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CONCATENATIVE SOUND TEXTURE SYNTHESIS METHODS AND EVALUATION

Concatenative synthesis is a practical approach to sound texture synthesis because of its nature in keeping realistic short-time signal characteristics. In this article, we investigate three concatenative synthesis methods for sound textures: concatenative synthesis with descriptor controls (CSDC), Montage synthesis (MS) and a new method called AudioTexture (AT). The respective algorithms are presented, focusing on the identification and selection of concatenation units. The evaluation demonstrates that the presented algorithms are of close performance in terms of quality and similarity compared to the reference original sounds.

INTRODUCTION

Sound texture synthesis is an emerging research topic. It inspires to explore the physics and signal characteristics of sounds other than music and speech, and it also has a great potential to applications in the film, broadcast and video game industries. Sound textures are generally understood as sound that is composed of many micro-events but have features that are stable on a larger time-scale, such as wind, rain, fire, stream, insects, crowd cheering or applause. In this work, we will focus on sounds generated by real-world physics such as environmental, mechanical, and crowd sounds. The imaginary ambiance sounds or creative texture-like sounds are therefore not within the context of this work.

Among existing sound texture synthesis methods [START_REF] Schwarz | State of the art in sound texture synthesis[END_REF], granular synthesis is a relatively practical approach as it makes use of snippets of a sound recording, and thus inherits the short-time signal's timbre which provides a shortcut to naturalness. Concatenative synthesis can be seen as a particular kind of granular synthesis [START_REF] Schwarz | Corpus-based concatenative synthesis[END_REF] and we will be using this term to distinguish it from many commercial granular synthesis products that usually generate sounds of different timbre than that of the original sounds. Since 2012, the authors have been working together on the French national project PHYSIS 1 : an industrial project focused on the modeling, transformation and real-time synthesis of diegetic sounds for interactive virtual worlds and augmented reality. The developed concatenative synthesis methods include: Concatenative Synthesis with Descriptor Controls (CSDC) controls transitions between segments using audio descriptors, thus preventing artefacts (section 2.1); Montage Synthesis (MS) analyzes energy evolution in multiple sub-bands and re-synthesizes a sound texture by means of replacing similar atoms to re-create the sequence of events (section 2.2); AudioTexture (AT) is an algorithm used in a commercial car engine sound synthesizer AudioMotors, which is originally designed to synthesize tire-rolling sound (section 2.3).

In this article, the main emphasis is laid on perceptual evaluation of concatenative synthesis methods for sound textures. Per-1 https://sites.google.com/site/physisproject ceptual audio evaluation is a well understood topic [START_REF] Bech | Perceptual audio evaluation-Theory, method and application[END_REF], but the latest comprehensive survey of methods for sound textures [START_REF] Schwarz | State of the art in sound texture synthesis[END_REF] found only some previous work involving evaluation by perceptual listening tests, e.g. [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF][START_REF] Kersten | Sound texture synthesis with hidden markov tree models in the wavelet domain[END_REF][START_REF] Mcdermott | Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis[END_REF]. Since then, listening tests have been more systematically carried out in the literature for sound textures [START_REF] Heittola | Method for creating location-specific audio textures[END_REF][START_REF] Liao | On the modeling of sound textures based on the STFT representation[END_REF][START_REF] O'leary | A two level montage approach to sound texture synthesis with treatment of unique events[END_REF][START_REF] Schwarz | Smooth granular sound texture synthesis by control of timbral similarity[END_REF][START_REF] Tiger | Synthése sonore d'ambiances urbaines pour les applications vidéo-ludiques[END_REF] and general sound synthesis for virtual reality and gaming [START_REF] Mengual | Modal synthesis of weapon sounds[END_REF][START_REF] Murphy | Perceptual evaluation of rolling sound synthesis[END_REF][START_REF] Nordahl | Sound synthesis and evaluation of interactive footsteps for virtual reality applications[END_REF]. The evaluated use-case in this work is example-based sound textures extending an environmental sound texture recording for an arbitrary amount of time, even from varying (non-stable) recordings or periodic sounds, where looping would be easily detectable.

