
On Unicyclic Graphs Spectra:
New Results

Makhlouf Hadji1 and Ming Chau1
1Technological Research Institute SystemX, 8 Avenue de la Vauve, Palaiseau, France

Abstract—Let G = (V,E) be a unicyclic simple undirected
graph. In this paper, we investigate the spectra of a particular
class of unicyclic graphs G(q, n1) where q is the size of the unique
cycle. Each vertex of the unique cycle is attached to n1 vertices.
We provide the “exact values” of the extremal eigenvalues of the
adjacency matrix A and the Laplacian matrix L of G, in contrast
to lower and upper bounds reported in the literature.

Index Terms—Unicyclic graph, Laplacian eigenvalues, Alge-
braic connectivity, Circulant matrices

I. INTRODUCTION

Given an undirected graph G = (V,E), in which V
represents the set of vertices and E the set of edges, if G is
connected with the property |V | = |E|, then G is said to be
a unicyclic graph. In other words, if G is connected and has
the same number of vertices and edges then G is unicyclic
(i.e. contains one and unique cycle).

Unicyclic graphs have applications in different research
areas and domains. For example, unicyclic graphs are often
used in telecommunications. They allow end-users connected
in the same unicyclic component or graph to communicate
using the two directions of the cycle. The cycle ensures a
certain level of survivability to link failure that occurs on
the edges of this cycle (commonly known as a “ring” in
telecommunications). The traffic demands between nodes on
the same cycle are then fully protected against failures while
the other demands can be disrupted.

This paper focuses on a particular class of unicyclic graphs
G(q, n1) where q is the size of the unique cycle and n1

represents the number of nodes connected to each vertex on
the cycle. The degree of each vertex of the cycle is n1 + 2
(i.e., each vertex of the cycle has n1 neighbors not on the
cycle). We can easily deduce that the total number of vertices
of this class of unicyclic graph is given by q + (q × n1) (see
Figure 1 for more details through a simple example).

Given a graph G with n vertices and m edges, we denote
by A the adjacency matrix of G and by L the Laplacian
matrix of G. The matrix L is the result of the difference
between the degree matrix D (D is a diagonal matrix, and
each value represents the degree of a vertex in G) and the
adjacency matrix A, inducing L = D −A.

Let d1, d2, . . . , dn be the degrees of the vertices 1, 2, . . . , n
respectively in graph G. Without loss of generality, we

Fig. 1. Example of a unicyclic graph G(7, 3)

suppose that the degrees of the vertices are ranked in the
following decreasing order (d1 ≥ d2 ≥ . . . ≥ dn). In addition,
let d1 = ∆ be the the maximum degree and dn = δ the
minimum degree of G.

Let λ1, λ2, . . . , λn be the eigenvalues of the adjacency
matrix A of G (we suppose that λ1 ≥ λ2 ≥ . . . ≥ λn) and
µ1, µ2, . . . , µn−1, µn = 0 are the eigenvalues of the Laplacian
matrix (we suppose also that µ1 ≥ µ2 ≥ . . . µn−1 ≥ µn = 0).
Note that we are interested only by connected graphs, and
according to [1], the smallest eigenvalue of the Laplacian
matrix of a connected graph, is equal to zero. Graphs with
different connected components are not in the scope of this
paper.

Our key contributions consist of proposing exact values of
the extremal eigenvalues of the Laplacian and the adjacency
matrices of a particular class of unicyclic graphs G(q, n1), in
contrast to lower and upper bounds provided by the current
literature. Our results improve the quality of the spectral
lower and upper bounds for any graphs.

Section II of this paper is dedicated to related work on
lower and upper bounds of the eigenvalues of the adjacency
and Laplacian matrices of a given graph. Section III provides
the extremal and exact eigenvalues of A and L of unicyclic
graphs G = (q, n1). Scalability analysis and performance
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evaluations of our results are found in Section IV. Further
work is presented in Section V.

