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Introduction

To maintain a specific current-flow direction in an isotropic homogeneous conductor in the presence of a perpendicular magnetic field, it is necessary to have an electric field with a component in the direction transverse to both the current and magnetic field. This transverse electric field, in the classical physics interpretation, is necessary to balance the magnetic force acting on the moving charge carriers. The ratio between the component of the transverse electric field and the current defines the Hall coefficient (see, e.g., [START_REF] Ashcroft | Solid State Physics[END_REF][START_REF] Kohn | Elementary Solid State Physics[END_REF]). For an anisotropic material it is natural to introduce, analogously, a Hall matrix [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF]. The question naturally arises as to what properties this Hall matrix can have. In particular can it be an antisymmetric matrix?

To address this question we consider anisotropic periodic composite materials and ask what effective Hall matrices the composite can have, and in particular if they can be antisymmetric. At the microscale the composite will be assumed to be locally isotropic, characterized by a periodic isotropic local conductivity σ(y) I 3 and a periodic isotropic local Hall matrix r(y) I 3 . Then, in the presence of a small magnetic field h ∈ R 3 , the (assumed periodic) local electric field e(y) has the expansion e(y) = ρ h (y) j(y) = σ(y) -1 j(y) + r(y) j(y) × h

Hall field

+ o(h).

(1.1)

where j(y) is the periodic local current (see, e.g., [START_REF] Landau | Électrodynamique des Milieux Continus[END_REF] for details) and ρ h (y) = σ h (y) -1 is the perturbed local (non-symmetric matrix-valued) resistivity. We call the transverse field r(y) j(y) × h the Hall field as it generates the Hall voltage. The average electric field in the composite derived from (1.1) has the expansion

e = ρ * h j = (σ * ) -1 j + j × (R * h) Macroscopic Hall field + o(h), (1.2) 
in which • denotes the average value over the period cell, ρ * h is the perturbed effective resistivity tensor, σ * is the (matrix-valued) effective conductivity tensor in the absence of the magnetic field, and R * is the effective Hall matrix. We will call j × (R * h) the macroscopic Hall field.

It was discovered by Bergman [5] that the effective Hall coefficient in a composite can be obtained from the local Hall coefficient and the knowledge of several current fields that solve the conductivity equations in the absence of magnetic field. His arguments extend directly to the anisotropic case and provide a formula for the effective Hall matrix [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF]. First note that since the relation between e(y) and e is linear we can write, in the absence of any magnetic field, e(y) = P (y) e (h = 0) (1.3) which following Tartar [START_REF] Tartar | Cours Peccot[END_REF] defines the matrix-valued unperturbed electric field P (y) = DU (y).

Then, upon multiplying this equation by σ(y) and averaging over the unit cell, one sees that the effective matrix conductivity is given by the classical formula

σ * = σP . (1.4) 
By contrast the effective Hall matrix is given by the more intricate formula ( [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF] Theorem 3)

Cof (σ * ) R * = r Cof (σP ) T , (1.5) 
where Cof denotes the cofactor matrix.

The relation between ρ h (y) and ρ * h is still poorly understood. In two dimensions, one can shift ρ h (y) (or ρ h (y) -1 ) by a constant antisymmetric matrix and then ρ * h (respectively (ρ * h ) -1 ) will shift in exactly the same way [START_REF] Dykhne | Anomalous plasma resistance in a strong magnetic field[END_REF]. For a fixed magnetic field h this observation led to a complete characterization, in two dimensions, of the possible tensors ρ * h that are obtainable from mixtures of two given, possibly anisotropic, phases with prescribed orientations and mixed in fixed proportions [START_REF] Milton | Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors[END_REF]. In three dimensions one can add a periodic divergence free antisymmetric matrix field to ρ h (y) -1 and then (ρ * h ) -1 will shift by the average of this tensor field (see [START_REF] Stroud | New exact results for the Hall-coefficient and magnetoresistance of inhomogeneous two-dimensional metals[END_REF] and section 4.4 of [START_REF] Milton | The Theory of Composites[END_REF]). For fibre-reinforced composites (with structure independent of one coordinate) an amazing plethora of microstructure independent exact relations and links between effective tensors have been derived [START_REF] Bergman | Duality transformation in a three dimensional conducting medium with two dimensional heterogeneity and an in-plane magnetic field[END_REF][START_REF] Bergman | Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field[END_REF][START_REF] Strelniker | Exact relations between magnetoresistivity tensor components of conducting composites with a columnar microstructure[END_REF][START_REF] Bergman | Macroscopic conductivity tensor with a one-or two-dimensional microstructure[END_REF][START_REF] Grabovsky | An application of the general theory of exact relations to fiber-reinforced conducting composites with Hall effect[END_REF][START_REF] Grabovsky | Exact relations for effective conductivity of fiber reinforced conducting composites with Hall effect via a general theory[END_REF]. For strong magnetic fields h the tensor ρ * h can have a very sensitive dependence on the orientation of h relative to the microstructure [START_REF] Bergman | Recent advances in strong field magneto-transport in a composite medium[END_REF].

