N
N

N

HAL

open science

Introducing CatOracle: Corpus-based Concatenative
Improvisation with the Audio Oracle Algorithm

Aaron Einbond, Diemo Schwarz, Riccardo Borghesi, Norbert Schnell

» To cite this version:

Aaron Einbond, Diemo Schwarz, Riccardo Borghesi, Norbert Schnell. Introducing CatOracle: Corpus-
based Concatenative Improvisation with the Audio Oracle Algorithm. International Computer Music
Conference (ICMC), Hans Timmermans, Sep 2016, Utrecht, Netherlands. pp.141-147. hal-01427364

HAL Id: hal-01427364
https://hal.science/hal-01427364
Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01427364
https://hal.archives-ouvertes.fr

Introducing CatOracle: Corpus-based concatenative improvisation with the
Audio Oracle algorithm

Aaron Einbond
City University London
Aaron.Einbond@city.ac.uk

Riccardo Borghesi
IRCAM/CNRS/UPMC
Riccardo.Borghesi@ircam. fr

ABSTRACT

CATORACLE responds to the need to join high-level con-
trol of audio timbre with the organization of musical form
in time. It is inspired by two powerful existing tools:
CataRT for corpus-based concatenative synthesis based on
the MUBU for MAX library, and PYORACLE for com-
puter improvisation, combining for the first time audio de-
scriptor analysis and learning and generation of musical
structures. Harnessing a user-defined list of audio fea-
tures, live or prerecorded audio is analyzed to construct an
“Audio Oracle” as a basis for improvisation. CATORA-
CLE also extends features of classic concatenative synthe-
sis to include live interactive audio mosaicking and score-
based transcription using the BACH library for MAX. The
project suggests applications not only to live performance
of written and improvised electroacoustic music, but also
computer-assisted composition and musical analysis.

1. INTRODUCTION

One of the most influential paradigms in recent digital
music making has been the notion of “reproduction” [1].
This includes processes of transcription, such as audio mo-
saicking. However, it could also be extended to reproduc-
tion of musical behavior: not only imitating sound in-the-
moment, but as it unfolds in time.

A notable recent technique that lends itself to audio re-
production and transcription is corpus-based concatenative
synthesis (CBCS); however, still missing is a better tempo-
ral logic for organizing synthesis based on musical struc-
ture. Individual samples are selected by targeting a list of
associated features, however there is no inherent connec-
tion between the descriptors of one sample and a succes-
sive sample to be concatenated. '

At the same time, the Factor Oracle (FO) algorithm
[2] has proven a successful approach to realtime pattern-
recognition, most notably applied musically in OMAX [3].
Could a factor-oracle-based system be used to augment re-
altime CBCS, permitting a predictive logic for synthesis?

I David Wessel, personal communication, 23 March 2012.

Copyright: (©2016 Aaron Einbond et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution License

3.0 Unported, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are credited.

Diemo Schwarz
IRCAM/CNRS/UPMC

Diemo.Schwarz@ircam. fr

Norbert Schnell
IRCAM/CNRS/UPMC
Norbert.Schnell@ircam. fr

Our goal is to build on the wealth of timbral detail available
through CBCS along with the pattern-generating capabil-
ities of the FO to create a flexible tool for realtime syn-
thesis, improvisation, computer-assisted composition, and
musical analysis.

2. PREVIOUS WORK

The approach presented here draws on some of the most
versatile existing tools for realtime interaction: CATART
for CBCS and the OMAX/PYORACLE for computer-
assisted improvisation.

2.1 Corpus-Based Concatenative Synthesis

CBCS systems such as CATART [4] build up a database of
prerecorded or live-recorded sound by segmenting it into
units, usually of the size of a note, grain, phoneme, or
beat, and analysing them for a number of sound descrip-
tors, which delineate their sonic characteristics. These
descriptors are typically pitch, loudness, brilliance, nois-
iness, roughness, spectral shape, or meta-data, like instru-
ment class, phoneme label, that are attributed to the units,
and also include segmentation information. These sound
units are then stored in a database (the corpus). For syn-
thesis, units are selected from the database that are closest
to given target values for some of the descriptors, usually
in the sense of a weighted Euclidean distance. The selected
units are then concatenated (overlapped) and played, pos-
sibly after some transformations. CBCS has the advantage
of combining the richness and nuances of recorded sound
with a direct and meaningful access to specific sound char-
acteristics via high-level perceptual or musical descriptors.

