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Quantitative risk assessment provides a holistic view of risk in an organisation, which is,

however, often biased by the fact that risk shared by several assets is encoded multiple times

in a risk analysis. An apparent solution to this issue is to take all dependencies between

assets into consideration when building a risk model. However, existing approaches rarely

support cyclic dependencies, although assets that mutually rely on each other are encoun-

tered in many organisations, notably in critical infrastructures. To the best of our knowledge,

no author has provided a provably efficient algorithm (in terms of the execution time) for

computing the risk in such an organisation, notwithstanding that some heuristics exist.

This paper introduces the dependency-aware root cause (DARC) model, which is able

to compute the risk resulting from a collection of root causes using a poly-time randomised

algorithm, and concludes with a discussion on real-time risk monitoring, which DARC sup-

ports by design.

1. Introduction

Risk management constitutes an important aspect of deci-

sion taking, especially if the outcome is uncertain or has a large-

scale impact on an organisation, which is why it forms a basis

for many information security standards, including ISO/IEC

27xxx (International Organization for Standardization, 2014).

Risks can be evaluated in two ways (Laboratory, 2012): quali-

tatively and quantitatively. Furthermore, some authors have

suggested combining (Mangan et al., 2004) or converting (Cox

et al., 2005) both methods to get better results, but this topic

is beyond the scope of this paper.

In a qualitative assessment, risk scenarios are identified and

then estimated in terms of probability and impact on a dis-

crete (and often abstract) scale, which consists of some few

values, such as “low”, “normal” and “high”. A previously defined

set of unacceptable tuples probability impact, permits to dis-

tinguish between risk scenarios for which counter-measures

need to be implemented (so as to reduce risk) and scenarios

that are critical for an organisation (see Fig. 1).

In contrast, quantitative assessments express risk in terms

of the potential damage that is inflicted to an organisation, e.g.

in financial terms. So instead of qualifying a risk scenario as

above, its likelihood and impact are expressed numerically; for

example, by stating that “scenario X is estimated to occur every
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5 years and when it does, it causes a loss of 10000 Euro”, leading

to an expected loss of 2000 Euro per year. Note that unlike

above, quantitative risk analyses provide an integral view of

risk faced by an organisation since all scenarios can be in-

spected and compared to one another at once, thanks to the

numerical value of the expected losses. By consequence, the

urgency of securing a specific asset in favour of another one,

can be readily deduced, which is not so obvious to achieve in

qualitative analyses.

There is a major drawback of many risk assessment methods

regarding their support for interdependent assets. For in-

stance, in the case of a server hosting a critical service, the

efficiency of the responsible software is not only threatened

on the one hand by vulnerabilities (bugs, security flaws) of the

service itself, but also, on the other hand, by any down-time

of the server. This relationship can be accounted for in several

ways, the flaws and strengths of which are summarised in Fig. 2:

One can analyse the common risk scenario (“service not pro-

vided”) for each of the assets (“server is down”, “software has

vulnerabilities”); however, the risk scenario in question is going

to be accounted for multiple times in the global risk analysis,

the outcome of which thereby becomes distorted.

Another option is to eliminate any redundancy from the risk

assessment, for instance by assigning each scenario only to

the most related asset. Now the global risk analysis features

every risk scenario exactly once, but the view on an indi-

vidual asset is no longer complete, since it does not take care

of every possible risk scenario.

Finally, several authors (Brændeland et al., 2010; Breier, 2014;

Pederson et al., 2006; Tong and Ban, 2014; Utne et al., 2011;

Wang et al., 2008) incorporate the assets and/or risk sce-

narios together with their interdependencies into a hierarchical

graph, based on which they deduce the risk for an asset, a

group of assets or the whole organisation by reading off all

subordinate risk scenarios. However, hardly any risk assess-

ment model supports cycles in the dependency chain (e.g. A

depends on B depends on C depends on A), although such

cycles exist in every (sub-) system where the compromise of

one component affects the whole (sub-) system. This is espe-

cially true in the context of Industrial Control Systems (ICS),

where cascading effects can be of devastating order; for in-

stance, the power grid and a voltage control system (requiring

electricity to work) constitute an example of interdependent

assets. As a second illustration, consider a poorly designed

web service hosting confidential and valuable data (e.g. medical

information) where the administrator can change any user

passwords and can retrieve any of the regularly made backups

of the user account database; then unauthorised access to

the administrator interface allows an attacker to fetch a

back-up, read out and disclose the user passwords, which again

leads to unauthorised access.This scenario is depicted in Fig. 3:

note the cycle “admin interface – backup location – user da-

tabase” (dotted lines).

