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Lattice-ordered groups generated by an ordered

group and regular systems of ideals

Thierry Coquand Henri Lombardi Stefan Neuwirth

19th January 2018

Abstract

Unbounded entailment relations, introduced by Paul Lorenzen (1951), are
a slight variant of a notion which plays a fundamental rôle in logic (see Scott
1974) and in algebra (see Lombardi and Quitté 2015). We propose to define
systems of ideals for a commutative ordered monoid G as unbounded single-
conclusion entailment relations that preserve its order and are equivariant:
they describe all morphisms from G to meet-semilattice-ordered monoids
generated by (the image of) G. Taking an article by Lorenzen (1953) as a
starting point, we also describe all morphisms from a commutative ordered
group G to lattice-ordered groups generated by G through unbounded entail-
ment relations that preserve its order, are equivariant, and satisfy a “regu-
larity” property invented by Lorenzen (1950); we call them regular systems

of ideals. In particular, the free lattice-ordered group generated by G is de-
scribed through the finest regular system of ideals for G, and we provide
an explicit description for it; it is order-reflecting if and only if the morph-
ism is injective, so that the Lorenzen-Clifford-Dieudonné theorem fits into
our framework. Lorenzen’s research in algebra is motivated by the system
of Dedekind ideals for the divisibility group of an integral domain R; we
provide an explicit description of the lattice-ordered group granted by Wolf-
gang Krull’s “Fundamentalsatz” if (and only if) R is integrally closed through
the “regularisation” of the Dedekind system of ideals.

Keywords: ordered monoid; unbounded single-conclusion entailment relation;
system of ideals; morphism from an ordered monoid to a meet-semilattice-ordered
monoid; ordered group; regular system of ideals; unbounded entailment relation;
morphism from an ordered group to a lattice-ordered group; Lorenzen-Clifford-
Dieudonné theorem; Fundamentalsatz for integral domains; Grothendieck ℓ-group.
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1 Introduction and historical background

In this article, all monoids and groups are supposed to be commutative.
The idea of generating an unbounded semilattice by an unbounded single-con-

clusion entailment relation, and an unbounded distributive lattice by an unbounded
entailment relation, dates back to Lorenzen (1951, §2) and is motivated there as
capturing how ideal theory provides formal gcds and lcms, i.e. formal meets and
joins, for elements of an integral domain.

1.1 The meet-semilattice-ordered monoid generated by a
system of ideals

Let us define an unbounded meet-semilattice as a purely equational algebraic struc-
ture with just one law ∧ that is idempotent, commutative, and associative. We
are dropping the axiom of meet-semilattices providing a greatest element because
it does not suit monoid theory: meets are only supposed to exist for nonempty
finitely enumerated sets.

Let P∗
fe(G) be the set of nonempty finitely enumerated subsets of an arbitrary

set G. For an unbounded meet-semilattice S, let us denote1 by A ⊲ b the relation
defined between the sets P∗

fe(S) and S in the following way (see Lorenzen 1951,
Satz 1):

A ⊲ b
def

⇐⇒
⋀

A 6S b
def

⇐⇒ b ∧
⋀

A =S

⋀

A.

This relation is reflexive, monotone (a property also called “thinning”), and
transitive (a property also called “cut” because it “cuts” x) in the following sense,
which may be expressed without the law ∧:

a ⊲ a (reflexivity);

if A ⊲ b, then A,A′
⊲ b (monotonicity);

if A ⊲ x and A, x ⊲ b, then A ⊲ b (transitivity);

note that in the context of relations, we shall make the following abuses of notation
for finitely enumerated sets: we write a for the singleton consisting of a, and A,A′

for the union of the sets A and A′.
These three properties correspond respectively to the “tautologic assertions”,

the “immediate deductions”, and to an elementary form of the “syllogisms” of the
systems of axioms introduced by Paul Hertz (1923, § 1), so that the following
notion may be attributed to him2; see also Gerhard Gentzen (1933, § 2), who

1The sign ⊲ has been introduced with this meaning by Rinaldi, Schuster, and Wessel (2017).
2Jean-Yves Béziau (2006, § 6) discusses the relationship of single-conclusion entailment rela-

tions with Alfred Tarski’s consequence operation, which may be compared to the relationship
of our Definition 1.3 of a system of ideals with the set-theoretic star-operation: see Item (2 ) of
Remarks 1.4.
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coined the terms “thinning” and “cut”. The definition below has been introduced
as description of an unbounded meet-semilattice (see Theorem 2.1) in Lorenzen
(1951, § 2).

Definition 1.1. Let G be an arbitrary set.
1. A relation ⊲ between P∗

fe(G) and G which is reflexive, monotone, and trans-
itive is called an unbounded single-conclusion entailment relation for G.

2. The unbounded single-conclusion entailment relation ⊲2 is coarser than the
unbounded single-conclusion entailment relation ⊲1 if A ⊲1 y implies A ⊲2 y. One
says also that ⊲1 is finer than ⊲2.

Remarks 1.2. 1. If instead of nonempty subsets, we had considered nonempty
multisets, we would have had to add a contraction rule, and if we had considered
nonempty lists, we would have had to add also a permutation rule.

2. The terminology “coarser than” has the following explanation. The nonempty
finitely enumerated set A to the left of ⊲ represents a formal meet of A for the
preorder 6⊲ on P∗

fe(G) associated to the unbounded single-conclusion entailment
relation ⊲, defined by

A 6⊲ B
def

⇐⇒ A ⊲ b for all b ∈ B. (∗)

To say that the relation ⊲2 is coarser than the relation ⊲1 is to say this for the
associated preorders, i.e. that A 6⊲1

B implies A 6⊲2
B, and this corresponds

to the usual meaning of “coarser than” for preorders, since A =⊲1
B implies

accordingly A =⊲2
B, i.e. the equivalence relation =⊲2

is coarser than =⊲1
. ⋄

Now suppose that (G,6G) is an ordered monoid3, (M,6M ) a meet-semilattice-
ordered monoid4, a meet-monoid for short, and ψ : G → M a morphism of ordered
monoids. The relation

a1, . . . , an ⊲ b
def

⇐⇒ ψ(a1) ∧ · · · ∧ ψ(an) 6M ψ(b)

defines an unbounded single-conclusion entailment relation for G that satisfies
furthermore the following properties:

S1 if a 6G b, then a ⊲ b (preservation of order);

S2 if A ⊲ b, then x+A ⊲ x+ b (x ∈ G) (equivariance).

We propose to introduce systems of ideals in a purely logical way (i.e. as entailment
relations that require only a naive set theory for finitely enumerated sets): the fol-
lowing definition has been extracted from Lorenzen (1939, Definition 1) (compare
Jaffard 1960, I, § 3, 1).

3I.e. a monoid (G, +, 0) endowed with an order relation 6G compatible with addition: x 6G

y =⇒ x + z 6G y + z.
4I.e. a monoid endowed with an unbounded meet-semilattice law ∧ inducing 6M and compat-

ible with addition: the equality x + (y ∧ z) = (x + y) ∧ (x + z) holds.
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Definition 1.3. A system of ideals for an ordered monoid G is an unbounded
single-conclusion entailment relation ⊲ for G satisfying Properties S1 and S2.

Remarks 1.4. 1. We find that it is more natural to state a direct implication
rather than an equivalence in Item S1 ; we deviate here from Lorenzen and Paul
Jaffard (1960, page 16). The reverse implication expresses the supplementary
property that the system of ideals is order-reflecting.

2. Lorenzen (1939), following Heinz Prüfer (1932, § 2) and David Hilbert in
subordinating algebra to set theory, is describing a (finite) “r-system” of ideals
through a set-theoretic map (called ′-operation by Krull 1935, 43., and rather
called star-operation today)

P∗
fe(G) −→ P(G), A 7−→ {x ∈ G | A ⊲ x }

def

= Ar

(here P(G) stands for all subsets of G, and r is just a variable name for distinguish-
ing different systems) that satisfies the following properties:

I1 Ar ⊇ A;

I2 Ar ⊇ B =⇒ Ar ⊇ Br;

I3 {a}r = {x ∈ G | a 6G x } (preservation and reflection of order);

I4 (x +A)r = x+ Ar (equivariance).