2.2 Factor Oracle

OMAX has proven a dynamic tool for combining real-
time computer-performer interaction with high-level musi-
cal representation. It first requires a “learning” phase dur-
ing which audio input (for example from a live performer)
is recorded, segmented, and the FO structure is calculated.
The “improvisation” phase follows, in which the FO re-
combines the recorded segments of audio to produce new
permutations of material. “Learning” and “improvisation”
can overlap, so that as further audio input is added, the FO
is extended as a basis for later improvisation. Multiple im-

mailto:Aaron.Einbond@city.ac.uk
mailto:Diemo.Schwarz@ircam.fr
mailto:Riccardo.Borghesi@ircam.fr
mailto:Norbert.Schnell@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

provisations can be generated simultaneously, polyphoni-
cally, from the same underlying FO.

Improvisation with the FO algorithm has been described
in detail elsewhere [3, 5]: the central idea is that at each
segment or state of the improvisation, the oracle can jump
along forward transitions to states with shared context,
along suffix links back to states with the longest shared
past, or continue to the next adjacent state. The choice
among these available states is determined by user-defined
probabilities and thresholds.

OMAX can take as an input symbolic MIDI pitches, or
live audio signal analyzed with the YIN algorithm and
Mel Frequency Cepstral Coefficients (MFCCs), comple-
menting the pitch estimate with a spectral description [5].
Building on this work, we introduce a more extensive
and customizable list of descriptors, especially for tim-
bral features, to facilitate computer improvisation in con-
texts where pitch descriptions are inadequate: “computer
noise improvisation.” In the tradition of CATART, we pro-
pose that user-defined and weighted descriptor choices of-
fer powerful creative advantages over features that describe
the timbre as a whole such as MFCCs, as each of them can
describe a specific aspect of the sound.

2.3 Audio Oracle

The Audio Oracle (AO) algorithm is an extension of FO
optimized for processing of audio signals [6]. FO and AO
rely on parsing the incoming signal into an alphabet of
states; however, when instead of MIDI values, continuous
ranges of descriptors are used, this becomes a non-trivial
task. One of the most powerful features of AO is that it
uses concepts from music information geometry to calcu-
late an ideal distance threshold based on information rate
(IR), a measure of “the reduction in uncertainty about a sig-
nal when past information is taken into account” [7]. Units
with descriptor values within this threshold are grouped
into the same state, or letter of the oracle alphabet.

The AO algorithm has been implemented in the freely
distributed PYTHON library PYORACLE 2 [7]. In addition
to providing a flexible collection of code for audio pro-
cessing, PYORACLE also includes the MAX patch pyora-
cle_improviser, which allows PYTHON scripts to be called
using the py/pyext externals.® The resulting improvisa-
tion tool shares many features with OMAX, but now us-
ing the AO algorithm with features calculated with the
Zsa.descriptors library including pitch, amplitude, MFCC,
spectral centroid, zero-crossing, and chroma. However
these features can only be selected one-at-a time and not
combined. Once the desired feature has been chosen, the
AO requires an initial “training” phase: an example of the
audio input is analyzed for roughly one minute, in order to
calculate the IR-based distance threshold that will be used
to analyze audio afterwards. Afterwards learning and im-
provising proceed as with OMAX.

Another innovative feature of PYORACLE, shared by the
SOMAX project [8], is context sensitivity: improvisation
is informed both by past events in the oracle, and simul-
taneously by the current audio input. For example in
pitch-focused music this could encourage improvisation

2 https://pypi.python.org/pypi/PyOracle/5.5
3 http://grrrr.org/research/software/py/

that blends with the immediate harmonic context of a live
improvisation partner.

2.4 How they work together in CatOracle

The key to combining CBCS with the FO or AO algorithm
is to associate units in CATART with states of the oracle.
As mentioned above, for real-valued descriptors (as op-
posed to MIDI) multiple states are grouped together into
letters to form an alphabet. Units may also correspond to
multiple states: while this would not occur with a live in-
put, where each new unit is unique, it could occur when
the input is based upon a pre-recorded corpus, in which the
same unit could be repeated multiple times (see Figure 7(b)
below). These correspondences between units, states, and
letters are stored in PYTHON arrays and MAX coll objects.
Once an AO has been learned, these data can be saved for
later use so subsequent improvisations can be performed
without repeating training or learning phases.

