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Introduction

Local multi-trace operators arise when one uses a particular integral formulation for a transmission problem. A transmission problem for a second order elliptic operator is a problem defined on a domain which is decomposed into non-overlapping subdomains, but instead of imposing the continuity of the traces of the solution and their normal derivative along the interfaces between the subdomains, given jumps are imposed along the interfaces. The solution of a transmission problem is thus naturally discontinuous along the interfaces, and hence a domain decomposition formulation is imposed by the problem.

A local multi-trace formulation represents the solution in each subdomain using an integral formulation, and couples these solutions imposing the given jumps in the traces of the solution and the normal derivatives along the interfaces (hence the name multi-trace). This formulation was introduced in [START_REF] Hiptmair | Multiple traces boundary integral formulation for Helmholtz transmission problems[END_REF] to tackle transmission problems for the Helmholtz equation, where the material properties are constant in each subdomain, see also [START_REF] Claeys | Electromagnetic scattering at composite objects: a novel multi-trace boundary integral formulation[END_REF][START_REF] Claeys | Multi-trace boundary integral formulation for acoustic scattering by composite structures[END_REF], and [START_REF] Claeys | A second-kind Galerkin boundary element method for scattering at composite objects[END_REF] for associated boundary integral methods. Multi-trace formulations lead naturally to block preconditioners, see [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF]. In [START_REF] Dolean | Multitrace formulations and Dirichlet-Neumann algorithms[END_REF], a simple introduction to local multitrace formulations is given in the language of domain decomposition, and it is shown that these block preconditioners are equivalent to the simultaneous application of a Dirichlet-Neumann and a Neumann-Dirichlet method to the transmission problem. Block preconditioners based on multi-trace formulations have also the potential to lead to nil-potent iterations, a more recent area of research in domain decomposition [START_REF] Chaouqui | On nilpotent subdomain iterations[END_REF], and it was shown that for two subdomains, they correspond to optimal Schwarz methods, see [START_REF] Claeys | An Introduction to Multitrace Formulations and Associated Domain Decomposition Solvers[END_REF].

Universié Pierre et Marie Curie, and INRIA Paris, France claeys@ann.jussieu.fr • University of Strathclyde, Glasgow, United Kingdom Victorita.Dolean@strath.ac.uk • University of Geneva, Switzerland martin.gander@unige.ch We are interested here in the inverse of local multi-trace operators. We exhibit a closed form of this inverse for a model problem with three subdomains in the special case where the coefficients are homogeneous. An essential ingredient to obtain this closed form inverse are several remarkable identities which were recently discovered, see [START_REF] Claeys | An Introduction to Multitrace Formulations and Associated Domain Decomposition Solvers[END_REF]. We illustrate our findings with a numerical experiment that shows that discretizing the closed form inverse gives indeed and approximate inverse of the discretized local multi-trace operator.

Local Multi-Trace Formulation

We start by introducing the local multi-trace formulation for a model problem. Consider a partition of the space R d = Ω 0 ∪Ω 1 ∪Ω 2 as shown in Figure 1. We assume that Ω j , j = 0, 1, 2 are Lipschitz domains such that Ω j ∩ Ω k = ∅ for j = k. Denoting by Γ j := ∂Ω j , we assume in addition that Γ 1 ∩ Γ 2 = ∅ and Γ 0 = Γ 1 ∪ Γ 2 . Let n j be the unit outer normal for Ω j on its boundary Γ j . For a sufficiently regular function v we denote by v| + Γj the trace of v and by ∂ nj v| + Γj the trace of n j • ∇v on Γ j taken from inside of Ω j . Similarly we define v| - Γj and ∂ nj v| - Γj but with traces from outside of Ω j . The elliptic transmission problem for which we want to study the local multi-trace formulation and its inverse is:

find u ∈ H 1 (R d ) such that -∆u + a 2 j u = 0 in Ω j , j = 0, 1, 2, [u] Γ1 = g 1 , [u] Γ2 = g 2 , [∂ n u] Γ1 = h 1 , [∂ n u] Γ2 = h 2 , (1) 
where a j > 0 for j = 0, 1, 2, g j ∈ H +1/2 (Γ j ) and h j ∈ H -1/2 (Γ j ) are given data of the transmission problem, and we used the classical jump notation for the Dirichlet and Neumann traces of the solution across the interfaces