II. RELATED WORK

A. Bounds on λ1 and λn
Computation of extremal eigenvalues of graph spectra is

a classical problem, investigated using different numerical
methods (see references [2] and [3], for example) to
characterize the exact values for small graphs. Since
characterizing the eigenvalues becomes harder for large
graphs, prior art resorted to lower and upper bounds to
estimate the spectra of these graphs. We review some of these
upper and lower bounds results from the literature.

If A is a symmetric matrix with values in R and x is a
vector with norm 1, then a function f(x) = xtAx reaches
its maximum (resp. minimum) value at the eigenvector
associated to the largest (respectively. smallest) eigenvalue.

Proposition II.1. [1] If G is a graph with n vertices and m
edges and we note d =

∑n
i=1 di
n , then we can write:

∆ ≥ λ1 ≥ d
n∑
i=1

λi = 0

n∑
i=1

λ2
i = 2m

λ1 ≥ 2cos

(
π

n+ 1

)
In order to propose tighter lower and upper bounds, previous

work proposed different bounds improving the distance to the
exact value. For instance, reference [4], proposed a new tight
bound on λ1 as established in the following proposition, for a
given graph:

Proposition II.2. Let λ1 be the largest eigenvalue (index) of
the adjacency matrix of a graph G. Then

λ1 ≥
√

∆

In case of unicyclic graph, reference [5] proposed an upper
bound on λ1, given as follows:

Proposition II.3. If G is a unicyclic graph then:

λ1 ≤ 2
√

∆− 1

References [1] and [6] proposed also upper bounds on λ1

using different parameters of graph G. Their results are given
in Propositions II.4 and II.5 respectively.

Proposition II.4. Let G be a connected graph with n vertices
and m edges, this new bound is valid :

λ1 ≤
√

2m− (n− 1)δ + (δ − 1)mmax

with mmax = maxi=1,nmi and mi = 1
di

∑
j∼i dj

Proposition II.5. Let G be a graph with n vertices and m
edges. Then we have :
• 1 ≤ λ1 ≤ n− 1
• −λ1 ≤ λn ≤ −1

In the same manner, authors of [7] proposed new bounds
on λn to reduce the separation of the obtained bounds and the
exact value. This result is indicated in Proposition II.6.

Proposition II.6. Let G be a connected graph with n vertices
and m edges. Then

λn ≥ −
√

2m− (n− 1)δ + (δ − 1)∆.

Another reference dealing with spectral radius of some
unicyclic graphs is proposed in [8]. Authors of this reference
investigate new upper bounds on µ1 and λ1 as proposed in
the following proposition:

Proposition II.7. Let G be a simple undirected unicyclic
graph, then:

µ1 < ∆ + 2
√

∆− 1 cos

(
π

2k(G) + 1

)

λ1 < 2
√

∆− 1 cos

(
π

2k(G) + 1

)
where k(G) is the maximum distance between all couples of
vertices in the forest obtained by G \ E(C), where C is the
unique cycle of G.

B. Bounds on µ1 and µn−1

In this section, we briefly review some interesting results
on tight lower and upper bounds of the algebraic connectivity
of any graph G, and we specify some particular results when
G is unicyclic.

Authors of reference [9] proposed a lower bound on the
algebraic connectivity (i.e. the smallest eigenvalue of the
matrix L). This bound depends on the edge connectivity which
is the minimum number of edges whose deletion from a graph
G disconnects G.

Proposition II.8. Let G be a connected graph with n vertices
and m edges. We denote by e(G) the edge connectivity. Then
:

µn−1 ≥ 2e(G)
(

1− cos
(π
n

))
A well-known result on the exact value of the algebraic

connectivity is given in Proposition II.9. A detailed proof can
be found in [9].

Proposition II.9. If G is a graph with n vertices, then :

µn−1 = 2nmin
x 6=0

∑
uv∈E auv(xu − xv)2∑
u∈V

∑
v∈V (xu − xv)2

The two following propositions that can be found respec-
tively in [10] and [11], provide lower and upper bounds on
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µ1 and µn−1, and give relations between the two eigenval-
ues. More details and information on proofs of the previous
propositions, can be found in [10], [12], [13], [14] and [15].