Some authors (Homer et al., 2009; Wang et al., 2008) propose

a solution to deal with cyclic dependency graphs using graph

unfolding techniques, but they fail at providing a complexity

analysis for their methods.

This paper introduces a novel approach for computing the

risk faced by cyclically dependent assets. Indeed, the pro-

posed algorithm is based on a randomised (non-deterministic)

simulation and – in contrast to other algorithms – provably ef-

ficient in terms of their execution time (which is important

when doing real-time risk monitoring).

Section 2 presents related papers dealing with (cyclic) de-

pendencies in risk assessments. The risk model used by the

algorithm is defined in Section 3, along with the algorithm

itself, whereas the proof of its correctness and running time

can be found in the Appendix. The conducted experiments

and their results are exposed in Section 4, Section 5 deliber-

ates a generalisation of the model to also support more

complex dependencies, and the paper closes with a conclu-

sion in Section 6.

2. Related work

The model presented in this paper combines the concepts de-

veloped by various authors.

Fig. 1 – Sample table that can be used in a qualitative risk analysis. 
White cells denote acceptable, black cells unacceptable risk 
scenarios.

Fig. 2 – Flaws and strengths of the several risk assessment models. 
Check marks (✓) indicate correct outcome.

Fig. 3 – Illustration of cyclic dependencies of a poorly 
designed web service.
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Breier (2014) encodes information security assets and their

dependencies in a directed graph, where edges denote causal

relations between nodes. The model supports the use of logical

AND (for assets that depend on all parents) and OR (for assets

that depend on one of the parents) operations. McQueen et al.

(2006) also use attack graphs to encode dependencies (in their

case, between services in a SCADA environment) and express

risk as the time needed to compromise a component. Utne et al.

(2011) focus on cascading effects in critical infrastructures by

analysing the interdependencies between several high-level ser-

vices (such as electricity) and their impact to the society. They

also provide a framework to quantise the several magnitudes

involved in the risk assessment, allowing an explicit compu-

tation of risk. Most interestingly, the risk itself is expressed as

expected number of people affected by an incident.

Similarly, the risk assessment methodology supported by

the Spanish government, MAGERIT (Amutio et al.), also deals

with asset dependencies by embedding them into a graph.

However, it does not directly link related assets, but their se-

curity objectives (such as confidentiality, integrity and

availability), whenever they have an impact on each other.

Rahmad et al. (2012) aim at improving on MAGERIT by com-

bining it with thoughts from Fenz et al. (2009). They use an

exhaustive list of threat scenarios instead of security objec-

tives, which considerably increases the size of the model. This

paper further generalises this concept to arbitrary and user-

definable security incidents, which shows that quantitative

assessments do not necessarily have to be expressed in fi-

nancial terms.

To structure the assets (and thus the risk analysis) in a sen-

sible way, Aubigny et al. (2011) establish a risk ontology for

highly interdependent (critical) infrastructures, based on the

estimation of quality of service (QoS).The proposed model sup-

ports risk prediction and incorporates a data structure which

allows QoS information to be shared among interconnected

infrastructures. In a similar spirit, Xin and Xiaofang (2014)

classify assets into three layers, namely business, informa-

tion and system. On the lowest layer, risk is computed

traditionally as risk impact likelihood= × . Dependencies

appear in the model as weighted impact added to the risk of

dependent higher-level assets.

Moreover, in order to reduce the workload on risk asses-

sors, several authors suggest models where risk can be computed

from little input data. For instance, Homer et al. (2009) adapt

the concepts and algorithms known from Bayesian networks

to the realm of risk assessments and apply a graph unfolding

technique to generalise the model for cyclic dependency graphs.

The running time of this process is exponentially large in general,

though, and thus only works for small or sparse graphs.

As a workaround, Wang et al. (2008) provide a simplified (and

efficiently computable) probability metric for Bayesian net-

works, which they generalise to cyclic graphs, as well. However,

the chosen metric does not properly take dependent events

into account, so that the computed probabilities do not reflect

reality.

Although Baiardi and Sgandurra (2013) work on attack

trees rather than on causal graphs, the randomised algo-

rithm they provide can be generalised in such a way that the

probabilities of arbitrary causal graphs can be efficiently

computed – which is done in this paper.