It would be interesting to know the range of values the matrix pair (σ * , R * ), or at least the matrix R * , can take given some information about the pair of functions (σ(y), r(y)), with σ(y) > 0. Even for isotropic composites, with R * = r * I 3 , there are some surprises: contrary to the common belief that the sign of the Hall coefficient determines the sign of the charge carrier, r * in a certain geometry of cubic chain mail is negative even though r(y) is non-negative everywhere [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF]. Physically such an unusual effect arises essentially because the inclusions with appreciable Hall coefficient (situated between the links of the chain mail) have an current field flowing through them which is in the opposite direction of the applied current field. Also the matrix elements of R * can be orders of magnitude greater that the maximum value of r(y) in certain microstructures [START_REF] Briane | Giant Hall effect in composites[END_REF], unlike in the two-dimensional case where the Hall coefficient is bounded above by the maximum value of r(y) [START_REF] Briane | Homogenization of the two-dimensional Hall effect[END_REF].

The present paper provides a partial answer to the following question: What are the possible effective Hall matrices, R * , when σ(y) and r(y) are allowed to be any pair of positive functions? Starting from a nonnegative isotropic Hall matrix, we first note (see the preliminary Proposition 2.1) that any positive definite symmetric matrix is an effective Hall matrix. More surprisingly, and this is the main result of the paper (see Theorem 2.2) which adds to the menagerie of pathologies arising in the homogenization of the Hall effect, there exists a four-phase composite the effective Hall matrix of which is (asymptotically) antisymmetric! Physically this effect arises because for an applied current in the y 3 direction, a portion of this current flows through the cylinders with non-zero Hall coefficient and the induced macroscopic Hall field is essentially a 90 • degree rotation of the Hall field across these inclusions (see figure 1). Thus if the magnetic field h is parallel to the y 1 -y 2 plane, then the direction of the macroscopic Hall field will be essentially parallel to h. To achieve this change of direction we use a highly conductivity phase. This is reminiscent of the use of high contrast materials for achieving the reversal of sign of Hall coefficient in the cubic chain mail of [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF], but the geometry is completely different.

Statement and proof of the main results

In dimension three the expression of the effective the Hall matrix incorporates the cofactor matrix of the local electric field DU (y) (see formula (1.5)). Therefore it should not be surprising that our analysis uses the quasi-affine property satisfied by the minors of the matrix-valued gradient DU (y). We refer to [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF] (Section 4.2) for a complete presentation of the quasi-affinity. In the present context we will specifically use the quasi-affine property of the quadratic minors:

-In dimension two the determinant is quasi-affine. This means that for any function

V : R 2 → R 2 such that DV is a Y -periodic matrix-valued function in L 2 (Y ) 2×2 , Y det (DV ) dy = det Y DV dy . (2.1) 
-In dimension three the cofactor matrix is quasi-affine. This means that for any function

V : R 3 → R 3 such that DV is a Y -periodic matrix-valued function in L 2 (Y ) 3×3 , Y Cof (DV ) dy = Cof Y DV dy . (2.2)
We start with the preliminary result of Proposition 2.1. This proposition uses the fact that any symmetric positive definite matrix is the effective matrix of a periodic isotropic conductivity, at least asymptotically. Indeed, it suffices to consider composites of two isotropic phases and use the multiple rank lamination due to Maxwell [START_REF] Maxwell | A Treatise on Electricity and Magnetism[END_REF] and its extension to dimension greater than three by Tartar [START_REF] Tartar | Estimations fines des coefficients homogénéisés[END_REF] (see also [START_REF] Lurie | Exact estimates of the conductivity of a binary mixture of isotropic materials[END_REF]), or the coated ellipsoid assemblage (see chapter 7 of [START_REF] Milton | The Theory of Composites[END_REF] and references therein, and its extension to higher dimension by Tartar [START_REF] Tartar | Estimations fines des coefficients homogénéisés[END_REF]), or the periodic constructions of Vigdergauz [START_REF] Vigdergauz | Effective elastic parameters of a plate with a regular system of equal-strength holes[END_REF] and Liu, James, and Leo [START_REF] Liu | New extremal inclusions and their applications to two-phase composites[END_REF]. Then, letting the free parameters in the microstructure vary, any symmetric positive definite matrix can be obtained in any dimension as the effective matrix of a composite of two isotropic phases with suitably extreme conductivities, one close to zero and one large. Even though multiple rank laminates are not periodic, they can be approximated arbitrarily closely by periodic constructions (see, e.g., [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF] Theorem 1.3.23). Also it is easily seen that the coated ellipsoid assemblage can be made periodic.