Γ j , j = 1, 2, i.e. [u] Γj := u| + Γj -u| - Γj and [∂ n u] Γj := ∂ nj u| + Γj -∂ nj u| - Γj .
Following [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF], this problem can be rewritten as a boundary integral local multi-trace formulation, using the Calderón projector: let H(Γ j ) := H 1/2 (Γ j ) × H -1/2 (Γ j ); then for (g, h) ∈ H(Γ j ), the Calderón projector P j : H(Γ j ) → H(Γ j ) interior to Ω j associated to the operator -∆ + a 2 j is defined by

P j (g, h) := (v| + Γj , ∂ nj v| + Γj ) where v satisfies -∆v + a 2 j v = 0 in Ω j and in R d \ Ω j , [v] Γj = g and [∂ n v] Γj = h,
and lim sup |x|→∞ |v(x)| < +∞, and P j is known to be a continuous map, see [START_REF] Sauter | Boundary element methods[END_REF]. The decomposition Γ 0 = Γ 1 ∪ Γ 2 induces a natural decomposition of P 0 in the following manner: for any

U ∈ H(Γ 0 ) set ρ j (U ) := U | Γj ∈ H(Γ j ), j = 1, 2. In addition, for any V ∈ H(Γ j ), j = 1, 2, define ρ * j (V ) ∈ H(Γ 0 ) by ρ * j (V ) = V on Γ j and ρ * j (V ) = 0 on Γ 0 \ Γ j .
Then the projector P 0 can be decomposed as

P 0 = P1 R 1,2 /2 R 2,1 /2 P2 , where Pj := ρ j • P 0 • ρ * j , R j,k /2 := ρ j • P 0 • ρ * k .
The operators Pj :

H(Γ j ) → H(Γ j ) and R j,k : H(Γ k ) → H(Γ j ) are continuous.
Following this decomposition, we identify H(Γ 0 ) with H(Γ 1 )×H(Γ 2 ). We also introduce the sign switching operator X(v, q) := (v, -q), and a relaxation parameter σ ∈ C\{0}. The local multi-trace formulation of problem ( 1) is then: find (U 1 , U

(0) 2 , U 2 ) ∈ H(Γ 1 ) 2 × H(Γ 2 ) 2 such that     (1 + σ)Id -P 1 -σX 0 0 -σX (1 + σ)Id -P1 -R 1,2 /2 0 0 -R 2,1 /2 (1 + σ)Id -P2 -σX 0 0 -σX (1 + σ)Id -P 2     •     U 1 U (0) 1 U (0) 2 U 2     = F, (0) 1 , U 
where F ∈ H(Γ 1 ) 2 × H(Γ 2 ) 2 is some right-hand side depending on g j , h j , σ whose precise expression is not important for our present study, where we want to obtain an explicit expression for the operator in (2) and its inverse for the special case

a 0 = a 1 = a 2 . (3) 
To simplify the calculations when working with the entries of the operator in (2), we set A j := -Id + 2P j and Ãj := -Id + 2 Pj . The following remarkable identities were established in [3, §4.4] for the special case (3):

P 2 j = P j , P2 j = Pj , P1 R 1,2 = P2 R 2,1 = 0, XP j X = Id -Pj , and finally R 1,2 R 2,1 = R 2,1 R 1,2 = 0.
These five properties can be reformulated in terms of the operators A j , namely

i) A 2 j = Ã2 j = Id, ii) Ã1 R 1,2 = -R 1,2 and Ã2 R 2,1 = -R 2,1 , iii) X • A j • X = -Ãj , iv) R 1,2 R 2,1 = R 2,1 R 1,2 = 0, v) R 1,2 Ã2 = R 1,2 and R 2,1 Ã1 = R 2,1 . (4) 
Let us introduce auxiliary operators A, Π : H(Γ 1 ) 2 × H(Γ 2 ) 2 defined by

