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We consider isotropic scalar diffusion boundary value problems whose diffusion coefficients are piecewise constant with respect to a partition of space into Lipschitz subdomains. We allow so-called material junctions where three or more subdomains may abut. We derive a boundary integral equation of the second kind posed on the skeleton of the subdomain partition that involves, as unknown, only one trace function at each point of each interface. We prove the well-posedness of the corresponding boundary integral equations. We also report numerical tests for Galerkin boundary element discretisations, in which the new approach proves to be highly competitive compared to the well-established first kind direct single-trace boundary integral formulation. In particular, GMRES seems to enjoy fast convergence independent of the mesh resolution for the discrete second kind BIE.

Introduction

We consider the second-order diffusion problem

   -div(µ(x)∇u) = 0 in R 3 , lim sup |x|→∞ |x| |u tot (x) -u ∞ (x)| < +∞ , (1) 
for a given excitation field u ∞ , harmonic on all of R 3 . We focus on piecewise constant real-valued diffusion coefficient functions µ ∈ L ∞ (R 3 ). To describe them more precisely, we introduce a partition R d = ∪ n j=0 Ω j , where each subdomain Ω j , 1 ≤ j ≤ n, is a bounded Lipschitz domain. Then we assume that µ is piecewise constant with respect to this partition, that is, for given numbers µ j > 0, µ |Ωj = µ j for all j ∈ {0, . . . , n} .

(

Existence and uniqueness of solutions of (1) under suitable decay conditions are well established [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Chapter 8]. Problems like (1) arise, for instance, in electrostatic models of dielectric bodies. Boundary element methods based on reformulations of boundary value problems as boundary integral equations (BIE) are a popular class of computational techniques for problems like [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF]. A wealth of different BIE formulations are known for pure Dirichlet, Neumann, or mixed second-order scalar boundary value problems, and also transmission problems, that is, the case n = 1 of (1), see [START_REF] Sauter | Boundary element methods[END_REF]Chapter 3] or [START_REF] Hackbusch | Integral equations[END_REF]Chapter 8]. A fundamental distinction is made between first kind and second kind BIEs. Their properties and that of related Galerkin boundary element methods are fairly well understood [START_REF] Sauter | Boundary element methods[END_REF]Chapter 4], also for electromagnetic wave propagation [START_REF] Buffa | Galerkin boundary element methods for electromagnetic scattering[END_REF] and elasticity [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Chapter 10].

For the case n > 1 of (1), the genuine multi-subdomain case, it is mainly first kind BIEs that have been proposed and investigated, see the seminal work [START_REF] Petersdorff | Boundary Integral Equations for Mixed Dirichlet, Neumann and Transmission Problems[END_REF] (based on [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF]) and surveys in [START_REF] Claeys | Novel multitrace boundary integral equations for transmission boundary value problems[END_REF][START_REF] Claeys | Multi-trace boundary integral equations[END_REF]Section 3 each]. Counterparts for time-harmonic electromagentic scattering, based on the Rumsey principle [START_REF] Rumsey | Reaction concept in electromagnetic theory[END_REF] have been known as PMCHWT BIEs for a long time [START_REF] Chang | A surface formulation or characteristic modes of material bodies[END_REF][START_REF] Miller | Integral equation solutions of three-dimensional scattering problems[END_REF][START_REF] Harrington | Boundary integral formulations for homogeneous material bodies[END_REF] and their analysis has been accomplished in [START_REF] Buffa | Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations[END_REF]. Polynomial Galerkin boundary element methods built on these formulations have to deal with ill-conditioned linear systems on fine meshes [START_REF] Sauter | Boundary element methods[END_REF]Section 4.5] and, as a consequence, with slow convergence of iterative solvers. Preconditioning techniques drawing on ideas from domain decomposition like the Boundary Element Tearing and Interconnecting method (BETI) [START_REF] Of | Boundary element tearing and interconnecting domain decomposition methods[END_REF][START_REF] Of | The all-floating boundary element tearing and interconnecting method[END_REF][START_REF] Hsiao | Domain decomposition methods via boundary integral equations[END_REF][START_REF] Langer | Boundary Element Tearing and Interconnecting Methods[END_REF], and Multi-Trace Formulations (MTF) [START_REF] Peng | A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities[END_REF][START_REF] Peng | Computations of electromagnetic wave scattering from penetrable composite targets using a surface integral equation method with multiple traces[END_REF][START_REF] Claeys | Multi-trace boundary integral formulation for acoustic scattering by composite structures[END_REF][START_REF] Claeys | Multi-trace boundary integral equations[END_REF][START_REF] Claeys | Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation[END_REF][START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF][START_REF] Claeys | Novel multitrace boundary integral equations for transmission boundary value problems[END_REF] are a remedy, but they entail rather complex algorithms.

Ill-conditioned Galerkin matrices are not an issue with second kind BIEs. In simple settings, n = 1 for [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF], and in the case of smooth geometries, the corresponding integral operators typically take the form of compact perturbations of the identity [START_REF] Hackbusch | Integral equations[END_REF]Chapter 3] and, in conjunction with usual discretisation procedures (Galerkin, Nyström or collocation), yield well-conditioned matrices.

Only recently the authors have proposed suitable integral equations of the second kind for genuine multi-subdomain problems. Initially, the focus was on the Helmholtz equation -∆uκ(x) 2 u = f in R d , d = 2, 3 (with outgoing radiation condition), where f is a source term, and the effective wave number κ(x) is a constant κ j > 0 in each Ω j . Note that here the variable coefficient does not enter the principal part. For such wave propagation problems a socalled Single-Trace Formulation of the second kind (2nd-kind STF) has been proposed independently in [START_REF] Greengard | Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions[END_REF] and [START_REF] Claeys | A single trace integral formulation of the second kind for acoustic scattering[END_REF][START_REF] Claeys | A second-kind Galerkin boundary element method for scattering at composite objects[END_REF]. A first extension of this approach was proposed in [START_REF] Claeys | Second-kind boundary integral equations for scattering at composite partly impenetrable objects[END_REF], where the authors considered the case of a propagation medium with impenetrable parts (homogeneous Dirichlet boundary condition imposed on one of the Ω j 's). In [START_REF] Claeys | Second-kind boundary integral equations for electromagnetic scattering at composite objects[END_REF] the idea was successfully applied to multisubdomain transmission problems for the time-harmonic Maxwell equations curl(curl E)κ(x) 2 E = 0. In this case the zero-order term in the differential operator does not represent a compact perturbation and new arguments are needed to derive a 2nd-kind STF. All details can be found in the PhD thesis [START_REF] Spindler | Second kind single-trace boundary integral formulations for scattering at composite objects[END_REF].

Exploring 2nd-kind STF for Maxwell's equations taught us how to deal with variable coefficients in the principal part of the partial differential equations. This is exactly the situation we face with [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF] and the present contribution elaborates the corresponding extension of the 2nd-kind STF. We arrive at integral equations reminiscent of so-called direct single integral equations as presented in [28].

The outline of this article is as follows. In Section 2 we describe precisely the geometry and the boundary value problem under consideration in the remainder of this article. In Section 3 we review basic definitions and results related to Sobolev spaces, trace operators, and the variational theory of the Laplace operator in free space. In Section 4 we introduce a functional framework well adapted to dealing with trace functions in a multi-subdomain context and, in the following section, we briefly review classical results on potential theory. In Section 6 we derive the new formulation for problems of the form (1), and we establish its well-posedness. This formulation then admits a variational formulation where trial functions are sought in single-trace spaces, and test functions are chosen in some complementary subspace. In Section 7 we rewrite this formulation so as to simplify the functional framework. With this reformulation, both trial and test functions are chosen in the same variational space consisting in trace functions defined on a cartesian product of interfaces. In this functional framework, each trace function belongs to a Sobolev space with (non trivial) fractional exponent. In Section 8, we show that the same formulation can still be considered in an even simpler framework based on square integrable traces. The final section presents 3D numerical experiments for the Galerkin boundary element discretisation of our new integral equations. The results highlight the competitiveness of our formulation compared to the more classical first kind approach. In particular, we always observe excellent conditioning of the Galerkin matrices generated by our new method.

Remark 1 In spite of slight modifications due to the peculiarity of the Green's function of the Laplacian in two dimensions, our algorithms and the analysis can be easily adapted to problems set in R 2 . Nevertheless, we focus on the 3D setting for the sake of clarity.