Proposition 2.1. Any positive definite symmetric 3 × 3 matrix A is the effective Hall matrix of a suitable periodic structure.

Proof. Consider a Y -periodic isotropic conductivity σ(y) I 3 the homogenized conductivity of which is σ * = A/ √ det A, and the Y -periodic Hall coefficient is r := σ -2 . By (1.5) the effective Hall matrix R * associated with this periodic structure is given by the formula

Y r Cof (σDU ) T dy = Cof (σ * ) R * , (2.3) 
where DU is the periodic local matrix-valued electric field solving

Div (σDU ) = 0 in R 3 , with Y DU dy = I 3 , (2.4) 
(the j-th column of the matrix DU is the gradient of the j-th coordinate u j of U , and the j-th coordinate of the vector Div (σDU ) is the divergence of σ∇u j ) and σ * is the homogenized conductivity given by the classical formula

σ * = Y σDU dy. (2.5) 
Hence, by the quasi-affinity of the cofactor matrix (2.2) and the equality Cof (σ * ) = A -1 , we obtain

I 3 = Y Cof (DU ) T dy = Y r Cof (σDU ) T dy = A -1 R * , (2.6) 
which implies that R * = A.

On the contrary the derivation of an antisymmetric effective Hall matrix is much more delicate. To this end we have the following asymptotic result: Theorem 2.2. There exists a periodic conductivity associated with an isotropic Hall coefficient parametrized by a large number κ 1, such that the homogenized Hall matrix R * ,κ satisfies

lim κ→∞ R * ,κ =   0 -1 0 1 0 0 0 0 0   . (2.7)
Proof. Let Y := (-1 2 , 1 2 ) 3 . We consider a columnar Y -periodic structure along the y 3 -axis, the period cell of which is represented in figure 1. On the one hand, the Y -periodic local conductivity σ κ , for κ > 0, is defined by

σ κ (y) := diag (κ, κ, 1) if y ∈ Q s = Q 1 ∪ Q 2 ∪ Q 3 ∪ Q 4 I 3 if y ∈ Y \ Q s , (2.8) 
where Q s is the grey region in figure 1. The conductivity σ κ (y) in the y 3 direction is chosen to be 1 in the region Q s , rather than κ, to ensure that a significant fraction of the current flows through the material with non-zero Hall coefficient (which will be the square cylinder at the center) when the applied current is in the y 3 direction.

Q s Y \ Q s y 1 y 2 K 2 K 3 Q 1 Q 2 Q 3 Q 4 K 1
Although σ κ is anisotropic it can be replaced, if desired, when κ > 1 by a laminate of two isotropic phases, finely layered in the y 3 -direction so its local effective conductivity is σ κ . The conductivity matrix σ κ is associated with the corrector DU κ , where U κ = (u κ 1 , u κ 2 , u κ 3 ) is the unique function with zero Y -average which is the solution of

Div (σ κ DU κ ) = 0 in R 3 , y → U κ (y) -y is Y -periodic, Y DU κ dy = I 3 , ∇u κ 3 = e 3 .
(2.9)

Note that the components u 1 , u 2 of U κ do not depend on the y 3 -coordinate due to the columnar geometry. Then, the cofactor matrix of DU κ satisfies the equality

Cof DU κ T =     ∂u κ 2 ∂y 2 - ∂u κ 2 ∂y 1 0 - ∂u κ 1 ∂y 2 ∂u κ 1 ∂y 1 0 0 0 ∂u κ 1 ∂y 1 ∂u κ 2 ∂y 2 - ∂u κ 1 ∂y 2 ∂u κ 2 ∂y 1     .
(2.10)

