of R as long as R(v)|∂ω = v, which is a direct consequence of
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Green’s formula. Hence we set, as a definition, ”n ·p|∂ω”:= ϕp, which achieves
the desired extension, so that Green’s formula is satisfied by construction.

There only remains to prove the surjectivity of this normal flux operator.
Pick an arbitrary q ∈ Hs−1/2(∂ω). According to Section 16 of [1], there exists
a unique u ∈ H1+s(ω) solution to −∆u + u = 0 in ω and ∂nu|∂ω = q. There
only remains to take p = ∇u ∈ Hs(div, ω), so that n · p|∂ω = q. �

As an application of the preceding remarks, for each s ∈ (−1/2,+1/2), ev-
ery subdomainΩj supports continuous boundary trace operators γjd : H1+s

loc (Ωj)→
H1/2+s(∂Ωj) and γjn : H1+s

loc (∆,Ωj) → H−1/2+s(∂Ωj) (so-called Dirichlet and
Neumann traces) uniquely defined by

γjd(ϕ) := ϕ|∂Ωj and γjn(ϕ) := nj · ∇ϕ|∂Ωj ∀ϕ ∈ C∞(R3).

In the definition above, nj is the unit vector field normal to ∂Ωj pointing

toward the exterior of Ωj . Define γjd,c, γ
j
n,c in the same manner as γjd, γ

j
n with

traces taken from the exterior of Ωj . We shall also make use of mean values
and jumps to these trace operators, defined as

{γj∗(u)} := 1
2

(
γj∗(u) + γj∗,c(u)

)
and [γj∗(u)] := γj∗(u)− γj∗,c(u) for ∗ = d,n.

3.3 Regularity of solutions of diffusion problems

In this paragraph, we would like to comment on the regularity of solutions
to Problem (1) and (3). For this purpose we have to describe in more detail
its natural variational setting. Define W1(R3) as the completion of C∞comp(R3)
with respect to the following norm

‖v‖2W1(R3) :=

ˆ
R3

|∇v|2 +
|v(x)|2
1 + |x|2 dx.

We shall also refer to the topological dual to W1(R3) that we denote W−1(R3) :=
W1(R3)∗, and write 〈 , 〉 for the duality pairing between W1(R3) and W−1(R3).
Given some f ∈W−1(R3) we will consider, for a short moment the variational
problem:

Find u ∈W1(R3) such thatˆ
R3

µ∇u∇vdx = 〈f, v〉 ∀v ∈W1(R3).
(5)

It is a well known consequence of Hardy’s inequality [23, Thm. 330] or [36], that
this problem admits a unique solution. A natural question concerns the local
regularity of its solution u in the case where f admits itself extra regularity,
say f ∈ H−1+scomp (R3) with s > 0, in spite of the coefficient µ admitting jumps
(in particular µ is not Lipschitz). This may depend on the geometry of the
partition, as was discussed in detail in [31,33,40]. For a general geometric
configuration, an answer to this question was provided in [2, Thm.3.1]. Below
is the statement of this result for the present context.



Multi-Subdomain Second Kind Integral Equation 7

Theorem 1
There exists s? ∈ [0, 1/2) that only depends on the partition R3 = ∪nj=0Ωj such

that for any s ∈ [s?, 1/2], if f ∈ H
−1/2−s
comp (R3), then the solution u ∈ H1

loc(R3) to

Problem (5) actually belongs to H
3/2−s
loc (R3). Morever the dependence is contin-

uous: for any bounded set ω ⊂ R3, there exists a constant cω > 0 independent
of u, f such that ‖u‖H3/2−s(ω) ≤ cω‖f‖H−1/2−s(R3).

Here of course, we have reformulated this result so that it fits our notations,
and did not state it in full generality. Let us point that, as underlined in [31,40],
the smallest possible s? in the previous theorem may be strictly greater than
0 for certain geometrical configurations. As a consequence of the continuity
properties of the Neumann trace operator of Lemma 1, we deduce from this
theorem the following result.

Corollary 1
Assume that s? ∈ [0, 1/2) is as in Theorem 1, and let s ∈ [s?, 1/2]. Then for
any data gj ∈ H−s(Γj), j = 0 . . . n, the unique u ∈W1(R3) satisfying

ˆ
R3

µ∇u∇vdx =

n∑
j=0

µj

ˆ
Γj

gjvdσ ∀v ∈W1(R3) (6)

actually satisfies u ∈ H
3/2−s
loc (R3) with continuous dependency: for any bounded

Lipschitz domain ω ⊂ R3, there exists a constant Cω > 0 independent of the
gj’s and such that ‖u‖H3/2−s(ω) ≤ Cω

∑n
j=0 ‖gj‖H−s(Γj).

With the choice (4), Problem (6) is actually a variational formulation for
(3). Since, in addition, u∞ ∈ C∞(R3) due to local elliptic regularity, Corol-
lary 1 is directly applicable to the problem under study here.

4 Multi-subdomain trace spaces

We aim for boundary integral equations set in natural trace spaces. The most
fundamental trace space we can introduce is the Dirichlet/Neumann multi-
trace space [8, Sect. 2.1], given by the following Cartesian product:

Hσ(Σ) := Hσ(Γ0)× · · · ×Hσ(Γn) for |σ| ≤ 1/2 ,

‖u‖Hσ(Σ) :=
(
‖u0‖2Hσ(Γ0)

+ · · ·+ ‖un‖2Hσ(Γn)
) 1

2 ,

for u = (u0, . . . , un) ∈ Hσ(Σ). Let us write 〈 , 〉Γj for the duality pairing
between Hσ(Γj) and H−σ(Γj). The spaces H+σ(Σ) and H−σ(Σ) are dual to
each other with respect to the bilinear pairing

〈〈p, v〉〉 :=

n∑
j=0

〈pj , uj〉Γj , p = (pj)
n
j=0 ∈ H−σ(Σ), v = (vj)

n
j=0 ∈ H+σ(Σ) .

(7)
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For p ∈ H−σ(Σ) and v ∈ H+σ(Σ), we also adopt the convention 〈〈v, p〉〉 :=
〈〈p, v〉〉, which should not cause any further confusion. The bilinear form intro-
duced above satisfies

inf
p∈H−σ(Σ)

sup
v∈H+σ(Σ)

| 〈〈p, v〉〉 |
‖p‖H−σ(Σ)‖v‖H+σ(Σ)

= 1. (8)

Single trace spaces. Next, as in [8, Sect. 2.2], [9, Sect. 3.1], we introduce the
so-called single-trace space that consists of collections of traces that comply
with transmission conditions. We first set, for s ∈ (0, 1)

Xsd(Σ) := {v = (vj)
n
j=0 ∈ Hs(Σ) |

∃v ∈ H
1/2+s
loc (R3) , vj = γjd(v),∀j = 0 . . . n }.