Setting of the problem

Recall the partition of free space R 3 := ∪ n j=0 Ω j where the Ω j 's are Lipschitz domains. We assume that each Ω j is bounded except Ω 0 . In the sequel we shall refer to the boundary of each subdomain by Γ j := ∂Ω j , and also set Γ j,k := Γ j ∩ Γ k = ∂Ω j ∩ ∂Ω k for reference to interfaces. The union of all interfaces, the skeleton, will be denoted by Σ := ∪ n j=0 Γ j = ∪ 0≤j<k≤n Γ j,k . We are interested in solutions of [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF], which should be understood in the weak sense, i.e., u tot belongs to the Sobolev space1 H 1 loc (R 3 ) and satisfies

´R3 µ∇u tot ∇vdx = 0 for all v ∈ H 1 comp (R 3 ). Using the change of unknown u = u tot -u ∞ , Problem (1) is equivalent to the transmission problem      u ∈ H 1 loc (R 3 ) with ∆u = 0 in Ω j , ∀j = 0 . . . n , lim sup |x|→∞ |x| |u(x)| < +∞ , (3a) µ j ∂ nj u| Γj + µ k ∂ n k u| Γ k = -(µ j g j + µ k g k ) , u| Γj -u| Γ k = 0 on Γ j ∩ Γ k , ∀j, k = 0, . . . , n , (3b) 
where u| Γj (resp. ∂ nj u| Γj := n j • ∇u| Γj ) designates the traces of u on Γ j (resp. the normal flux of ∇u at Γ j ) taken from the interior of Ω j , the vector field n j is the normal to Γ j directed toward the exterior of Ω j , and the right hand side in (3b) is given by

g j := ∂ nj u ∞ | Γj j = 0 . . . n. ( 4 
)
3 Elementary function spaces

To discuss the regularity properties of the solution to Problem (3), we need to introduce further notation regarding function spaces. We shall consider functions defined on volumic Lipschitz subsets ω ⊂ R 3 , but also functions defined on the boundaries of such domains i.e. on Lipschitz manifolds. For these definitions and in terms of notations, we follow [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Chap.3] as well as [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF][START_REF] Sauter | Boundary element methods[END_REF] that can be consulted for more details.

Volumic function spaces

Beside the usual (integer and fractional) Sobolev spaces H s (ω), s ∈ R, we write H s (div, ω)

:= {v ∈ H s (ω)|div(v) ∈ H s (ω)} with v 2 H s (div,ω) := v 2 H s (ω) + div(v) 2
H s (ω) (in the sequel H(div, ω) = H s (div, ω) with s = 0), and use the space H 1+s (∆, ω) := {v ∈ H s (ω)|∇v ∈ H s (div, ω)} equipped with the corresponding natural norm

v 2 H 1+s (∆,ω) = v 2 H 1+s (ω) + ∆v 2 H s (ω) .
Recall that According to Theorem 3.30 and Theorem 3.33 of [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF], for s ∈ (-1/2, +1/2), the space H -s (ω) is the topological dual to H +s (ω). With , we denote the duality pairing between H s (ω) and H -s (ω).

Trace spaces

Recall [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Lemma 3.35] that the Dirichlet trace ϕ → ϕ| ∂ω induces a continuous and surjective map sending H 1+s (ω) onto H 

Proof:

Let B ⊂ R 3 refer to a ball with radius sufficiently large to garantee that ∂ω ⊂ B. Define O := B ∩ ω so that O is bounded and ∂ω ⊂ ∂O. Fix s ∈ (-1/2, +1/2), and recall that there exists a continuous lifting operator R : H 1/2-s (∂ω) → H 1-s (ω) such that R(v)| ∂ω = v for all v ∈ H 1/2-s (∂ω), see for example [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]Lemma 4.2]. Using a cut-off function if necessary, one can consider in addition that supp{R(v)} ⊂ O for all v ∈ H 1/2-s (∂ω). Next, for any p ∈ H s loc (div, ω) define the functional ϕ p by

ϕ p (v) := ˆω p • ∇R(v) + R(v) div(p) dx ∀v ∈ H 1/2-s (∂ω).
Due to the regularity properties of p, and the continuity of R, the functional ϕ p continuously maps H 1/2-s (∂ω) into C i.e. ϕ p ∈ H s-1/2 (∂ω), and it depends continuously on p in the norm of H s (div, O). Moreover it does not depend on the precise choice of R as long as R(v)| ∂ω = v, which is a direct consequence of Green's formula. Hence we set, as a definition, "n • p| ∂ω ":= ϕ p , which achieves the desired extension, so that Green's formula is satisfied by construction.

There only remains to prove the surjectivity of this normal flux operator. Pick an arbitrary q ∈ H s-1/2 (∂ω). According to Section 16 of [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF], there exists a unique u ∈ H 1+s (ω) solution to -∆u + u = 0 in ω and ∂ n u| ∂ω = q. There only remains to take p = ∇u ∈ H s (div, ω), so that n • p| ∂ω = q.

As an application of the preceding remarks, for each s ∈ (-1/2, +1/2), every subdomain Ω j supports continuous boundary trace operators γ j d : H 1+s loc (Ω j ) → H 1/2+s (∂Ω j ) and γ j n : H 1+s loc (∆, Ω j ) → H -1/2+s (∂Ω j ) (so-called Dirichlet and Neumann traces) uniquely defined by

γ j d (ϕ) := ϕ| ∂Ωj and γ j n (ϕ) := n j • ∇ϕ| ∂Ωj ∀ϕ ∈ C ∞ (R 3 ).
In the definition above, n j is the unit vector field normal to ∂Ω j pointing toward the exterior of Ω j . Define γ j d,c , γ j n,c in the same manner as γ j d , γ j n with traces taken from the exterior of Ω j . We shall also make use of mean values and jumps to these trace operators, defined as

{γ j * (u)} := 1 2 γ j * (u) + γ j * ,c (u) and [γ j * (u)] := γ j * (u) -γ j * ,c (u) for * = d, n.

Regularity of solutions of diffusion problems

In this paragraph, we would like to comment on the regularity of solutions to Problem (1) and [START_REF] Buffa | Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations[END_REF]. For this purpose we have to describe in more detail its natural variational setting. Define W 1 (R 3 ) as the completion of C ∞ comp (R 3 ) with respect to the following norm

v 2 W 1 (R 3 ) := ˆR3 |∇v| 2 + |v(x)| 2 1 + |x| 2 dx.
We shall also refer to the topological dual to W 1 (R 3 ) that we denote W -1 (R 3 ) := W 1 (R 3 ) * , and write , for the duality pairing between W 1 (R 3 ) and W -1 (R 3 ). Given some f ∈ W -1 (R 3 ) we will consider, for a short moment the variational problem:

Find u ∈ W 1 (R 3 ) such that ˆR3 µ∇u∇vdx = f, v ∀v ∈ W 1 (R 3 ). (5) 
It is a well known consequence of Hardy's inequality [START_REF] Hardy | Inequalities[END_REF]Thm. 330] or [START_REF] Opic | Hardy-type inequalities[END_REF], that this problem admits a unique solution. A natural question concerns the local regularity of its solution u in the case where f admits itself extra regularity, say f ∈ H -1+s comp (R 3 ) with s > 0, in spite of the coefficient µ admitting jumps (in particular µ is not Lipschitz). This may depend on the geometry of the partition, as was discussed in detail in [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF][START_REF] Nicaise | General interface problems. I[END_REF][START_REF] Petzoldt | Regularity results for Laplace interface problems in two dimensions[END_REF]. For a general geometric configuration, an answer to this question was provided in [START_REF] Bonito | Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains[END_REF]Thm.3.1]. Below is the statement of this result for the present context.

Theorem 1

There exists s ∈ [0, 1/2) that only depends on the partition R 3 = ∪ n j=0 Ω j such that for any s ∈

[s , 1/2], if f ∈ H -1/2-s comp (R 3 ), then the solution u ∈ H 1 loc (R 3
) to Problem (5) actually belongs to H 3/2-s loc (R 3 ). Morever the dependence is continuous: for any bounded set ω ⊂ R 3 , there exists a constant c ω > 0 independent of u, f such that u

H 3/2-s (ω) ≤ c ω f H -1/2-s (R 3 ) .
Here of course, we have reformulated this result so that it fits our notations, and did not state it in full generality. Let us point that, as underlined in [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF][START_REF] Petzoldt | Regularity results for Laplace interface problems in two dimensions[END_REF], the smallest possible s in the previous theorem may be strictly greater than 0 for certain geometrical configurations. As a consequence of the continuity properties of the Neumann trace operator of Lemma 1, we deduce from this theorem the following result.