Let us note that the containment Ar ⊇ Br corresponds to the inequality A 6⊲ B
for the preorder associated to the single-conclusion entailment relation ⊲ by the
equivalence (∗) above.
As previously indicated, in contradistinction to Lorenzen and Jaffard, we find it
more natural to relax the equality in I3 to a containment: if we do so, the reader
can prove that the definition of star-operation is equivalent to Definition 1.3. Items
I1 and I2 correspond to the definition of a single-conclusion entailment relation,5

and Items I3 (relaxed) and I4 correspond to Items S1 and S2 in Definition 1.3.
Compare Lorenzen (1950, pages 504–505).

3. In the set-theoretic framework of the previous item, the r2-system is coarser
than the r1-system exactly if Ar2

⊇ Ar1
holds for all A ∈ P∗

fe(G) (see Jaffard 1960,
I, § 3, Proposition 2). ⋄

Comment 1.5. Lorenzen unveiled the lattice theory hiding behind multiplicative
ideal theory step by step, the decisive one being dated back by him to 1940. In
a footnote to his definition, Lorenzen (1939, page 536) writes: “If one understood
hence by a system of ideals every lattice that contains the principal ideals and
satisfies Property [I4 ], then this definition would be only unessentially broader”.
In a letter to Krull6 dated 13th March 1944, he writes: “For example, the insight

5They can also be read as a finite version of Tarski’s consequence operation (see Footnote 2).
6Philosophisches Archiv, Universität Konstanz, PL 1-1-131.
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that a system of ideals is actually nothing more than a supersemilattice, and a
valuation nothing more than a linear order, strikes me as the most essential result
of my effort”. ⋄

The effectiveness of Definition 1.3 is shown by the following theorem.

Theorem I. Let ⊲ be a system of ideals for an ordered monoid G. Let S be the un-
bounded meet-semilattice generated by the unbounded single-conclusion entailment
relation ⊲. Then there is a (unique) monoid law on S which is compatible with its
semilattice structure and such that the natural morphism (of ordered sets) G → S
is a monoid morphism.

Comment 1.6. Lorenzen (1950, page 486) emphasises the transparency of this
approach as compared to the set-theoretic ideals: “But if one removes this set-
theoretic clothing, then the concept of ideal may be defined quite simply: a system
of ideals of a preordered set is nothing other than an embedding into a semilattice.”

⋄

1.2 The lattice-ordered group generated by a regular system
of ideals

Let us define an unbounded distributive lattice as a purely equational algebraic
structure with two laws ∧ and ∨ satisfying the axioms of distributive lattices,
except the two axioms providing a greatest and a least element, because they do
not suit group theory.

For an unbounded distributive lattice L, let us denote by A ⊢ B the relation
defined on the set P∗

fe(L) in the following way (see Lorenzen 1951, Satz 5):

A ⊢ B
def

⇐⇒
⋀

A 6L
⋁

B.

This relation is reflexive, monotone, and transitive in the following sense, which
may be expressed without the laws ∧ and ∨:

a ⊢ a (reflexivity);

if A ⊢ B, then A,A′ ⊢ B,B′ (monotonicity);

if A ⊢ B, x and A, x ⊢ B, then A ⊢ B (transitivity);

we insist on the fact that A and B must be nonempty.
The following definition is a variant of a notion whose name has been coined

by Dana Scott (1974, page 417). It is introduced as description of an unbounded
distributive lattice (see Theorem 3.1) in Lorenzen (1951, § 2).

Definition 1.7. 1. For an arbitrary set G, a binary relation ⊢ on P∗
fe(G) which

is reflexive, monotone, and transitive is called an unbounded entailment relation.

5



2. The unbounded entailment relation ⊢2 is coarser than the unbounded en-
tailment relation ⊢1 if A ⊢1 B implies A ⊢2 B. One says also that ⊢1 is finer
than ⊢2.

Item (1 ) of Remarks 1.2 applies again verbatim for Definition 1.7.
Now suppose that (G,6G) is an ordered group7, (H,6H) a lattice-ordered

group8, an ℓ-group for short, and ϕ : G → H a morphism of ordered groups. The
laws ∧ and ∨ on an ℓ-group provide an unbounded distributive lattice structure,
and the relation

a1, . . . , an ⊢ b1, . . . bm
def

⇐⇒ ϕ(a1) ∧ · · · ∧ ϕ(an) 6H ϕ(b1) ∨ · · · ∨ ϕ(bm)

defines an unbounded entailment relation for G that satisfies furthermore the fol-
lowing properties:

R1 if a 6G b, then a ⊢ b (preservation of order);

R2 x+ a, y + b ⊢ x+ b, y + a (regularity);

R3 if A ⊢ B, then x+A ⊢ x+B (x ∈ G) (equivariance).

Properties R1 and R3 are straightforward, and the property R2 of regularity fol-
lows from the observation that if x′, a′, y′, b′ are elements of H , then the inequality

(x′ + a′) ∧ (y′ + b′) 6H (x′ + b′) ∨ (y′ + a′) (†)

reduces successively to

0 6H

(
(−x′ − a′) ∨ (−y′ − b′)

)
+

(
(x′ + b′) ∨ (y′ + a′)

)

0 6H (b′ − a′) ∨ (y′ − x′) ∨ (x′ − y′) ∨ (a′ − b′)

0 6H |b′ − a′| ∨ |y′ − x′|.

We assemble these observations into the following new purely logical definition
(compare Lorenzen 1953, § 1).

Definition 1.8. Let G be an ordered group.
1. A regular system of ideals for G is an unbounded entailment relation ⊢ for G

satisfying Properties R1, R2, and R3.
2. A system of ideals for G is regular if it is the restriction of a regular system

of ideals to P∗
fe(G) ×G.

The ambiguity introduced by these two definitions is harmless because it turns
out that a regular system of ideals is determined by its restriction to P∗

fe(G) × G
(see Theorem 3.9).

7I.e. a group that is an ordered monoid.
8I.e. an ordered group that is a semilattice: this is enough to ensure that it is a meet-monoid,

that any two elements have a join, and that the distributivity laws hold.
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Comment 1.9. The property of regularity arises in Lorenzen’s analysis of the rôle
played by the commutativity of the group: he isolates Inequality (†), which is
trivially verified in a commutative ℓ-group, but not in a noncommutative one.
Lorenzen (1950, Satz 13) proves by a well-ordering argument that a (noncom-
mutative) ℓ-group that is regular in this sense is a subdirect product of linearly
preordered groups. In the commutative setting, this corresponds to the theorem
(in classical mathematics) stating that any commutative ℓ-group is a subdirect
product of linearly preordered commutative groups. ⋄

A system of ideals gives rise to a regular system of ideals if one supposes that,
i.e. one does as if, elements occurring in a computation are comparable. More
precisely, this gives the following definition.

Definition 1.10 (see Lorenzen 1953, (2.2) and page 23). Let ⊲ be a system of
ideals for an ordered group G.

1. For every element x of G, consider the system of ideals ⊲x coarser than ⊲

obtained by forcing the property 0 ⊲ x. The regularisation of ⊲ is the relation
on P∗

fe(G) defined by

A ⊢⊲ B
def

⇐⇒ there are x1, . . . , xℓ such that for every choice

of signs ± holds A−B ⊲±x1,...,±xℓ
0.

2. The group G is ⊲-closed if ⊢⊲ reflects the order on G, i.e. if a ⊢⊲ b =⇒
a 6G b holds for all a, b ∈ G.

The basic idea of this construction is described in the introduction of Lorenzen
1950, pages 488–489. Let us go through a simple example that illustrates a relevant
feature of regularisation (compare Corollary 3.4).

Example 1.11. Let us apply a case-by-case reasoning in order to prove that in a
linearly ordered group, if n1u1 + · · · + nkuk 6 0 for some integers ni > 0 not all
zero, then uj 6 0 for some j. If uj 6 0 for some j, everything is all right. If uj > 0
for all j, take i such that ni > 1: then ui 6 niui 6 n1u1 + · · · + nkuk 6 0. The
conclusion holds in each case.