3.

3.1.

Modelling the risk analysis context

Risk assessment

The context of a risk analysis is primarily determined by the

set of assets, which can be virtually anything of value to a

company or institution. In terms of risk, each asset is

characterised by its impact on business when one of its

(security-related) properties can no longer be guaranteed. Such

properties are called security aspects in the following, and include

most notably the three notions (Bishop, 2012) below. Note that

on the one hand, some of these aspects might not be appli-

cable to certain assets. On the other hand, it is sometimes

sensible to add further properties, or to be more specific about

existing ones – especially if the impact considerably changes

when doing so. For instance, one usually wants to distin-

guish between temporary unavailability, causing business

interruption, and permanent loss, which may be fatal to business.

• Confidentiality – the assumption that sensible informa-

tion is known only to a well-defined group of people.

• Integrity – the state that an asset is guaranteed to remain

in a well-defined state.

• Availability – the property that an asset can be accessed in

the way that was previously defined.

The impact itself is expressed in financial terms; this ap-

proach has the notable advantage that estimates have an

objective meaning and can thus be easily compared to each

other. More precisely, the impact is defined to be the finan-

cial damage caused by the threatened security aspect, or the

amount of money necessary to recover back to the original

state. That way, one can compute the loss expectancy (LE) which

represents the total losses to be expected in a given period,

typically a year:

LE impact s likelihood s
riskscenario

= ( ) ⋅ ( )∑
s:

, (1)

where likelihood s( ) denotes the number of times that sce-

nario s is expected to occur in the given period (i.e., the expected

frequency) – quantity usually to be estimated by a risk asses-

sor, a methodology or a tool. This paper will present an

algorithm for efficiently computing the likelihood function; see

Section 3.5.

3.2. Dependencies

A considerable flaw in many risk management models is the

lack of understanding of asset dependencies. Indeed, con-

sider a hard disk hosting valuable data (and suppose, for the

sake of the example, that no back-up is available), then a hard

disk failure does not only require the physical disk to be re-

placed (which is cheap), but also implies the complete loss of

core data (which may be business-ending). By consequence,

dependency-unaware models do not give disk health moni-

toring the attention it deserves.

In fact, asset dependencies represent nothing else than re-

lations of cause and consequence of security incidents on given

assets. Causal graphs are thus a natural candidate for encoding
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these relationships in a mathematical model. Recall that a

causal graph on a vertex set of events is a directed graph such

that two incidents are linked whenever they cause one another.

3.3. Likelihoods and probabilities

Whereas many approaches found in the literature (e.g. Breier,

2014; Liu et al., 2011; Loloei et al., 2012) use an abstract scale

(like “low”, “medium”, “high”) for describing the likelihood of

an event, this paper relies on concrete physical magnitudes that

support the direct use in a computation, see Fig. 4.

A reason why one prefers to use an abstract scale over a

number is because precise values are rarely known, so only a

rough estimate can be given. However, to make the assess-

ment task easier, one can still restrict to a given set of discrete

values to choose from for orientation, and interpolate to express

slight nuances. One such possible mapping is given in Fig. 5,

but can (and has to) be adapted to the setting in question.

Note the fundamental difference between “likelihood” and

“probability”. Probabilities are only meaningful when

characterising a random event a priori: the event either happens

or it does not with a certain chance. Likelihoods, however,

express the a posteriori statistical occurrence (or expected fre-

quency) of events over time. Mathematically, probabilities are

unit-less and lie within [0,1], whereas likelihoods can be ar-

bitrarily large and have as unit
1

time
.

Both notions of “probability” and “likelihood” can be easily

confused, because they are somewhat related. It is meaning-

less to say that a risk scenario occurs with a certain probability,

though. Probabilities do not scale linearly and are bounded by

100%, which is not in line with the common understanding of

risk. Indeed, consider the statement “there is a 10% chance of

fire”, then how to encode events that occur 100 times more

often. If, however, one estimates the likelihood of fire to be “on

average once every 10 years”, then the expected damage is trivi-

ally 10
1

10
100005EUR EUR⋅ =

y
y .

The model introduced in this paper makes use of both

notions, that is, on the one hand, the likelihood of an incident

or risk scenario, and on the other hand, the probability that it

entails another (dependent) incident.

In order to distinguish between the two, write P for the prob-

ability measure and L for the likelihood.