Proposition II.10.

µn−1 ≤
n

n− 1
δ ≤ n

n− 1
∆ ≤ µ1 ≤ 2∆.

If G is a unicyclic graph, then

∆ + 1 ≤ µ1 ≤ ∆ + 2
√

∆− 1

Proposition II.11. Let G be a graph with a diameter D ≥ 4.
Then

µn−1 ≤ 1− 2
√

∆− 1

∆

(
1− 2

D

)
+

2

D

III. EXTREMAL EIGENVALUES OF G(q, n1)

In this Section, we consider unicyclic graphs G(q, n1)
as already shown in Figure 1, and propose extremal exact
eigenvalues of A and L of G.

Lemma III.1. Let G be a unicyclic graph of the class
G(q, n1 = ∆− 2), then

λ1 = 1 +
√

∆− 1 (1)

Proof. Let x be an eigenvector associated to λ1. Each
component of x is associated to each vertex of the graph G.
The vertices of the unique cycle are indexed by c1, ..., cq . For
each vertex ci on the cycle (i = 1, . . . , q), there are ∆ − 2
leaves connected to ci. Each leaf j connected to ci is denoted
by f ji where 1 ≤ j ≤ ∆− 2.

Assuming that x is an eigenvector, we obtain the two
following equations (∀j = 1, . . . , (∆− 2) and i = 1, . . . , q.):

λ1xfji
= xci (2)

λ1xci = xci+1 + xci−1 +

∆−2∑
j=1

xfji
(3)

By combining these two equations, we obtain :

(λ1 −
∆− 2

λ1
)xci = xci+1

+ xci−1
(4)

By summing the two sides of (4) on each vertex on the
cycle, we obtain:(

λ1 −
∆− 2

λ1
− 2

)
×
∑
i

xci = 0 (5)

Following the Perron-Frobenius theorem (Theorem III.2
given bellow), we know that

∑
i xci 6= 0.

Theorem III.2. [16] Let A be a n×n real and non-negative
matrix of a connected graph G. Then the index of G is
simple (its multiplicity is equal to one). Each component of
the eigenvector x associated to this eigenvalue is different from
zero and has the same sign.

From the equality (5) we have:

λ1 −
∆− 2

λ1
= 2

We multiply the two sides of (5) by λ1, and we obtain :

λ2
1 − (∆− 2) = 2λ1.

The discriminant of the equation III is then given by Disc =
1 + ∆− 2 = ∆− 1 > 0 (∆ ≥ 3), and we deduce the two
following solutions :

λ
(1)
1 = 1−

√
∆− 1

λ
(2)
1 = 1 +

√
∆− 1.

It is well known that the index of the adjacency matrix A

verifies λ1 ≥ 1, and that ∆ ≥ 3 (see Figure 1), then λ
(1)
1 is

not a feasible solution. We can conclude that:

λ1 = 1 +
√

∆− 1

In the same manner, we propose the exact and smallest
eigenvalue of the adjacency matrix of the graph G(q, n1).

Lemma III.3. Let G be a unicyclic graph of the class
G(q, n1). Then
• For even values of q:

λn = −1−
√

∆− 1 (6)

• For odd values of q:

λn = − cos

(
π

q

)
−

√
cos2

(
π

q

)
+ ∆− 2 (7)

Proof. To prove this result, we can use the same approach as
in the proof of Lemma 1. We find (∀j = 1, . . . , (∆− 2) and
i = 1, . . . , q):

λnxfji
= xci (8)

λnxci = xci+1
+ xci−1

+

∆−2∑
j=1

xfji
(9)

We obtain:(
λn −

∆− 2

λn

)
xci = xci+1

+ xci−1

We recall that λn ≤ −1, then λn 6= 0 .
Then, we obtain a system of q equations associated to a
circulant matrix [17], which is given by:

C =


γ −1 −1 0 ... 0
−1 γ −1 0 ... 0
0 −1 γ −1 ... 0
... 0 −1 γ −1 0
0 ... 0 −1 γ −1
−1 0 ... 0 −1 γ
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with γ = λn − ∆−2
λn

, and this leads to an eigenvalue

γ − 2 cos
(

2kπ
q

)
∀k = 1, . . . , q.