(9)

It can be rather straightforwardly checked that Xsd(Σ) is a closed subspace of

Hs(Σ). For 0 < s < 1 and any v ∈ L2
loc(R3) such that v|Ωj ∈ H

s+1/2
loc (Ωj), we

have v ∈ H
s+1/2
loc (R3) if and only if the tuple of traces v = (γjd(v))nj=0 belongs

to Xsd(Σ), see e.g. [1, §3.5]. We define Neumann counterparts of these spaces
by setting, for s ∈ (0, 1) ,

X−sn (Σ) := {p = (pj)
n
j=0 ∈ H−s(Σ) |

∃p ∈ H
1/2−s
loc (div,R3) , pj = nj · p|Γj ,∀j = 0 . . . n }.

(10)

Once again, since it is characterised by continuous constraints, this space is a
closed subset of H−s(Σ). The following lemma was proved in [6, Prop.2.1] in
the case s = 1/2. This proof can be readily adapted to the case of arbitrary
s ∈ (0, 1) using the Green’s formula of Lemma 1 above.

Lemma 2
For any s ∈ (0, 1), and u ∈ H+s(Σ), p ∈ H−s(Σ) we have:

u ∈ X+s
d (Σ) ⇐⇒ 〈〈u, q〉〉 = 0 ∀q ∈ X−sn (Σ),

p ∈ X−sn (Σ) ⇐⇒ 〈〈v, p〉〉 = 0 ∀v ∈ X+s
d (Σ).

One can provide an alternative, more algebraic characterisation of these spaces.
Routine calculus in the sense of distributions using restrictions to interfaces
shows that, for 0 < s < 1, a tuple u = (uj)

n
j=0 ∈ Hs(Σ) satisfies

u ∈ X+s
d (Σ) ⇐⇒ uj = uk on Γj ∩ Γk.

Similarly, for 0 < s < 1, a tuple q = (qj)
n
j=0 ∈ H−s(Σ) actually belongs to

X−sn (Σ) if we have qj = −qk on Γj ∩ Γk.
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5 Potential theory

In this paragraph, we shall remind the reader of well established results con-
cerning the integral representation of solutions to homogeneous Helmholtz
equation in Lipschitz domains. A detailed proof of the statements contained
in the present paragraph can be found for example in [43, Chap.3]. Let

G (x) :=
1

4π|x|

refer to the Green’s kernel associated to the Laplace operator. For each Ωj
and for any v ∈ Hs+1/2(Γj), q ∈ Hs−1/2(Γj), |s| ≤ 1/2 and any x ∈ Rd \ Γj ,
define

SLj(q)(x) :=

ˆ
Γj

q(y) G (x− y)dσ(y)

DLj(v)(x) :=

ˆ
Γj

v(y) nj(y) · (∇Gκ)(x− y)dσ(y) .
(11)

These operators are called single and double layer potentials. According to [16,
Thm.1], The operator SLj (resp. DLj) maps continuously Hs−1/2(Γj) (resp.
Hs+1/2(Γj)) into H1+s

loc (∆,Ωj) × H1+s
loc (∆,Rd \ Ωj) for |s| < 1/2. As a conse-

quence the following continuity properties hold.

Proposition 1
For any j, k = 0 . . . n, and any s ∈ (−1/2,+1/2), the following are linear
continuous maps:

γkd ·DLj : H+1/2+s(Γj)→ H+1/2+s(Γk)
γkn ·DLj : H+1/2+s(Γj)→ H−1/2+s(Γk)
γkd · SLj : H−1/2+s(Γj)→ H+1/2+s(Γk)
γkn · SLj : H−1/2+s(Γj)→ H−1/2+s(Γk)

These potential operators can be used to write a representation formula for
solutions to homogeneous Laplace equations, see [43, Thm 3.1.6].

Proposition 2
For any u ∈ H1+s

loc (∆,Ωj), |s| < 1/2, such that ∆u = 0 (and lim sup|x|→∞ |xu(x)| <
+∞ in the case where j = 0), we have the representation formula

SLj(γ
j
n(u))(x) + DLj(γ

j
d(u))(x) = u(x) 1Ωj (x) (12)

In this statement 1Ωj (x) = 1 if x ∈ Ωj , and 1Ωj (x) = 0 otherwise. The
potential operators SLj ,DLj also satisfy remarkable identities, known as jump
formulas, describing their behaviour as x crosses Γj = ∂Ωj ,

[γjd] ·DLj(v) = v [γjn] ·DLj(v) = 0 ∀v ∈ Hs+ 1
2 (Γj),

[γjd] · SLj(q) = 0 [γjn] · SLj(q) = q ∀q ∈ Hs− 1
2 (Γj),

(13)
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with |s| ≤ 1/2. We will also need a remarkable property that arises when
summing potential operators associated to all subdomains. This next result
was proved in [6] for the case s = 1/2. Adapting this proof to the case s ∈ (0, 1)
does not raise any remarkable difficulty.

Proposition 3
For any s ∈ (0, 1), any (pj)

n
j=0 ∈ X−sn (Σ) and any (vj)

n
j=0 ∈ X+s

d (Σ), and for

all x ∈ R3 \Σ we have

n∑
j=0

SLj(pj)(x) = 0 and

n∑
j=0

DLj(vj)(x) = 0.

6 Integral equation of the second kind

In this section we show how two derive a boundary integral equation of the
second kind for Problem (1). The unknowns will be related to the Neumann
traces of the solution on the skeletonΣ. As a consequence, we start our analysis
from the variational formulation (6) where the right hand side satisfies

gj ∈ H−s(Γj) ∀s ∈ [s?, 1/2]

where s? ∈ [0, 1/2) is as in Theorem 1. For the solution u ∈ W1(R3) ∩
H

3/2−s
loc (R3) of (3), apply the representation formulas (12) in each subdomain

Ωj , and sum for j = 0 . . . n. This yields

u(x) =

n∑
j=0

SLj(γ
j
n(u))(x) +

n∑
j=0

DLj(γ
j
d(u))(x) , x ∈ R3 \Σ. (14)

Observe that, if u is solution to (1), it satisfies the transmission conditions
(3b) implying that (γjd(u))nj=0 ∈ X1−s

d (Σ). Hence, as a direct consequence of

Proposition 3 the second term in (14) has to vanish. Since (γjn(u∞))nj=0 ∈
X−sn (Σ) as u∞ ∈ H2

loc(R3), applying Proposition 3 and taking the Neumann
trace of (14) on each subdomain Ωk, k = 0, . . . , n, we obtain

γkn (u+ u∞)−
n∑
j=0

γkn · SLj(γ
j
n(u+ u∞)) = gk with gk := γkn (u∞). (15)