On the other hand, the Y -periodic local Hall matrix is defined by

R(y) := r κ 1 K 1 (y) I 3 , for y ∈ Y, (2.11) 
where r κ > 0 will be chosen later and 1 K 1 is the characteristic function of the central square K 1 of side < 1 3 in figure 1. Due to the invariance of figure 1 by a rotation of 90 • , the homogenized conductivity σ * ,κ reads as

σ * ,κ =   a κ 0 0 0 a κ 0 0 0 1   , where a κ > 0.
(2.12)

By analogy with a two-phase (1, κ) checkerboard structure we have the following result proved at the end of the paper:

Lemma 2.3. The coefficient a κ of the homogenized matrix σ * ,κ satifies the estimates

∀ κ > 0, c 1 κ 1 2 ≤ a κ ≤ c 2 κ 1 2 , (2.13)
where c 1 , c 2 are two positive constants.

Remark 2.4. The factor of κ 1 2 in (2.13) arises because of the resistance of the corners where highly conducting regions meet.

From now on u 1 , u 2 will be regarded as functions of the two variables y 1 , y 2 , and the sets Y, Q s , Q i , K i will be identified with their cross sections in the transverse plane y 1 -y 2 as shown in figure 1.

According to the variational principle (3.1) we have

a κ = σ * ,κ 11 = Y σ κ ∇u κ 1 • ∇u κ 1 dy ≥ κ Qs |∇u κ 1 | 2 dy, (2.14) 
which combined with estimate (2.13) implies that ∇u κ 1 strongly converges to zero in L 2 (Q s ). That is expected because the electric field should be close to zero in the highly conducting phase, except near the corner contact points. Then, the Poincaré-Wirtinger inequality (see, e.g., [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] p. 164) in the regular connected open set Q i , for i = 1, . . . , 4, yields

- ∂K 1 ∩∂Q i u κ 1 dy -- ∂Y ∩∂Q i u κ 1 dy = o(1), as κ → ∞, (2.15) 
where the integral with a bar through it denotes an average over the interval. In other words, the average electric potential along the boundary ∂K 1 ∩ ∂Q i should be close to that along the boundary ∂Y ∩ ∂Q i , as expected because the region Q i is highly conducting in the plane. Moreover, since u κ 1 (y) -y 1 is Y -periodic, we have (see figure 1)

∂Y ∩∂Q 1 u κ 1 dy = ∂Y ∩∂Q 3 u κ 1 dy and ∂Y ∩∂Q 2 u κ 1 dy = ∂Y ∩∂Q 4 u κ 1 dy + . (2.16) 
Therefore, it follows from (2.15) and (2.16) that

         K 1 ∂u κ 1 ∂y 1 dy = ∂K 1 ∩∂Q 1 u κ 1 dy - ∂K 1 ∩∂Q 3 u κ 1 dy = o(1) K 1 ∂u κ 1 ∂y 2 dy = ∂K 1 ∩∂Q 4 u κ 1 dy - ∂K 1 ∩∂Q 2 u κ 1 dy = -+ o(1), as κ → ∞. (2.17) 
Similarly, with a change of sign we get for the function

u κ 2          K 1 ∂u κ 2 ∂y 1 dy = ∂K 1 ∩∂Q 1 u κ 2 dy - ∂K 1 ∩∂Q 3 u κ 2 dy = + o(1) K 1 ∂u κ 2 ∂y 2 dy = ∂K 1 ∩∂Q 4 u κ 2 dy - ∂K 1 ∩∂Q 2 u κ 2 dy = o(1). as κ → ∞. (2.18) 
Finally, taking into account (2.8), (2.11) the formula (1.5) for the homogenized Hall matrix reads as

R * ,κ = σ * ,κ det σ * ,κ K 1 r κ Cof DU κ T dy. (2.19) 
This combined with (2.10), (2.12), (2.17), (2.18) yields

R * ,κ = r κ a 2 κ   a κ 0 0 0 a κ 0 0 0 1     o(1) -+ o(1) 0 + o(1) o(1) 0 0 0 c κ   , (2.20) 
where 3 Proof of Lemma 2.3.

c κ := K 1 ∂u κ
This lemma basically states that the effective conductivity in the y 1 -y 2 plane is dominated by the resistance of the corners where the highly conducting regions meet and has the asymptotic form expected from the analysis of Keller [START_REF] Keller | Effective conductivity of periodic composites composed of two very unequal conductors[END_REF]. First of all, recall that for a given square Z of R 2 , the effective conductivity σ * of a Z-periodic symmetric conductivity σ(y) is given by the variational principal (see, e.g., [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF])