The article is organized as follows. We briefly introduce and compare the algorithms and discuss the respective advantages and disadvantages in section 2. Then, we present the listening test database and setup in section 3. The evaluation results are analyzed and discussed w.r.t. the quality and similarity compared to the reference original sounds in section 3.3. Finally we draw conclusions and present perspectives in section 4. Since this article focuses on the evaluation part, we will only describe the methods in general; readers are invited to consult the implementation details in the respective references.

METHODS

The principle of concatenative synthesis is to concatenate sound units in a random or controlled order. The sound units can be defined either by a fixed size (granular synthesis) or by more sophisticated analysis methods. The concatenation between two selected units is carried out by cross-fading using an analysis window such as hanning. The cross-fade shall result in smooth transition provided that the selected units are of similar timbre characteristics at the boundary. For sound texture synthesis, the underlying events are usually evolving (energy, phase, modulation, etc.). Assuming that the events can be identified as consecutive units, we propose to study the identification and selection of sound units which help to reconstruct sound textures that preserve the perceptual quality of the original timbre and the underlying events.

Concatenative Synthesis with Descriptor Controls

The CSDC method [START_REF] Schwarz | Smooth granular sound texture synthesis by control of timbral similarity[END_REF] is based on randomized granular playback with control of the similarity between grains using a timbral distance measure based on audio descriptors. In previous work [START_REF] Schwarz | Smooth granular sound texture synthesis by control of timbral similarity[END_REF], this distance measure has been validated as generally superior to an MFCC-based timbral distance and to uncontrolled purely randomized playback. CSDC is based on corpus-based concatenative synthesis (CBCS) [START_REF] Schwarz | Corpus-based concatenative synthesis[END_REF], that can be seen as a content-based extension of granular synthesis, which allows unit (grain) selection controlled by audio descriptors.

In order to synthesize a varying texture without audible repetitions nor artefacts such as abrupt timbral or loudness changes, we use a timbral distance measure between the last played grain and all other grains as candidates, and randomly select a successor grain from the timbrally closest grains, thus generating a random walk through the timbral space of the recording, that never takes too far a step, but that potentially still traverses the whole space of variety of the recording.

The timbre is determined by the audio descriptors suggested by Schwarz and Caramiaux [START_REF] Schwarz | Lecture Notes in Computer Science (LNCS), chapter Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF] with the addition of pitch. This choice has been validated by Schwarz and O'Leary [START_REF] Schwarz | Smooth granular sound texture synthesis by control of timbral similarity[END_REF]. The 6 instantaneous descriptors Loudness, FundamentalFrequency, Noisiness, SpectralCentroid, SpectralSpread, SpectralSlope are extracted with the IRCAMDESCRIPTOR library [START_REF] Peeters | A large set of audio features for sound description (similarity and classification) in the Cuidado project[END_REF] and averaged over all frames of size 23 ms. To avoid too regular triggering of new grains, the duration and time of the played grains are randomly drawn within a 600-1000 ms range, and a random start offset of +/-200 ms is applied to each grain. Grains are overlapped by 200 ms, and an equal-power sinusoidal cross-fade is applied during the overlap.

Montage Synthesis

The MS algorithm [START_REF] O'leary | A two level montage approach to sound texture synthesis with treatment of unique events[END_REF] looks to exploit regions of similarity in the original texture to inform the sequencing of sampled elements. There are two levels to the synthesis model. Longer term sections, called segments, are used to model the higher level structure of textures. These segments are synthesized from the concatenation of shorter sections, called atoms.

In the analysis phase, sub-band energy envelopes are extracted based on perceptual criteria by using the ERB (Equivalent Rectangular Bandwidth) scale and loudness-scale approximation. A time-frequency atom is defined by a duration of 100 ms such that it is long enough to enable the comparison of envelopes and short enough to allow variations in the synthesis phase. An envelope difference measure is proposed to measure the similarity between atoms (local texture structure) and to derive the segments (long term evolution). Based on a statistical model, the sequences of both the segments and atoms are automatically re-synthesized to avoid repetition. A new overlap-add method is also proposed based on frequency-dependent cross-fading length and position in the spectral domain. In principle, the cross fade region is taken to be 4 times the inverse of the bin center frequency, and the possibly different cross-fade position for each bin minimize phase discontinuities. This enables concatenation with short overlap without introducing perceptible modulations.