Similarly, assume that n1u1 + · · ·+nkuk ⊲ 0 with ni > 0 not all zero. We have
uj ⊲−uj

0 for each j. By monotonicity,

u1, . . . , uk ⊲ǫ1u1,...,ǫkuk
0

if at least one ǫj is equal to −1. If 0 ⊲ uj for all j, take i such that ni > 1: then
ui 6⊲ niui 6⊲ n1u1 + · · · + nkuk 6⊲ 0. This proves that u1, . . . , uk ⊲+u1,...,+uk

0.
We conclude that

u1, . . . , uk ⊢⊲ 0. ⋄

Comment 1.12. Lorenzen (1950, 1952, 1953) considers a preordered commutative or
noncommutative group (G,4G) and a meet-monoid Hr (“H ” for “Halbverband”,
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semilattice, r a variable name for distinguishing different monoids) given by a
system of ideals ⊲ for G. The meet-monoid Hr gives rise to another meet-monoid,
Hra

(“a” for “algebraically representable”), given by a system of ideals ⊲a that is
not defined as in Theorem 6.7 by forcing cancellativity, but so as to capture the
classical definition of integral dependence of an element b over a nonempty finitely
enumerated set A, i.e.

A ⊲a b
def

⇐⇒ for every linear order 6 which is coarser than ⊲,

there is an a ∈ A with a 6 b.

Lorenzen’s analysis of the constructive content of this definition results in the sys-
tem of ideals ⊢⊲ of Definition 1.10 with B a single conclusion, i.e. in the system ⊲

supplemented with the hypothesis that elements occurring in a computation are
comparable. Lorenzen (1950, Satz 24) proves that A ⊢⊲ b holds if and only if
A ⊲a b holds: more precisely, it is straightforward that every linear order coarser
than ⊲ is also coarser than ⊢⊲ , so that A ⊢⊲ b =⇒ A ⊲a b; conversely, he
considers a maximal order without A ⊢⊲ b holding (granted by a well-ordering
argument) and shows that it cannot be other than linear. ⋄

Theorem II (see Lorenzen 1953, § 1). Let ⊲ be a system of ideals for an ordered
group G. The regularisation A ⊢⊲ B given in Definition 1.10 is the finest regular
system of ideals for G whose restriction to P∗

fe(G) ×G is coarser than ⊲.

Remark 1.13. This enhances the first part of the proof of the remarkable Satz 1 of
Lorenzen (1953). In our analysis of Lorenzen’s proof, we separate the construction
of the regularisation from the investigation of its relationship with the group law.
In doing so, we make the regularity property (Property R2 ) the lever for sending G
homomorphically into an ℓ-group. In place of its second part, we propose the new
Theorem IV below, stating that regular systems of ideals provide a description
of all morphisms from an ordered group G to ℓ-groups generated by (the image
of) G. ⋄

Underway, we provide the following constructive version of a key observation
concerning the ℓ-group freely generated by an ordered group.

Theorem III. Let ı be the morphism from an ordered group G to the ℓ-group H

that it freely generates. Let u1, . . . , uk ∈ G. We have
⋁k

j=1 ı(uj) >H 0 if and only

if there exist integers mj > 0 not all zero such that
∑k

j=1 mjuj >G 0.

Theorem III may be seen as a generalisation of the following corollary, i.e. the
classical Lorenzen-Clifford-Dieudonné theorem.

Corollary 1.14 (Lorenzen-Clifford-Dieudonné, see Lorenzen 1939, Satz 14 for the
s-system of ideals; Clifford 1940, Theorem 1; Dieudonné 1941, Section 1). The
ordered group (G,6G) is embeddable into an ℓ-group if and only if

nx >G 0 implies x >G 0 (x ∈ G, n > 1). (‡)
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Proof. The condition is clearly necessary. Theorem III shows that it yields the
injectivity of the morphism ı : G → H as well as the fact that ı(x) 6H ı(y) implies
x 6G y.

Comments 1.15. 1. In fact, in his Ph.D. thesis (1939), Lorenzen proves Corol-
lary 1.14 as a side-product of his enterprise of generalising the concepts of multi-
plicative ideal theory to the framework of preordered groups. See Comment 3.17.

2. In each of the three references given in Corollary 1.14, the authors invoke
a maximality argument for showing that G embeds in fact into a direct product
of linearly ordered groups. The goal of Lorenzen (1950, § 4; 1953) is to avoid the
necessarily nonconstructive reference to linear orders in conceiving embeddings into
an ℓ-group, and this endeavour culminates in the Corollary to Theorem IV below.
But this goal may also be achieved through the Prüfer approach of Lorenzen (1939),
and the sought-after ℓ-group may be constructed via Item (2 ) of Theorem 6.7. ⋄

Theorem IV. Let ⊢ be a regular system of ideals for an ordered group G. Let H
be the unbounded distributive lattice generated by the unbounded entailment rela-
tion ⊢. Then there is a (unique) group law on H which is compatible with its
lattice structure and such that the natural morphism (of ordered sets) G → H is a
group morphism.

Theorem IV is new and replaces the second step of the proof of Satz 1 in
Lorenzen (1953). Our approach reveals the rôle of regularity and allows for more
conceptual arguments, with the price of an appeal to Theorem III, avoided by
Lorenzen (see Comment 5.1).

These results give rise to the following construction and corollary, that one can
find in Lorenzen (1953, § 2 and page 23).

Definition 1.16. Let ⊲ be a system of ideals for an ordered group G. The
Lorenzen group associated to ⊲ is the ℓ-group provided by Theorems II and IV.

Comment 1.17. Lorenzen (1939, § 4) and Jaffard (1960, II, § 2, 2) define the Lo-
renzen group associated to a system of ideals according to the Prüfer approach
(see Definition 6.9). The present approach leading to Definition 1.16 dates back
to Lorenzen (1950, § 6). The two definitions are equivalent according to Proposi-
tion 6.10. ⋄

Corollary to Theorem IV. Let ⊲ be a system of ideals for an ordered group G.
If G is ⊲-closed, then G embeds into the Lorenzen group associated to ⊲.

In this article, our aim is to give a precise account of the approach by regular
systems of ideals; we are directly inspired by Lorenzen (1953). The literature
on ℓ-groups seems not to have taken notice of these results. In Lorenzen’s work,
this approach supersedes another, based on the Grothendieck ℓ-group of the meet-
monoid obtained by forcing cancellativity of the system of ideals, ideated by Prüfer
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(1932) and generalised to the setting of ordered monoids in Lorenzen’s Ph.D. thesis
(1939). In Section 6, we also provide an account for that approach, which yields
a construction of an ℓ-group from a system of ideals which turns out to be the
associated Lorenzen group.

1.3 The Fundamentalsatz for integral domains

The motivating example for Lorenzen’s analysis of the concept of ideal is Wolfgang
Krull’s “Fundamentalsatz”, which states that an integral domain is an intersection
of valuation rings if and only if it is integrally closed. As Krull (1935, page 111)
himself emphasises, “Its main defect, that one must not overlook, lies in that it is
a purely existential theorem”, resulting from a well-ordering argument. In a letter
to Heinrich Scholz9 dated 18th April 1953, Krull writes: “At working with the
uncountable, in particular with the well-ordering theorem, I always had the feeling
that one uses fictions there that need to be replaced some day by more reasonable
concepts. But I was not getting upset over it, because I was convinced that at a
careful application of the common ‘fictions’ nothing false comes out, and because
I was firmly counting on the man who would some day put all in order. Lorenzen
has now found according to my conviction the right way [. . . ]”.

Lorenzen’s goal is to unveil the constructive content of Krull’s Fundamentalsatz,
i.e. to express it without reference to valuations. He shows that the well-ordering
argument may be replaced by the right to compute as if the divisibility group was
linearly ordered (see Definition 1.10 above), that integral closedness guarantees
that such computations do not add new relations of divisibility to the integral
domain, and that this generates an ℓ-group. The corollary to Theorem IV is in
fact an abstract version of the following theorem (see Theorem 5.4).

Theorem. Let R be an integral domain, K its field of fractions, and G = K×/R×

its divisibility group. Consider the Dedekind system of ideals for G defined by

A ⊲d b
def

⇐⇒ b ∈ 〈A〉R,

where 〈A〉R is the fractional ideal generated by A over R in K. Then G embeds
into an ℓ-group that contains the Dedekind system of ideals if and only if R is
integrally closed.

1.4 Outline of the article

Let us now briefly describe the structure of this article.