σ * λ • λ = min - Z σ∇v • ∇v dy : (y → v(y) -λ • y) Z-periodic = - Z σ∇w λ • ∇w λ dy, (3.1)
where the minimizer w λ , for λ ∈ R 2 , is the unique solution (up to an additive constant) in

H 1 loc (R 2 ) of the equation div σ∇w λ = 0 in R 2 , with y → w λ (y) -λ • y Z-periodic. (3.2)
Proof of the upper bound of (2.13): Let K j , for j = 1, 2, 3, be the square centered at the origin and of side j . On the one hand, consider for κ > 0 the potential w κ associated with the two-phase (1, κ) checkerboard of period K 2 (see figure 1) which is the solution of the problem

div (χ κ ∇w κ ) = 0 in R 2 , y → w κ (y) -y 2 is K 2 -periodic and K 2 w κ dy = 0, (3.3) 
where χ κ is the K 2 -periodic conductivity of the checkerboard defined by

χ κ (y) := 1 + (κ -1) 1 Qs (y) for y ∈ K 2 . (3.4) 
Note that χ κ and the first entry σ κ 11 of σ κ (2.8) agree in the square K 3 as shown in figure 1. The formula (3.1) for the effective conductivity of a checkerboard (see, e.g., [START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF]) reads as

- K 2 χ κ |∇w κ | 2 dy = κ 1 2 , (3.5) 
which implies by the Poincaré-Wirtinger inequality in K 2 ,

K 2 w 2 κ dy + K 2 |∇w κ | 2 dy = O κ 1 2 . ( 3.6) 
On the other hand, let v κ be function defined by

v κ := 1 2 - Q i ∩∂K 2 w κ dy in Q i ∩ (Y \ K 2 ), for i = 1, . . . , 4, (3.7) 
and extended by interpolation in the whole set Y

\ K 2 . Since y → w κ (y) -y 2 is K 2 -periodic, we have v κ 1 2 , y 2 = v κ -1 2 , y 2 -1 for y 2 ∈ -2 , 2 v κ y 1 , 1 2 = v κ y 1 , -1 2 for y 1 ∈ -2 , 2 . (3.8) 
Moreover, by the trace inequality in K 2 (see, e.g., [START_REF] Lions | Problèmes aux limites non homogènes[END_REF]):

∃ C > 0, ∀ v ∈ H 1 (K 2 ), ∂K 2 v 2 ds ≤ C K 2 v 2 + |∇v| 2 dx, (3.9) 
combined with the Cauchy-Schwarz inequality in Q i ∩ ∂K 2 and estimate (3.6), we have 4 , for i = 1, . . . , 4.

Q i ∩∂K 2 w κ dy = O κ 1 
(3.10)

Then, we can construct v κ in Y \ K 2 in such a way that y → v κ (y) + y 1 is 1-periodic on ∂Y and We easily deduce from (3.6), (3.11) and the K 2 -periodicity of ∇w κ the estimate Finally, in each high-conductivity set Q i ∩ (K 3 \ K 2 ), for i = 1, . . . 4, the Poincaré-Wirtinger inequality yields

Y \K 2 v 2 κ dy + Y \K 2 |∇v κ | 2 dy = O κ 1 2 . ( 3 
Q i ∩(K 3 \K 2 ) |∇ϕ| 2 v κ - w κ 2 2 dy = 1 (2 ) 2 Q i ∩(K 3 \K 2 )
|∇ϕ| 2 w κ --

Q i ∩∂K 2 w κ dy 2 dy ≤ c Q i ∩(K 3 \K 2 )
|∇w κ | 2 dy, (3.17) which multiplying by κ gives

Q i ∩(K 3 \K 2 ) κ |∇ϕ| 2 v κ - w κ 2 2 dy ≤ c K 3 χ κ |∇w κ | 2 dy = O κ 1 2 .
(3.18)

The estimates (3.14)-(3.18) combined with (3.13) imply the upper bound of (2.13).

Proof of the lower bound of (2.13): The Keller [START_REF] Keller | A theorem on the conductivity of a composite medium[END_REF] duality (see also [START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF]) and the upper bound proved above give the equalities a -1 κ = a κ -1 = O κ -1 2 . This implies the lower bound of (2.13) and concludes the proof of Lemma 2.3.
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 1 Figure 1: The cross section of the columnar period cell. The regions Q 1 , Q 2 , Q 3 , Q 4 are highly conducting in the plane, and only the central square cylinder K 1 has a non-zero Hall coefficient.
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