3.4. The dependency-aware root cause (DARC) model

Pick a set of nodes V, each representing a security incident. A

possible choice is to opt for V ⊆ ×A S , where A is the set of

all assets and S the set of security properties. For instance,

S C I A: , ,= { } could comprise confidentiality, integrity and avail-

ability threat scenarios. In that case, for readability, write a.s

instead of a s,( ) ∈ ×A S to denote the security aspect s of an

asset a.

Let E ⊆ V × V be the set of (directed) edges such that (α, β) ∈ E

iff security incident α has an impact on incident β. For read-

ability, write α → β instead of (α, β) if the set of edges E is

understood from the context. Illustrating the notation, the

example above can be rewritten in a very short and intuitive

form:

HDD A D AATA⋅ → ⋅ ,

which reads “if the availability of the hard-drive is compro-

mised, then so is the availability of any data stored on it”.

The tuple (V, E) constitutes a directed graph which is hence-

forth referred to as the (asset) dependency graph. It is not required

to be acyclic.

Whereas manual estimation of the full probability distri-

bution of the several incidents is theoretically possible, statistical

experiments in real-world systems are usually infeasible, for

it would require the simulation of threats on business pro-

cesses. Instead, the proposed model will use a slightly simplified

approach by basing itself on estimating the probability that a

particular incident causes another, independently of possible

other causes. In particular, the parent causes of an event are

related by a boolean OR operation, but the model can be ex-

tended to support arbitrary boolean formulas as well; see

Section 5. Formally, this describes a mapping p E: ,→ [ ]0 1 where

p(α → β) denotes the probability that β is entailed by α. Note

that this is not the same as P β α[ ], since β could also be en-

tailed by other events. p(α → β) is often denoted P β αdo( )[ ] or

P β αset ( )[ ] in the literature (Pearl, 2000).

Define a root cause to be a vertex without parent nodes in

the dependency graph. These are the causes for which an ex-

plicit likelihood needs to be specified later on, whereas for non-

root nodes it is deduced from the model.

An example of a dependency graph is depicted in Fig. 6: the

edge weights represent the values of p, and A and I stand for

the availability and integrity properties of the assets, respec-

tively. Note how the model does not make a difference between

external threats (circled) and security properties of assets

(boxed).

3.5. Computing the probability distribution

The complexity of the DARC model lies in the fact that one is

interested in the probability that a certain sequence of events

Fig. 4 – Table summarising the notions involved in the 
assessment of risk.

Fig. 5 – One possible mapping of an abstract scale to a concrete 
likelihood.
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cause each other, which is different from the problem of finding

such a sequence. Indeed, for the former, one needs to deter-

mine all such sequences and compute the probability that one

of them occurs. For this, simply listing those sequences and

adding up their probabilities of occurrence yields wrong results,

since some edges are accounted for twice.

3.5.1. The acyclic case

If the dependency graph is acyclic, a well-established theory

can be used to describe the full probability distribution. Indeed,

by its definition, the dependency graph together with the as-

sociated probability distribution constitutes a Bayesian network.

This case has been extensively studied (Idika and Bhargava,

2012), notably in Poolsappasit et al. (2012) and Homer et al.

(2009). This paper will thus focus on cyclic dependencies.

It is important to note that already in this simpler case, it

is computationally infeasible to determine the full probabil-

ity distribution of general Bayesian networks (Cooper, 1990). If

one assumes further properties of the graph, efficient algo-

rithms do exist, though (Zhang and Poole, 1994). A new approach

will thus be required to support cyclic graphs as well.

3.5.2. The general case

For cyclically related security incidents, computing their like-

lihoods constitutes a more delicate problem than it seems.

Based on how the model is defined, an event (i.e., a node)

is not triggered multiple times throughout the course of the

experiment, but only once. For a concrete instance of the

random experiment, the issue consists in finding all events

that are activated by any of the root causes. See for example

Fig. 7: event E can be caused by C or F, but inspecting the

situation in more detail, E is only caused by either of the two

event chains A → B → C → E or F → E. In particular, E can only

by triggered by C if C is not already triggered by the chain

F E D B C→ → → → .

By consequence, the probability that a risk scenario occurs

cannot only be expressed by the probability of its direct parents,

but has to involve all cycle-free paths from a root node. The

computation effort for enumerating all such paths can be huge

(in the worst case, namely in complete graphs, the running time

is exponential in the number of vertices), which is also why

any efforts in finding an efficient deterministic algorithm failed.