Put this system in a matrix form, and consider the normal flux trace p =
(µjγ

j
n(u + u∞))nj=0 as unkown. Taking account of the second transmission

condition in (3b), this unkown tuple of traces must be sought in X−sn (Σ).
Setting gn := (gk)nk=0 ∈ H−s(Σ), s ∈ [s?, 1/2], these equations take the form{

Find p ∈ X−sn (Σ) such that〈〈
(Id−Mn) · I1/µ(p), v

〉〉
= 〈〈gn, v〉〉 ∀v ∈ H+s(Σ)

(16)
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where s ∈ [s?, 1/2], and

〈〈Mn(p), v〉〉 :=

n∑
j=0

n∑
k=0

〈 γkn · SLj(pj), vk 〉Γk ,

〈〈
I1/µ(p), v

〉〉
:=

n∑
j=0

µ−1j 〈 pj , vj 〉Γj .
(17)

As a direct application of Proposition 1, we see that the operators (17) induce
linear operators continuously mapping H−s(Σ) into H−s(Σ) for any s ∈ (0, 1).

6.1 Well-posedness

In this section, we determine the kernel and the range of the operator (Id −
Mn) · I1/µ. First of all, we have the following non-trivial result that describes
the ”jump” of Mn(p) across interfaces of Σ.

Proposition 4
For any s ∈ (0, 1), we have 〈〈(Id−Mn)p, v〉〉 = 0 ∀p ∈ H−s(Σ),∀v ∈ X+s

d (Σ).

Proof:

Consider any s ∈ (0, 1) that will be fixed until the end of the proof, and
pick an arbitrary p = (p0, . . . , pn) ∈ H−s(Σ). For each j = 0 . . . n, define
φj ∈ L2

loc(R3 \ Ωj) by φj(x) := ∇SLj(pj)(x) for x ∈ R3 \ Ωj . Actually

div(φj) = 0 in R3 \ Ωj so φj ∈ H
1/2−s
loc (div,R3 \ Ωj) according to Section 5,

see also [16, Thm.1]. Next let ψ refer to an element of H1(Ωj) satisfying

∆ψ = 0 in Ωj , γjn(ψ) = nj · φ|Γj = γjn,c · SLj(pj) on Γj .

According to [44, Thm.4], we have ψ ∈ H3/2−s(∆,Ωj), since γjn,c · SLj(pj) =

−pj + γjn · SLj(pj) ∈ H−s(Γj) according to Proposition 1 and (13) above. Now
let us extend φj to the interior of Ωj by setting φj |Ωj := ∇ψ. This garantees

that φj ∈ H
1/2−s
loc (div,R3) due to the continuity of nj · φj across Γj . Since

nj · φj |Γj = γjn,c · SLj(pj), by Definition (9) we have

qj := (qkj )nk=0 ∈ X−sn (Σ) where

{
qkj = γkn · SLj(pj) for j 6= k,

qjj = γjn,c · SLj(pj).

In particular we have γkn · SLj(pj) = qkj + δkj [γjn] · SLj(pj) = qkj + δkj pj for all

j, k. Here δkj refers to Kronecker’s symbol: δkj = 0 if j 6= k, δjj = 1. Now take

an arbitrary v = (vj)
n
j=0 ∈ Xsd(Σ). Replace γkn ·SLj(pj) by qkj in the expression
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of Mn given by (17). Since [γjn] · SLj(pj) = pj , applying Definition (10) leads
to the conclusion of the proof

〈〈Mn(p), v〉〉 =
∑n
j=0

∑n
k=0 〈 γkn · SLj(pj), vk 〉Γk

=
∑n
j=0 〈〈qj , v〉〉+ 〈 [γjn] · SLj(pj), vj 〉Γj

=
∑n
j=0〈pj , vj〉Γj = 〈〈p, v〉〉 .

�
Combining the previous result with Proposition 3, we see that Mn(Id−Mn) =
0, i.e. this operator is a projector. In addition we clearly have X−sn (Σ) ⊂
ker(Mn) according to Proposition 3. Reciprocally, if p ∈ H−s(Σ) satisfies
Mn(p) = 0, then we have p = (Id −Mn)p ∈ X−sn (Σ) by Lemma 2. To sum-
marise, we have obtained the following result.

Corollary 2
We have (Mn)2 = Mn. In addition, for any p ∈ H−s(Σ), s ∈ (0, 1), we have
Mn(p) = 0, if and only if p ∈ X−sn (Σ).

We assumed that the right hand side gn in (16) belongs to X−sn (Σ) for all
s ∈ [s?, 1/2]. A consequence of Proposition 4 is thus that Equation (16) yields
a trivial identity whenever v is chosen in X+s

d (Σ). This is a motivation for
introducing a closed subspace Ys(Σ) ⊂ Hs(Σ) satisfying the complement con-
dition

Hs(Σ) = Xsd(Σ)⊕ Ys(Σ). (18)

Such a complement subspace exists since Hs(Σ) is an Hilbert space. With
this intermediate notation, the boundary integral formulation (16) can then
be recast as a variational problem with different trial and test space: for s ∈
[s?, 1/2], {

find p ∈ X−sn (Σ) such that〈〈
(Id−Mn) · I1/µ(p), v

〉〉
= 〈〈gn, v〉〉 ∀v ∈ Y+s(Σ).

(19)

The next result shows that this formulation is actually well-posed.

Proposition 5
Let s? ∈ [0, 1/2) be as in Theorem 1. Then the operator (Id −Mn) · I1/µ
isomorphically maps X−sn (Σ) onto X−sn (Σ) for each s ∈ [s?, 1/2].

Proof:
Pick an arbitrary s ∈ [s?, 1/2] that will remain fixed until the end of

the proof. Proposition 4 combined with Lemma 2 shows that the range of
(Id−Mn) · I1/µ is systematically contained in X−sn (Σ). Let us first show that
X−sn (Σ)∩ker((Id−Mn) ·I1/µ) = {0}. Take an arbitrary p = (pj)

n
j=0 ∈ X−sn (Σ)

such that (Id−Mn) · I1/µ(p) = 0. Set

ψ(x) :=

n∑
j=0

µ−1j SLj(pj)(x) ∀x ∈ R3 \Σ.
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According to [16, Thm.1] we have SLj(pj) ∈ H
3/2−s
loc (R3) for all j, which implies

that γjd(ψ) − γkd(ψ) = 0 on Γj ∩ Γk for all j, k. According to the previous
observations, we have

−∆ψ = 0 in Ωj , γjd(ψ)− γkd(ψ) = 0 on Γj ∩ Γk ∀j, k = 0, . . . n . (20)

In addition (Id−Mn) · I1/µ(p) = 0 which can be re-written µ−1j pj = γjn(ψ) or

pj = µjγ
j
n(ψj). From this we conclude that (µjγ

j
n(ψj))

n
j=0 = p ∈ X−sn (Σ) and

thus, according to the polarity property of Lemma 2, 0 =
∑n
j=0

´
Γj
µjγ

j
n(ψ)γjd(ψ)dσ =∑

j=0

´
Ωj
µj |∇ψ|2dx which implies that ∇ψ = 0 over R3, and thus pj =

µjγ
j
n(ψ) = 0 for all j = 0 . . . n.