As in pyoracle_improviser, CATORACLE incorporates a
PYTHON script with the py MAX object. In order to sup-
port user-defined and weighted descriptors, the PYORA-
CLE code has been adjusted to accept an incoming list of
descriptors of arbitrary length and units. Each descriptor
may be weighted by the user with a multislider object (see
Figure 2 below). During the training phase, the incoming
descriptors are normalized (either based on minimum and
maximum values or mean = standard deviation) and scaled
by descriptor weights before the AO distance threshold is
calculated. While this straightforward approach might pro-
duce statistical infelicities if descriptors are not fully inde-
pendent, it is nevertheless advantageous for the subjective
control it permits. As with other features of CATORACLE,
the user’s creative aural judgements are favored over theo-
retical criteria.

CATORACLE adopts the approach to context-sensitivity
implemented in PYORACLE, but taking advantage of
CATORACLE’s extended descriptors for timbrally rich mu-
sic. During improvisation, the list of next available oracle
states is filtered based on a comparison with the descriptors
of the incoming audio signal. Only states falling within a
chosen descriptor distance, the “query threshold,” are per-
mitted for the oracle’s next jump.

3. IMPLEMENTATION

After evaluating several potential architectures, it was de-
cided that that CATORACLE would be implemented with
the MUBU library for MAX and PYORACLE. This offers
the efficiency and modularity of MUBU with the easy leg-
ibility and customizability of PYTHON code.

3.1 MuBu and PiPo

Multi-Buffer [9] is a multi-track container library, repre-
senting multiple synchronised data streams. A particular
track might represent audio samples, a single audio de-
scriptor or a vector of descriptors, markers or any other
stream of numerical data associating each element of the
stream to a precise instant in time.

The freely available binding of MUBU for MAX comes
with a number of graphical visualisers/editors and exter-
nals that allow granular, concatenative, and corpus-based

https://pypi.python.org/pypi/PyOracle/5.5
http://grrrr.org/research/software/py/

synthesis. Paired with the PIPO (Plugin Interface for Pro-
cessing Objects) framework, analysis of audio descriptors
and segmentation can be performed in realtime or in batch
on a whole collection of sound files.

We implemented CBCS in realtime in our CataRT sys-
tem, * now rebased on MUBU and P1PO (Figure 1).3

MuBu example

CataRT-style interactive corpus-based concatenative synthesis g

oo suso

===
an N CDCD B

analysis - FpEEE

trigger [Empe—— °

Figure 1: Screenshot of catart-by-mubu.

3.2 CatOracle Patch Structure

CATORACLE is distributed with MUBU in the examples
folder. © Tt takes advantage of MUBU’ S modular structure,
with multiple objects accessing the same multi-buffer data
structure through a shared argument (Figure 2).

3.2.1 Live Input

An extension of classic CBCS is realtime control using live
audio to search the corpus. When descriptors are compared
for closest matches between units, this could be termed
realtime “audio mosaicking.” Already implemented in
CATART for FTM&Co with the module catart.analysis
[10], this process can now take advantage of the symmet-
rical architecture of MUBU and P1PO for even more trans-
parent control of identical parameters for deferred- and re-
altime analysis and segmentation.

In CATORACLE two segmentation methods are provided
for both: “chop,” which segments periodically by a spec-
ified duration; and “onseg,” a simple attack detector on
a specified descriptor threshold (by default based on am-
plitude in decibels, but reconfigurable by the user to any
descriptor). The descriptors values are compared in the
mubu.knn external, which constructs a kD-tree on the pre-
recorded corpus for efficient comparison with the live in-
put to find the k-nearest-neighbors for each incoming unit.
Following previous work with CATART [11], analysis can
be carried out in “targeted-transposition” mode, where dif-
ferences in frequency and energy between corpus and tar-
get descriptors are taken into account before re-synthesis.
These data can be stored in BACH slots (see Section 3.2.5)
and later edited to affect playback.

4 http://ismm.ircam.fr/catart/
3 http://ismm.ircam.fr/mubu, http:/ismm.ircam.fr/pipo/
6 http://forumnet.ircam.fr/product/mubu-en/

3.2.2 Audio Descriptors

By default the analysis subpatches are set to use pipo.basic,
providing as descriptors: frequency, energy, periodicity,
autocorrelation, loudness, centroid, spread, skewness, and
kurtosis. This allows CATORACLE to run entirely within
the free MUBU distribution. Other descriptor calculations
may be customized by replacing the PIPO module with
pipo.yin, pipo.moments, or pipo.mfcc. Or, with a software
license, the full range of the IRCAMDESCRIPTORS library
[12] is available with pipo.ircamdescriptors.’

