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Abstract

Constructive machine learning aims at finding one or more instances of a domain
which will exhibit some desired properties. Such a process bears a strong similarity
with a design process where the ultimate objective is the generation of previously
unknown and novel objects by using knowledge about known objects. The aim
of the present work is to bring ideas from design theory to machine learning
and elaborate an experimental procedure allowing the study of design through
machine learning approaches. To this end, we propose an actionable definition of
creativity as the generation of out-of-distribution novelty. We assess several metrics
designed for evaluating the quality of generative models on this new task. Through
extensive experiments on various types of generative models, we find architectures
and hyperparameter combinations which lead to out-of-distribution novelty. Such
generators can then be used to search a semantically richer and broader space than
standard generative models would allow.

1 Introduction

Recent advances in machine learning have renewed interest in artificial creativity. Studies such as

deep dream [13] and style transfer [4] have aroused both general public interest and have given strong

impetus to use deep learning models in computational creativity research [7]. Although creativity

has been a topic of interest on and off throughout the years in machine learning [18], it has been

slowly becoming a legitimate sub-domain with the appearance of dedicated research groups such as
and research work on the topic [14, 10].

Machine learning methods provide an important advantage for studying computational creativity:
they enable the study of creativity in relation with knowledge (i.e., knowledge-driven creativity [9]).
Within the scope of machine learning, generative modeling can provide a way to study and answer
quetions about novelty generation. According to [6, 8], creativity is about generating previously
unknown but meaningful (or valuable) new types of objects using previously acquired knowledge.
Under this perspective, the goal of novelty generation is to sample objects from new types. This
goal, which we shall call out-of-distribution generation, is beyond what can be formalized within the
framework of traditional learning theory.

Arguably, the most important problem is the evaluation of what constitutes a good model for
generating out-of-distribution. Traditional metrics based on likelihood are of no use since novelty
in the out-of-distribution is unlikely by definition. Indeed, research in generative modeling usually
aims at eliminating this possibility as this is seen as a source of instability [5, 17] leading to spurious
samples [2].

This paper presents a new engineering principle that enables such evaluation, and consequently,
rigorous experimental research on the matter: we evaluate the generative potential of models by
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holding out entire classes, simulating thus unknown but meaningful novelty. The goal of the novelty
generator is then to use training classes to build a model that can generate objects from future
(hold-out) classes, unknown at training time.

We present three main contributions: First, we design an experimental framework based on hold-out
classes to develop and to analyze out-of-distribution generators. Second, we review and analyze the
most common evaluation techniques from the point of view of measuring out-of-distribution novelty.
We argue that likelihood-based techniques inherently limit exploration and novelty generation. We
carefully select a couple of measures and demonstrate their applicability for out-of-distribution
novelty detection in experiments. Third, we run a large-scale experimentation to study the ability
of novelty generation of a wide set of different autoencoders and generative adversarial networks
(GAN:S).

2 Probabilistic vs. constructive generative models

The generative process is commonly framed in a probabilistic setup: it is assumed that an underlying
unknown likelihood model p(-) should first be learned on an i.i.d. training sample D = {x1,...,X,},
assumed to be generated from p(-), and then a sampler S should sample from the learned p(-).
The first step, estimating p(-) using D, is a classical function learning problem that can be studied
through the usual concepts of overfitting and regularization, and algorithms can be designed using the
classical train/test principle. The second step, designing S for sampling from p(+) is also a classical
domain of random sampling with a conceptual framework and a plethora of methods.

Technically both steps are notoriously hard for the high-dimensional distributions and the complex
dependencies we encounter in interesting domains. Hence, most of the recent and successful methods
get rid of the two-step procedure at the level of algorithmic design, and short-cut the procedure
from the probabilistic D — p — S to the constructive D — A, where A(D) is a generator, tasked
to produce sample objects similar to elements of D but not identical to them. A is fundamentally
different from (p, S) in that there is no explicit fitting of a function, we use D to directly design an
algorithm or a program.