To prove the surjectivity, take an arbitrary r = (rj)
n
j=0 ∈ X−sn (Σ). Define

φ ∈ H1
loc(R3) as the unique solution to

φ ∈W1(R3),

ˆ
R3

µ∇φ · ∇vdx =

n∑
j=0

µj

ˆ
Γj

rjγ
j
d(v)dσ ∀v ∈W1(R3). (21)

According to Corollary 1, we actually have φ ∈ H
3/2−s
loc (R3). Define r′ = (r′j)

n
j=0

by r′j := µj(rj − γjn(φ)). Applying a Green’s formula in (21) and using density

of H1
comp(R3) into H

1/2+s
comp (R3) for s < 1/2, we obtain

∑n
j=0

´
Γj
r′jγ

j
d(v)dσ = 0

for all v ∈ H
1/2+s
comp (R3). According to (9) and Lemma 2, this implies that

r′ ∈ X−sn (Σ). Next Proposition 2 shows that

γkn ·DLj(γ
j
d(φ)) + γkn · SLj(γ

j
n(φ)) =

{
0 for j 6= k

γjn(φ) for j = k
(22)

Sum equations (22) for j = 0 . . . n. The terms associated to the single layer
potential DLj cancel out, as a consequence of Proposition 3, since (γjd(φ))nj=0 ∈
X1−s

d (Σ) since φ ∈ H
3/2−s
loc (R3) by construction. Noting that (γjn(φ))nj=0 =

r− I1/µ(r′), we are left with

r− I1/µ(r′) = Mn · (r− I1/µ(r′)) ⇒ (Id−Mn) · I1/µ(r′) = r−Mn(r).

There only remains to observe that, according to Corollary 2, we have Mn(r) =
0, since r ∈ X−sn (Σ). Moreover, as r′ ∈ X−sn (Σ) by construction, this ends the
proof. �

7 Reduction to interfaces

In this section, we wish to rewrite Formulation (19) in a more explicit manner.
We will need the following additional, yet mild, assumption concerning the
geometrical setting.
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Assumption 71 For any pair j, k ∈ {0, . . . n}, the interface Γj ∩ Γk is either
empty, or it is a point, or a Lipschitz curve of strictly positive length, or it
is a Lipschitz two dimensional manifold with Lipschitz boundary and strictly
positive surface measure.

Note that, in the case of j = k we have Γj ∩ Γk is Lipschitz manifold
(with no boundary). In this assumption the length and surface measure are
the intrinsic ones induced by the ambient volume Lebesgue measure. In the
case where Γj ∩ Γk is a non trivial Lipschitz two dimensional manifold, we
shall simply write “area(Γj ∩ Γk) > 0”. In practice, the assumption above is
systematically satisfied, e.g., whenever each Ωj is a curvilinear polyhedron.

According to Theorem 3.33 and Theorem 3.40 of [30], with this assumption
and in the case that s ∈ (−1/2,+1/2), on the boundary of any subdomain we
can decompose trace spaces as follows

If |s| < 1/2, v ∈ Hs(Γj) ⇐⇒
{
v|Γj∩Γk ∈ Hs(Γj ∩ Γk)

∀k = 0 . . . n such that area(Γj ∩ Γk) > 0.

(23)
In other words, to guarantee a sufficient regularity of a trace function on Γj ,
it suffices to examine its regularity on each interface. It is important to note
that (23) does not hold for |s| ≥ ±1/2 and in particular not for s = ±1/2.
Observation (23) leads us to introduce a decomposition of the skeleton into
interfaces.

Σ = ∪J∈IΓ J where ΓJ := ΓJ+
∩ ΓJ− with

I := { J = (J−, J+) ∈ {0, . . . n}2 | J− < J+ and

ΓJ+
∩ ΓJ− is a non-trivial Lipschitz manifold }.

(24)

For any interface let us denote 〈·, ·〉ΓJ the duality pairing between Hs(ΓJ) and
H−s(ΓJ) for |s| < 1/2. As a consequence of (23), each 〈·, ·〉Γj is naturally de-
composed into a sum of such interface duality pairings. Now pick arbitrary
u = (uj)

n
j=0 ∈ H+s(Σ), v = (vj)

n
j=0 ∈ H−s(Σ), and let us rewrite 〈〈u, v〉〉

according to decomposition (24). For each s ∈ (−1/2, 1/2), using the parallel-
ogram identity, the global duality pairing decomposes as follows

〈〈u, v〉〉 =

n∑
j=0

〈uj , vj〉Γj =
∑
J∈I

〈uJ+
, vJ+
〉ΓJ

+ 〈uJ− , vJ−〉ΓJ

=
∑
J∈I

2 〈{uJ}, {vJ}〉ΓJ
+ 〈[uJ], [vJ]〉ΓJ

/2 ∀u ∈ H+s(Σ), ∀v ∈ H−s(Σ)

setting {uJ} := (uJ+ + uJ−)/2 and [uJ] := uJ+ − uJ− .
(25)

For an arbitrary u ∈ H−s(Σ), 0 < s < 1/2, we have {uJ} = 0 ∀J ∈ I if and
only if u = (uj)

n
j=0 ∈ X−sn (Σ). Similarly, for any u ∈ H+s(Σ), 0 < s < 1/2

we have [uJ] = 0 ∀J ∈ I if and only if u = (uj)
n
j=0 ∈ X+s

d (Σ). In addition,
note that X+s

d (Σ) and X−sn (Σ) have only been defined for s ∈ (0, 1), see (9)-
(10), however the previous observations suggest a natural extension of these
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definitions for s ∈ (−1/2, 0]. Routine calculus allows to verify the following
lemma.

Lemma 3
For any s ∈ (−1/2,+1/2), the jump operator u = (uj)

n
j=0 7→ ([uJ])J∈I contin-

uously maps Hs(Σ) onto ΠJ∈IHs(ΓJ). Its kernel will be denoted Xsd(Σ), and
it is a closed subspace of Hs(Σ).

Similarly, for s ∈ (−1/2,+1/2), the operator u = (uj)
n
j=0 7→ ({uJ})J∈I

continuously maps Hs(Σ) onto ΠJ∈IHs(ΓJ). Its kernel will be denoted Xsn(Σ).
For any u ∈ Hs(Σ) we have thus

u ∈ Xsd(Σ) ⇐⇒ [uJ] = 0 ∀J ∈ I,

u ∈ Xsn(Σ) ⇐⇒ {uJ} = 0 ∀J ∈ I.