Instead, the randomised algorithm given in Algorithm 1 aims

to give a good approximation; note that risk assessments as

introduced in this paper do not require input data to be precise

and are stable with respect to fluctuations.

The running time of Algorithm 1 is polynomial in its input

data. More precisely, it is bounded by

O n m
n

⋅ ⋅ 



 ⋅





−ln ,
2 3

δ
ε

where n is the number of vertices, m is the number of edges,

δ is the probability that the algorithm output is wrong and ε

is an upper bound for the absolute error of the computed values.

Observe the logarithmic dependency on δ, which permits am-

plifying the algorithm accuracy without significantly increasing

its running time.

The proof of correctness, running time and error probabil-

ity is given in the Appendix.

3.6. Real-time risk monitoring

The DARC model paves the way for real-time risk monitoring

in the sense that the likelihoods of the root nodes, which usually

have to be estimated manually, can be automatically deter-

mined by external sources such as intrusion detection systems

(IDS) or security information and event management (SIEM)

appliances. Note that “real-time” denotes a process where an

explicit bound on the running time is known.

Observe that the function C V VR: × → R computed in Al-

gorithm 1 only depends on the probability weights p encoded

into the graph, but not on the likelihoods of the root causes.

By consequence, since the model (including p) is not sup-

posed to change during the risk monitoring phase, the above

Fig. 6 – An example illustrating the representation of the DARC 
model as a graph.

Fig. 7 – A simple cyclic dependency graph.
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algorithm is invoked once, namely after the model design phase.

As such, C can be considered static.

Since C expects two arguments, it can be viewed as a two-

dimensional matrix C V VR∈ ×
R where each row represents a root

node ∈ VR and each column an arbitrary node ∈ V. In fact, an

entry of C denotes the probability that a given root node (=row)

entails any given node (=column).

If the vector LR
VR∈R denotes the (estimated) likelihoods of

root causes, then the likelihoods L of all the nodes can be com-

puted as

L L CR= ⋅T ,

where ⋅ denotes matrix multiplication and LR
T the transpose

of the vector LR. Moreover, let I V∈R be the vector that holds

the direct impact caused by each node. The global risk can

finally be written as

risk T= ⋅ ⋅L C IR .

In a more explicit fashion,

risk = ( ) ⋅ ( ) ⋅ ( )
∈∈
∑∑ L v C v v I vR r

v Vv V

r

r R

, .

C is computed from the model by Algorithm 1. The impacts

I are manually estimated by a risk assessor for every security

incident (including root nodes) in the graph – the value 0 de-

scribes incidents without impact. The likelihoods LR of the root

causes are either manually estimated (if they are static) or dy-

namically monitored by external sources (IDS, SIEM, etc.).

4. Experiments

The algorithm is constructed in such a way that it can be in-

terrupted at any point, yielding a less precise, but complete

solution. More precisely, if it is aborted after αN steps, for

0 < α < 1, then the relative error ε will increase at most by a factor

α
−

1

3 : this estimate follows directly from the definition of N

(the number of simulation iterations) and is formally proven

in Lemma 1 in the Appendix.

Moreover, since all simulations are run in an independent

manner, they can be perfectly run in parallel (profiting from

multi-threading capabilities of a CPU) or in a distributed way.

To test the performance of the algorithm on “average”

graphs, dependency graphs have been generated uniformly at

random. A typical1 risk analysis may cover up to 50 different

assets, each of which generally encounters 3–5 threats, so a

related graph is composed of a few hundred nodes. It is sen-

sible to assume that nodes are not connected (on average) to

more than a few edges, so a typical graph will consist of a few

thousand edges at most.

The simulation was performed on a dual-core 2.5 GHz pro-

cessor (i7-3537U). The results are depicted in Figs 8–10 – as

expected, they reflect the running time computed in Proposition

1 in the Appendix. The precise numbers can be found in

Table A1 in the Appendix.

In order to compare the performance of Algorithm 1 to other

approaches, similar experiments have been conducted with

1 Based on the experience from past risk analyses performed by
the authors.

Fig. 8 – Execution time of Algorithm 1 in seconds, depending on 
the graph size n, with ε = 0.1 and δ = 0.01 and an average of 5 
neighbours per node.

Fig. 9 – Execution time of Algorithm 1 in seconds, depending 
on the algorithm precision ε and δ, with n = 1000 and m ≈ 
5000. Note the logarithmic scales.