When the probabilistic setup is still kept for analysis, we face a fundamental problem: if we
assume that we are given the true likelihood function p(-), the likelihood of the training sample
% Z?:l log p(x;) is a random variable drawn independently from the distribution of log-likelihoods
of i.i.d. samples of size n, so the trivial generator .A which resamples D will have the same expected
log-likelihood as an optimal i.i.d. sampler. The resampling “bug” is often referred to as “overfitting”.
While it makes perfect sense to talk about overfitting in the D — p — S paradigm (when p is fitted
on D), it is somewhat conceptually misleading when there is no fitting step, we propose to call it
“memorizing”. When a generator A4 is trained on D without going through the fitting step D — p,
the classical tools for avoiding memorizing (regularization, the train/test framework) may be either
conceptually inadequate or they may not lead to an executable engineering design principle.

The conceptual problem of analyzing constructive algorithms in the probabilistic paradigm is not a
minor nuisance which can be fixed by augmenting the likelihood to avoid resampling. Rather, it is
an inherent property which cannot (or rather, should not) be fixed. The probabilistic framework is
designed for generating objects from the distribution of known objects, and this is in an axiomatic
contradiction with generating out-of-distribution novelty, objects that are unknown at the moment
of assembling a training sample. Resampling (generating exact copies) is only the most glaring
demonstration of a deeper problem which is also present in a more subtle way when attempting to
generate new fypes of objects.

We are not arguing that the probabilistic generative framework should be banished, it has a very
important role in numerous use cases. Our argument is that it is not adequate for modeling out-
of-distribution novelty generation. At the algorithmic/computational level the machine learning
community has already started to move beyond likelihood. The ingenious idea of using discriminators
in GANSs [5, 17] is a concrete example; although the setup can be analyzed through the lens of
probabilistic sampling, one does not have to fall back onto this framework. If we drop the underlying
conceptual probabilistic framework, the constructive GAN idea may be extended beyond generating
from the set which is indistinguishable from the set of existing objects. In the next sections, we will
use discriminators to assess the quality of generators whose very goal is to generate novelty: objects
that are distinguishable from existing objects.



3 Evaluation of generative models

In our setup, we simulate existing knowledge and novelty by partitioning existing data sets holding
out entire classes. The goal of the novelty generator is then to use training classes to build a model
that can generate objects from future (hold-out) classes, unknown at training. The training classes are
digits classes from MNIST and the test classes are letters classes from a dataset we constructed from
google fonts ( ). We pre-trained a digit discriminator (on MNIST), a letter discriminator
(on ) and a discriminator on a mixture of digits and letters. We used the discriminators
to evaluate novelty generators using different metrics which we outline in the following.

Parzen density estimator Parzen density estimators are regularly used for estimating the log-
likelihood of a model [3] when the log-likelihood is not tractable. A kernel density estimator is fit to
generated points, and the model is scored by log-likelihood of a hold-out test set under the kernel
density. The metrics can be easily fooled [19], nevertheless, we adopted it in this paper for measuring
both the in-distribution and out-of-distributions quality of our generators.

Objectness In [17], they proposed an entropy-based score to measure the “objectness” of the
generated set of objects. This score uses a pre-trained classifier to compute, for each generated object,
the confidence of the classifier on each category, then the score is high if the classifier has a highly
confident prediction on a category (hence the name objectness), also, the score encourages sets of
generated objects which have a diverse set of categories.

Formally, objectness is defined as

1 n K oy
N Z Zpi,z log —=,
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where K is the number of classes,
pie = Plxs)
is the posterior probability of category ¢ given the generated object x;, under the discriminator p
trained on a set with known labels, and

1 n
De = E z;pi,ea
i

are the class marginals.

Out-of-class count and out-of-class max Naturally, letter discriminators see letters everywhere.
Since letters are all they know, they classify everything into one of the letter classes, quite confidently
(this “blind spot” phenomenon is exploited by [14] for generating “synthetic” novelty), the letter
objectness of an in-distribution digit generator can sometimes be high. For example, a lot of 6s
were classified as bs. To avoid this “bias”, we also trained a discriminator on the union of digits and
letters, allowing it to choose digits when it felt that the generated object looked more like a digit.
We designed two metrics using this discriminator: out-of-class count measures the frequency of
confidently classified letters in a generated set, and out-of-class max is the mean (over the set) of the
probability of the most likely letter. None of these metrics penalize “fixated” generators, outputting
the same few letters all the time, so we combine both metrics with a diversity term based on the
entropy of the letter posterior (conditioned on being a letter).