It is easy to see that 0 should be an eigenvalue of C,
which is equivalent to justify the existence of k, such that
γ − 2 cos

(
2kπ
q

)
= 0 (see [1], [12], [17]).

Finally, we solve the following equation:

λn −
∆− 2

λn
= 2 cos

(
2kπ

q

)
which is a second degree equation equivalent to :

λ2
n − 2 cos

(
2kπ

q

)
λn − (∆− 2) = 0

The discriminant of equation (III) is given by:

Disc = cos2(
2kπ

q
) + ∆− 2 > 0, ∀k = 0, . . . , q

the solution of this equation is given by the two following
roots, ∀k = 0, . . . , q − 1

λ(1)
n = cos

(
2kπ

q

)
−

√
cos2(

2kπ

q
) + ∆− 2

λ(2)
n = cos

(
2kπ

q

)
+

√
cos2(

2kπ

q
) + ∆− 2

As ∆ ≥ 3 then
√

cos2( 2kπ
q ) + ∆− 2 ≥ 1 and we can

deduce that√
cos2(

2kπ

q
) + ∆− 2 + cos

(
2kπ

q

)
≥ 0

This is in contradiction with λn < 0 (see [1]). Thus, the
solution is given by:

λ(1)
n = cos

(
2kπ

q

)
−

√
cos2(

2kπ

q
) + ∆− 2

Let f(k) = cos
(

2kπ
q

)
−
√

cos2( 2kπ
q ) + ∆− 2.

The derivative form of f is given by :

f
′
(k) = sin(

2kπ

q
)

 cos
(

2kπ
q

)
√

cos2( 2kπ
q ) + ∆− 2

− 1


the expression between the square brackets is negative,

because

cos

(
2kπ

q

)
<

√
cos2(

2kπ

q
) + ∆− 2

this derivative is equal to zero for the values of k = 0, and q
2 .

According to [1], one can see that λn is bounded. The function
f(k) is then :
• decreasing : for k ∈ [0, q2 ].
• increasing : for k ∈ [ q2 , q]

and reaches its minimum value for k = b q2c. This gives us :

• q even : λ(1)
n = −1−

√
∆− 1

• q odd : λ(1)
n = − cos

(
π
q

)
−
√

cos2(πq ) + ∆− 2

With these values of λn, we can verify that 0 is an eigenvalue
of C. Then, we have an eigenvector xC of C.

It is not difficult to reconstruct the rest of the vector using
the relations (8) and (9).

In the following, and according to the unicyclic graph
G(q, n1), we investigate exact and extremal values of the
eigenvalues of the Laplacian matrix L.

Lemma III.4. Let G be a unicyclic graph of the class
G(q, n1). The exact value of the algebraic connectivity is given
by

µn−1 =
1

2
×(

∆− 1 + 4 sin2(
π

q
)−

√
[∆− 1 + 4 sin2(

π

q
)]2 − 16 sin2(

π

q
)

)
(10)

Proof. Starting from the definition of an eigenvalue of a Lapla-
cian matrix, we have ( ∀j = 1, . . . ,∆− 2 and ∀i = 1, . . . , q):

1) i /∈ Cq : (1− µn−1)xfji
= xci

2) i ∈ Cq : (∆− µn−1)xci = xci+1
+ xci−1

+
∑∆−2
j=1 xfji

by substituting xfji in the second case, we obtain:(
∆− µn−1 −

∆− 2

1− µn−1

)
xci = xci+1

+ xci−1

which is a system of q equations, and q variables. To solve
it, we set γ = ∆ − µn−1 − ∆−2

1−µn−1
, and we can remark that

the associated matrix to this system is also circulant :

C =


γ −1 −1 0 ... 0
−1 γ −1 0 ... 0
0 −1 γ −1 ... 0
... 0 −1 γ −1 0
0 ... 0 −1 γ −1
−1 0 ... 0 −1 γ


and this leads to an eigenvalue γ−2 cos

(
2kπ
q

)
∀k = 1, . . . , q

such that ∃k, γ − 2 cos
(

2kπ
q

)
= 0.