9Scholz-Archiv, Westfälische Wilhelms-Universität Münster,
http://www.uni-muenster.de/IVV5WS/ScholzWiki/doku.php?id=scans:blogs:ko-05-0647 ,
accessed 21st September 2016.
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Section 2 deals with unbounded meet-semilattices as generated by unbounded
single-conclusion entailment relations, discusses systems of ideals for an ordered
monoid and the meet-monoid they generate (Theorem I), and describes the case
in which the system of ideals for an ordered group is in fact a group: then G is a
divisorial group, a notion tightly connected with Weil divisor groups.

Section 3 deals with unbounded distributive lattices as generated by unbounded
entailment relations, discusses regular systems of ideals and provides the proof of
Theorem II. It also proposes two applications: a description of the finest regular
system of ideals and Lorenzen’s theory of divisibility for integral domains.

Section 4 provides a constructive proof of Theorem III based on the Positiv-
stellensatz for ordered groups.

Section 5 proves the main theorem of the article, Theorem IV, stating that
regular systems of ideals for an ordered group generate in fact an ℓ-group. Some
consequences for Lorenzen’s theory of divisibility for integral domains are stated.

Section 6 reminds us of an important theorem by Prüfer which leads to the
historically first approach to the Lorenzen group associated to a system of ideals.

A more elaborate study of Lorenzen’s work will be the subject of another art-
icle that will provide a detailed analysis of Lorenzen (1950, 1952, 1953). These
works have been written with careful attention to the possibility of constructive
formulations for abstract existence theorems.

This article is written in Errett Bishop’s style of constructive mathematics
(Bishop 1967; Bridges and Richman 1987; Mines, Richman, and Ruitenburg 1988;
Lombardi and Quitté 2015): all theorems can be viewed as providing an algorithm
that constructs the conclusion from the hypotheses.

2 Unbounded meet-monoids and systems of ideals

2.1 Unbounded meet-semilattices and single-conclusion en-
tailment relations

A fundamental theorem holds for an unbounded single-conclusion entailment rela-
tion for a given setG: it states that the relation generates an unbounded meet-semi-
lattice S whose order reflects the relation. This is the single-conclusion analogue
of the better known Theorem 3.1.

Theorem 2.1 (fundamental theorem of unbounded single-conclusion entailment
relations, see Lorenzen 1951, Satz 3).10 Let G be a set and ⊲ an unbounded
single-conclusion entailment relation between P∗

fe(G) and G. Let us consider the
unbounded meet-semilattice S defined by generators and relations in the following

10Our statement is the natural counterpart to Lorenzen’s when using basic notions of universal
algebra, and follows readily from his sketch of proof.

11



way: the generators are the elements of G and the relations are the
⋀

A 6S b whenever A ⊲ b.

Then, for all (A, b) in P∗
fe(G) ×G, we have the reflection of entailment

if
⋀

A 6S b, then A ⊲ b.

In fact, S can be defined as the ordered set obtained by descending to the quotient
of (P∗

fe(G),6⊲), where 6⊲ is the preorder defined by

A 6⊲ B
def

⇐⇒ A ⊲ b for all b ∈ B. (∗)

Proof. One sees easily that 6⊲ is a preorder on P∗
fe(G) that endows its quotient

by =⊲ with a meet-semilattice structure, where the law ∧⊲ is obtained by des-
cending the law (A,B) 7→ A∪B to the quotient. The reader will prove that S can
also be defined by generators and relations as in the statement.

Note that the preorder x ⊲ y on G makes its quotient a subobject of S in the
category of ordered sets.

Remarks 2.2. 1. Suppose that (G,6G) is an ordered set. The “finite Dedekind-
MacNeille completion” that adds formal finite meets to G in a minimal way is the
unbounded semilattice generated by the coarsest order-reflecting unbounded single-
conclusion entailment relation for G, denoted by ⊲v:

A ⊲v b
def

⇐⇒ ∀z ∈ G if z 6G A, then z 6G b, (§)

where z 6G A means z 6G a for all a ∈ A.
2. The relation a ⊲ b is a priori just a preorder relation for G, not an order

relation. Let us denote the element a viewed in the ordered set G associated to this
preorder by a, and let A = { a | a ∈ A } for a subset A of G. In Theorem 2.1, we
construct a meet-semilattice S endowed with an order 6S that coincides with ⊲

on P∗
fe(G) × G; for the sake of rigour, we should have written A 6S b rather than

A 6S b in order to deal with the fact that the equality of S is coarser than the
equality of G. In particular, it is G rather than G which can be identified with a
subset of S. ⋄

2.2 Systems of ideals for an ordered monoid

Let us now discuss the definition of a system of ideals à la Lorenzen for an ordered
monoid, Definition 1.3, given in the language of single-conclusion entailment rela-
tions.

In the case that G is an ordered group, we may state an apparently simpler
definition for systems of ideals.

12



Proposition 2.3 (a variant for the definition of a system of ideals for an ordered
group). Let us consider a predicate · ⊲ 0 on P∗

fe(G) for an ordered group G and
let us define a relation between the sets P∗

fe(G) and G by

A ⊲ b
def

⇐⇒ A− b ⊲ 0.

In order for this relation to be a system of ideals, it is necessary and sufficient that
the following properties be fulfilled:

T1 if a 6G 0, then a ⊲ 0 (preservation of order);

T2 if A ⊲ 0, then A,A′
⊲ 0 (monotonicity);

T3 if A− x ⊲ 0 and A, x ⊲ 0, then A ⊲ 0 (transitivity).

Proof. Left to the reader.

The finest and the coarsest system of ideals admit the following descriptions.

Proposition 2.4 (Lorenzen 1950, Satz 14, Satz 15, Footnote 26). Let G be an
ordered monoid.

1. The finest system of ideals for G is defined by

A ⊲s b
def

⇐⇒ a 6G b for some a ∈ A.

Note that ⊲s is order-reflecting: x ⊲s y iff x 6G y.
2. The coarsest order-reflecting system of ideals for G is defined by

A ⊲v b
def

⇐⇒ ∀z, w ∈ G if z 6G A+ w, then z 6G b+ w,

where z 6G A+ w means z 6G a+ w for all a ∈ A.
3. If G is an ordered group, this may be simplified into the definitional equi-

valence (§) on page 12.

Remark 2.5. As noted in Item (3 ) for ⊲v, the definition of ⊲s could be stated
verbatim in the framework of ordered sets and single-conclusion entailment rela-
tions. ⋄

Comment 2.6. The system of ideals ⊲v was introduced independently by Bartel
Leendert van der Waerden (see van der Waerden 1931, § 103, or the translation
van der Waerden 1950, § 105, of its second edition) and Prüfer (1932) (“v” like
“Vielfache”, “multiples” of gcds). The system of ideals ⊲s appears first in Lorenzen
(1939) (“s” standing perhaps for “sum”). ⋄

Proof. 1. Left to the reader.
2. It is straightforward to check that ⊲v is a single-conclusion entailment rela-

tion for G. Let us check the remaining properties.
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• S1. Let y ∈ G. Suppose a 6G b: then a + y 6G b + y, i.e. if x 6G a + y,
then x 6G b+ y; hence a ⊲v b.

• Reflection of order. Conversely, suppose a ⊲v b: taking z = a and w = 0 in
the definition of a ⊲v b, we get a 6G b.

• S2. Let us suppose A ⊲v b and prove A+x ⊲v b+x for x ∈ G. Let z, w ∈ G;
if z 6G (A+ x) +w, then z 6G A+ (x+w), and by hypothesis z 6G b+ (x+w),
i.e. z 6G (b+ x) + w.
Now let ⊲ be an order-reflecting system of ideals for G and suppose that A ⊲ b.
Let us prove that A ⊲v b. Let z, w ∈ G and suppose that z 6G A + w; by the
definition of 6⊲ and because A + w ⊲ b + w, we have z 6⊲ A+ w 6⊲ b+ w.
Since 6⊲ reflects the order on G, z 6G b+ w.

2.3 Proof of Theorem I

Proof of Theorem I. We define A + B = { a+ b | a ∈ A, b ∈ B } in P∗
fe(G). We

have to check that this law descends to the quotient S. It suffices to show that
B 6⊲ C implies A + B 6⊲ A + C: in fact, B 6⊲ C implies x + B 6⊲ x + C by
equivariance, and A + B 6⊲ x + C for every x ∈ A by monotonicity. Finally, let
us verify the compatibility of ∧⊲ with addition: we note that already in P∗

fe(G) we
have A+ (B ∪ C) = (A+B) ∪ (A+ C).