AudioTexture

The goal of AudioTexture (AT) is to allow sound designers to make use of any sound texture recordings available and re-create the same sound textures (with semantic controls) synchronous to video images for film/TV post-production and video games.

Principle: Similar to the concept of MS, we view sound textures as composed of two levels of events: micro events (atoms) and macro events (segments). The assumption made here-that a segment boundary represents a new macro event-is essential to identify for good concatenation quality. The micro events are more difficult to handle for complicated textures like crowd cheering/applauding, which will be addressed in future work. We assume that macro events will result in dominant energy variation and thus can be identified from the local maxima of the energy envelope. The boundary between two macro events (assumed to be deterministic) is then defined by the corresponding local minima. Since micro events may result in slight energy variation, the proposed AT algorithm aims to identify prominent local extrema as macro event units.

Method: Similar to several PSOLA (Pitch-Synchronous Overlap-Add) marker analysis algorithms [START_REF] Ewender | Accurate pitch marking for prosodic modification of speech segment[END_REF], the analysis stage is based on detecting prominent local (energy) maxima as the positions of macro events (glottal pulses in the case of speech). The density of local maxima can be understood as how often a macro event occurs, which in fact is related to the physical behaviors of sound textures. Since the event occurrence frequency varies for different sounds, we simply define a user parameter, minimum macro event duration, to avoid selecting spurious local extrema. Once the macro event units are identified, the synthesis stage uses the common cross-fade method with waveform similarity to refine the cross-fade position [START_REF] Verhelst | An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech[END_REF].

Implementation: In practice, we have found that, by means of low-pass filtering the signal using a biquad filter (gradual attenuation after the cutoff frequency), it is sufficient to obtain a smooth energy envelope of which the local maxima approximate the locations of macro event positions. According to our experimental tests, using a biquad filter of cutoff frequency at 20Hz and of bandwidth 0.3 seems to generalize well over a variety of sound textures. The other practical reason is that the components in the low frequency tend to evolve slowly and are thus more often related in phase for a long-term evolution. The unit identification based on low-frequency emphasized signal seems to produce less perceptually-disturbing phase discontinuity (similar to the idea of MS's frequency-dependent overlap-add treatment). The search of local maxima starts from the beginning of the processed signal. For each local maximum detected, the algorithm selects the largest local maxima within the intervals of minimum macro event duration. The minimum duration of 1 s seems to be sufficiently large to generalize. This parameter should in future work be learned from annotated databases. To concatenate two units during synthesis, the cross-fade region is defined by a quarter of the unit size based on the shape of hanning window.

To summarize, the algorithm (1) searches for local amplitude maxima of the low-passed signal as the macro event positions (2) marks the related local minima (one-to-one correspondence) in the original signal as the macro event boundaries (3) concatenates by cross-fading the macro event units in a random order (or selected order). The algorithm is implemented in a commercial DAW (Digital Audio Workstation) plugin AudioMotors Pro2 for tire-rolling mode synthesis. Although the product has been made available since 2013, we found that this simple idea has also been suggested in a recent granular synthesis algorithm [START_REF] Siddiq | Morphing of granular sounds[END_REF]. AudioTexture is scheduled to be released as a sound design product with preset parameters adapted to different kinds of sound textures.

Baseline method

We have implemented a baseline method RND similar to Fröjd and Horner's approach [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF], which randomly concatenates sound units of sizes randomly drawn between 600 ms to 1 second with 200 ms overlap and equal-power sinusoidal cross-fade. This method is used to compare with the three proposed methods to evaluate the effectiveness of sound unit identification and selection.

Algorithm comparison

An overview of the three sound texture synthesis methods is shown in Table 1. The scale of the units are of the relation RND ≈ CSDC < MS < AT. Here we consider the scale of MS defined by its envelope because it imposes a constraint on the selection of the atoms.