A subpatcher with convenient checkboxes for descriptor
selection may be substituted for the existing analysis mod-
ules in CATORACLE allowing access to spectral, temporal,
or many other features in any combination (Figure 3).

3.2.3 Key Values

For large corpora, tagging individual sound files with
metadata can be an invaluable tool for navigation: for ex-
ample, to organize an orchestral sample library by instru-
ment name. For this purpose CATORACLE includes the
subpatch select-by-key to enable and disable parts of the
corpus. This takes advantage of the key-value data struc-
ture of MUBU. When loading a new sound file (or folder
containing sound files) to the corpus, an arbitrary key-
value pair may be entered through a fextedit object. Or
the key “SoundSet” may be assigned automatically with
its value set to the directory of the file, thereby allowing
to group sounds beforehand. These values are saved and
reloaded with the corpus. Then the sounds matching a
given key-value pair can be enabled or disabled by a check-
box.

3.2.4 iMuBu View

Multi-buffers can be viewed using the graphical inter-
face object imubu. Within CATORACLE, this object is
accompanied by useful presets to view the waveforms
of individual sound files in the corpus (wave view) with
their segmentation markers (equivalent to units in classic
CATART). Or, inspired by the CATART lcd view, mark-
ers may be viewed in a scatterplot with user-chosen de-
scriptors as x— and y—positions, x— and y—widths, or
color. Transparency is used to indicate sound files (and
their markers) that have been disabled by key-value (Fig-
ure 4). From both wave view and scatterplot view, a mouse
or other controller can be used to select markers for play-
back through mubu.concat~.

3.2.5 BACH Transcription

In previous work, CATART was connected to the BACH
library 8 to build a DAW-like interface for concatenative
synthesis based on musical score notation [13]. A simi-
lar procedure was implemented in CATORACLE: in sum-
mary, units or markers are represented as note heads on a
musical staff, using either bach.roll or bach.score. Along
with frequency mean (pitch), energy mean (dynamic), and
duration, any other descriptor data and metadata can be
saved with each note in its slots. In particular, the indices

7 http://forumnet.ircam.fr/product/max-sound-box-en/
8 http://www.bachproject.net

http://ismm.ircam.fr/catart/
http://ismm.ircam.fr/mubu
http://ismm.ircam.fr/pipo/
http://forumnet.ircam.fr/product/mubu-en/
http://forumnet.ircam.fr/product/max-sound-box-en/
http://www.bachproject.net

[JCX J @ catoracle-0.5

M B CatOracle: CataRT-style interactive corpus-based
uou concatenative synthesis with audio oracle FEZETEE

o |
1 —
AU "SoundSet” keylvalue pair(s) m— =

print . mubu #1 SoundSet TT
data 5 0.1dB

audio input

live control

Ll normalization off v M
. p target-analysis .

refresh after edit

- E—
analysis . Corpus-analysis = reprocess 3.

CEECEE eys

trigger
period for output only
— — — beat modes on click p select—by—key

Matplotib installed
control transcription —
- EEE

parameter-value: . p transcribe-bach

0. = -

selection mubu.knn #1 descr @radius 0 @k 1 . pyoracle-gl .
synthesize transpose data index bufferindex distance #1 _ .
reinit next
- - W] Do o | EE
= = = = - = = length next.
p synthesis-controls [l markerindex $1 | bufferindex $1 | p print-fiename . o

PV 3 LT LR b concat=2#1 @audio audio @markers descr pattr
Yy @play 0 @autotrigger 1 @duplicatechannels 1
@maxduration 10000 @minmaxperiod 0.2 10000 m
o o

- monitor audio input
- —
- —
00dB 2 0648
oo, L
| S SIS0, S

1or2
channels

4.

2. p presets KGN

-

e p OSC-router

wacom
RS s2m.acom

view

synthesis

. .
EE—

pattrstorage storage @autorestore 0 @changemode 1

contributed by ~ COrpus: #1 ~Quickstart:
Aaron Einbond

1. load prerecorded audio from a file or folder

2. and/or choose live audio input source

3. choose control source: live analysis, live control, wacom tablet,
imubu, audio oracle, or a combination

4. choose synthesis and output settings and turn on audio

5. or look at presets for some common combinations

Requires MuBuForMax as well as the following third-party objects and
packages for some of its modules. Otherwise any of these modules may be
\ deleted and the rest of the patch will run normally.

requires OSC-route ‘max launchbrowser http://cnmat berkeley.edu/patch/4029

requires bach package NSRRI R
requires py/pyext ;
(Max 32-bit mode only) i e)

and Python 2.7 with For Python installation instructions please see
NumPy, SciPy, and >_(ion.pdf

A\

absolute + relative

by channel

= CD T

Figure 2: Screenshot of CATORACLE main patch.