Formally, let p; 1, ..., pi K, be the in-class posteriors and p; g, +1, - - -, Pi, Kin+ Ko D€ the out-of-class
posteriors, where Kj, = 10 is the number of in-class classes (digits), and Ky, = 26 is the number of
out-of-class classes (letters). Let
07 = argmaxp; ¢
‘

and
£
fouu’: argmax  pjy
Kin<E§Kin+K0ul

be the most likely category overall and most likely out-of-class category, respectively. Let
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be the normalized empirical frequency of the out-of-class category £. We measure the diversity of the
generated sample by the normalized entropy of the empirical frequencies

1 Kin+Kout
diversity = —W Z De log pe,
out ZIKin

and define

1 n
out-of-class count = (1 — A) x = Y "I{€; > Kiy Apie: >0} + X x diversity,
" ;
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and

n
out-of-class max = (1 — \) x - z; iz, + A x diversity.
1=
In our experiments we set the confidence level # = 0.95 and the mixture coefficient A = 0.5.

Human evaluation We assessed the visual quality of the set of generated objects using an in-house
annotation tool. We took each model which appeared in the top ten by any of the quantitative metrics
described in the previous section, and hand-labeled them into one of the following three categories: i)
letters, ii) digits, and iii) bad sample (noise or not-a-symbol).

Each panel consisted 26 x 15 generated objects, the fifteen most probable symbols of each letter
according to the classifier trained on both letters and digits (Figure 1). The goal of this annotation
exercise was 1) to assess the visual quality of the generated symbols and ii) to assess the quality of the
metrics in evaluating novelty.
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(a) The top autoencoder (b) The top GAN

Figure 1: A couple of the top models according to human assessment. Top left characters of each
4 x 4 panel are the labels, letters coming from the training sample. For each letter we display the
fifteen most probable symbols according to the classifier trained on both letters and digits.

4 Experiments

4.1 Hyperparameter search

We considered two kinds of models, autoencoders and generative adversarial networks (GANs).
We used three regularization strategies for autoencoders: sparse autoencoders [11, 12], denoising
autoencoders [2] and contractive autoencoders [16]. We generated images from autoencoders using a
procedure similar to [1], except that we binarized (deterministically) the images in each iteration. In
initial experiments we found that 100 iterations were sufficient for the majority of models to have
convergence so we chose to fix the maximum number of iterations to 100. For stochastic gradient
optimization of the autoencoder models, we used adadelta [20] with a learning rate of 0.1 and a batch
size of 128. We used rectified linear units as an activation function for hidden layers in all models.
We use the sigmoid activation function for output layers.

For GANs, we built upon [15] and used their architecture as a basis for hyperparameter search. We
modified the code proposed to sample new combinations of hyperparameters.
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Figure 2: A random selection of symbols generate
one that generated the letters in Figure 3(b).

y one of our best autoencoders, the same as the

We ran a large scale hyperparameter optimization search and evaluated the proposed metrics. All the
models were trained on MNIST training data. We obtained nearly 1000 models. We generated 1000
samples from each trained model. We then evaluated all the metrics proposed in section 3 on each
trained model by using the 1000 generated samples and the pre-trained discriminators (see section 3).
Figure 2 shows samples obtained one of our best autoencoders (a sparse autoencoder trained as in
[11]) according to out-of-class count and out-of-class max.

4.2 Analysis

First, we found that tuning (selecting) generative models for in-distribution generation will make
them “memorize” the classes they are trained to sample from. This is of course not surprising,
but it is important to note because it means that out-of-class generation is non-trivial, and the vast
majority of architectures designed and tuned in the literature are not generating out-of-class novelty
naturally. Second, we did succeed to find architectures and hyperparameter combinations which
lead to out-of-class novelty. Most of the generated objects, of course, were neither digits nor letters
(Figure 2), which is why we needed the “supervising” discriminators to find letter-like objects among
them. The point is not that all new symbols are letters, that would arguably be an impossible task, but
to demonstrate that by opening up the range of generated objects, we do not generate noise, rather
objects that can be forming new categories.