Like the usual granular synthesis, CSDC uses grain units of a fixed size that is sufficiently large to preserve the local structure generated by micro events. The principal functionality of CSDC is unit selection based on descriptor similarity. RND randomizes both the unit size (close to the grain size of CSDC) and the unit selection.

AT is using the largest unit scale (≥ 1 s) for macro events and there is no control strategy applied during the synthesis phase. MS models both micro events by atom units of a fixed size and macro events by segments. A statistical model of atom/segment sequencing is further used at the synthesis stage. The order of complexity of the presented algorithms is RND < AT < CSDC < MS.

EVALUATION

The evaluation is carried out by web-based listening tests (see Figure 1). In addition to the concatenative synthesis methods, we have added a signal-model based method SDIS based on spectral domain imposition of statistics [START_REF] Liao | On the modeling of sound textures based on the STFT representation[END_REF]. This method is a more efficient implementation of the state-of-art signal-model based method proposed by McDermott and Simoncelli [START_REF] Mcdermott | Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis[END_REF]. Since we assume that concatenative synthesis methods generally have the advantage over signal-model based methods in terms of quality, we have included this method for evaluation to verify if all the proposed methods do demonstrate their advantages.

Experiment setup

The algorithms presented above are evaluated in an ongoing listening test accessible online 3 . The test database contains 27 sound texture examples with equal duration of 7 seconds: They are carefully selected to cover a wide range of sound textures generated by human, transportation, mechanical gears, animals and natural elements (air, water and fire). Some of the sounds contain explicitly non-uniform environmental sound textures, i.e. containing some variation in texture and timbre, but not clearly 3 http://ismm.ircam.fr/sound-texture-synthesis-evaluation 4 http://gameaudiofactory.com perceived as outlier events. They are meant to test an algorithm's capability to re-synthesize slow evolution such as wind blowing. There are also periodic sounds that serve to test the algorithms' capability to preserve the periodic structure without introducing jitter and phase discontinuities.

In the listening test, for each of the 27 sound examples in randomized order, the original is presented to the subject, and then 6 stimuli in randomized order: the resyntheses generated by the five algorithms (CSDC, MS, AT, RND and SDIS) and the original (ORIG) as hidden anchor. Subjects are asked to use a numerical slider between 0 and 100 to rate the stimuli according to the two criteria:

Quality: Presence of artefacts, such as abrupt loudness or timbral changes, cuts, repetitions, loops, distortions, etc. The scale is further divided into 5 levels: bad, poor, fair, good and excellent.

Similarity: Does the resynthsis sounds sufficiently credible like the variation of the original sounds ? The scale is further divided into 5 levels: very dissimilar, somewhat dissimilar, somewhat similar, quite similar and very similar.

Results

At the time of writing, 17 responders took the test (with 2 only providing partial data). All but 2 reported being familiar with perceptive listening tests, none reported hearing impairment. Age and gender information were not gathered. Figure 2 shows the ratings of quality and similarity (without any scaling). For each algorithm, the rating statistics are calculated over all responses and sounds.

We also analyze ratings with respect to different sound classes according to local structure (stable, varying, periodic) in Figure 4 and sound content characteristics (noisy, pitched) in Figure 3: In general, ORIG ranks the best, which validates that the testers are doing a proper job. All the three concatenative synthesis methods are rated in a close range around 80 (between quite similar to very similar). Surprisingly, RND is rated quite well and appears very competitive by the mean similarity measure. All concatenative methods are rated much better than SDIS, which confirms the expected advantages in sound texture synthesis. This seems to align with the result obtained in [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF] where a concatenative synthesis method seems to be generally rated better than the signal-model based method based on wavelet trees [START_REF] Dubnov | Synthesis of audio sound textures by learning and resampling of wavelet trees[END_REF].