Corollary 1 Assume that s ∈ [0, 1/2) is as in Theorem 1, and let s ∈ [s , 1/2]. Then for any data g j ∈ H -s (Γ j ), j = 0 . . . n, the unique u ∈ W 1 (R 3 ) satisfying ˆR3 µ∇u∇vdx = n j=0 µ j ˆΓj g j vdσ ∀v ∈ W 1 (R 3 ) ( 6 
)
actually satisfies u ∈ H 3/2-s loc (R 3
) with continuous dependency: for any bounded Lipschitz domain ω ⊂ R 3 , there exists a constant C ω > 0 independent of the g j 's and such that u

H 3/2-s (ω) ≤ C ω n j=0 g j H -s (Γj ) .
With the choice (4), Problem ( 6) is actually a variational formulation for (3). Since, in addition, u ∞ ∈ C ∞ (R 3 ) due to local elliptic regularity, Corollary 1 is directly applicable to the problem under study here.

Multi-subdomain trace spaces

We aim for boundary integral equations set in natural trace spaces. The most fundamental trace space we can introduce is the Dirichlet/Neumann multitrace space [8, Sect. 2.1], given by the following Cartesian product:

H σ (Σ) := H σ (Γ 0 ) × • • • × H σ (Γ n ) for |σ| ≤ 1/2 , u H σ (Σ) := u 0 2 H σ (Γ0) + • • • + u n 2 H σ (Γn) 1 2 
,

for u = (u 0 , . . . , u n ) ∈ H σ (Σ).
Let us write , Γj for the duality pairing between H σ (Γ j ) and H -σ (Γ j ). The spaces H +σ (Σ) and H -σ (Σ) are dual to each other with respect to the bilinear pairing

p, v := n j=0 p j , u j Γj , p = (p j ) n j=0 ∈ H -σ (Σ), v = (v j ) n j=0 ∈ H +σ (Σ) . (7) 
For p ∈ H -σ (Σ) and v ∈ H +σ (Σ), we also adopt the convention v, p := p, v , which should not cause any further confusion. The bilinear form introduced above satisfies inf

p∈H -σ (Σ) sup v∈H +σ (Σ) | p, v | p H -σ (Σ) v H +σ (Σ) = 1. (8) 
Single trace spaces. Next, as in [8, Sect. 2.2], [9, Sect. 3.1], we introduce the so-called single-trace space that consists of collections of traces that comply with transmission conditions. We first set, for s ∈ (0, 1)

X s d (Σ) := {v = (v j ) n j=0 ∈ H s (Σ) | ∃v ∈ H 1/2+s loc (R 3 ) , v j = γ j d (v), ∀j = 0 . . . n }. (9) 
It can be rather straightforwardly checked that

X s d (Σ) is a closed subspace of H s (Σ). For 0 < s < 1 and any v ∈ L 2 loc (R 3 ) such that v| Ωj ∈ H s+1/2 loc (Ω j ), we have v ∈ H s+1/2 loc (R 3 ) if and only if the tuple of traces v = (γ j d (v)) n j=0 belongs to X s d (Σ), see e.g. [1, §3.5].
We define Neumann counterparts of these spaces by setting, for s ∈ (0, 1) ,

X -s n (Σ) := {p = (p j ) n j=0 ∈ H -s (Σ) | ∃p ∈ H 1/2-s loc (div, R 3 ) , p j = n j • p| Γj , ∀j = 0 . . . n }. (10) 
Once again, since it is characterised by continuous constraints, this space is a closed subset of H -s (Σ). The following lemma was proved in [6, Prop.2.1] in the case s = 1/2. This proof can be readily adapted to the case of arbitrary s ∈ (0, 1) using the Green's formula of Lemma 1 above.

Lemma 2

For any s ∈ (0, 1), and u ∈ H +s (Σ), p ∈ H -s (Σ) we have:

u ∈ X +s d (Σ) ⇐⇒ u, q = 0 ∀q ∈ X -s n (Σ), p ∈ X -s n (Σ) ⇐⇒ v, p = 0 ∀v ∈ X +s d (Σ).
One can provide an alternative, more algebraic characterisation of these spaces. Routine calculus in the sense of distributions using restrictions to interfaces shows that, for 0

< s < 1, a tuple u = (u j ) n j=0 ∈ H s (Σ) satisfies u ∈ X +s d (Σ) ⇐⇒ u j = u k on Γ j ∩ Γ k .
Similarly, for 0 < s < 1, a tuple q = (q j ) n j=0 ∈ H -s (Σ) actually belongs to X -s n (Σ) if we have q j = -q k on Γ j ∩ Γ k .

Potential theory

In this paragraph, we shall remind the reader of well established results concerning the integral representation of solutions to homogeneous Helmholtz equation in Lipschitz domains. A detailed proof of the statements contained in the present paragraph can be found for example in [START_REF] Sauter | Boundary element methods[END_REF]Chap.3]. Let

G (x) := 1 4π|x|
refer to the Green's kernel associated to the Laplace operator. For each Ω j and for any v

∈ H s+1/2 (Γ j ), q ∈ H s-1/2 (Γ j ), |s| ≤ 1/2 and any x ∈ R d \ Γ j , define SL j (q)(x) := ˆΓj q(y) G (x -y)dσ(y) DL j (v)(x) := ˆΓj v(y) n j (y) • (∇G κ )(x -y)dσ(y) . (11) 
These operators are called single and double layer potentials. According to [16, Thm.1], The operator SL j (resp. DL j ) maps continuously H s-1/2 (Γ j ) (resp.

H s+1/2 (Γ j )) into H 1+s loc (∆, Ω j ) × H 1+s loc (∆, R d \ Ω j ) for |s| < 1/2.
As a consequence the following continuity properties hold.

Proposition 1

For any j, k = 0 . . . n, and any s ∈ (-1/2, +1/2), the following are linear continuous maps:

γ k d • DL j : H +1/2+s (Γ j ) → H +1/2+s (Γ k ) γ k n • DL j : H +1/2+s (Γ j ) → H -1/2+s (Γ k ) γ k d • SL j : H -1/2+s (Γ j ) → H +1/2+s (Γ k ) γ k n • SL j : H -1/2+s (Γ j ) → H -1/2+s (Γ k )
These potential operators can be used to write a representation formula for solutions to homogeneous Laplace equations, see [START_REF] Sauter | Boundary element methods[END_REF]Thm 3.1.6].

Proposition 2

For any u ∈ H 1+s loc (∆, Ω j ), |s| < 1/2, such that ∆u = 0 (and lim sup |x|→∞ |x u(x)| < +∞ in the case where j = 0), we have the representation formula

SL j (γ j n (u))(x) + DL j (γ j d (u))(x) = u(x) 1 Ωj (x) (12) 
In this statement 1 Ωj (x) = 1 if x ∈ Ω j , and 1 Ωj (x) = 0 otherwise. The potential operators SL j , DL j also satisfy remarkable identities, known as jump formulas, describing their behaviour as

x crosses Γ j = ∂Ω j , [γ j d ] • DL j (v) = v [γ j n ] • DL j (v) = 0 ∀v ∈ H s+ 1 2 (Γ j ), [γ j d ] • SL j (q) = 0 [γ j n ] • SL j (q) = q ∀q ∈ H s-1 2 (Γ j ), (13) 
with |s| ≤ 1/2. We will also need a remarkable property that arises when summing potential operators associated to all subdomains. This next result was proved in [START_REF] Claeys | A single trace integral formulation of the second kind for acoustic scattering[END_REF] for the case s = 1/2. Adapting this proof to the case s ∈ (0, 1) does not raise any remarkable difficulty.

Proposition 3

For any s ∈ (0, 1), any (p j ) n j=0 ∈ X -s n (Σ) and any (v j ) n j=0 ∈ X +s d (Σ), and for all x ∈ R 3 \ Σ we have

n j=0 SL j (p j )(x) = 0 and n j=0 DL j (v j )(x) = 0.