2.4 The classical (Weil) divisor group in commutative al-
gebra

Prüfer (1932, § 3) introduces a property for a system of ideals, “Property B”,
expressing that the associated meet-monoid is in fact a group (and hence an ℓ-
group). The next proposition shows that this is essentially a property of the
ordered monoid itself.

Proposition 2.7 (Lorenzen 1950, Satz 16). Let G be an ordered monoid and ⊲ an
order-reflecting system of ideals for G. If the associated meet-monoid is a group,
then ⊲ coincides with the coarsest system of ideals ⊲v for G.

Proof. Suppose that A ⊲v b, i.e. that A 6⊲v
b. We need to prove that A ⊲ b, i.e.

that A 6⊲ b. Since 6⊲v
and 6⊲ reflect 6G, we know that

0 6⊲v
B ⇐⇒ 0 6⊲ B ⇐⇒ 0 6G B.

Let C ∈ P∗
fe(G) such that A+ C =⊲ 0. We have 0 6⊲ A+ C and hence 0 6⊲v

A+ C. We get 0 6⊲v
A+ C 6⊲v

b+ C. Therefore 0 6⊲ b+ C and A 6⊲

b + C +A =⊲ b.

In the rest of this section, we shall only consider the case where G is a group
because of the lack of applications, and because it avoids a more involved definition
of divisorial opposites below.
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Proposition 2.10 below will show that Property B may be caught by the fol-
lowing definitions.

Definitions 2.8. Let G be an ordered group.
1. Two nonempty finitely enumerated subsets A, B of G are divisorially oppos-

ite if 0 is a meet for A+B in G.
2. The group G is divisorial if every nonempty finitely enumerated subset ad-

mits a divisorial opposite.

Remarks 2.9. 1. The notion of divisorially opposite sets coincides with the no-
tion of divisorially inverse lists in (the multiplicative notation of) Coquand and Lombardi
(2016).

2. Formally, in Item (1 ), we think of an equality
⋀

B =
⋁

−A as of the
equality

⋀

(A+B) = 0, so that the join of −A is given by the meet of B. It
remains to show that this intuition works. ⋄

Proposition 2.10. Let G be an ordered group. T.f.a.e.
1. The meet-monoid associated to the system of ideals ⊲v is a group.
2. The group G is divisorial.

Proof. (1) =⇒ (2). Consider A ∈ P∗
fe(G). Then the opposite of A in the meet-

monoid associated to ⊲v may be written B for some B ∈ P∗
fe(G), i.e. A+B =⊲v

0.
But A+B 6⊲v

0 means that if x 6G A+B, then x 6G 0; and 0 6⊲v
A+B means

that every element of A+B is >G 0.
(2) =⇒ (1). It suffices to check that if A ∈ P∗

fe(G), then a divisorial opposite B
of A satisfies A + B =⊲v

0. First 0 6G A + B, so that 0 6⊲v
A + B. Second,

A+B ⊲v 0 holds because z 6G A+B =⇒ z 6G 0.

Divisorial groups will provide natural examples of the Lorenzen group associ-
ated to a system of ideals, i.e. the meet-monoid associated to ⊲v.

Remarks 2.11. 1. Proposition 2.10 can be seen as a variant of Jaffard (1960,
II, § 3, Corollaire du théorème 3, page 55).

2. Divisorial groups are tightly connected to Weil divisor groups in commut-
ative algebra. Coquand and Lombardi (2016) give a constructive presentation of
“rings with divisors” (in French, “anneaux à diviseurs”), which they define as integ-
ral domains whose divisibility group is divisorial. Rings with divisors with an addi-
tional condition of noetherianity are called Krull domains. H. M. Edwards (1990)
describes in his Divisor theory an approach à la Kronecker to rings with divisors in
the case where they are constructed as integral closures of finite extensions of “Kro-
necker natural rings”. See also in the same spirit Hermann Weyl (1940, Chapter II,
§ 11). Rings with divisors are called “pseudo-Prüferian integral domains” by Nic-
olas Bourbaki (1972, VII.2.Ex.19), and “Prüfer-v-multiplication domains (PvMD)”
in the English literature (one can also find the terminology “rings with a theory of
divisors”). The main examples are the gcd domains (for which the divisor group
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coincides with the divisibility group) and the coherent normal domains (especially
in algebraic geometry). In the case of noetherian coherent normal domains, the di-
visor group is usually called the Weil divisor group. For a ring with divisors R, the
Weil divisor group Div(R) is a quotient of the Lorenzen group Lor(R) as defined in
Definition 5.3, with equality in the case of Prüfer domains. We expand on this topic
in Remark 5.7; see also Díaz-Toca, Lombardi, and Quitté (2014, Chapter IX). ⋄

3 Unbounded distributive lattices and regular sys-
tems of ideals

3.1 Unbounded distributive lattices

References: Lorenzen (1951); Cederquist and Coquand (2000); Lombardi and Quitté
(2015).

The counterpart of Theorem 2.1 for unbounded entailment relations is The-
orem 3.1, an unbounded variant of the fundamental theorem of entailment rela-
tions (Cederquist and Coquand 2000, Theorem 1, obtained independently), which
may in fact be traced back to Lorenzen (1951, Satz 7). It states that an un-
bounded entailment relation for a set G generates an unbounded distributive lat-
tice L whose order reflects the relation. The proof is essentially the same as in
Cederquist and Coquand (2000) or in Lombardi and Quitté (2015, Theorem XI-
5.3).

Theorem 3.1 (fundamental theorem of unbounded entailment relations, see Lorenzen
1951, Satz 7).11 Let G be a set and ⊢ an unbounded entailment relation on P∗

fe(G).
Let us consider the unbounded distributive lattice L defined by generators and rela-
tions in the following way: the generators are the elements of G and the relations
are the

⋀

A 6L

⋁

B whenever A ⊢ B.

Then, for all A, B in P∗
fe(G), we have the reflection of entailment

if
⋀

A 6L

⋁

B, then A ⊢ B.

Item (2 ) of Remark 2.2 applies again mutatis mutandis.

3.2 Regular systems of ideals for an ordered group

Let us now undertake an investigation of the definition of a regular system of ideals,
Definition 1.8.

11Footnote 10 applies verbatim. Lorenzen’s Satz 7 yields directly that if for every distributive
lattice L and every f : G → L with X ⊢ Y =⇒

⋀

f(X) 6L

⋁

f(Y ) one has
⋀

f(A) 6L

⋁

f(B),
then A ⊢ B. This may be considered as a result of completeness for the semantics of distributive
lattices.
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When we assume Property R1, the following fact concerning entailment rela-
tions takes a flavour of “monotonicity for the order relation of G”.

Lemma 3.2 (a banal fact concerning entailment relations). Assume that c ⊢ d.
1. If A ⊢ B, c, then A ⊢ B, d.
2. If A, d ⊢ B, then A, c ⊢ B.

Proof. By monotonicity, c ⊢ d gives A, c ⊢ B, d.
1. A ⊢ B, c gives A ⊢ B, c, d. Cutting c, we get A ⊢ B, d.
2. Symmetric argument.

Proposition 3.3. Let ⊢ be a regular system of ideals for an ordered group G. The
following properties (of which R2 is a particular case) are valid for each integer n >

1:
if x1 + · · · + xn =G y1 + · · · + yn, then x1, . . . , xn ⊢ y1, . . . , yn.

Note that if we have x1 + · · ·+xn =G y1 + · · ·+ym with m 6= n, we may add 0s
to the shorter list in order to apply the lemma. E.g. if a =G b+ c, then 0, a ⊢ b, c.
In this way, we get 0, 0 ⊢ a,−a, which contracts to 0 ⊢ a,−a, and a,−a ⊢ 0.

Proof. Case n = 2. By Property R2, we have y1 +(y2 −x2), x2 ⊢ y1, x2 + (y2 − x2)
and if x1 + x2 =G y1 + y2, then y1 + (y2 − x2) =G x1.

Case n > 2. By induction. Assume that x1 + · · · + xn =G y1 + · · · + yn. By
the induction hypothesis we have on the one hand

x1 + x2 − y1, x3, . . . , xn ⊢ y2, . . . , yn

which gives by monotonicity

x1 + x2 − y1, x1, . . . , xn ⊢ y1, . . . , yn. (‖)

On the other hand, because x1 + x2 = y1 + (x1 + x2 − y1), we have

x1, x2 ⊢ y1, x1 + x2 − y1

which gives by monotonicity

x1, . . . , xn ⊢ y1, . . . , yn, x1 + x2 − y1. (◦)

Cutting x1 + x2 − y1 in (‖) and (◦), we get the sought-after entailment.