The quantitative goal of this study was to assess the quality of the defined metrics in evaluating out-
of-distribution generators. We proceeded in the following way. We selected the top ten autoencoders
and GANSs according to the five metrics of out-of-class (letters) count, out-of-class max, out-of-class
objectness, out-of-class Parzen, and in-class Parzen. We then annotated these models into one
of the three categories of “letter” (out), “digit” (in), and “bad” (noise or not-a-symbol). The last
three columns of Table 1 show that the out-of-class count and out-of-class max scores work well
in selecting good out-of-class generators, especially with respect to in-class generators. They are
relatively bad in selecting good generators overall. Symmetrically, out-of-class objectness and the
Parzen measures select, with high accuracy, good quality models, but they mix out-of-class and
in-class generators (digits and letters). Parzen scores are especially bad at picking good out-of-class
generators. Somewhat surprisingly, even out-of-class Parzen is picking digits, probably because
in-distribution digit generators generate more regular, less noisy images than out-of-class letter
generators. In other words, opening the space towards non-digit like “spurious” symbols come at a
price of generating less clean symbols which are farther from letters (in a Parzen sense) than clean
digits.

We also computed the inter-score correlations in the following way. We first selected the top 10%
models for each score because we were after the correlation of the best-performing models . Then we
computed the Spearman rank correlation of the scores (so we did not have to deal with different scales
and distributions). The first eight columns of Table 1 show that i) in-class and out-of-class measures
are anti-correlated, ii) out-of-class count and max are uncorrelated, and are somewhat anti-correlated
with out-of-class objectness.

These results suggest that the best strategy is to use out-of-class objectness for selecting good quality
models and out-of-class count and max to select models which generate letters. Figure 3 illustrates
the results by pangrams (sentences containing all letters) written using the generated symbols. The
models (a)-(d) were selected automatically: these were the four models that appeared in the top ten



inter-score correlations human counts

oc om 00 op ic im io ip out in bad

out count 1 -0.03 -0.13 0.04 -0.12 002 -0.07 -0.11 12 0 18
out max -0.03 1 -0.07 0.01 -0.16 -0.10 003 -0.09 (| 15 O 5
out objectness | -0.13 -0.07 1 0.21 -0.06 008 0.02 -0.08 9 10 1
out Parzen 0.04 001 021 1 -0.17 0.01 -0.19 -0.20 4 13 3
in count -0.12 -0.16 -0.06 -0.17 1 0.30 0.1 0.14 - - -
in max 0.02 -0.10 0.08 0.01 0.30 1 0.03 0.06 - - -
in objectness -0.07 0.03 002 -0.19 0.1 0.03 1 0.00 - - -
in Parzen -0.11 -0.09 -0.08 -020 0.14 006 0.00 1 0 17 3

Table 1: Inter-score correlations among top 10% models per score and human annotation counts
among top twenty models per score. out=letters; in=digits.

both according to out-of-class objectness and out-of-class counts. Letters of the last sentence (e) were
hand-picked by us from letters generated by several top models.

(a) PocH nY FET CLiTH FLV¥Q DIOIGN LLQUET Jdc§
(b) FACA N BOX wFls FFéve pOTZew Ll FqeOr 505
(c) POSK 9 bh@x ~ibH BLrE DQXEHN (LAHYEOr HYAS
(d facw m¥ 0% Witk 4146 AO2G1H £)90401 UGS
(e) ®RCK mYy BOX witH Five dOZzeR L iqUOr Jucs

Figure 3: Pangrams created (a-d) using top models selected automatically, and (e) using letters
selected from several models by a human. We note that (b) corresponds to letters selected from the
autoencoder in figure 2.

S Summary and perspectives

The main focus of this paper was setting up the experimental pipeline and to analyze various quality
metrics, designed to measure out-of-distribution novelty of samples and generative models. The
immediate next goal is to analyze the models in a systematic way, to understand what makes them
“memorizing” classes and what makes them opening up to generate valuable out-of-distribution
samples.
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