Integral equation of the second kind

In this section we show how two derive a boundary integral equation of the second kind for Problem [START_REF] Agranovich | Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains[END_REF]. The unknowns will be related to the Neumann traces of the solution on the skeleton Σ. As a consequence, we start our analysis from the variational formulation [START_REF] Claeys | A single trace integral formulation of the second kind for acoustic scattering[END_REF] where the right hand side satisfies 3), apply the representation formulas [START_REF] Claeys | A second-kind Galerkin boundary element method for scattering at composite objects[END_REF] in each subdomain Ω j , and sum for j = 0 . . . n. This yields

g j ∈ H -s (Γ j ) ∀s ∈ [s , 1/2] where s ∈ [0, 1/2) is as in Theorem 1. For the solution u ∈ W 1 (R 3 ) ∩ H 3/2-s loc (R 3 ) of (
u(x) = n j=0 SL j (γ j n (u))(x) + n j=0 DL j (γ j d (u))(x) , x ∈ R 3 \ Σ. (14) 
Observe that, if u is solution to (1), it satisfies the transmission conditions (3b) implying that (γ j d (u)) n j=0 ∈ X 1-s d (Σ). Hence, as a direct consequence of Proposition 3 the second term in [START_REF] Coifman | Two elementary proofs of the L 2 boundedness of Cauchy integrals on Lipschitz curves[END_REF] 

has to vanish. Since (γ j n (u ∞ )) n j=0 ∈ X -s n (Σ) as u ∞ ∈ H 2 loc (R 3
), applying Proposition 3 and taking the Neumann trace of ( 14) on each subdomain Ω k , k = 0, . . . , n, we obtain

γ k n (u + u ∞ ) - n j=0 γ k n • SL j (γ j n (u + u ∞ )) = g k with g k := γ k n (u ∞ ). ( 15 
)
Put this system in a matrix form, and consider the normal flux trace p = (µ j γ j n (u + u ∞ )) n j=0 as unkown. Taking account of the second transmission condition in (3b), this unkown tuple of traces must be sought in X -s n (Σ). Setting

g n := (g k ) n k=0 ∈ H -s (Σ), s ∈ [s , 1/2], these equations take the form Find p ∈ X -s n (Σ) such that (Id -M n ) • I 1/µ (p), v = g n , v ∀v ∈ H +s (Σ) (16) 
where s ∈ [s , 1/2], and

M n (p), v := n j=0 n k=0 γ k n • SL j (p j ), v k Γ k , I 1/µ (p), v := n j=0 µ -1 j p j , v j Γj . (17) 
As a direct application of Proposition 1, we see that the operators (17) induce linear operators continuously mapping H -s (Σ) into H -s (Σ) for any s ∈ (0, 1).

Well-posedness

In this section, we determine the kernel and the range of the operator (Id -M n ) • I 1/µ . First of all, we have the following non-trivial result that describes the "jump" of M n (p) across interfaces of Σ.

Proposition 4

For any s ∈ (0, 1), we have

(Id -M n )p, v = 0 ∀p ∈ H -s (Σ), ∀v ∈ X +s d (Σ).
Proof: Consider any s ∈ (0, 1) that will be fixed until the end of the proof, and pick an arbitrary p = (p 0 , . . . , p n ) ∈ H -s (Σ). For each j = 0 . . . n, define

φ j ∈ L 2 loc (R 3 \ Ω j ) by φ j (x) := ∇SL j (p j )(x) for x ∈ R 3 \ Ω j . Actually div(φ j ) = 0 in R 3 \ Ω j so φ j ∈ H 1/2-s loc
(div, R 3 \ Ω j ) according to Section 5, see also [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]Thm.1]. Next let ψ refer to an element of H 1 (Ω j ) satisfying

∆ψ = 0 in Ω j , γ j n (ψ) = n j • φ| Γj = γ j n,c • SL j (p j ) on Γ j .
According to [START_REF] Savaré | Regularity results for elliptic equations in Lipschitz domains[END_REF]Thm.4], we have ψ ∈ H 3/2-s (∆, Ω j ), since γ j n,c • SL j (p j ) = -p j + γ j n • SL j (p j ) ∈ H -s (Γ j ) according to Proposition 1 and (13) above. Now let us extend φ j to the interior of Ω j by setting φ j | Ωj := ∇ψ. This garantees that φ j ∈ H 1/2-s loc (div, R 3 ) due to the continuity of n j • φ j across Γ j . Since n j • φ j | Γj = γ j n,c • SL j (p j ), by Definition (9) we have

q j := (q k j ) n k=0 ∈ X -s n (Σ)
where

q k j = γ k n • SL j (p j ) for j = k, q j j = γ j n,c • SL j (p j ).
In particular we have

γ k n • SL j (p j ) = q k j + δ k j [γ j n ]
• SL j (p j ) = q k j + δ k j p j for all j, k. Here δ k j refers to Kronecker's symbol:

δ k j = 0 if j = k, δ j j = 1. Now take an arbitrary v = (v j ) n j=0 ∈ X s d (Σ). Replace γ k n • SL j (p j
) by q k j in the expression of M n given by [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF]. Since [γ j n ] • SL j (p j ) = p j , applying Definition (10) leads to the conclusion of the proof

M n (p), v = n j=0 n k=0 γ k n • SL j (p j ), v k Γ k = n j=0 q j , v + [γ j n ] • SL j (p j ), v j Γj = n j=0 p j , v j Γj = p, v .
Combining the previous result with Proposition 3, we see that M n (Id-M n ) = 0, i.e. this operator is a projector. In addition we clearly have

X -s n (Σ) ⊂ ker(M n ) according to Proposition 3. Reciprocally, if p ∈ H -s (Σ) satisfies M n (p) = 0, then we have p = (Id -M n )p ∈ X -s n (Σ) by Lemma 2.
To summarise, we have obtained the following result.

Corollary 2

We have (M n ) 2 = M n . In addition, for any p ∈ H -s (Σ), s ∈ (0, 1), we have M n (p) = 0, if and only if p ∈ X -s n (Σ). We assumed that the right hand side g n in ( 16) belongs to X -s n (Σ) for all s ∈ [s , 1/2]. A consequence of Proposition 4 is thus that Equation ( 16) yields a trivial identity whenever v is chosen in X +s d (Σ). This is a motivation for introducing a closed subspace Y s (Σ) ⊂ H s (Σ) satisfying the complement condition

H s (Σ) = X s d (Σ) ⊕ Y s (Σ). (18) 
Such a complement subspace exists since H s (Σ) is an Hilbert space. With this intermediate notation, the boundary integral formulation ( 16) can then be recast as a variational problem with different trial and test space:

for s ∈ [s , 1/2], find p ∈ X -s n (Σ) such that (Id -M n ) • I 1/µ (p), v = g n , v ∀v ∈ Y +s (Σ). ( 19 
)
The next result shows that this formulation is actually well-posed.

Proposition 5

Let s ∈ [0, 1/2) be as in Theorem 1. Then the operator

(Id -M n ) • I 1/µ isomorphically maps X -s n (Σ) onto X -s n (Σ) for each s ∈ [s , 1/2]. Proof:
Pick an arbitrary s ∈ [s , 1/2] that will remain fixed until the end of the proof. Proposition 4 combined with Lemma 2 shows that the range of (Id

-M n ) • I 1/µ is systematically contained in X -s n (Σ). Let us first show that X -s n (Σ) ∩ ker((Id -M n ) • I 1/µ ) = {0}. Take an arbitrary p = (p j ) n j=0 ∈ X -s n (Σ) such that (Id -M n ) • I 1/µ (p) = 0. Set ψ(x) := n j=0 µ -1 j SL j (p j )(x) ∀x ∈ R 3 \ Σ.
According to [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]Thm.1] we have SL j (p j ) ∈ H 3/2-s loc (R 3 ) for all j, which implies that γ j d (ψ)γ k d (ψ) = 0 on Γ j ∩ Γ k for all j, k. According to the previous observations, we have

-∆ψ = 0 in Ω j , γ j d (ψ) -γ k d (ψ) = 0 on Γ j ∩ Γ k ∀j, k = 0, . . . n . (20) 
In addition (Id -M n ) • I 1/µ (p) = 0 which can be re-written µ -1 j p j = γ j n (ψ) or p j = µ j γ j n (ψ j ). From this we conclude that (µ j γ j n (ψ j )) n j=0 = p ∈ X -s n (Σ) and thus, according to the polarity property of Lemma 2, 0 = n j=0 ´Γj µ j γ j n (ψ)γ j d (ψ)dσ = j=0 ´Ωj µ j |∇ψ| 2 dx which implies that ∇ψ = 0 over R 3 , and thus p j = µ j γ j n (ψ) = 0 for all j = 0 . . . n.