A :=     A 1 0 0 0 0 Ã1 R 1,2 0 0 R 2,1 Ã2 0 0 0 0 A 2     , Π :=     0 X 0 0 X 0 0 0 0 0 0 X 0 0 X 0     . (5) 
According to property i) in ( 4), we have (Id + A) 2 /4 = (Id + A)/2, which implies the well known Calderón identity from the boundary integral equation literature, i.e.

A 2 = Id, (6) 
see for example [11, §4.4]. The local multi-trace operator on the left-hand side of Equation ( 2) can then be rewritten as

MTF loc := - 1 2 A -σΠ + (σ + 1 2 )Id. (7) 
In ( 2), the terms associated with the relaxation parameter σ, namely Id -Π, enforce the transmission conditions of problem [START_REF] Chaouqui | On nilpotent subdomain iterations[END_REF]. For σ = 0, we have MTF loc = 1 2 (Id -A), which is a projector, and MTF loc is thus not invertible. For σ = 0 however, MTF loc was proved to be invertible in [START_REF] Claeys | Essential spectrum of local multi-trace boundary integral operators[END_REF]Cor. 6.3]. The goal of the present contribution is to derive an explicit formula for the inverse of MTF loc , and we will thus assume σ = 0.

Inverse of the Local Multi-Trace Operator

We now derive a closed form inverse of the local multi-trace operator in [START_REF] Dolean | Multitrace formulations and Dirichlet-Neumann algorithms[END_REF] for the special case [START_REF] Claeys | An Introduction to Multitrace Formulations and Associated Domain Decomposition Solvers[END_REF]. Using that Π 2 = Id and (6), we obtain

[ -A/2 -σΠ + (σ + 1/2)Id ] [ -A/2 -σΠ -(σ + 1/2)Id ] = (A/2 + σΠ) 2 -(σ + 1/2) 2 Id = (σ 2 + 1/4 -σ 2 -σ -1/4)Id + σ(AΠ + ΠA)/2 = -σId + σ(AΠ + ΠA)/2. ( 8 
)
Inspired by the calculations in [3, §4.4] as well as [2, Prop. 6.1], we examine more closely AΠ + ΠA. We start by comparing AΠ and ΠA:

AΠ =     0 A 1 X 0 0 Ã1 X 0 0 R 1,2 X R 2,1 X 0 0 Ã2 X 0 0 A 2 X 0     , ΠA =     0 X Ã1 XR 1,2 0 XA 1 0 0 0 0 0 0 XA 2 0 XR 2,1 X Ã2 0     . (9)
According to Property iii) in (4), we have X Ãj +A j X = 0 and XA j + Ãj X = 0, and thus from ( 9) we obtain

ΠA + AΠ =     0 0 XR 1,2 0 0 0 0 R 1,2 X R 2,1 X 0 0 0 0 XR 2,1 0 0     .
Computing the square of this operator, and taking into account Property iv ) from ( 4), we obtain

(ΠA + AΠ) 2 =     XR 1,2 R 2,1 X 0 0 0 0 R 1,2 R 2,1 0 0 0 0 R 2,1 R 1,2 0 0 0 0 XR 2,1 R 1,2 X     = 0.
From this we conclude that (-

Id + (AΠ + ΠA)/2) -1 = -Id -(AΠ + ΠA)/2.
Coming back to [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF], we obtain a first expression for the inverse of the local multi-trace operator, namely