Let us emphasise that the definition of X+s
d (Σ) and X−sn (Σ) provided by

Lemma 3 is consistant with (9)-(10) for the case s ∈ (0, 1/2), and it extends
these definitions to the case s ∈ (−1/2, 0]. Straightforward algebraic calculus
based on (25) yield the following result.

Corollary 3
For any s ∈ (−1/2,+1/2) we have Hs(Σ) = Xsd(Σ)⊕ Xsn(Σ).

With the definitions provided by Lemma 3, for |s| < 1/2, the space X−sd (Σ)
can be considered as dual to X+s

d (Σ), and X−sn (Σ) dual to X+s
n (Σ). Based on

the previous corollary, it is natural to consider Formulation (19) with the
choice Ys(Σ) = Xsn(Σ). Assuming that gn ∈ X−sn (Σ) for some s ∈ [s?, 1/2)
where s? is as in Theorem 1 (here in particular s < 1/2 is assumed), it then
simply writes as follows

{
Find p ∈ X−sn (Σ) such that〈〈

(Id−Mn) · I1/µ(p), v
〉〉

= 〈〈gn, v〉〉 ∀v ∈ X+s
n (Σ).

(26)

In this formulation, what comes into play is the bilinear form u, v 7→〈〈
I1/µ(u), v

〉〉
with u ∈ X+s

n (Σ), v ∈ X−sn (Σ) with s ∈ [s?, 1/2), and not just
〈〈u, v〉〉. Since uJ± = ±[uJ]/2 whenever u = (uj)

n
j=0 ∈ Xsn(Σ), this bilinear form

decomposes as

〈〈
I1/µ(u), v

〉〉
=

n∑
j=0

1

µj
〈uj , vj〉Γj =

∑
J∈I

1

µJ+

〈uJ+
, vJ+
〉ΓJ

+
1

µJ−

〈uJ− , vJ−〉ΓJ

=
∑
J∈I

1

2
{µ−1J }〈[uJ], [vJ]〉ΓJ

∀u ∈ X−sn (Σ),∀v ∈ X+s
n (Σ)

where {µ−1J } := (µ−1J+
+ µ−1J−

)/2.

(27)
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7.1 Decomposition of potentials

We can perform a similar decomposition on the multi-potential operator from
(15). Indeed for |s| < 1/2, and for any u = (uj)

n
j=0 ∈ Xsn(Σ), we have

n∑
j=0

1

µj
SLj(uj)(x)=

∑
J∈I

1

µJ+

SLJ(uJ+
)(x) +

1

µJ−

SLJ(uJ−)(x)=
∑
J∈I

1

2
[µ−1J ] SLJ([uJ])(x) ,

(28)

where [µ−1J ] :=
1

µJ+

− 1

µJ−

and SLJ(p)(x) :=

ˆ
ΓJ

p(y)dσ(y)

4π|x− y| .

Considering Hs(ΓJ) as a subspace of Hs(ΓJ+
) or Hs(ΓJ−), the defintion of

SLJ makes sense according to (23). Moreover it continuously maps Hs(ΓJ)
into Hs+3/2(∆,ΩJ±) according to [16, Thm.1]. Next fix an arbitrary Q ∈ I

and observe that, for any J ∈ I, we have (γ
J+
n + γ

J−
n ) · SLQ(p) = 0 on ΓJ

if J 6= Q, and (γ
Q+
n + γ

Q−
n ) · SLQ(p) = p on ΓQ, for all p ∈ Hs(ΓQ). As a

consequence, taking account of (28) for the expression of Mn, for any |s| < 1/2,
any u = (uj)

n
j=0 ∈ X−sn (Σ) and any v = (vj)

n
j=0 ∈ X+s

n (Σ) we have

〈〈
Mn · I1/µ(u), v

〉〉
=
∑
Q∈I

1

2
[µ−1Q ]

n∑
j=0

〈γjn · SLQ([uQ]), vj〉Γj

=
∑
Q∈I

1

2
[µ−1Q ]

∑
J∈I

〈γJ+
n · SLQ([uQ]), vJ+〉ΓJ + 〈γJ−n · SLQ([uQ]), vJ−〉ΓJ

=
∑
Q∈I

∑
J∈I

1

2
[µ−1Q ]〈{γJn} · SLQ([uQ]), [vJ]〉ΓJ

(29)

where we have used the notations {γJn}·ψ := (γ
J+
n (ψ)−γJ−n (ψ))/2 and [µ−1Q ] :=

µ−1Q+
−µ−1Q−

. The potential operators {γJn}·SLQ admit a very explicit expression
as a Cauchy principal value integral

{γJn} · SLQ(p)(x) := lim
ε→0

ˆ
ΓQ\Bε(x)

nJ+
(x) · (y − x)

4π|y − x|3 pQ(y)dσ(y) ∀x ∈ ΓJ

where nJ+
refers to the normal vector to ΩJ+

directed toward the exterior of
ΩJ+

. Combining (27) with (28) and (29), we finally obtain: for |s| < 1/2 and
for all u ∈ X−sn (Σ), v ∈ X+s

n (Σ), we have〈〈
(Id−Mn) · I1/µ(u), v

〉〉
=
∑
J∈I

1

2
{µ−1J }〈[uJ], [vJ]〉ΓJ−

∑
Q∈I

∑
J∈I

1

2
[µ−1Q ]〈{γJn} · SLQ([uQ]), [vJ]〉ΓJ

=
∑
J∈I

{µ−1J }〈pJ, qJ〉ΓJ−
∑
Q∈I

∑
J∈I

[µ−1Q ] 〈{γJn} · SLQ(pQ), qJ〉ΓJ

with pJ := [uJ] and qJ := [vJ]/2.

(30)
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7.2 Final reformulation

Analogous calculus can be achieved for reducing the right hand side in (26),
taking account that gn ∈ X−sn (Σ) for some s ∈ [s?, 1/2). Formulation (26) is
then ultimately reduced to the following

Find p = (pJ) ∈ ΠJ∈IH−s(ΓJ) such that∑
J∈I

{µ−1J }〈pJ, qJ〉ΓJ−
∑
Q∈I

∑
J∈I

[µ−1Q ] 〈{γJn} · SLQ(pQ), qJ〉ΓJ
=
∑
J∈I

〈[gJ], qJ〉ΓJ

∀q = (qJ) ∈ ΠJ∈IH+s(ΓJ).