To prove the surjectivity, take an arbitrary r = (r j ) n j=0 ∈ X -s n (Σ). Define φ ∈ H 1 loc (R 3 ) as the unique solution to

φ ∈ W 1 (R 3 ), ˆR3 µ∇φ • ∇vdx = n j=0 µ j ˆΓj r j γ j d (v)dσ ∀v ∈ W 1 (R 3 ). ( 21 
)
According to Corollary 1, we actually have φ ∈ H 3/2-s loc (R 3 ). Define r = (r j ) n j=0 by r j := µ j (r jγ j n (φ)). Applying a Green's formula in [START_REF] Greengard | Stable and accurate integral equation methods for scattering problems with multiple material interfaces in two dimensions[END_REF] and using density of

H 1 comp (R 3 ) into H 1/2+s comp (R 3 ) for s < 1/2, we obtain n j=0 ´Γj r j γ j d (v)dσ = 0 for all v ∈ H 1/2+s comp (R 3
). According to [START_REF] Claeys | Multi-trace boundary integral equations[END_REF] and Lemma 2, this implies that r ∈ X -s n (Σ). Next Proposition 2 shows that

γ k n • DL j (γ j d (φ)) + γ k n • SL j (γ j n (φ)) = 0 for j = k γ j n (φ) for j = k (22) 
Sum equations [START_REF] Hackbusch | Integral equations[END_REF] for j = 0 . . . n. The terms associated to the single layer potential DL j cancel out, as a consequence of Proposition 3, since (γ

j d (φ)) n j=0 ∈ X 1-s d (Σ) since φ ∈ H 3/2-s loc (R 3
) by construction. Noting that (γ j n (φ)) n j=0 = r -I 1/µ (r ), we are left with

r -I 1/µ (r ) = M n • (r -I 1/µ (r )) ⇒ (Id -M n ) • I 1/µ (r ) = r -M n (r).
There only remains to observe that, according to Corollary 2, we have M n (r) = 0, since r ∈ X -s n (Σ). Moreover, as r ∈ X -s n (Σ) by construction, this ends the proof.

Reduction to interfaces

In this section, we wish to rewrite Formulation [START_REF] Dahlberg | On the Poisson integral for Lipschitz and C 1 -domains[END_REF] in a more explicit manner. We will need the following additional, yet mild, assumption concerning the geometrical setting.

Assumption 71 For any pair j, k ∈ {0, . . . n}, the interface Γ j ∩ Γ k is either empty, or it is a point, or a Lipschitz curve of strictly positive length, or it is a Lipschitz two dimensional manifold with Lipschitz boundary and strictly positive surface measure.

Note that, in the case of j = k we have Γ j ∩ Γ k is Lipschitz manifold (with no boundary). In this assumption the length and surface measure are the intrinsic ones induced by the ambient volume Lebesgue measure. In the case where Γ j ∩ Γ k is a non trivial Lipschitz two dimensional manifold, we shall simply write "area(Γ j ∩ Γ k ) > 0". In practice, the assumption above is systematically satisfied, e.g., whenever each Ω j is a curvilinear polyhedron.

According to Theorem 3.33 and Theorem 3.40 of [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF], with this assumption and in the case that s ∈ (-1/2, +1/2), on the boundary of any subdomain we can decompose trace spaces as follows

If |s| < 1/2, v ∈ H s (Γ j ) ⇐⇒ v| Γj ∩Γ k ∈ H s (Γ j ∩ Γ k ) ∀k = 0 . . . n such that area(Γ j ∩ Γ k ) > 0. ( 23 
)
In other words, to guarantee a sufficient regularity of a trace function on Γ j , it suffices to examine its regularity on each interface. It is important to note that [START_REF] Hardy | Inequalities[END_REF] does not hold for |s| ≥ ±1/2 and in particular not for s = ±1/2. Observation (23) leads us to introduce a decomposition of the skeleton into interfaces.

Σ = ∪ J∈I Γ J where Γ J := Γ J+ ∩ Γ J-with I := { J = (J -, J + ) ∈ {0, . . . n} 2 | J -< J + and Γ J+ ∩ Γ J-is a non-trivial Lipschitz manifold }. (24) 
For any interface let us denote •, • ΓJ the duality pairing between H s (Γ J ) and H -s (Γ J ) for |s| < 1/2. As a consequence of [START_REF] Hardy | Inequalities[END_REF], each •, • Γj is naturally decomposed into a sum of such interface duality pairings. Now pick arbitrary u = (u j ) n j=0 ∈ H +s (Σ), v = (v j ) n j=0 ∈ H -s (Σ), and let us rewrite u, v according to decomposition [START_REF] Harrington | Boundary integral formulations for homogeneous material bodies[END_REF]. For each s ∈ (-1/2, 1/2), using the parallelogram identity, the global duality pairing decomposes as follows

u, v = n j=0 u j , v j Γj = J∈I u J+ , v J+ ΓJ + u J-, v J-ΓJ = J∈I 2 {u J }, {v J } ΓJ + [u J ], [v J ] ΓJ /2 ∀u ∈ H +s (Σ), ∀v ∈ H -s (Σ) setting {u J } := (u J+ + u J-)/2 and [u J ] := u J+ -u J-. (25 
) For an arbitrary u ∈ H -s (Σ), 0 < s < 1/2, we have {u J } = 0 ∀J ∈ I if and only if u = (u j ) n j=0 ∈ X -s n (Σ). Similarly, for any u ∈ H +s (Σ), 0 < s < 1/2 we have [u J ] = 0 ∀J ∈ I if and only if u = (u j ) n j=0 ∈ X +s d (Σ). In addition, note that X +s d (Σ) and X -s n (Σ) have only been defined for s ∈ (0, 1), see ( 9)-(10), however the previous observations suggest a natural extension of these definitions for s ∈ (-1/2, 0]. Routine calculus allows to verify the following lemma.

Lemma 3

For any s ∈ (-1/2, +1/2), the jump operator u = (u j ) n j=0 → ([u J ]) J∈I continuously maps H s (Σ) onto Π J∈I H s (Γ J ). Its kernel will be denoted X s d (Σ), and it is a closed subspace of H s (Σ).

Similarly, for s ∈ (-1/2, +1/2), the operator u = (u j ) n j=0 → ({u J }) J∈I continuously maps H s (Σ) onto Π J∈I H s (Γ J ). Its kernel will be denoted X s n (Σ). For any u ∈ H s (Σ) we have thus

u ∈ X s d (Σ) ⇐⇒ [u J ] = 0 ∀J ∈ I, u ∈ X s n (Σ) ⇐⇒ {u J } = 0 ∀J ∈ I.
Let us emphasise that the definition of X +s d (Σ) and X -s n (Σ) provided by Lemma 3 is consistant with ( 9)-( 10) for the case s ∈ (0, 1/2), and it extends these definitions to the case s ∈ (-1/2, 0]. Straightforward algebraic calculus based on (25) yield the following result.