From the proposition II.11, we see that µn−1 6= 1.

Thus, we solve the following:

∆− µn−1 −
∆− 2

1− µn−1
= 2 cos

(
2kπ

q

)
It is a second degree equation which can be reformulated as
follows:

∆− (
µn−1 − µ2

n−1 + ∆− 2

1− µn−1
) = 2 cos

(
2kπ

q

)
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⇒ ∆−∆µn−1 + µ2
n−1 − µn−1 −∆ + 2 =

= 2 cos

(
2kπ

q

)
− 2 cos

(
2kπ

q

)
µn−1

with µn−1 6= 1 and then

µ2
n−1−(∆+1−2 cos

(
2kπ

q

)
)µn−1 +2(1−cos

(
2kπ

q

)
) = 0

The discriminant (Disc) of this last equation is given by

Disc = (∆ + 1− 2 cos

(
2kπ

q

)
)2 − 8 + 8 cos

(
2kπ

q

)

Disc = [∆ + 1− 2 cos

(
2kπ

q

)
]2 − 16 sin2(

kπ

q
)

Thus, we obtain two solutions (11) and (12):

µ
(1)
n−1 =

1

2

(
∆ + 1− 2(1− 2 sin2(

kπ

q
))−

√
[∆ + 1− 2(1− 2 sin2(

kπ

q
))]2 − 16 sin2(

kπ

q
)

)
(11)

µ
(2)
n−1 =

1

2

(
∆ + 1− 2(1− 2 sin2(

kπ

q
)) +

√
[∆ + 1− 2(1− 2 sin2(

kπ

q
))]2 − 16 sin2(

kπ

q
)

)
(12)

after some simplification, we can deduce:

µ
(1)
n−1 =

1

2

(
∆− 1 + 4 sin2(

kπ

q
)−

√
[∆− 1 + 4 sin2(

kπ

q
)]2 − 16 sin2(

kπ

q
)

)
(13)

µ
(2)
n−1 =

1

2

(
∆− 1 + 4 sin2(

kπ

q
) +

√
[∆− 1 + 4 sin2(

kπ

q
)]2 − 16 sin2(

kπ

q
)

)
(14)

As ∆ ≥ 3, then ∆− 1 + 4 sin2(kπq ) ≥ 2, then we can write

µ
(2)
n−1 ≥ 1 +

√
[∆− 1 + 4 sin2(kπq )]2 − 16 sin2(kπq )

2
> 1

knowing that µn−1 < 1, we can reject µ(2)
n−1 which is greater

than 1, and we keep only the solution given by (15)

µn−1 = µ
(1)
n−1 =

1

2

∆− 1 + 4 sin2(
kπ

q
)−

√[
∆− 1 + 4 sin2(

kπ

q
)

]2

− 16 sin2(
kπ

q
)

 (15)

We investigate the value k (k ranging from k = 0, . . . , q)
that minimizes the function µn−1(k). We remark that if
k = 0, or k = q, we find µn−1 = 0, which is absurd. Thus,
we are interested in integer values of k ∈ [1, q − 1].

The derivative function of µn−1(k) is given by:

µ
′

n−1 =
8π

q
sin(

kπ

q
) cos

(
kπ

q

)
×

1−
4 sin2(kπq ) + ∆− 3√

(∆− 1)2 + 16 sin4(kπq ) + 8(∆− 3) sin2(kπq )


(16)
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√
(∆− 1)2 + 16 sin4(

kπ

q
) + 8(∆− 3) sin2(

kπ

q
) > 4 sin2(

kπ

q
) + ∆− 3 (∆ ≥ 3) (17)

thus if we write (with ∆ ≥ 3):

(∆− 1)2 > (∆− 3)2

⇒ (∆− 1)2 + 16 sin4(
kπ

q
) >

(∆− 3)2 + 16 sin4(
kπ

q
)