To test if the observed differences of ratings are significant or simply due to chance, further statistical analysis has been carried out. As Figure 5 shows, the ratings are not normally distributed, so that the Kruskal-Wallis non-parametric method [START_REF] Mcdonald | Handbook of Biological Statistics[END_REF] has been applied instead of ANOVA (analysis of variance). 5 Here the null 5 However, McDonald [START_REF] Mcdonald | Handbook of Biological Statistics[END_REF] argues that one-way ANOVA is not very sensitive to non-normal distributions, and indeed, ANOVA with Bonferroni correction gives very similar results in terms of significance of differences of pairs of means: The p-values are generally lower with ANOVA, but only very few passed under the significance threshold of 5%. We report here the more conservative Kruskal-Wallis results. Table 2: Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for total results. hypothesis H0 is that the ratings come from the same distribution (and differences in means are thus due to chance), and the alternative hypothesis HA is that the data comes from different distributions. The significance levels of the p-values for each pair of comparisons are given in Tables 234567for the quality and similarity ratings. The significance level depending on the p-value is habitually represented by a number of stars as follows:

Level 

Discussion

The global results given in Table 2 show that, in general, all resyntheses can be distinguished from the original. However, none of the concatenative synthesis based algorithms can be distinguished amongst each other (the null hypothesis that the differences in ratings are due to randomness can not be rejected). Yet, all concatenative synthesis algorithms can be reliably distinguished from the SDIS algorithm with p < 0.0001. The two latter points hold for all subsets of sounds in Tables 34567. For stable sounds (Table 3, Figure 4 top), the granular resyntheses (with the exception of AT but including RND) can not be distinguished from the original. For varying sounds (Table 4, Figure 4 middle), CSDC is significantly better than RND, as well as AT for the similarity rating. For periodic sounds (Table 5, Figure 4 bottom), only RND can be distinguished from the original, as well as AT for the similarity rating. However, there are only 3 sounds in this class, so the results should be taken with care.

Noisy sounds (Table 6, Figure 3 for global results: all resyntheses can be distinguished from the original and from SDIS. For pitched sounds (Table 7, Figure 3 bottom), CSDC and AT can not be significantly distinguished from the original. In general, the proposed concatenative synthesis methods obtain slightly better ratings than RND, although the differences are not significant, except for the sound classes of varying sounds, where CSDC and AT (for similarity only) have significantly (with p < 0.05) better ratings. We may summarize the advantages of the concatenative algorithms as follows:

CSDC: Unit selection based on descriptor similarity is very effective provided that the unit size is fixed. That is, the descriptors characterize well the units such that the selected units follow a credible sequence even for time-varying sound textures: it shows its strength for stable, periodic, and pitched sounds, where it can not be distinguised significantly from the original, and for varying sounds, where the distinction is less significant than for the other methods. For varying sounds, it is significantly better than RND.

MS:

The statistical sequence modeling is very effective for stable and periodic (almost identical to ORIG) sounds with a fixed atom size and varying segment length. However, it tends to have less favorable rating for varying sounds. This could possibly be improved by parameter refinement to allow longer evolution of macro events (segments).

AT: The unit analysis is quite promising provided its simplicity. Since there is no treatment to handle unit selection, it may result in less satisfying quality for varying sounds such as lapping waves and crowd cheering sounds, and its statistically significant difference to the original for stable sounds shows that there is room for improvement.

CONCLUSION

We have evaluated the proposed concatenative methods for sound texture synthesis, each of different degrees of complexity (RND: simple random choice, AT: random choice with simple unit identification, CSDC: unit selection by sound descriptors, MS: unit (segment) identification, sequence modeling and matching). Using a database of sound texture examples relevant to gaming and multimedia applications, the evaluation results had little difference in their mean ratings. The proposed three concatenative synthesis methods appear to be slightly advantageous to the baseline method RND. A finer analysis of the results sound-by-sound is yet to be carried out, which may reveal edge cases that lead to more insights on what treatment is necessary for different types of sound textures and eventually an improvement of the design of the evaluation database. Since the differences in quality/similarity among proposed methods are generally not statistically significant, one may need to design objective evaluation measures. For example, a good concatenative synthesis should generate high quality sound textures while shuffling a lot the units that do not follow their original order. That is, the resynthesis shall have as many as possible re-ordered grains compared to the original sounds.