(31)
In accordance with (28), if p = (pJ)J∈I is solution to Formulation (31), then
the function

u(x) =
1

2

∑
J∈I

[µ−1J ]SLJ(pJ)(x) , x ∈ R3 \Σ (32)

is the solution of Problem (1). Of course, since we only transformed (26) by
means of elementary algebraic manipulations, (31) admits a unique solution,
and the operator associated to the bilinear form in the left hand side isomor-
phically maps ΠJ∈IH−s(ΓJ) into ΠJ∈IH−s(ΓJ).

Remark 2 In Formulation (31) the solution for p provides the normal normal
flux of the solution u of the transmission problem (3) on interfaces. Thus,
(31) qualifies as a direct boundary integral equation. Dirichlet traces of u on
interfaces have to be recovered through (32).

8 Formulation in square integrable function spaces

The space of square integrable functions is a more natural and convenient
functional setting when considering boundary integral equations of the second
kind. It is indeed a well established result, see [15,46,14], that the Dirichlet
trace of the double layer potential continuously maps square integrable traces
to square integrable traces. The next proposition is a direct application of [16,
Thm.1].

Proposition 6
For any j = 0 . . . n, the operators γjn ·SLj and γjd ·DLj continuously map L2(Γj)
into L2(Γj).

We wish to show that (19) can be reformulated choosing square integrable
trial and test functions. In the present context, we need to consider maps of
the form γkn · SLj for k = j, but also for k 6= j. Hence a natural question is
wether such a continuity result as Proposition 6 holds also for k 6= j. This
clearly holds whenever Γ j ∩ Γ k = ∅ due to the regularity of the Green kernel
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G (x) = 1/(4π|x|) for x 6= 0. Conversely, it is not obvious, if Γ j ∩Γ k 6= ∅, even
if Γj and Γk have only an edge in common.

To study this problem we resort on a result of Dahlberg [19, Thm.1] concerning
harmonic measures. We first recall the definition of such measures. If O ⊂ R3

is any bounded Lipschitz open set, for any f ∈ C 0(∂O) let P(O, f) ∈ L2(O)
refer to the unique function satisfying

∆P(O, f) = 0 in O and P(O, f) = f on ∂O.

For any x ∈ O the mapping f 7→ P(O, f)(x) is a continuous functional on
C 0(∂O) which, due to Riesz representation theorem [41, Thm.6.19], is associ-
ated to the so-called harmonic measure dω(O,x) on ∂O via the formula

P(O, f)(x) =

ˆ
∂O

fdω(O,x) ∀x ∈ O.

Precise description of harmonic measures associated to Lipschitz domains in
terms of Green functions were provided in [18, Thm.3]. The result below,
established in [19, Thm.1], bounds harmonic measures inside its domain of
definition. We do not formulate this theorem in full generality, but restate it
so as to fit our present problem.

Theorem 2
Let Ω ⊂ R3 be a bounded Lipschitz domain. Let m refer to any positive measure
on Ω, such that lim supr→0 r

−2m(Br(x) ∩ Ω) < +∞ for all x ∈ ∂Ω. Then
there exists a constant C > 0 such thatˆ

Ω

|P(Ω, f)|2dm ≤ C‖f‖2L2(∂Ω) ∀f ∈ L2(∂Ω).

In this theorem Br(x) is the ball of radius r centred at x, and L2(∂Ω) refers to
the classical space of (almost everywhere defined) square integrable functions
with respect to the surface Lebesgue measure on ∂Ω. In Theorem 2 the measure
m does not necessarily refer to the classical Lebesgue measure on R3 that
actually satisfies the stronger estimate lim supr→0 r

−3m(Br(x) ∩ Ω) < +∞.
Here, we are more interested in the case where m is related to the surface
measure of the subdomains Ωj .

Proposition 7
The operator γjd ·DLk continuously maps L2(Γk) into L2(Γj) ∀j, k = 0 . . . n.

Proof:
The case j = k is already covered by Proposition 6. On the other hand,

the case where Γ j ∩ Γ k = ∅ is trivial. So we only need to concentrate on the
case where Γ j ∩ Γ k 6= ∅ and Ωj 6= Ωk.

Let B refer to an open ball such that ∪nj=1Ωj ⊂ B. Denote σj the surface
Lebesgue measure on Γj and let mj refer to the unique Borel measure on



Multi-Subdomain Second Kind Integral Equation 19

R3 satisfying mj(U) := σj(Γj ∩ U) for all open sets U ⊂ R3. Fix j, k ar-
bitrarily, and set Ω′j = B \ Ωj and Γ ′j = Γj ∪ ∂B = ∂Ω′j . Since obviously

lim supr→0 r
−2mk(Br(x) ∩ Ω′j) ≤ lim supr→0 r

−2mk(Br(x)) < +∞, we can
apply Theorem 2 with the choice Ω = Ω′j and m = mk, which yields

ˆ
Γk\Γj

|P(Ω′j , f)|2dσk ≤ Cj,k‖f‖2L2(Γ ′j)
∀f ∈ L2(Γ ′j).

This estimate shows in particular that, if u ∈ H1(Ω′j) satisfies ∆u = 0 in Ω′j ,

then f = u|Γ ′j ∈ H1/2(Γ ′j) ⊂ L2(Γ ′j) and we have P(u|Γ ′j , Ω′j) = u in Ω′j . This
leads to

‖u‖2L2(Γk)
≤ (1 + Cj,k)‖u‖2L2(Γ ′j)

∀u ∈ H1(Γ ′j) satisfying ∆u = 0 in Ω′j .

Now consider the particular choice u = DLj(p) for some p ∈ H1/2(Γj). Clearly
‖DLj(p)‖L2(∂B) ≤ Cj‖p‖L2(Γj)∀p ∈ H1/2(Γj) for some fixed constant Cj >
0 that only depends on j, due to the regularity of the Green kernel, since
Γj ∩ ∂B = ∅. This finally leads to the existence of a constant C > 0 such that
‖γkd ·DLj(p)‖L2(Γk) ≤ C‖p‖L2(Γj) ∀p ∈ L2(Γj). �

It is important to note that the previous proposition holds even if Γj ∩Γk 6= ∅
and Γj 6= Γk. A comparable continuity result also holds for the single layer
potential.