Corollary 3

For any s ∈ (-1/2, +1/2) we have

H s (Σ) = X s d (Σ) ⊕ X s n (Σ).
With the definitions provided by Lemma 3, for |s| < 1/2, the space X -s d (Σ) can be considered as dual to X +s d (Σ), and X -s n (Σ) dual to X +s n (Σ). Based on the previous corollary, it is natural to consider Formulation [START_REF] Dahlberg | On the Poisson integral for Lipschitz and C 1 -domains[END_REF] with the choice Y s (Σ) = X s n (Σ). Assuming that g n ∈ X -s n (Σ) for some s ∈ [s , 1/2) where s is as in Theorem 1 (here in particular s < 1/2 is assumed), it then simply writes as follows

Find p ∈ X -s n (Σ) such that (Id -M n ) • I 1/µ (p), v = g n , v ∀v ∈ X +s n (Σ). ( 26 
)
In this formulation, what comes into play is the bilinear form u, v → I 1/µ (u), v with u ∈ X +s n (Σ), v ∈ X -s n (Σ) with s ∈ [s , 1/2), and not just u, v . Since u J± = ±[u J ]/2 whenever u = (u j ) n j=0 ∈ X s n (Σ), this bilinear form decomposes as

I 1/µ (u), v = n j=0 1 µ j u j , v j Γj = J∈I 1 µ J+ u J+ , v J+ ΓJ + 1 µ J- u J-, v J-ΓJ = J∈I 1 2 {µ -1 J } [u J ], [v J ] ΓJ ∀u ∈ X -s n (Σ), ∀v ∈ X +s n (Σ)
where {µ -1

J } := (µ -1 J+ + µ -1 J-)/2. ( 27 
)

Decomposition of potentials

We can perform a similar decomposition on the multi-potential operator from [START_REF] Coifman | L'intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes[END_REF]. Indeed for |s| < 1/2, and for any u = (u j ) n j=0 ∈ X s n (Σ), we have

n j=0 1 µ j SL j (u j )(x)= J∈I 1 µ J+ SL J (u J+ )(x) + 1 µ J- SL J (u J-)(x)= J∈I 1 2 [µ -1 J ] SL J ([u J ])(x) , (28) 
where [µ -1 J ] :=

1 µ J+ - 1 µ J- and SL J (p)(x) := ˆΓJ p(y)dσ(y) 4π|x -y| .
Considering H s (Γ J ) as a subspace of H s (Γ J+ ) or H s (Γ J-), the defintion of SL J makes sense according to [START_REF] Hardy | Inequalities[END_REF]. Moreover it continuously maps H s (Γ J ) into H s+3/2 (∆, Ω J± ) according to [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]Thm.1]. Next fix an arbitrary Q ∈ I and observe that, for any J ∈ I, we have (γ

J+ n + γ J- n ) • SL Q (p) = 0 on Γ J if J = Q, and (γ Q+ n + γ Q- n ) • SL Q (p) = p on Γ Q , for all p ∈ H s (Γ Q ).
As a consequence, taking account of (28) for the expression of M n , for any |s| < 1/2, any u = (u j ) n j=0 ∈ X -s n (Σ) and any v = (v j ) n j=0 ∈ X +s n (Σ) we have

M n • I 1/µ (u), v = Q∈I 1 2 [µ -1 Q ] n j=0 γ j n • SL Q ([u Q ]), v j Γj = Q∈I 1 2 [µ -1 Q ] J∈I γ J+ n • SL Q ([u Q ]), v J+ ΓJ + γ J- n • SL Q ([u Q ]), v J-ΓJ = Q∈I J∈I 1 2 [µ -1 Q ] {γ J n } • SL Q ([u Q ]), [v J ] ΓJ (29) 
where we have used the notations {γ J n }•ψ := (γ

J+ n (ψ)-γ J- n (ψ))/2 and [µ -1 Q ] := µ -1 Q+ -µ -1 Q-.
The potential operators {γ J n }•SL Q admit a very explicit expression as a Cauchy principal value integral

{γ J n } • SL Q (p)(x) := lim →0 ˆΓQ\B (x) n J+ (x) • (y -x) 4π|y -x| 3 p Q (y)dσ(y) ∀x ∈ Γ J
where n J+ refers to the normal vector to Ω J+ directed toward the exterior of Ω J+ . Combining ( 27) with ( 28) and ( 29), we finally obtain: for |s| < 1/2 and for all u ∈ X -s n (Σ), v ∈ X +s n (Σ), we have

(Id -M n ) • I 1/µ (u), v = J∈I 1 2 {µ -1 J } [u J ], [v J ] Γ J - Q∈I J∈I 1 2 [µ -1 Q ] {γ J n } • SL Q ([u Q ]), [v J ] ΓJ = J∈I {µ -1 J } p J , q J Γ J - Q∈I J∈I [µ -1 Q ] {γ J n } • SL Q (p Q ), q J ΓJ with p J := [u J ] and q J := [v J ]/2. ( 30 
)

Final reformulation

Analogous calculus can be achieved for reducing the right hand side in [START_REF] Hiptmair | Betl a generic boundary element template library[END_REF], taking account that g n ∈ X -s n (Σ) for some s ∈ [s , 1/2). Formulation ( 26) is then ultimately reduced to the following

Find p = (p J ) ∈ Π J∈I H -s (Γ J ) such that J∈I {µ -1 J } p J , q J Γ J - Q∈I J∈I [µ -1 Q ] {γ J n } • SL Q (p Q ), q J ΓJ = J∈I [g J ], q J ΓJ ∀q = (q J ) ∈ Π J∈I H +s (Γ J ).
(31) In accordance with (28), if p = (p J ) J∈I is solution to Formulation [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF], then the function

u(x) = 1 2 J∈I [µ -1 J ]SL J (p J )(x) , x ∈ R 3 \ Σ ( 32 
)
is the solution of Problem (1). Of course, since we only transformed ( 26) by means of elementary algebraic manipulations, (31) admits a unique solution, and the operator associated to the bilinear form in the left hand side isomorphically maps

Π J∈I H -s (Γ J ) into Π J∈I H -s (Γ J ).
Remark 2 In Formulation (31) the solution for p provides the normal normal flux of the solution u of the transmission problem (3) on interfaces. Thus, [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF] qualifies as a direct boundary integral equation. Dirichlet traces of u on interfaces have to be recovered through [START_REF] Miller | Integral equation solutions of three-dimensional scattering problems[END_REF].

Formulation in square integrable function spaces

The space of square integrable functions is a more natural and convenient functional setting when considering boundary integral equations of the second kind. It is indeed a well established result, see [START_REF] Coifman | L'intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes[END_REF][START_REF] Verchota | Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains[END_REF][START_REF] Coifman | Two elementary proofs of the L 2 boundedness of Cauchy integrals on Lipschitz curves[END_REF], that the Dirichlet trace of the double layer potential continuously maps square integrable traces to square integrable traces. The next proposition is a direct application of [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF]Thm.1].

Proposition 6

For any j = 0 . . . n, the operators γ j n •SL j and

γ j d •DL j continuously map L 2 (Γ j ) into L 2 (Γ j ).
We wish to show that ( 19) can be reformulated choosing square integrable trial and test functions. In the present context, we need to consider maps of the form γ k n • SL j for k = j, but also for k = j. Hence a natural question is wether such a continuity result as Proposition 6 holds also for k = j. This clearly holds whenever Γ j ∩ Γ k = ∅ due to the regularity of the Green kernel G (x) = 1/(4π|x|) for x = 0. Conversely, it is not obvious, if Γ j ∩ Γ k = ∅, even if Γ j and Γ k have only an edge in common.

To study this problem we resort on a result of Dahlberg [19,Thm.1] For any x ∈ O the mapping f → P(O, f )(x) is a continuous functional on C 0 (∂O) which, due to Riesz representation theorem [START_REF] Rudin | Real and complex analysis[END_REF]Thm.6.19], is associated to the so-called harmonic measure dω(O, x) on ∂O via the formula

P(O, f )(x) = ˆ∂O f dω(O, x) ∀x ∈ O.
Precise description of harmonic measures associated to Lipschitz domains in terms of Green functions were provided in [START_REF] Dahlberg | Estimates of harmonic measure[END_REF]Thm.3]. The result below, established in [19, Thm.1], bounds harmonic measures inside its domain of definition. We do not formulate this theorem in full generality, but restate it so as to fit our present problem.

Theorem 2

Let Ω ⊂ R 3 be a bounded Lipschitz domain. Let m refer to any positive measure on Ω, such that lim sup r→0 r -2 m(B r (x) ∩ Ω) < +∞ for all x ∈ ∂Ω. Then there exists a constant C > 0 such that

ˆΩ |P(Ω, f )| 2 dm ≤ C f 2 L 2 (∂Ω) ∀f ∈ L 2 (∂Ω).
In this theorem B r (x) is the ball of radius r centred at x, and L 2 (∂Ω) refers to the classical space of (almost everywhere defined) square integrable functions with respect to the surface Lebesgue measure on ∂Ω. In Theorem 2 the measure m does not necessarily refer to the classical Lebesgue measure on R 3 that actually satisfies the stronger estimate lim sup r→0 r -3 m(B r (x) ∩ Ω) < +∞.

Here, we are more interested in the case where m is related to the surface measure of the subdomains Ω j .