⇒ (∆− 1)2 + 16 sin4(
kπ

q
) + 8(∆− 3) sin2(

kπ

q
) >

(∆− 3)2 + 16 sin4(
kπ

q
) + 8(∆− 3) sin2(

kπ

q
)

we observe that the square of the two sides of the inequality
is given by√

(∆− 1)2 + 16 sin4(
kπ

q
) + 8(∆− 3) sin2(

kπ

q
) >

4 sin2(
kπ

q
) + ∆− 3

The derivative function is equal to zero only if sin(kπq ) = 0

or cos
(
kπ
q

)
= 0, so it is equal to 0 for the following values

of k: k = 0, q, q2 ,
3q
2 and as k ∈ [1, q − 1], so it is equal to

0 only for k = q
2 , with µn−1(k = q

2 ) = ∆+3−
√

∆2+6∆−7
2 < 1.

The function µ is bounded and has the following behaviour:
• increasing : pour k ∈ [1, q2 ].
• decreasing : pour k ∈ [ q2 , q − 1]

We conclude that µn−1(k = q−1) = µn−1(k = 1) and k = 1
(or k = q − 1), and obtain:

µn−1 =
1

2
×(

∆− 1 + 4 sin2(
π

q
)−

√
[∆− 1 + 4 sin2(

π

q
)]2 − 16 sin2(

π

q
)

)

In the following, we provide the exact and largest
eigenvalue of L of the unicyclic graph G(q, n1).

Lemma III.5. Let G be a unicyclic graph of the class
G(q, n1). Then

1) If q is even:

µ1 =
∆ + 3 +

√
(∆ + 3)2 − 16

2
(18)

The expression between the square brackets
is non-negative as we can see it in (17)

2) If q is odd:

µ1 =
(∆ + 1) + 2 cos

(
π
q

)
2

+√
[(∆ + 1) + 2 cos

(
π
q

)
]2 − 8(1 + cos(πq ))

2
(19)

Proof. According to the proof of Lemma (10), and by using
the associated circulant matrix of the current case, we obtain
the following equation :

µ2
1−
(

∆ + 1− 2 cos

(
2kπ

q

))
µ1+2

(
1− cos

(
2kπ

q

))
= 0

and we recall that for a unicyclic graph, we have:

∆ + 1 ≤ µ1 ≤ ∆ + 2
√

∆− 1 (20)

The discriminant of this equation is non-negative (see proof
of the Lemma (10)) and this leads to two solutions :

1) µ
(1)
1 =

∆+1−2 cos( 2kπ
q )−

√
[∆+1−2 cos( 2kπ

q )]2−8[1−cos( 2kπ
q )]

2

2) µ
(2)
1 =

∆+1−2 cos( 2kπ
q )+

√
[∆+1−2 cos( 2kπ

q )]2−8[1−cos( 2kπ
q )]

2

It is easy to verify that µ
(1)
1 violates the require-

ment (20), and this is due to formulas (21):

µ
(1)
1 =

∆ + 1

2
− (

2 cos
(

2kπ
q

)
+

√
[∆ + 1− 2 cos

(
2kπ
q

)
]2 − 8[1− cos( 2kπ

q )]

2
) < ∆ + 1 (21)

thus, we reject it and consider the solution given by: µ1 =
∆ + 1− 2 cos

(
2kπ
q

)
2

+√
[∆ + 1− 2 cos

(
2kπ
q

)
]2 − 8[1− cos( 2kπ

q )]

2
(22)
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µ1 is a function of k, which is symmetric around b q2c. In
other words, we find the same value of µ1 for instances of
k = 0 and k = q, then for k = 1 and k = q − 1,etc.
According to this remark, we illustrate the behaviour of µ1

for some values of k = 0, . . . , q (see Figure (2)). We note
that: cos

(
2(q−1)π

2q

)
= cos(π − π

q ) = − cos(πq ).