8 00 i he]
en B scamentation (corpus) [output
| Iracamdescriptors~: choose descrptors to analyze
> Attributes
Oreeg eprocess Perceptual Descriptors Spectra Descriptors Harmonic Descriptors
Onset Threshold I[gx.mmmss) u o O tralCentroid CFundamentalFrequency
BTN oo o ™ g o
P — O o o a
_ [sharpness O CNoisiness
|~ onsegmasze |10, |2 o imes O u
ctralCrest
[ormmamarie |15 [DperceptusiSpectraDeviation Llchroma (12) ClermonicSpectraCentroid
B o g
| omsegatarusonset | 1 s OPerceptualSpectralSpread | i
n E PerceptualSpectralSkewness [ClHarmonicSpectralKurtosis
> Attributes PerceptualSpectralurtosis . X d i
[lperceptualspectralRolioff Sl [JHarmonicSpectralDecrease
Chop reprocess g e (B
EEEZREE seorert durston (0 - whole fe) [CPerceptualSpectralDecrease [ITotalEnergy o
[0 [Cremsbeisinn
[PerceptualModel (24)

Figure 3: pipo.ircamdescriptors analysis subpatch.

of the marker and buffer are saved with each note, permit-
ting playback from BACH through mubu.concat~. This in-
formation and other slot contents, for example source file-
name, can be displayed directly in the roll or score. Check-
boxes permit quick selection of permitted rhythmic values
with bach.quantize. Taking advantage of bach.score’s pro-
portional spacing attribute (@spacingtype 2), the roll and
score are aligned rhythmically by default (Figure 5). From
bach.score a MusicXML file can be exported, including
slot metadata like dynamics and textual annotations, for
further editing (see corresponding passage in Figure 9)
Combined with the audio oracle, this interface now of-
fers new potential improvisation scenarios. For example,
a computer improvisation can be transcribed in music no-
tation for later use in computer-assisted composition (see

Section 4.2 below). Or a transcription, as it is generated
in real time, could be read by a human instrumentalist for
acoustic playback (see Section 5 below).

3.2.6 Audio Oracle

The agent for computer-assisted improvisation is contained
in the abstraction pyoracle-gl. As described above, de-
scriptor values are received from other modules in the
patch (pipo, mubu.knn, or imubu) depending on the sce-
nario. They are normalized and weighted before being sent
to the AO. The “queryae-gl” script loaded in the py exter-
nal calls functions from the PYORACLE library to calculate
the ideal distance threshold, learn the oracle, and generate
the next state for improvisation. The module features a
number of control parameters common to OMAX and Py-
ORACLE: the probability of linear continuity versus jump-
ing along the oracle, restriction to a region of the oracle,
and forbidding repetition of the n most recent states with
the “taboo” parameter (Figure 6). Due to the hybrid na-
ture of CATORACLE the timing of improvisation can be
controlled in several ways: durations can be reproduced
from the durations of the learned oracle, durations can be
taken from the pre-recorded corpus (possibly affected by
mubu.concat synthesis attributes), or the oracle can wait to
be triggered externally to advance to the next state.

The oracle can be visualized graphically using Jitter
OpenGL objects for computational efficiency. These im-
ages, inspired by OMAX and PYORACLE show incisive
views of musical structure, with forward transitions above

[imubu] (presentation)
it dscrtor index colour descrptorndex

Freque cyMean ~|r2 FrequencyStdDev. ~[rs PeriodicityMean

-
I
@ S E,

R R R TR SRS P SR RN e e

Figure 4: iMuBu scatterplot showing a corpus with some
sound files (and their markers) disabled (transparent).

and suffix links below. The shaded ball represents the cur-
rent state of an improvisation, and the shaded rectangle
corresponds to a region to which improvisation is restricted
(Figure 6).

3.2.7 Additional Features

Further features improve the user interface and perfor-
mance of CATORACLE: communication through OSC
messages using OSC-route,® control of imubu with a WA-
COM tablet using the s2m.wacom external,'® attrui ob-
jects to control the granular-synthesis-style parameters of
mubu.concat, and pattr objects with bindings to these at-
tributes as well as other important parameters in the patch
for convenient saving and reloading of preset scenes.