The concatenative methods evaluated in this article do demonstrate their advantages over the signal model based method SDIS. Notice that we do not draw a conclusion here that the concatenative synthesis methods are better than the signal model based methods but we do confirm certain observations like the results obtained in [START_REF] Fröjd | Sound texture synthesis using an overlap-add/granular synthesis approach[END_REF]. However, it is true that it is generally more difficult to develop a signal-model based method that compete in quality with the concatenative methods for sound texture synthesis.

To further improve the algorithms, the principal ideas of certain algorithms can benefit each other. However, the common challenge to sound texture algorithms are varying sounds as shown in Figure 2. We believe that it is essential to model a long-term evolution (one cycle of lapping waves) as well as physically coherent behavior (cycles of lapping waves). Based on the same algorithm, for instance, one may adapt the analysis, control and synthesis parameters to each kind of sound textures. The possible advantages of parametric synthesis methods, such as based on a signal or physical model, or physically-informed [START_REF] Schwarz | State of the art in sound texture synthesis[END_REF], in terms of controllability and adaptability to a given temporal evolution are beginning to be attained by recent interactive concatenative methods, e.g. [START_REF] Schwarz | Lecture Notes in Computer Science (LNCS), chapter Interactive Sound Texture Synthesis through Semi-Automatic User Annotations[END_REF].
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  14 sounds used by McDermott et. al. in their previous studies on sound texture perception [8] • 13 sounds contributed by the PHYSIS project partner Game-AudioFactory 4

  stable: local structure does not vary along time such as heavy rain sounds (13 sounds) varying: local structure slightly varies along time such as wind whistling sounds (11 sounds) periodic: global structure is a repetition of local structure such as helicopter sounds (3 sounds) noisy: sound does not contain pitched or harmonic components such as gas stove sounds (22 sounds) pitched: sound contains pitched components such as crowd cheering sounds (5 sounds)
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 12 Figure 1: An example of listening test web interface.
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 3 Figure 3: Box plots of the quality and similarity ratings for each sound character (noisy, pitched) per type of stimulus, showing the mean and standard deviation (blue circle and error bar), median (middle line), quartile range (box), min/max (whiskers), and outliers (crosses).
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 4 Figure 4: Box plots of the quality and similarity ratings for each sound class (stable, varying, periodic) per type of stimulus, showing the mean and standard deviation (blue circle and error bar), median (middle line), quartile range (box), min/max (whiskers), and outliers (crosses).

Figure 5 :

 5 Figure 5: Histograms of ratings per bins of 10 rating points. Order of bars as in the previous figures: ORIG, CSDC, MS, AT, RND, SDIS.

Table 1 :

 1 This table compares the analysis and synthesis phases of the proposed methods.

	Algorithm Units	Analysis	Synthesis
	CSDC	grains	fixed size of 800ms without overlap	descriptor similarity
	MS	atoms/segments sub-band energy envelope difference	sequence model
	AT	segments	energy evolution + minimum duration 1 s random order
	RND	grains	random sizes between 600 ms to 1 s	random order

Table 3 :

 3 Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for stable sounds.

			*	**	***	****
		p ≤	0.05 0.01 0.001 0.0001
	stable	ORIG CSDC MS	AT	RND SDIS
	ORIG	-			*	****
	CSDC		-			****
	MS			-		****
	AT	**			-	****
	RND					-	****
	SDIS	****	****	**** **** ****	-

Table 4 :

 4 Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for varying sounds.

	periodic ORIG CSDC MS	AT	RND SDIS
	ORIG	-				**	****
	CSDC		-			****
	MS			-		****
	AT	**			-	****
	RND	***				-	***
	SDIS	****	****	**** *** **	-

Table 5 :

 5 Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for periodic sounds.

Table 6 :

 6 Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for noisy sounds.

	pitched ORIG CSDC MS	AT	RND SDIS
	ORIG	-		**		***	****
	CSDC		-			****
	MS	**		-		****
	AT				-	****
	RND	***				-	****
	SDIS	****	****	**** **** ****	-

Table 7 :

 7 Significance level for each pair of differences of means on quality (upper triangle) and similarity (lower triangle) ratings for pitched sounds.

http://lesound.io/product/audiomotors-pro, free trials are available for download.
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