Fig. 2. µ1’s behavior with k evolution

The derivative formula of µ1 is given by (23) and simplified
in (24):

µ
′

1 =
1

2

4π

q
sin(

2kπ

q
) +

2(∆ + 1− 2 cos( 2kπ
q ))( 4π

q sin( 2kπ
q ))− 16π

q sin( 2kπ
q )

2
√

[∆ + 1− 2 cos( 2kπ
q )]2 − 8[1− cos( 2kπ

q )]

 (23)

µ
′

1 =
2π

q
sin(

2kπ

q
)

1 +
(∆ + 1− 2 cos( 2kπ

q ))− 2√
[∆ + 1− 2 cos( 2kπ

q )]2 − 8[1− cos( 2kπ
q )]

 (24)

as ∆ ≥ 3, the expression between the square brackets is
non-negative. The derivative function is equal to zero for the
values of k = 0 and q

2 , and as we are interested by integer
values of k ∈ [1, q − 1], then we keep only k = b q2c. The
function reaches its maximum for k = b q2c, and we find:

1) q even : k = q
2 , and

µ1 =
∆ + 3 +

√
(∆ + 3)2 − 16

2

2) q odd : k = q−1
2 , and

µ1 =

(∆ + 1) + 2 cos
(
π
q

)
+

√
[(∆ + 1) + 2 cos

(
π
q

)
]2 − 8(1 + cos(πq ))

2

IV. NUMERICAL RESULTS AND VALIDATION

In this Section, we verify and validate numerically the
provided results on different unicyclic graph instances of type
G(q, n1), compared to a well-known numerical method that
can be found in [18] for example.

We use an instance of unicyclic graphs of type G(q, n1) as
shown in Table I and Table II. In this instance, we consider
odd cycle sizes, when varying n1 values from 1 to 10.

We used the LAPACK method [18] as a numerical analysis
benchmark to get exact eigenvalues of the considered graphs.
Thus, one can observe in Tables I and II that our proposed
results are exactly the same as LAPACK. This reinforces and
validates our provided proofs in the previous sections, and

leads to use our results for large unicyclic graph instances,
when the numerical methods suffer from scaling-up and to
provide exact eigenvalues solutions.

V. CONCLUSION

In this paper, we proposed exact values of the extremal
eigenvalues of the adjacency matrix and the Laplacian matrix
of a particular class of unicyclic graphs. The proposed results
are often given by solving linear equation systems involving
circulant matrices. The provided results are new and reinforce
the lower and upper bounds of the spectra of any graphs with a
topology close to the unicyclic graphs considered in our work.

In future work, we will investigate new results on the spectra
of the adjacency and Laplacian matrices for larger classes of
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TABLE I
COMPARISON OF EXTREMAL EIGENVALUES OF A: UNCYCLIC GRAPHS

G(q, n1) WITH q = 3

n1 (1) num λ1 (III.3) num λn

1 2.414 2.414 -1.618 -1.618
2 2.732 2.732 -2 -2
3 3 3 -2.302 -2.302
4 3.236 3.236 -2.561 -2.561
5 3.449 3.449 -2.791 -2.791
6 3.645 3.645 -3 -3
7 3.828 3.828 -3.192 -3.192
8 4 3.999 -3.372 -3.372
9 4.162 4.162 -3.541 -3.541
10 4.316 4.316 -3.701 -3.701

TABLE II
COMPARISON OF EXTREMAL EIGENVALUES OF L: UNCYCLIC GRAPHS

G(q, n1) WITH q = 3

n1 (19) num µ1 (10) num
µn−1

1 4.302 4.302 0.697 0.697
2 5.449 5.449 0.550 0.550
3 6.541 6.541 0.458 0.458
4 7.605 7.605 0.394 0.394
5 8.653 8.653 0.346 0.346
6 9.690 9.690 0.309 0.309
7 10.720 10.720 0.279 0.279
8 11.744 11.744 0.255 0.255
9 12.764 12.764 0.235 0.235
10 13.782 13.782 0.217 0.217

unicyclic graphs noted by G(q, n1, n2). Figure 3 illustrates an
example of such a class of unicyclic graphs.

Fig. 3. Example of a unicyclic graph G(7, 2, 3)
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