3.3 CataRT-MuBu-Live

An additional “light” version of the patch, entitled catart-
mubu-live, is made available without the Audio Oracle al-
gorithm and with no dependencies on any third-party li-
braries and externals. The remaining patch, requiring only
MUBU and the standard MAX distribution, still retains the
other features of CATORACLE, notably live analysis of an
incoming audio signal for audio mosaicking, live record-
ing the corpus, and an expanded list of triggering methods,
as well as the tagging system provided by key-value pairs
in MUBU. Furthermore, it avoids the limitation of the py
external to 32-bit mode, and so can be used with MAX in
64 bits. It complements the even more streamlined catart-
by-mubu and more elaborate CATORACLE, and all three
are distributed in the MUBU examples folder.

° http:/cnmat.berkeley.edu/downloads
10 hitp://metason.cnrs-mrs.fr/Resultats/MaxMSP/

Figure 5:
played in bach.roll and bach.score with slots for metadata.

Transcription subpatch showing markers dis-

4. MUSICAL APPLICATIONS

A range of applications extend the existing capabilities of
CATART, OMAX, and PYORACLE as outlined in Figure 7.
(a) Depicts a process similar to OMAX: the performance
begins with an empty corpus and the oracle is learned from
a live audio input, stocking both the audio corpus and the
oracle structure upon which improvisation is to be based.

(b) Represents a variation taking advantage of CBCS: a
pre-recorded corpus is used in place of a live input. The or-
acle is learned from a musical sequence generated from the
corpus, activated by a gestural controller such as a mouse
or WACOM tablet. No new audio is recorded, but the oracle
is recorded and used to generate an improvisation based on
the same corpus.

(c) Combines (a) and (b): again the process begins with
a pre-recorded corpus. But instead of a gestural controller,
live audio input is used to control the initial musical se-
quence: for example through a live audio mosaic, compar-
ing the live input to the closest matches in the corpus. No
new audio is recorded, but the recorded oracle captures the
structure of the input in terms of its descriptors. This could
be advantageous in a performance situation where realtime
control is desired, but without the risk of recording au-
dio in non-ideal conditions (see Xylography below). Or it
could be used for a more radical interpretation of computer
improvisation: to imitate the behavior of one musical se-
quence using completely different sound material, raising
intriguing @sthetic as well as technical questions.

(d) Begins with an audio oracle generated through any
of the previous methods. But when improvisation begins,
a live audio input is taken as a guide for navigation us-
ing PYORACLE’s “query mode,” so that the improvisa-
tion is informed by the current audio context. For noise-
improvisation, this could be used to guide the computer
improvisation toward timbral fusion with the live input,
especially effective with the expanded list of timbral de-
scriptors available from pipo.ircamdescriptors. !

4.1 Comprovisation

The combination of pre-composed music with computer-
assisted improvisation, or “comprovisation” [5], is well-

11 See a video of context-sensitive noise improvisation with CATORA-
CLE by violist Nils Bultmann at https://vimeo.com/157177493.

http://cnmat.berkeley.edu/downloads
http://metason.cnrs-mrs.fr/Resultats/MaxMSP/
https://vimeo.com/157177493

@ [pyoracle-gl] (presentation)

Initalize oracle
b=]

. Toggle Learn On/Off Pause

I s mrosonon [
I ot Lo
descriptor source duration source
[voxse
“ Continuity CataRT IO
coll #1 1 . legato
_ LRS Minimum Region Constraint
_— e |
XXM oistance Threshold
Toggle Regions I Folow Mode [JEZI

based on

.'roggu'ranon _Taboo Length p \
[cuery estdl ByOracle! -

[auery Mode
Draw Oracle e
m speedim modified by Aamn Einborid

record region

. select region ([(ER0) . select region (D

record region

record region

record region

B sctctregion H soectrosr @D

Figure 6: Audio Oracle abstraction showing (above) impro-
visation controls and (below) oracle visualization.

suited for CATORACLE. The first work to use the sys-
tem for composition and performance is Xylography for
violoncello and electronics by Aaron Einbond. '? In this
rigorously-composed work, no audio is recorded live: all
of the electronics are generated from samples pre-recorded
in the studio. However there is still a high degree of inter-
activity: audio oracles are learned in realtime, responding
to the performer’s fleeting variations in timbre and timing,
especially relevant in a score with extended instrumental
techniques. When the computer takes this as a basis for
improvisation, it is informed by the performer’s unique in-
terpretation of the score. At times query mode is used to
bring these improvisations into closer proximity with the
performer as she continues playing from the notated score.