Corollary 4
The operator γjn · SLk continuously maps L2(Γk) into L2(Γj) ∀j, k = 0 . . . n

Proof:
We will rely on the formal adjointness of γjn · SLk with −γkd · DLj . Let O

be an open set such that Γj ∩ Γk ⊂ O. Consider two functions u ∈ L2(Γj) and
v ∈ L2(Γk), such that u = 0 on Γj ∩ O. Due to the regularity of the Green
kernel we have

〈γjn · SLk(v), u〉Γj =

ˆ
Γj\Γk

( ˆ
Γk

nj(x) · (y − x)

4π|y − x|3 v(y)dσk(y)
)
u(x)dσj(x)

= −
ˆ
Γk

( ˆ
Γj\Γk

nj(x) · (x− y)

4π|y − x|3 u(x)dσj(x)
)
v(y)dσk(y)

= −〈v, γkd ·DLj(u)〉Γk

From this, together with Proposition 7, we obtain the existence of a constant
C > 0 not depending on O such that |〈γjn ·SLk(v), u〉Γj | ≤ C‖u‖L2(Γj)‖v‖L2(Γk).
Since the constant C does not depend on O, using dominated convergence
theorem, we conclude that

|〈γjn · SLk(v), u 1Γj\Γk〉Γj | ≤ C‖u‖L2(Γj)‖v‖L2(Γk) ∀u ∈ L2(Γj),∀v ∈ L2(Γk).
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Next on Γj ∩ Γk, we have γjn = −γkn,c. Since γkn,c · SLk = −Id + γkn · SLk
continuously maps L2(Γk) into L2(Γk) according to Proposition 6, we conclude
that 1Γj∩Γkγ

j
n ·SLk continuously maps L2(Γk) into L2(Γj). To finish the proof,

observe that any function u ∈ L2(Γj) can be decomposed as u = u 1Γj\Γk +
u 1Γj∩Γk . �

The continuity results established above suggest that we consider Formulation
(31) in the framework of square integrable traces. Define

L2(Σ) := L2(Γ0)× · · · × L2(Γn)

with ‖v‖2L2(Σ) = ‖v0‖2L2(Γ0)
+ · · ·+ ‖vn‖2L2(Γn)

and L2(Σ) := {v = (vj)
n
j=0 ∈ L2(Σ) | vj = vk on Γj ∩ Γk ∀j, k }

The set L2(Σ) is the space Hs(Σ) for s = 0. As such, it is equipped with the
pairing 〈〈 , 〉〉, and (u, v)L2(Σ) = 〈〈u, v〉〉 is the scalar product associated with
the norm ‖ ‖L2(Σ). Moreover L2(Σ) ⊂ L2(Σ) is a closed subspace. The single-
trace space admits a natural counterpart in this new setting. Observe indeed
that

L2(Σ) = L2(Σ) ∩ X−sd (Σ) and

L2(Σ)⊥ = L2(Σ) ∩ X−sn (Σ) ∀s ∈ [0, 1/2)

where L2(Σ)⊥ refers to the space orthogonal to L2(Σ) with respect to the
scalar product ( , )L2(Σ). As regards the multi-potential operator involved
in the boundary integral formulation (16), we have a continuity result as a
direct application of Corollary 4. This operator also satisfies Corollary 2 and
Proposition 4 in this new setting.

Proposition 8
The operator Mn continuously maps L2(Σ) into L2(Σ). We have 〈〈(Id−Mn)p, v〉〉 =
0 ∀p ∈ L2(Σ),∀v ∈ L2(Σ). Moreover for any p ∈ L2(Σ) we have Mn(p) = 0,
if and only if p ∈ L2(Σ)⊥.

Since Xsd(Σ) is dense in L2(Σ), the first part of the proof is obtained directly
by combining Proposition 4 with this density result. The second part results
from algebraic manipulations like for Corollary 2.

Proposition 9
Assume that the solution u ∈ H1

loc(R3) to Problem (1) satisfies γjn(u) ∈ L2(Γj)

for all j = 0 . . . n. Then the tuple p = (pj)
n
j=0 ∈ L2(Σ) defined by pj = µjγ

j
n(u)

solves

p ∈ L2(Σ)⊥ and
〈〈

(Id−Mn)I1/µ(p), v
〉〉

= 〈〈gn, v〉〉 ∀v ∈ L2(Σ)⊥ . (33)

Proof:
Since u∞ ∈ H2

loc(R3), we have gj := γjn(u∞) ∈ L2(Γj). Hence gn =

(gj)
n
j=0 ∈ L2(Σ)⊥ = L2(Σ)∩X−1/2(Σ). Also we know that p ∈ X−1/2n (Σ) since
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L2(Σ)⊥ ⊂ X−1/2n (Σ). Thus, according to (16), it satisfies
〈〈

(Id−Mn)I1/µ(p), v
〉〉

=

〈〈gn, v〉〉 ∀v ∈ H1/2(Σ). Then since gn ∈ L2(Σ), and (Id−Mn)I1/µ(p) ∈ L2(Σ)

according to Proposition 8, and since H1/2(Σ) is dense in L2(Σ) for the norm
‖ ‖L2(Σ), we conclude that〈〈

(Id−Mn)I1/µ(p), v
〉〉

= 〈〈gn, v〉〉 ∀v ∈ L2(Σ). (34)

Next (Id−Mn)I1/µ(p) ∈ L2(Σ)⊥ according to Proposition 8, and gn ∈ L2(Σ)⊥.
As a consequence (34) yields the trivial equation ”0 = 0” when choosing
v ∈ L2(Σ). So it is sufficient to consider v ∈ L2(Σ)⊥. �

9 Galerkin discretisation

We confine ourselves to subdomains that are curvilinear Lipschitz polyhedra,
which covers most shapes occurring in engineering designs. Galerkin boundary
element discretisation of (31) is based on a mesh partition of the skeleton Σ
that resolves the interfaces in the following sense: each interface ΓJ, J ∈ I,
is partitioned into curvilinear polygons τ , called elements, such that Γ J =
∪τ∈T(ΓJ) τ , where T(ΓJ) is the “interface mesh”, that is, the set of all elements
paving ΓJ. Then the skeleton mesh T(Σ) is the union of all these interface
meshes. The interface meshes can be fairly arbitrary. In particular, “hanging
nodes” are not excluded.

As finite-dimensional subspaces Hh
n(ΓJ) of H−s(ΓJ) and H+s(ΓJ) alike we

choose spaces of discontinuous piecewise polynomials on the mesh T(ΓJ). The
degree of these polynomials can vary between different elements. Taking the
product of all these interface boundary element spaces yields the final trial
and test space Hh

n(Σ).

Proposition 5 asserts existence and uniqueness of solutions of the second
kind boundary integral equation (31), but for want of compactness of the op-
erator Mn : X−sn (Σ) → X−sn (Σ) this does not imply well-posedness of the
discrete variational problem, regardless of the resolution of the boundary el-
ement spaces: the numerical analysis of the discretised BIE remains an open
problem. Yet, strong empirical evidence given in Section 10 bolsters our con-
jecture that Galerkin boundary element discretisation is uniformly stable in
L2(Σ):

Conjecture 1 Let B(·, ·) stand for bilinear form of the variational BIE (31).
Then we assume that

sup
qh∈Hhn (Σ)

B(ph, qh)

‖qh‖L2(Σ)

≥ c ‖ph‖L2(Σ) ∀ph ∈ Hh
n(Σ) ,

with c > 0 independent of discretisation parameters like meshwidth and (local)
polynomial degree.
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Firstly, if we take this assumption for granted, then, thanks to the L2(Σ)-
continuity result of Proposition 8, we can conclude quasi-optimality of Galerkin
solutions.