When x1 +· · ·+xn 6G y1 +· · ·+yn, we have x1 +· · ·+xn =G y1 +· · ·+yn−1+y′
n

for some y′
n 6G yn. So y′

n ⊢ yn and x1, . . . , xn ⊢ y1, . . . , yn−1, y
′
n, and Lemma 3.2

yields again x1, . . . , xn ⊢ y1, . . . , yn. In particular, the following holds.

Corollary 3.4. Let ni be integers > 0 not all zero. If 0 6G n1u1+· · ·+npup, then
we have 0 ⊢ u1, . . . , up. Similarly, if n1u1 + · · · + npup 6G 0, then u1, . . . , up ⊢ 0.
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Proof. Assume e.g. that 0 6G 2u1 + 3u2; then

0 + 0 + 0 + 0 + 0 6G u1 + u1 + u2 + u2 + u2.

Proposition 3.3 gives 0, 0, 0, 0, 0 ⊢ u1, u1, u2, u2, u2. By contraction and monoton-
icity 0 ⊢ u1, u2, . . . , up holds.

The following scholion states the ℓ-group equality and inequality behind the
entailments of Lemma 3.6.

Scholion 3.5. In an ℓ-group (H,6H), the equality
⋁

i

⋀

j
(xj − xi) =H 0 and the

inequality
⋀

i

⋁

j
(yi + xi − xj) 6H

⋁

j
yj hold.

Proof. The equality follows from
⋁

(−xi) = −
⋀

xi. For the inequality, note that
because yi 6H

⋁

j yj , we have yi +xi 6L

⋁

j yj +xi and therefore
⋀

i (yi + xi) 6H
⋁

j
yj +

⋀

i
xi.

Lemma 3.6. Let ⊢ be a regular system of ideals for an ordered group G, x1,
. . . , xn,∈ G, and σ a map ⟦1..n⟧ → ⟦1..n⟧. Then

0 ⊢ xσ1
− x1, . . . , xσn

− xn.

Let y1, . . . , yn,∈ G. Then

y1 + x1 − xσ1
, . . . , yn + xn − xσn

⊢ y1, . . . , yn.

Proof. Consider the sequence defined by λ1 = 1 and λk+1 = σλk
. Then this

sequence “contains a cycle”: there are i 6 j such that λi = λj+1. Therefore

(xλi
− xσλi

) + · · · + (xλj
− xσλj

) =G 0

because it is a telescopic sum and

(yλi
+ xλi

− xσλi
) + · · · + (yλj

+ xλj
− xσλj

) =G yλi
+ · · · + yλj

.

By Corollary 3.4 and Proposition 3.3, we get respectively

0 ⊢ xσλi
− xλi

, . . . , xσλj
− xλj

yλi
, . . . , yλj

⊢ yλi
+ xλi

− xσλi
, . . . , yλj

+ xλj
− xσλj

.

The conclusion follows by monotonicity.

Comment 3.7. Lorenzen (1953) proceeds in the following way for the proof of his
Satz 1: he starts by proving the key facts that (for a noncommutative group, in
multiplicative notation)

if c, c1, . . . , cn ⊢ 1, then xcx−1, c1, . . . , cn ⊢ 1

c1c
−1
2 , c2c

−1
3 , . . . , cn−1c

−1
n , cnc

−1
1 ⊢ 1
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(the second of which corresponds to Corollary 3.4) and deduces from these Prop-
erty R2 only as the basic ingredient for proving that the distributive lattice gener-
ated by ⊢ is regular. The main use of these facts is for establishing an inequality
akin to Lemma 3.6 as a tool for endowing the distributive lattice with a compatible
group operation as in our Theorem IV. ⋄

The following scholion explains why Theorem 3.9 below is decisive.

Scholion 3.8. In an ℓ-group (H,6H), the inequality x1 ∧ · · ·∧xn 6H y1∨ · · ·∨ym

is equivalent to
⋀

i∈⟦1..n⟧,j∈⟦1..m⟧

(xi − yj) 6H 0.

Proof. The inequality x1 ∧ · · · ∧ xn 6H y1 ∨ · · · ∨ ym is equivalent to

(x1 ∧ · · · ∧ xn) − (y1 ∨ · · · ∨ ym) 6H 0

and also, by distributivity, to the stated inequality.

Theorem 3.9. Let ⊢ be a regular system of ideals. We have

x1, . . . , xn ⊢ y1, . . . , ym (♭)

if and only if
0 ⊢ (yj − xi)i∈⟦1..n⟧,j∈⟦1..m⟧ (♮)

if and only if
(xi − yj)i∈⟦1..n⟧,j∈⟦1..m⟧ ⊢ 0. (♯)

Proof. (♭) =⇒ (♮). The hypothesis gives by equivariance for each k ∈ ⟦1..n⟧

x1 − xk, . . . , xn − xk ⊢ y1 − xk, . . . , ym − xk,

By Theorem 3.1 we may compute in the distributive lattice L generated by ⊢: we
have successively

(x1 − xk) ∧ · · · ∧ (xn − xk) 6L (y1 − xk) ∨ · · · ∨ (ym − xk)
⋁

k∈⟦1..n⟧

⋀

i∈⟦1..n⟧

(xi − xk) 6L

⋁

k∈⟦1..n⟧

⋁

j∈⟦1..m⟧

(yj − xk)

⋁

k∈⟦1..n⟧

⋀

i∈⟦1..n⟧

(xi − xk) =L

⋀

σ : ⟦1..n⟧→⟦1..n⟧

⋁

k∈⟦1..n⟧

(xσk
− xk).

By Lemma 3.6, 0 ⊢ xσ1
− x1, . . . , xσn

− xn for all σ : ⟦1..n⟧ → ⟦1..n⟧. We have
therefore successively in L

0 6L

⋁

k∈⟦1..n⟧

(xσk
− xk)

0 6L

⋀

σ : ⟦1..n⟧→⟦1..n⟧

⋁

k∈⟦1..n⟧

(xσk
− xk).
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We obtain (♮) by transitivity and reflection of entailment.
(♮) =⇒ (♭). The hypothesis gives by equivariance for each k ∈ ⟦1..n⟧ that

xk ⊢ (yj − xi + xk)i∈⟦1..n⟧,j∈⟦1..m⟧. By Theorem 3.1 we may compute in the
distributive lattice L: we have successively

xk 6L

⋁

i∈⟦1..n⟧,j∈⟦1..m⟧

(yj − xi + xk)

⋀

k∈⟦1..n⟧

xk 6L

⋀

k∈⟦1..n⟧

⋁

i∈⟦1..n⟧,j∈⟦1..m⟧

(yj − xi + xk)

=L

⋁

σ : ⟦1..n⟧→⟦1..n⟧,τ : ⟦1..m⟧→⟦1..m⟧

⋀

k∈⟦1..n⟧

(yτk
− xσk

+ xk)

Lemma 3.6 yields yτ1
− xσ1

+ x1, . . . , yτn
− xσn

+ xn ⊢ yτ1
, . . . , yτn

. Using mono-
tonicity, we have therefore successively in L

(yτ1
− xσ1

+ x1) ∧ · · · ∧ (yτn
− xσn

+ xn) 6L y1 ∨ · · · ∨ ym
⋁

σ : ⟦1..n⟧→⟦1..n⟧,τ : ⟦1..m⟧→⟦1..m⟧

⋀

k∈⟦1..n⟧

(yτk
− xσk

+ xk) 6L

⋁

j∈⟦1..m⟧

yj.

We obtain (♮) by transitivity and reflection of entailment.
Finally (♭) ⇐⇒ (♮) shows that u1, . . . , uℓ ⊢ 0 is equivalent to 0 ⊢ −u1, . . . ,−uℓ,

and this yields (♮) ⇐⇒ (♯).