4.2 Computer-Assisted Composition

Xylography also makes use of computer-assisted com-
position: applying the notational capabilities of BACH,

12 Written for Pierre Morlet and Séverine Ballon; videos available at
http://medias.ircam.fr/xfb3c40 and https://vimeo.com/137971814.

corpus corpus

mosaic

Iearn learn < controller learn < learn
query
|mprov |mprov |mprov improv

.
(b)

@

“
(€

Figure 7: Paradigms of improvisation with CATORACLE.

computer-improvised sequences were transcribed as the
basis for parts of the score to be performed acoustically.
In this way, computer-improvisation becomes a technique
for elaborating and developing acoustic material. In Fig-
ure 9, the first passage from the opening of the work is
transcribed precisely from a recorded improvisation by
the human performer. The second is transcribed from
a computer-improvisation based on this recording, to be
reinterpreted live by the performer near the end of the
work. The intended effect is of a recapitulation, recog-
nizable timbrally, but as if mis-remembered in its tempo-
ral sequence. The repetition and permutation of similar
elements can be observed in spectrograms of the learned
*cello passage and the computer-improvised response (Fig-
ure 8), as well in the score, which has been edited in FI1-
NALE to render the graphical symbols (Figure 9).

(h) @) 0O (0m) M © @ @ U]

148 1 = st T s - 155 3

@ @nn 0 0o @ @] @)

Figure 8: Spectrograms of learned and computer-
improvised passages labeled with oracle states/markers.

oy / —_
)
RHY giop hand (sim.) Y
— = e .- 1
F —— ,‘E A O MR et
3 3 3 = >> . > ' ==
- —_ = — —

Figure 9: Xylography for ’cello and electronics, excerpts
corresponding to those in Figures 5 and 8.

http://medias.ircam.fr/xfb3c40
https://vimeo.com/137971814

5. DISCUSSION AND FURTHER DIRECTIONS

A number of directions for further research could extend
the implications of this project further.

The possibility of transcribing improvised sequences
in music notation to be re-interpreted by a human per-
former in realtime has not yet been implemented in ex-
isting computer-assisted improvisation platforms. While
the BACH package offers promising possibilities, further
development will be necessary to refine the notation of dy-
namics, playing techniques, and realtime rhythmic quanti-
zation before it is useable in performance.

CATART’ S potential for soundscape texture synthesis has
already been proposed [14]. Could an AO algorithm offer
a more “natural” reproduction of a soundscape, in effect
imitating its behavior by permitting limitless renewal of
non-repetitive textures? While no additional technical ap-
paratus is necessary, listening tests must be employed to
evaluate the effectiveness of potential results.

So far FO and AO algorithms have been used predom-
inantly for musical creation. However their capacity for
musical pattern identification and data reduction could also
have uses for analysis of existing music, especially elec-
troacoustic or timbrally rich music that still offers a chal-
lenge for existing techniques. In particular, the graphi-
cal representation of the oracle could be used to visualize
large-scale formal and sonic connections. CATORACLE
could be integrated with existing tools for digital analy-
sis such as INDESCRIP or EANALYSIS [15] to provide an-
other complementary view of musical structure.

Finally, FO and AO are only two of several oracle al-
gorithms that could be evaluated. Another recent exam-
ple is the Variable Markov Oracle (VMO) [16]. Or a re-
lated project is ImproTek [17], exploring the possibility
of using pre-defined structures as templates for context-
sensitive improvisation. While it could rely on a tonal
structure, like a jazz progression, it could also follow an
arbitrary trajectory of descriptors in time. Presently im-
plemented in OPENMUSIC, it could exchange data with
CATORACLE in the form of OSC messages. These alterna-
tive algorithms should be explored to determine how their
results differ from CATORACLE and how they could be
musically enriching.

Acknowledgments

We gratefully thank Séverine Ballon, Pierre Morlet, Ar-
shia Cont, Benjamin Lévy, Gérard Assayag, Jean Bres-
son, Mikhail Malt, Emmanuel Jourdan, Paola Palumbo,
Stephanie Leroy, Pascale Bondu, Aurelia Ongena, Jérémie
Bourgogne, Julien Aleonard, Sylvain Cadars, and Eric de
Gélis. This paper is dedicated to the memory of David
Wessel, mentor and inspiration for this work.