[ -A/2 -σΠ + (σ + 1/2)Id ] -1 = σ -1 [ A/2 + σΠ + (σ + 1/2)Id ] [Id + (AΠ + ΠA)/2] = σ -1 [ 1 2 (1 + σ)A + (σ + 1/4)Π + (σ + 1/2)(Id + (AΠ + ΠA)/2)] + σ -1 [ σ 2 ΠAΠ + 1 4 AΠA]. (10) 
The only terms that are not explicitly known yet in [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF] are the last two, ΠAΠ and AΠA. Combining (9) with Definition (5), direct calculation yields

ΠAΠ =     -A 1 0 0 XR 1,2 X 0 -Ã1 0 0 0 0 -Ã2 0 XR 2,1 X 0 0 -A 2     ,
and similarly, we also obtain

AΠA =     0 -X XR 1,2 0 -X 0 0 -R 1,2 X -R 2,1 X 0 0 -X 0 XR 2,1 -X 0     .
We have now derived an explicit expression for each term in [START_REF] Hiptmair | Domain decomposition for boundary integral equations via local multi-trace formulations[END_REF], which leads to a close form matrix expression for the inverse of the local multi-trace operator, namely

MTF -1 loc = (1 + 1 2σ )Id + 1 σ     1 2 A 1 σX σ+1 2 XR 1,2 σ 2 XR 1,2 X σX 1 2 Ã1 σ+1 2 R 1,2 σ 2 R 1,2 X σ 2 R 2,1 X σ+1 2 R 2,1 1 2 Ã2 σX σ 2 XR 2,1 X σ+1 2 XR 2,1 σX 1 2 A 2     . (11) 
The expression MTF loc •MTF -1 loc = Id should not be mistaken for the Calderón identity [START_REF] Claeys | A second-kind Galerkin boundary element method for scattering at composite objects[END_REF]. The primary difference is that (11) involves coupling terms between Ω 1 and Ω 2 , whereas in [START_REF] Claeys | A second-kind Galerkin boundary element method for scattering at composite objects[END_REF], all three subdomains are decoupled.

Numerical Experiment

We now illustrate the closed form inversion formula [START_REF] Nédélec | Acoustic and electromagnetic equations[END_REF] for the local multitrace formulation by a numerical experiment. We consider a three dimensional version of the geometrical setting described at the beginning in Figure 1.

Here Ω 1 := B(0, 0.5) is the open ball centered at 0 with radius 0.5,

Ω 2 := R 3 \[-1, +1] 3 , and Ω 0 := R 3 \ Ω 1 ∪ Ω 2 , see Figure 2.
For our numerical results, we discretize both MTF loc given by ( 7) leading to a matrix we denote by [MTF loc ], and MTF -1 loc given by ( 11) leading to a matrix denoted by [MTF -1 loc ]. Our discretization using the code bemtool 1 is based on a Galerkin method where both Dirichlet and Neumann traces are approximated by means of continuous piece-wise linear functions on the same mesh. We use a triangulation with a mesh width h = 0.35, and generated the mesh using Gmsh, see [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. Let M h be the mass matrix associated with the duality pairing used to write (2) in variational form. We represent the spectrum of the matrix M 3. We see that the eigenvalues are clustered around 1, which agrees well with our analysis at the continuous level.

-1 h • [MTF loc ]•M -1 h •[MTF -1 loc ] in Figure

Conclusions

We have shown in this paper that it is possible for the local multi-trace operator of a model transmission problem to obtain a closed form for the inverse. This would therefore be an ideal preconditioner for local multi-trace formulations. We are currently investigating if such closed form inverses are also possible for more general situations, where the coefficients are only constant in each subdomain, and in the presence of more subdomains. The closed form inverse seems to be inherent to the formulation, and not dependent on the specific form of the partial differential equation.

Fig. 1

 1 Fig. 1 Geometrical configuration we consider in the analysis

Fig. 2

 2 Fig. 2 3D geometry for the numerical experiment

Fig. 3

 3 Fig. 3 Eigenvalues of the matrix M-1 h • [MTF loc ] • M -1 h • [MTF -1 loc ] for σ = -1 2, with a zoom below around 1.

available on https://github.com/xclaeys/bemtool under Lesser Gnu Public License.
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