In particular, this theorem asserts that a regular system of ideals is determined
by its restriction to P∗

fe(G) × G. However, given an unbounded single-conclusion
entailment relation ⊲, there are several unbounded entailment relations that re-
flect ⊲, and the coarsest one admits a simple description, given in Lorenzen (1952,
§ 3):

A ⊢v
⊲ B

def

⇐⇒ ∀C ∈ Pfe(G) ∀z ∈ G
if C, b ⊲ z for all b in B, then C,A ⊲ z

(※)

(here Pfe(G) stands for the set of finitely enumerated subsets of the set G; see Scott
1974, Theorem 1.2, for a proof; ⊢v

⊲ is ⊢max
⊲ in Rinaldi, Schuster, and Wessel 2017,

§ 3.1). This definition is “dual” to the definitional equivalence (§) on page 12 for
the coarsest single-conclusion entailment relation; the presence of the C in (※) is
needed for proving the transitivity of ⊢v

⊲ . The following corollary tells us that if a
system of ideals ⊲ is regular, then the unique regular system of ideals extending it
coincides with the coarsest unbounded entailment relation ⊢v

⊲ (see Lorenzen 1950,
page 509).

Corollary 3.10. Let G be an ordered group and ⊢ a regular system of ideals
for G. Let ⊲ be the system of ideals given as the restriction of the relation ⊢
to P∗

fe(G)×G. Then ⊢ coincides with the coarsest unbounded entailment relation ⊢v
⊲

that reflects ⊲, defined in (※).
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Proof. It suffices to prove that ⊢v
⊲ is a regular system of ideals, because then

Theorem 3.9 yields that it is determined by its restriction to P∗
fe(G) ×G.

R1. Suppose that a 6G b, so that a ⊲ b. If C, b ⊲ z, then C, a ⊲ z by
transitivity. Therefore a ⊢v

⊲ b.
R2. As ⊢ is regular, we have x+a, y+b ⊢ x+b, y+a. As ⊢v

⊲ is coarser than ⊢,
we have x+ a, y + b ⊢v

⊲ x+ b, y + a.
R3. Just note that if C, b+x ⊲ z, then C−x, b ⊲ z−x, and that if C−x,A ⊲

z − x, then C,A+ x ⊲ z.

Now we are also able to give the analogue of Proposition 2.3 for regular systems
of ideals.

Corollary 3.11 (a variant for the definition of a regular system of ideals). Let us
consider a predicate · ⊲ 0 on P∗

fe(G) for an ordered group G and let us define a
binary relation on P∗

fe(G) by

x1, . . . , xn ⊢ y1, . . . , ym
def

⇐⇒ (xi − yj)i∈⟦1..n⟧,j∈⟦1..m⟧ ⊲ 0 (¶)

(n,m > 1). In order for this relation to be a regular system of ideals, it is necessary
and sufficient that the following properties be fulfilled:

G1 if
∑n

i=1 xi 6G 0, then x1, . . . , xn ⊲ 0 (preservation of order);

G2 if A ⊲ 0, then A,A′
⊲ 0 (monotonicity);

G3 if B + C,B ⊲ 0 and B + C,C ⊲ 0, then B + C ⊲ 0 (transitivity).

Proof. Using the definitional equivalence (¶), Property G3 is a direct translation of
cutting 0 in B ⊢ 0,−C and B, 0 ⊢ −C. For the other properties, use Theorem 3.9
and Corollary 3.4. The details are left to the reader.

3.3 Forcing the positivity of an element in a system of ideals

The precise description of the system ⊲x obtained by forcing the property 0 ⊲ x
given in Proposition 3.12 below is the counterpart for single-conclusion entailment
relations of the cone generated by adding an element to a cone in an ordered
monoid (see Lorenzen 1950, page 518).

Proposition 3.12. Let ⊲ be a system of ideals for an ordered monoid G. Let
us denote by ⊲x the finest system of ideals coarser than ⊲ and satisfying the
property x > 0. Then we have the equivalence

A ⊲x b ⇐⇒ there exists a p > 0 such that A,A+ x, . . . , A+ px ⊲ b.

Proof. Let us denote by A ⊲′ b the right-hand side in the equivalence above. In
any meet-monoid, x > 0 implies

⋀

(A,A + x, . . . , A + px) =
⋀

A, so that A ⊲′ b
implies A ⊲̃ b for any system of ideals ⊲̃ coarser than ⊲ and satisfying 0 ⊲̃ x.
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It remains to prove that A ⊲′ b defines a system of ideals for G (clearly 0 ⊲′ x
and ⊲′ is coarser than ⊲). Reflexivity, preservation of order, equivariance, and
monotonicity are straightforward. It remains to prove transitivity. Assume e.g.
that A ⊲′ z and A, z ⊲′ y. We have to show that A ⊲′ y. E.g. we have

A,A+ x,A+ 2x,A+ 3x ⊲ z, (#)

A,A+ x,A+ 2x, z, z + x, z + 2x ⊲ y. (%)

(#) gives by a translation A + 2x,A + 3x,A + 4x,A + 5x ⊲ z + 2x, and by
monotonicity

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x ⊲ z + 2x. (##)

(%) gives by monotonicity

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x, z + 2x ⊲ y. (%%)

By transitivity we get from (##) and (%%)

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x ⊲ y.

So we have cancelled z + 2x out of the left-hand side of (%). Similar entailments
allow us to cancel out successively z + x and z.

3.4 The regularisation of a system of ideals for an ordered
group

Let us now state and prove two lemmas on regularisation, introduced in Defin-
ition 1.10. Lemma 3.13 corresponds to the first part of the proof of Satz 1 in
Lorenzen (1953): see Remark 1.13.

Lemma 3.13. Let ⊲ be a system of ideals for an ordered group G. Its regularisa-
tion ⊢⊲ is a regular system of ideals for G.

Proof. The regularisation is clearly reflexive and monotone, and satisfies Proper-
ties R1 and R3.

Let us prove that the regularisation is transitive. Suppose that A, 0 ⊢⊲ B and
A ⊢⊲ 0, B with A = {a1, . . . , am} andB = {b1, . . . , bn}: there are x1, . . . , xk, y1, . . . , yℓ

such that for every choice of signs ± holds

A−B,−B ⊲±x1,...,±xk
0 and A,A−B ⊲±y1,...,±yℓ

0.

If ai ⊲ 0 for some i, then A 6⊲ A, 0 and A−B 6⊲ A−B,−B. Therefore

A−B 6⊲−ai,±x1,...,±xk
A−B,−B 6⊲−ai,±x1,...,±xk

0 for i = 1, . . . ,m.
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If 0 ⊲ bj for some j, then −bj ⊲ 0 and −B 6⊲ 0,−B and A − B 6⊲ A,A − B.
Therefore

A−B 6⊲bj ,±y1,...,±yℓ
A,A−B 6⊲bj ,±y1,...,±yℓ

0 for j = 1, . . . , n.

If 0 ⊲ a1, . . . , 0 ⊲ am, then we have 0 6⊲ A, 0 and −B 6⊲ A−B,−B. Therefore

−B 6⊲a1,...,am,±x1,...,±xk
0.

If b1 ⊲ 0, . . . , bn ⊲ 0, then 0 ⊲ −b1, . . . , 0 ⊲ −bn, and we have 0 6⊲ 0,−B and
A 6⊲ A,A−B. Therefore successively

A 6⊲−b1,...,−bn,±y1,...,±yℓ
0,

A−B 6⊲−b1,...,−bn,±y1,...,±yℓ
−B,

and A−B 6⊲a1,...,am,−b1,...,−bn,±x1,...,±xk,±y1,...,±yℓ
0.

We conclude that

A−B ⊲±a1,...,±am,±b1,...,±bn,±x1,...,±xk,±y1,...,±yℓ
0.

Let us prove that the regularisation is regular, i.e. that x+a, y+b ⊢⊲ x+b, y+a
holds for all a, b, x, y ∈ G: it suffices to note that

if a− b ⊲ 0, then a− b, x− y, y − x, b− a ⊲ 0;

if b− a ⊲ 0, then a− b, x− y, y − x, b− a ⊲ 0.

The following lemma justifies the terminology of Definition 1.10. With the
ambiguity introduced by the two items of Definition 1.8, one may formulate it as
follows: “regularisation leaves a regular system of ideals unchanged”.

Lemma 3.14. Let G be an ordered group and ⊢ a regular system of ideals for G.
Let ⊲⊢ be the system of ideals given as the restriction of ⊢ to P∗

fe(G)×G. Then ⊢ co-
incides with the regularisation of ⊲⊢ .