Fig. 10 – Execution time of Algorithm 1 in seconds, depending on 
the graph size n and m, with ε = 0.1 and δ = 0.01.
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recursive deterministic algorithms, which condition on the ex-

istence of each edge in the graph (Algorithm 2).

Unfortunately, such algorithms have exponential running

time and take more than a few minutes already for small graphs

(|V| ≥ 20, |E| ≥ 100). All other attempts to solving the problem in

a deterministic way resulted in similarly bad execution times.

More advanced algorithms (see for instance Homer et al., 2009)

suffer from the same problem.

The simulations revealed that ε = 0.1 and δ = 0.01 are sen-

sible choices for typical dependency graphs (n ≤ 1000, m ≤ 5000).

Indeed, the running time is still relatively low (1–2 minutes),

but the computed values lie very close (±8%) to the ones pro-

duced by ε = 0.01 and δ = 0.001, although the computation of

the latter took much longer (38 hours). The values computed

by setting ε = 0.05 lie within ±5% of the high-precision results,

but the running time is increased to 15 minutes; depending

on the context, this may or may not be acceptable. In general,

reducing ε is more costly (in terms of running time) than re-

ducing δ, but has a much greater impact on the precision of

the output values.

Computing the risk faced by an organisation requires three

steps: manually collecting impacts I and likelihoods LR, com-

puting the probability matrix C using Algorithm 1, and finally

evaluating the matrix product L C IR
T ⋅ ⋅ . It turns out that the mul-

tiplication of those matrices is very fast and insignificant with

respect to the running time of Algorithm 1 for all choices of

ε < 0.5 and δ < 0.1.

5. Extension to boolean formulas

The dependency graph is based on the concept of causality;

that is, the parents of a node represent alternative causes, each

of which can engender the consequential scenario. Formally,

the dependency relationship of a vertex v0 and its parent nodes

P V Gv0 ⊂ ( ) can be expressed as

ρ v
x P

x

v

0

0

( ) =
∈
∨: ,I

where Ix denotes the boolean variable encoding whether the

event x occurs or not.

The beauty of Algorithm 1 lies in the fact that it does not

depend at all on the topology of the graph or on the form of

the dependencies. In fact, generalising the “OR” relations

to arbitrary boolean expressions ρ ⋅( ) is straightforward and does

not change the main lines or the proof of the algorithm; yet

Table A1 – Results of the simulation experiments

 |V| |E|                  ε δ Iterations Time (s)