Proposition 7

The operator

γ j d • DL k continuously maps L 2 (Γ k ) into L 2 (Γ j ) ∀j, k = 0 . . . n.

Proof:

The case j = k is already covered by Proposition 6. On the other hand, the case where Γ j ∩ Γ k = ∅ is trivial. So we only need to concentrate on the case where

Γ j ∩ Γ k = ∅ and Ω j = Ω k .
Let B refer to an open ball such that ∪ n j=1 Ω j ⊂ B. Denote σ j the surface Lebesgue measure on Γ j and let m j refer to the unique Borel measure on R 3 satisfying m j (U ) := σ j (Γ j ∩ U ) for all open sets U ⊂ R 3 . Fix j, k arbitrarily, and set Ω j = B \ Ω j and Γ j = Γ j ∪ ∂B = ∂Ω j . Since obviously lim sup r→0 r -2 m k (B r (x) ∩ Ω j ) ≤ lim sup r→0 r -2 m k (B r (x)) < +∞, we can apply Theorem 2 with the choice Ω = Ω j and m = m k , which yields

ˆΓk \Γj |P(Ω j , f )| 2 dσ k ≤ C j,k f 2 L 2 (Γ j ) ∀f ∈ L 2 (Γ j ).
This estimate shows in particular that, if u ∈ H 1 (Ω j ) satisfies ∆u = 0 in Ω j , then f = u| Γ j ∈ H 1/2 (Γ j ) ⊂ L 2 (Γ j ) and we have P(u| Γ j , Ω j ) = u in Ω j . This leads to

u 2 L 2 (Γ k ) ≤ (1 + C j,k ) u 2 L 2 (Γ j ) ∀u ∈ H 1 (Γ j ) satisfying ∆u = 0 in Ω j .
Now consider the particular choice u = DL j (p) for some p ∈ H 1/2 (Γ j ). Clearly DL j (p) L 2 (∂B) ≤ C j p L 2 (Γj ) ∀p ∈ H 1/2 (Γ j ) for some fixed constant C j > 0 that only depends on j, due to the regularity of the Green kernel, since Γ j ∩ ∂B = ∅. This finally leads to the existence of a constant C > 0 such that

γ k d • DL j (p) L 2 (Γ k ) ≤ C p L 2 (Γj ) ∀p ∈ L 2 (Γ j ).
It is important to note that the previous proposition holds even if Γ j ∩ Γ k = ∅ and Γ j = Γ k . A comparable continuity result also holds for the single layer potential.

Corollary 4

The operator

γ j n • SL k continuously maps L 2 (Γ k ) into L 2 (Γ j ) ∀j, k = 0 . . . n
Proof:

We will rely on the formal adjointness of

γ j n • SL k with -γ k d • DL j . Let O be an open set such that Γ j ∩ Γ k ⊂ O. Consider two functions u ∈ L 2 (Γ j ) and v ∈ L 2 (Γ k ), such that u = 0 on Γ j ∩ O.
Due to the regularity of the Green kernel we have

γ j n • SL k (v), u Γj = ˆΓj\Γk ˆΓk n j (x) • (y -x) 4π|y -x| 3 v(y)dσ k (y) u(x)dσ j (x) = - ˆΓk ˆΓj\Γk n j (x) • (x -y) 4π|y -x| 3 u(x)dσ j (x) v(y)dσ k (y) = -v, γ k d • DL j (u) Γ k
From this, together with Proposition 7, we obtain the existence of a constant

C > 0 not depending on O such that | γ j n •SL k (v), u Γj | ≤ C u L 2 (Γj ) v L 2 (Γ k )
. Since the constant C does not depend on O, using dominated convergence theorem, we conclude that

| γ j n • SL k (v), u 1 Γj \Γ k Γj | ≤ C u L 2 (Γj ) v L 2 (Γ k ) ∀u ∈ L 2 (Γ j ), ∀v ∈ L 2 (Γ k ).
Next on Γ j ∩ Γ k , we have

γ j n = -γ k n,c . Since γ k n,c • SL k = -Id + γ k n • SL k continuously maps L 2 (Γ k ) into L 2 (Γ k ) according to Proposition 6, we conclude that 1 Γj ∩Γ k γ j n • SL k continuously maps L 2 (Γ k ) into L 2 (Γ j ).
To finish the proof, observe that any function u ∈ L 2 (Γ j ) can be decomposed as u = u 1 Γj \Γ k + u 1 Γj ∩Γ k .

The continuity results established above suggest that we consider Formulation [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF] in the framework of square integrable traces. Define

L 2 (Σ) := L 2 (Γ 0 ) × • • • × L 2 (Γ n ) with v 2 L 2 (Σ) = v 0 2 L 2 (Γ0) + • • • + v n 2 L 2 (Γn)
and L 2 (Σ) :

= {v = (v j ) n j=0 ∈ L 2 (Σ) | v j = v k on Γ j ∩ Γ k ∀j, k }
The set L 2 (Σ) is the space H s (Σ) for s = 0. As such, it is equipped with the pairing , , and (u, v) L 2 (Σ) = u, v is the scalar product associated with the norm L 2 (Σ) . Moreover L 2 (Σ) ⊂ L 2 (Σ) is a closed subspace. The singletrace space admits a natural counterpart in this new setting. Observe indeed that L

2 (Σ) = L 2 (Σ) ∩ X -s d (Σ) and L 2 (Σ) ⊥ = L 2 (Σ) ∩ X -s n (Σ) ∀s ∈ [0, 1/2)
where L 2 (Σ) ⊥ refers to the space orthogonal to L 2 (Σ) with respect to the scalar product ( , ) L 2 (Σ) . As regards the multi-potential operator involved in the boundary integral formulation ( 16), we have a continuity result as a direct application of Corollary 4. This operator also satisfies Corollary 2 and Proposition 4 in this new setting.

Proposition 8

The operator M n continuously maps L 2 (Σ) into L 2 (Σ). We have (Id -M n )p, v = 0 ∀p ∈ L 2 (Σ), ∀v ∈ L 2 (Σ). Moreover for any p ∈ L 2 (Σ) we have M n (p) = 0, if and only if p ∈ L 2 (Σ) ⊥ . Since X s d (Σ) is dense in L 2 (Σ), the first part of the proof is obtained directly by combining Proposition 4 with this density result. The second part results from algebraic manipulations like for Corollary 2.

Proposition 9

Assume that the solution u ∈ H 1 loc (R 3 ) to Problem (1) satisfies γ j n (u) ∈ L 2 (Γ j ) for all j = 0 . . . n. Then the tuple p = (p j ) n j=0 ∈ L 2 (Σ) defined by p j = µ j γ j n (u) solves

p ∈ L 2 (Σ) ⊥ and (Id -M n )I 1/µ (p), v = g n , v ∀v ∈ L 2 (Σ) ⊥ . ( 33 
) Proof: Since u ∞ ∈ H 2 loc (R 3 ), we have g j := γ j n (u ∞ ) ∈ L 2 (Γ j ). Hence g n = (g j ) n j=0 ∈ L 2 (Σ) ⊥ = L 2 (Σ)∩X -1/2 (Σ). Also we know that p ∈ X -1/2 n (Σ) since L 2 (Σ) ⊥ ⊂ X -1/2 n
(Σ). Thus, according to [START_REF] Costabel | Boundary integral operators on Lipschitz domains: elementary results[END_REF], it satisfies (Id -M n )I 1/µ (p), v = g n , v ∀v ∈ H 1/2 (Σ). Then since g n ∈ L 2 (Σ), and (Id -M n )I 1/µ (p) ∈ L 2 (Σ) according to Proposition 8, and since H 1/2 (Σ) is dense in L 2 (Σ) for the norm L 2 (Σ) , we conclude that

(Id -M n )I 1/µ (p), v = g n , v ∀v ∈ L 2 (Σ). (34) 
Next (Id-M n )I 1/µ (p) ∈ L 2 (Σ) ⊥ according to Proposition 8, and g n ∈ L 2 (Σ) ⊥ . As a consequence (34) yields the trivial equation "0 = 0" when choosing v ∈ L 2 (Σ). So it is sufficient to consider v ∈ L 2 (Σ) ⊥ .