6. REFERENCES

[1] N. Donin, “Sonic Imprints: Instrumental Resynthesis
in Contemporary Composition,” in Musical Listening
in the Age of Technological Reproduction, G. Borio,
Ed. Farnham/Aldershot: Ashgate, 2015, pp. 323-341.

[2] C. Allauzen, M. Crochemore, and M. Raffinot, “Fac-
tor Oracle: A New Structure for Pattern Matching,” in

Proceedings of SOFSEM99.
pp- 291-306.

[3] G. Assayag, G. Bloch, M. Chemillier, B. M. Juin,
A. Cont, and S. Dubnov, “Omax brothers: a dynamic
topology of agents for improvization learning,” in ACM
Multimedia Conference, Santa Barbara, 2006.

Springer-Verlag, 1999,

[4] D. Schwarz, “Corpus-Based Concatenative Synthesis,”
IEEE Signal Processing Magazine, vol. 24, no. 2, pp.
92-104, 2007.

[5] B. Lévy, “Principles and Architectures for an Interac-
tive and Agnostic Music Improvisation System,” Ph.D.
dissertation, Université Pierre et Marie Curie, Paris,
2013.

[6] S.Dubnov, G. Assayag, and A. Cont, “Audio Oracle: A
New Algorithm for Fast Learning of Audio Structures,”
in Proc. ICMC, Copenhagen, 2007.

[71 G. Surges and S. Dubnov, “Feature Selection and
Composition Using PyOracle,” in AIIDE Conference,
Boston, 2013.

[8] G. Assayag, “Keynote Talk: Creative Symbolic Inter-
action,” in Proc. ICMC, Athens, 2014.

[9] N. Schnell, A. Robel, D. Schwarz, G. Peeters, and
R. Borghesi, “MuBu & Friends — Assembling Tools for
Content Based Real-Time Interactive Audio Process-
ing in Max/MSP,” in Proc. ICMC, Montreal, 2009.

[10] A. Einbond, D. Schwarz, and J. Bresson, “Corpus-
Based Transcription as an Approach to the Composi-
tional Control of Timbre,” in Proc. ICMC, Montreal,
2009, pp. 223-226.

[11] A. Einbond, C. Trapani, and D. Schwarz, “Precise
Pitch Control in Real Time Corpus-Based Concatena-
tive Synthesis,” in Proc. ICMC, Ljubljana, 2012, pp.
584-588.

[12] G. Peeters, “A large set of audio features for sound
description (similarity and classification),” IRCAM,
Tech. Rep., 2004, unpublished.

[13] A. Einbond, C. Trapani, A. Agostini, D. Ghisi, and
D. Schwarz, “Fine-tuned Control of Concatenative
Synthesis with CataRT Using the bach Library for
Max,” in Proc. ICMC, Athens, 2014, pp. 1037-1042.

[14] D. Schwarz and N. Schnell, “Descriptor-based Sound
Texture Sampling,” in Sound and Music Computing,
Barcelona, 2010, pp. 510-515.

[15] P. Couprie and M. Malt, “Representation: From
Acoustics to Musical Analysis,” in EMS Network Con-
ference, Berlin, 2014.

[16] C. Wang and S. Dubnov, “Guided Music Synthesis
with Variable Markov Oracle,” in AIIDE Conference,
Raleigh, 2013, pp. 56-62.

[17] J. Nika and M. Chemillier, “ImproteK, integrating har-
monic controls into improvisation in the filiation of
OMax,” in Proc. ICMC, Ljubljana, 2012, pp. 180-187.

	 1. Introduction
	 2. Previous Work
	2.1 Corpus-Based Concatenative Synthesis
	2.2 Factor Oracle
	2.3 Audio Oracle
	2.4 How they work together in CatOracle

	 3. Implementation
	3.1 MuBu and PiPo
	3.2 CatOracle Patch Structure
	3.2.1 Live Input
	3.2.2 Audio Descriptors
	3.2.3 Key Values
	3.2.4 iMuBu View
	3.2.5 bach Transcription
	3.2.6 Audio Oracle
	3.2.7 Additional Features

	3.3 CataRT-MuBu-Live

	 4. Musical Applications
	4.1 Comprovisation
	4.2 Computer-Assisted Composition

	 5. Discussion and Further Directions
	 6. References