Varying size of input graph

100 515 0.1 0.01 57290 1.1163832

200 995 0.1 0.01 62764 1.8782055

300 1558 0.1 0.01 65966 3.4224201

400 2010 0.1 0.01 68238 4.0489518

500 2571 0.1 0.01 70000 5.2410411

600 2998 0.1 0.01 71440 6.290252

700 3463 0.1 0.01 72657 7.2129071

800 4079 0.1 0.01 73712 8.7000471

900 4499 0.1 0.01 74642 10.0516358

1000 5058 0.1 0.01 75474 11.1025155

Varying precision of algorithm output

500 2523 0.5 0.01 726 0.0577856

500 2392 0.2 0.01 9620 0.72131

500 2541 0.1 0.01 70000 5.117056

500 2464 0.05 0.01 520596 31.2303292

500 2557 0.02 0.01 7587969 274.7254227

Varying algorithm error probability

500 2574 0.1 0.0001 88184 6.5013409

500 2521 0.1 0.001 79092 5.8744299

500 2479 0.1 0.01 70000 5.3008785

500 2540 0.1 0.1 60908 4.4340709

Varying average number of node neighbours

100 508 0.1 0.01 57290 0.74860860

200 980 0.1 0.01 62764 1.74781950

200 2004 0.1 0.01 62764 2.57128770

200 3957 0.1 0.01 62764 3.36202100

200 10067 0.1 0.01 62764 5.74008430

200 19992 0.1 0.01 62764 9.95537590

300 1491 0.1 0.01 65966 3.10028020

300 2956 0.1 0.01 65966 3.62702600

300 6032 0.1 0.01 65966 5.28465980

300 15068 0.1 0.01 65966 8.88317620

300 30075 0.1 0.01 65966 15.73896320

400 2002 0.1 0.01 68238 4.42690590

400 4007 0.1 0.01 68238 5.58108290

400 7993 0.1 0.01 68238 7.18062480

400 20094 0.1 0.01 68238 12.31568510

400 40110 0.1 0.01 68238 21.25638300

500 2497 0.1 0.01 70000 4.99750850

500 5091 0.1 0.01 70000 6.88772690

500 10048 0.1 0.01 70000 9.05478420

500 24883 0.1 0.01 70000 15.50143540

500 49828 0.1 0.01 70000 26.78152520

600 3012 0.1 0.01 71440 6.38884460

600 5897 0.1 0.01 71440 8.35841490

600 12163 0.1 0.01 71440 11.27393760

600 29795 0.1 0.01 71440 19.07167170

600 60180 0.1 0.01 71440 33.08584440

700 3393 0.1 0.01 72657 5.75831260

700 7078 0.1 0.01 72657 9.93901220

700 13910 0.1 0.01 72657 13.05916540

700 34940 0.1 0.01 72657 22.79221370

700 70164 0.1 0.01 72657 38.90024520

800 3936 0.1 0.01 73712 8.32702800

800 7963 0.1 0.01 73712 11.40233290

800 16012 0.1 0.01 73712 15.34878480

800 40093 0.1 0.01 73712 27.16270650

800 79989 0.1 0.01 73712 45.30316310

900 4426 0.1 0.01 74642 7.83409540

900 9219 0.1 0.01 74642 13.27833110

900 17995 0.1 0.01 74642 17.58192730

900 45347 0.1 0.01 74642 30.87114070

900 89958 0.1 0.01 74642 53.56402540

1000 5073 0.1 0.01 75474 11.19835840

1000 9867 0.1 0.01 75474 13.10751250

1000 20336 0.1 0.01 75474 19.48352650

1000 50238 0.1 0.01 75474 33.94672970

1000 99469 0.1 0.01 75474 58.11831390
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considerable adaptations have to be made in order to find

whether a node is triggered or not (line 10 in the algorithm).

For general boolean formulas the effort for computing the like-

lihoods is considerably higher, since a recursive search might

no longer be possible.

In order to evaluate A ∧ X, one needs to evaluate both parents,

including X and thus Y ∧ B and Y (see Fig. 11). But Y can only

be evaluated if A ∧ X is known already. It is not so clear how

to proceed in such a case: here, one solution is to set the like-

lihood to zero for all non-reachable nodes, because the cycle

can never be entered; however, this might not be sensible in

all situations. A different theory, such as boolean satisfiability

(Clote and Kranakis, 2013), is required in these matters.

The comparatively good running time of Algorithm 1 was

due to the fact that evaluating the likelihood (sc. finding all

cycle-free paths) can be implemented in an efficient way. For

more complex boolean formulas this may not necessarily be

the case (indeed, the boolean satisfiability problem2
SAT is

NP -complete (Clote and Kranakis, 2013)) so that determinis-

tic (and possibly even error-free) algorithms could outperform

the simulation variant.

6. Conclusion and outlook

This paper provides a simple and lightweight approach for en-

coding asset dependencies into a graph structure. Since that

graph is not assumed to be acyclic (which allows to model situ-

ations where asset A depends on B, which depends on C, which

depends on A again), the model can also be used in environ-

ments with interdependencies, such as in Industrial Control

Systems (ICS) or Critical Infrastructures (CI). The major con-

tribution of this piece of work (apart from the DARC model)

is Algorithm 1, which computes the resulting risk in such a

graph, but in a provably efficient way. Indeed, as it turned

out, any deterministic approach that we could think of is

computationally too complex to serve as a basis for any usable

algorithm. Indeed, the running time is exponential in the

number of nodes and edges, which rapidly becomes a problem

already for small graphs (|V| ≥ 30).

The DARC model was developed with the intention of cre-

ating a tool that continuously computes and monitors the

current risk faced by an organisation, taking all dependencies

into account. For now, it merely encodes the causal relation-

ships between incidents (i.e. A causes B), so that a quantitative

risk assessment can only be performed in a very basic way

(risk = likelihood × impact). Therefore, the next steps consist in

embedding the DARC model into a whole risk methodology,

by including more fine-grained notions into the model (such

as threat exposure, vulnerabilities or preventive measures).

Doing so will also enable more sources of risk information to

be integrated into the monitoring tool, for instance software

agents that rate and report the performance of preventive se-

curity measures.