Galerkin discretisation

We confine ourselves to subdomains that are curvilinear Lipschitz polyhedra, which covers most shapes occurring in engineering designs. Galerkin boundary element discretisation of ( 31) is based on a mesh partition of the skeleton Σ that resolves the interfaces in the following sense: each interface Γ J , J ∈ I, is partitioned into curvilinear polygons τ , called elements, such that Γ J = ∪ τ ∈T(ΓJ) τ , where T(Γ J ) is the "interface mesh", that is, the set of all elements paving Γ J . Then the skeleton mesh T(Σ) is the union of all these interface meshes. The interface meshes can be fairly arbitrary. In particular, "hanging nodes" are not excluded.

As finite-dimensional subspaces H h n (Γ J ) of H -s (Γ J ) and H +s (Γ J ) alike we choose spaces of discontinuous piecewise polynomials on the mesh T(Γ J ). The degree of these polynomials can vary between different elements. Taking the product of all these interface boundary element spaces yields the final trial and test space H h n (Σ). Proposition 5 asserts existence and uniqueness of solutions of the second kind boundary integral equation [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF], but for want of compactness of the operator M n : X -s n (Σ) → X -s n (Σ) this does not imply well-posedness of the discrete variational problem, regardless of the resolution of the boundary element spaces: the numerical analysis of the discretised BIE remains an open problem. Yet, strong empirical evidence given in Section 10 bolsters our conjecture that Galerkin boundary element discretisation is uniformly stable in L 2 (Σ):

Conjecture 1 Let B(•, •) stand for bilinear form of the variational BIE [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF]. Then we assume that sup

q h ∈H h n (Σ) B(p h , q h ) q h L 2 (Σ) ≥ c p h L 2 (Σ) ∀p h ∈ H h n (Σ) ,
with c > 0 independent of discretisation parameters like meshwidth and (local) polynomial degree.

Firstly, if we take this assumption for granted, then, thanks to the L 2 (Σ)continuity result of Proposition 8, we can conclude quasi-optimality of Galerkin solutions.

Secondly, Conjecture 1 permits us to predict the conditioning of Galerkin matrices for [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF]. Let us assume that we employ an L 2 (Σ)-orthonormal basis of H h n (Σ). For these boundary element spaces it takes merely rescaling and local orthogonalisation to build such a basis. Then, again appealing to the L 2 (Σ)-continuity result of Proposition 8 and Conjecture 1, we can conclude the following:

Proposition 10

If Conjecture 1 holds true, the Euclidean condition numbers of Galerkin matrices arising from the boundary element discretisation of (31) are bounded from above and below independently of the trial/test space H h n (Σ), provided that L 2 (Σ)-orthonormal bases are used.

Numerical experiments

We report two numerical experiments that demonstrate the performance of a Galerkin boundary element discretisation of Formulation [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF] for the numerical solution to Problem (1). We concentrate on geometrical configurations featuring junction edges, i.e., edges where at least three subdomains abut. We compare the single-trace second kind Formulation [START_REF] Mercier | Minimal regularity of the solutions of some transmission problems[END_REF] with the so-called direct single-trace first kind approach, described in detail in [9, Section 3], and its Galerkin boundary element discretisation.

For both schemes we rely on conforming, uniformly shape-regular and quasi-uniform skeleton meshes T(Σ) with flat triangular elements. The Galerkin discretisation of ( 31) is based on piecewise constant discontinuous functions on T(Σ). The same space is used for the approximation of Neumann traces in the first kind STF, whereas for Dirichlet traces we rely on piecewise linear continuous boundary element spaces on T(Σ). Our choice of meshes necessarily involves an approximation of curved interfaces, which should not compromise overall accuracy according to [START_REF] Sauter | Boundary element methods[END_REF]Chapter 8].

All experiments were carried out with the C++ boundary element template library (BETL, [START_REF] Hiptmair | Betl a generic boundary element template library[END_REF]). (Nearly) singular integrals were regularised by transformation [START_REF] Sauter | Boundary element methods[END_REF]Chapter 5] and then evaluated by highly accurate numerical quadrature, which ensures that quadrature errors are negligible. The surface meshes were generated using GMSH [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with builtin pre-and post-processing facilities[END_REF].

Experiment I

In this first experiment we consider a geometrical configuration where space is partitioned in three subdomains

R 3 = Ω 0 ∪ Ω 1 ∪ Ω 2 , with Ω 1 = {x = (x 1 , x 2 , x 3 ) ∈ R 3 , |x| < 1/2 and x 3 > 0 }, and Ω 2 = {x = (x 1 , x 2 , x 3 ) ∈ R 3 , |x| < 1/2 and x 3 < 0 }.
The geometry is depicted in Figure 1. Regarding the material coefficient µ we choose the values µ 0 = 5, µ 1 = 1 and µ 2 = 7, and u ∞ (x) = sin(x 1 ) sinh(x 2 ), x = (x 1 , x 2 , x 3 ) ∈ R 3 . For the computation of the error, the reference solution was taken to be the numerical solution of the second kind STF obtained on an even finer mesh obtained with one additional step of global refinement. We observe algebraic convergence with the same rates and comparable accuracy of both methods.

Ω 0 Ω 1 Ω 2 Γ 1,0 Γ 2,0 Γ 1,2
For these results, the H -1/2 (Γ j )-norm was approximated using the Galerkin This suggests good convergence of linear iterative solvers applied to the second kind STF, which is confirmed by the plots of Figure 4. The Galerkin matrices for the second kind STF enjoy much better conditioning, and the condition numbers remain stable with respect to the meshwidth, while the condition numbers for the first kind STF deteriorate as h → 0. This is reflected by the behaviour of GMRES iterations.

Experiment II

Now we consider a partition of space with one more subdomain R 3 = Ω 0 ∪ Ω 1 ∪ Ω 2 ∪ Ω 3 , with Ω 1 = {x = (x 1 , x 2 , x 3 ) ∈ R 3 , |x| < 1/2 and x 3 > 0 }, Ω 2 = {x = (x 1 , x 2 , x 3 ) ∈ R 3 , |x| < 1/2 and x 3 < 0 }, and Ω 3 = Q \ Ω 2 with Q := (-0.7, +0.7) × (-0.7, +0.7) × (0, 0.7). We choose µ 0 = 5, µ 1 = 1, µ 2 = 7 and µ 3 = 3. The excitation field is the same as before u ∞ (x) = sin(x 1 ) sinh(x 2 ), x = (x 1 , x 2 , x 3 ) ∈ R 3 . The geometry is represented in Figure 5.

We report the same quantities as in Experiment I and make the same observations in Figures 10.2-10.2: The accuracy of both methods is comparable, Well-posedness of the BIE in low-regularity Sobolev spaces could be established. In numerical tests boundary element Galerkin discretisation led to wellconditioned linear systems and yielded satisfactory approximate solutions, but its numerical analysis remains wide open.
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Fig. 2

 2 Fig. 2 Experiment I: Convergence of 2nd-kind and 1st-kind STF. The error curves are annotated with estimated convergence rates in terms of h -1 .

Figure 3 Fig. 3

 33 Figure3displays the spectra obtained when solving the generalised eigenvalue problem for the Galerkin matrices and mass matrices. Here and in the sequel, N T refers to the number of triangles of the mesh. They can be viewed as approximations of the spectrum of the continuous operators. While in the case of the first kind STF many eigenvalues cluster in a neighbourhood of 0, in the case of the second kind STF the eigenvalues remain nicely separated from the origin.
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  ∂ω can be extended by continuity to an operator mapping H loc (div, ω) onto H -1/2 (∂ω). We shall actually need a sharper version of this continuity result.

	Lemma 1	
	Consider any Lipschitz open set ω ⊂ R 3 with bounded boundary, denoting n the normal vector field to ∂ω. For any s ∈ (-1/2, +1/2) the normal flux operator p → n•p| ∂ω extends as a linear operator mapping continuously and surjectively H s loc (div, ω) onto H s-1/2 (∂ω), and it is characterised by the Green's formula
	ˆω p•∇v +v div(p) dx = v| ∂ω , n•p| ∂ω	∀p ∈ H s loc (div, ω), ∀v ∈ H 1-s comp (ω).

1/2+s 

(∂ω) for s ∈ (-1/2, 1/2). We remind (see e.g.

[START_REF] Sauter | Boundary element methods[END_REF] Thm 2.7.7]

) that the normal flux trace p → n•p|

Throughout we use standard notations for Sobolev spaces as found, for instance, in[START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF].
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