Secondly, Conjecture 1 permits us to predict the conditioning of Galerkin
matrices for (31). Let us assume that we employ an L2(Σ)-orthonormal basis
of Hh

n(Σ). For these boundary element spaces it takes merely rescaling and
local orthogonalisation to build such a basis. Then, again appealing to the
L2(Σ)-continuity result of Proposition 8 and Conjecture 1, we can conclude
the following:

Proposition 10
If Conjecture 1 holds true, the Euclidean condition numbers of Galerkin ma-

trices arising from the boundary element discretisation of (31) are bounded
from above and below independently of the trial/test space Hh

n(Σ), provided
that L2(Σ)-orthonormal bases are used.

10 Numerical experiments

We report two numerical experiments that demonstrate the performance of a
Galerkin boundary element discretisation of Formulation (31) for the numer-
ical solution to Problem (1). We concentrate on geometrical configurations
featuring junction edges, i.e., edges where at least three subdomains abut. We
compare the single-trace second kind Formulation (31) with the so-called di-
rect single-trace first kind approach, described in detail in [9, Section 3], and
its Galerkin boundary element discretisation.

For both schemes we rely on conforming, uniformly shape-regular and
quasi-uniform skeleton meshes T(Σ) with flat triangular elements. The Galerkin
discretisation of (31) is based on piecewise constant discontinuous functions
on T(Σ). The same space is used for the approximation of Neumann traces in
the first kind STF, whereas for Dirichlet traces we rely on piecewise linear con-
tinuous boundary element spaces on T(Σ). Our choice of meshes necessarily
involves an approximation of curved interfaces, which should not compromise
overall accuracy according to [43, Chapter 8].

All experiments were carried out with the C++ boundary element template
library (BETL, [26]). (Nearly) singular integrals were regularised by trans-
formation [43, Chapter 5] and then evaluated by highly accurate numerical
quadrature, which ensures that quadrature errors are negligible. The surface
meshes were generated using GMSH [20].

10.1 Experiment I

In this first experiment we consider a geometrical configuration where space
is partitioned in three subdomains R3 = Ω0 ∪ Ω1 ∪ Ω2, with Ω1 = {x =
(x1, x2, x3) ∈ R3, |x| < 1/2 and x3 > 0 }, and Ω2 = {x = (x1, x2, x3) ∈
R3, |x| < 1/2 and x3 < 0 }. The geometry is depicted in Figure 1. Regarding
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the material coefficient µ we choose the values µ0 = 5, µ1 = 1 and µ2 = 7,
and u∞(x) = sin(x1) sinh(x2), x = (x1, x2, x3) ∈ R3.

Ω0

Ω1

Ω2

Γ1,0

Γ2,0

Γ1,2

Fig. 1 Experiment I: Geometry

Figure 2 below compares the accuracy of both methods, displaying error
norms for Dirichlet or Neumann traces versus meshwidth h = maxτ∈T(Σ) diam(τ).
For the computation of the error, the reference solution was taken to be the
numerical solution of the second kind STF obtained on an even finer mesh
obtained with one additional step of global refinement. We observe algebraic
convergence with the same rates and comparable accuracy of both methods.

For these results, the H−1/2(Γj)-norm was approximated using the Galerkin
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Fig. 2 Experiment I: Convergence of 2nd-kind and 1st-kind STF. The error curves are
annotated with estimated convergence rates in terms of h−1.

discretisation of the single layer operator γjd · SLj . Besides, in the case of
the second kind formulation, an approximation of the Dirichlet traces of the
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solution was obtained by using the discretised version of the following formula

γkd(u) =

n∑
j=0

γkd · SLj(γ
j
n(u)) , k = 0 . . . n .

Figure 3 displays the spectra obtained when solving the generalised eigenvalue
problem for the Galerkin matrices and mass matrices. Here and in the sequel,
NT refers to the number of triangles of the mesh. They can be viewed as
approximations of the spectrum of the continuous operators. While in the
case of the first kind STF many eigenvalues cluster in a neighbourhood of 0,
in the case of the second kind STF the eigenvalues remain nicely separated
from the origin.
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Fig. 3 Experiment I: Spectrum of Galerkin matrices for 2nd-kind (left) and 1st-kind (right)
STF

This suggests good convergence of linear iterative solvers applied to the
second kind STF, which is confirmed by the plots of Figure 4. The Galerkin
matrices for the second kind STF enjoy much better conditioning, and the
condition numbers remain stable with respect to the meshwidth, while the
condition numbers for the first kind STF deteriorate as h→ 0. This is reflected
by the behaviour of GMRES iterations.

10.2 Experiment II

Now we consider a partition of space with one more subdomain R3 = Ω0 ∪
Ω1∪Ω2∪Ω3, with Ω1 = {x = (x1, x2, x3) ∈ R3, |x| < 1/2 and x3 > 0 }, Ω2 =
{x = (x1, x2, x3) ∈ R3, |x| < 1/2 and x3 < 0 }, and Ω3 = Q \ Ω2 with Q :=
(−0.7,+0.7) × (−0.7,+0.7) × (0, 0.7). We choose µ0 = 5, µ1 = 1, µ2 = 7 and
µ3 = 3. The excitation field is the same as before u∞(x) = sin(x1) sinh(x2),
x = (x1, x2, x3) ∈ R3. The geometry is represented in Figure 5.

We report the same quantities as in Experiment I and make the same ob-
servations in Figures 10.2–10.2: The accuracy of both methods is comparable,
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Fig. 4 Experiment I: Euclidean condition numbers (left) and convergence history of GM-
RES in terms of decrease of Euclidean norm of residual vectors (right)
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Fig. 5 Experiment II: Geometric setup

while the second kind STF leads to matrices much lower condition numbers,
which translates into much faster convergence of GMRES.
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Fig. 6 Experiment II, cf. Figure 2
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Fig. 8 Experiment II, cf. Figure 4

11 Conclusion

We derived and analysed a novel second kind single-trace boundary integral
equation formulation for 2nd-order diffusion transmission problems with piece-
wise constant scalar diffusion coefficients. The unknown is a single function on
the skeleton, representing the jump of normal flux traces across interfaces.
Well-posedness of the BIE in low-regularity Sobolev spaces could be estab-
lished. In numerical tests boundary element Galerkin discretisation led to well-
conditioned linear systems and yielded satisfactory approximate solutions, but
its numerical analysis remains wide open.
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