A open problem related to quantitative risk assessments

is the lack of statistical data required for estimating the

likelihoods of risk scenarios. A quick workaround consists

in specifying confidence intervals for the input values and

evaluating the risk model for the lower and upper bounds,

respectively.

The concepts developed in this paper are currently being

implemented for a real organisation in the electricity domain;

an upcoming publication is planned for publishing the results

and lessons learned.
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Appendix

Proposition 1. Algorithm 1 is correct with probability δ and termi-

nates within time

O n m
n

⋅ ⋅ 



 ⋅





−ln .
2 3

δ
ε

Moreover, each computed value lies within an interval of ±ε around

the true value.

Proof. Fix a root node vr ∈ VR. For v ∈ V and 1 ≤ i ≤ N, let Xi(v)

be the indicator variable that there is a path from vr to v in

the i-th random experiment. Observe that

1
1

1

0 0
N

X v X v X vi

i

N

E E P( )[ ] = ( )[ ] = ( ) =[ ]
=
∑ ,

that is, the quantity approximated by the algorithm (left hand-

side) equals the probability that node v is reachable by vr. So

if the random experiments do not deviate too much from their

expectations, the algorithm output is correct up to a certain

relative error, which is determined in the following.

Define γ and N as in the algorithm. Note that γ < ε < 1.

Fix v ∈ V. Suppose for now that µ(v) ≥ γ. Using a two-sided

Chernoff bound (Motwani and Raghavan, 2010),

P X v N v N v N

n

i

i

N

( ) − ( ) > ( )





≤ −





=

=
∑

1

2

2

2
3

µ µ ε
ε

γ

δ

exp

. by the chhoice of N( )

2 Given an arbitrary boolean formula ρ on variables x1, …, xn,
the SAT problem consists in determining whether there is
a value α ∈{ }0 1, n for all of these variables x such that
ρ α αx xn n1 1 1: , , := =( ) =… .

Fig. 11 – Endless loop in dependencies for general boolean formulas.
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If however µ(v) ≤ γ < ε, using a one-sided Chernoff bound,

P PX v N X v
v

v
N vi

i

N

i

i

N

( ) >





= ( ) > +
− ( )

( )






( )
= =

∑ ∑
1 1

1ε
ε µ

µ
µ




≤ −
− ( )

( )






( )






≤ − −( )


2
3

2
3

2

2

exp

exp

ε µ
µ

µ

ε γ
γ

v

v

N v

N 


= −
−





( )






( )2 2

2

2exp ln .
ε γ
εγ

δn *

By the definition of γ it holds that ε − γ > εγ and thus *( ) ≤
δ
n2

.

To summarise, with probability at least δn−2 the following two

statements hold:

• If µ(v) ≥ γ then the relative error of the random experi-

ment is at most ε; however, since µ(v) < 1, this also implies

that the absolute error e v X v N vii

N( ) = ( ) − ( )
=∑:

1
µ is at

most ε.

• If µ(v) ≤ γ then the absolute error e(v) error is at most ε.

Note that the statements above hold for any fixed vertex

v0 and any fixed root node vr,0 . Using a union bound,

P P∃ ∃ ( ) >[ ] ≤ ⋅ ( ) >[ ] =v v e v n e vr : ε ε δ2
0

yielding the desired error probability for the algorithm.

Regarding the running time, note that the inner FOR-loop can

be implemented (e.g. using a breadth-first search) in linear time

O m( ) for each of the at most n root nodes, whereas the sam-

pling requires time O m( ), resulting in a total execution time

of O n m N⋅ ⋅( ). □

Lemma 1. For fixed δ, if Algorithm 1 is aborted after αN itera-

tions, for 0 < α < 1, then the relative error of the algorithm output

increases at most by a factor α
−

1

3 .

Proof. Suppose Algorithm 1 requires N0 iterations to achieve

a relative error ε0. If one picked ε = βε0, it would require

1
6

2 1
6

2

1

1

3

0

3
0
3

3 0

0

0

+( )
⋅ =

+( )
⋅

=
+( )

+( ) ⋅ ≤−

ε

ε δ

β ε

β ε δ

β
β ε

ε
β

log log
n n

N −− ⋅3
0N

iterations instead, for any 0 < β < 1. Since the outputs get

more precise the longer the algorithm runs, running it pre-

cisely β −3
0N times will yield a relative error βε0 (or even better).

Setting β α=
−

1

3 concludes the proof. □
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