Proof. Let p, q > 0 be integers. It suffices to prove that if A,A+ x, . . . , A+ px ⊲⊢

0 and A,A− x, . . . , A− qx ⊲⊢ 0, then A ⊲⊢ 0. By Theorem 3.9, the hypotheses
are

A ⊢ 0,−x, . . . ,−px and A ⊢ 0, x, . . . , qx.

If p = 0 or q = 0, we are done. Otherwise, since q × (−p)+p× q = 0, Corollary 3.4
gives −px, qx ⊢ 0. Cutting −px yields A, qx ⊢ 0,−x, . . . ,−(p − 1)x; cutting qx
yields

A ⊢ −(p− 1)x, . . . ,−x, 0, x, . . . , (q − 1)x.

If p = 1, we may iterate this and obtain that A ⊢ 0. Otherwise, first acknow-
ledge that A′ ⊢ 0,−x and A′ ⊢ 0, x, . . . , (q − 1)x imply A′ ⊢ 0; with A′ equal to
A,A+ x, . . . , A+ (p− 1)x these hypotheses turn out to be

A ⊢ 0,−x, . . . ,−px and A ⊢ −(p− 1)x, . . . ,−x, 0, x, . . . , (q − 1)x,

and do therefore hold. We may iterate this and obtain that A ⊢ 0.
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3.5 Proof of Theorem II

Proof of Theorem II. Lemma 3.13 tells that ⊢⊲ is a regular system of ideals, and
it is clear from the definition that its restriction to P∗

fe(G) × G is coarser than ⊲.
Now let ⊢ be a regular system of ideals whose restriction ⊲⊢ to P∗

fe(G) × G is
coarser than ⊲. Then the same holds for their regularisation, i.e., by Lemma 3.14,
⊢ is coarser than ⊢⊲ .

3.6 The finest regular system of ideals

We shall now give a precise description of the regularisation ⊢⊲s
of the finest system

of ideals, introduced in Proposition 2.4.

Lemma 3.15. Let G be an ordered group. For u1, . . . , uk ∈ G, t.f.a.e.
1. u1, . . . , uk ⊢⊲s

0.
2. There exist integers ni > 0 not all zero such that we have

n1u1 + · · · + nkuk 6G 0.

Proof. Let us denote Item (2 ) by ̺(u1, . . . , uk).
(1) =⇒ (2). First it is clear that u1, . . . , uk ⊲s 0 implies that ̺(u1, . . . , uk)

holds. Thus it is enough to prove that if one supposes that for some x ∈ G and
some integers p and q,

̺(u1, . . . , uk, u1 + x, . . . , uk + x, . . . , u1 + px, . . . , uk + px) and

̺(u1, . . . , uk, u1 − x, . . . , uk − x, . . . , u1 − qx, . . . , uk − qx),

then ̺(u1, . . . , uk). The hypothesis implies that there are integers ni, n > 0, at
least one ni nonzero, such that n1u1+· · ·+nkuk+nx 6G 0, and integersmj ,m > 0,
at least one mj nonzero, such that m1u1 + · · · +mkuk − mx 6G 0. If n = 0 or if
m = 0, then we are done; otherwise, (mn1 + nm1)u1 + · · · + (mnk +nmk)uk 6G 0
with at least one mni + nmi > 0.

(2) =⇒ (1). Consequence of Lemma 3.13 and Corollary 3.4.

Theorem 3.16. Let (G,6G) be an ordered group.
1. The finest regular system of ideals for G is the regularisation ⊢⊲s

of the
finest system of ideals ⊲s.

2. The group G is ⊲s-closed if and only if

nx >G 0 implies x >G 0 (x ∈ G, n > 1). (‡)

Proof. Theorem 3.9 shows that a regular system of ideals for G is determined by
the unbounded single-conclusion entailment relation that it defines by restriction
to P∗

fe(G) × G. Thus every regular system of ideals for G is coarser than ⊢⊲s
by

Lemma 3.15 and Corollary 3.4.
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Comment 3.17. The reader will recognise Condition (‡) of Corollary 1.14 in the
condition of ⊲s-closedness established here. In his proof of Corollary 1.14, Loren-
zen is following the Prüfer approach of Section 6, in which ⊲s-closedness is being
introduced according to Definition 6.5 and the equivalence with Condition (‡) is
easy to check (see Lorenzen 1939, page 358 or Jaffard 1960, I, § 4, Théorème 2). ⋄

3.7 The regularisation of the Dedekind system of ideals

Let R be an integral domain, K its field of fractions andG = K×/R× its divisibility
group (where, in multiplicative notation, 1 6G x when x ∈ R). One defines the
Dedekind system of ideals ⊲d for G by letting

A ⊲d b
def

⇐⇒ b ∈ 〈A〉R,

where 〈A〉R is the (fractional) ideal generated by A over R in K: if a1, . . . , an are
the elements of A, then 〈A〉R = a1R+· · ·+anR. Note that if A contains nonintegral
elements, i.e. elements not in R, then 〈A〉R

2 may or may not be contained in 〈A〉R:
consider respectively e.g. the ideal 〈1, y

x
〉 in k[X,Y ]/(X3 −Y 2) = k[x, y] and ideals

in a Prüfer domain.
Forcing 1 ⊲d x for an x ∈ K× amounts to replacing R by R[x] since Proposi-

tion 3.12 tells that the resulting system of ideals satisfies

A (⊲d)x b ⇐⇒ there is a p > 0 such that A,Ax, . . . , Axp
⊲d b,

which means that b ∈ 〈A〉R[x] (where A and b are in K×).
An element b ∈ K is said to be integral over the ideal 〈A〉R when an integral

dependence relation bm =
∑m

k=1 ckb
m−k with ck ∈ 〈A〉R

k holds. If A = {1}, then
this reduces to the same integral dependence relation with ck ∈ R, i.e. to b being
integral over R.

Lemma 3.18. One has A ⊢⊲d
1 if and only if 1 ∈ 〈A〉R[A].

Proof. Suppose that A ⊢⊲d
1, i.e. that there are elements x1, . . . , xℓ ∈ G such

that 1 ∈ 〈A〉R[x±1

1
,...,x

±1

ℓ
]. It suffices to prove the following fact and to use it in

an induction argument: suppose that 1 ∈ 〈A〉R[A,x] and 1 ∈ 〈A〉R[A,x−1]; then
1 ∈ 〈A〉R[A]. In fact, the hypothesis means that 1 ∈ 〈A,Ax, . . . , Axp〉R[A] and
1 ∈ 〈A,Ax−1, . . . , Ax−p〉R[A] for some p, which implies that

∀i ∈ ⟦−p..p⟧ xi ∈
〈
Ax−p, . . . , Ax−1, A,Ax, . . . , Axp

〉
R[A]

,

i.e. that there is a matrix M with coefficients in 〈A〉R[A] such that (xi)p
−p =

M(xi)p
−p, i.e. (1 − M)(xi)p

−p = 0. Let us now apply the determinant trick: mul-
tiplying 1−M by the matrix of its cofactors and expanding yields that 1 ∈ 〈A〉R[A].
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Conversely, let a1, . . . , an be the elements of A. For each j, 1 = aja
−1
j , so

that 1 ∈ 〈A〉R[a−1

j
] and A (⊲d)a

±1

1
,...,a

±1

n
1 for every choice of signs with at least

one negative sign: the only missing choice of signs consists in the hypothesis 1 ∈
〈A〉R[A].

Theorem 3.19 (Lorenzen 1953, Satz 2). Let R be an integral domain and ⊲d the
Dedekind system of ideals.

1. One has A ⊢⊲d
b, i.e. there are x1, . . . , xℓ such that for every choice of signs

holds b ∈ 〈A〉R[x±1

1
,...,x

±1

ℓ
], if and only if b is integral over the ideal 〈A〉R.

2. One has A ⊢⊲d
B, i.e. there are x1, . . . , xℓ such that for every choice of

signs holds 1 ∈ 〈AB−1〉R[x±1

1
,...,x

±1

ℓ
], if and only if 1 ∈

∑m
k=1 〈AB−1〉R

k
, i.e. there

is an equality 1 =
∑m

k=1 fk with each fk a homogeneous polynomial of degree k in
the elements of AB−1 with coefficients in R.

3. The divisibility group G is ⊲d-closed, i.e. the equivalence

x ⊢⊲d
y ⇐⇒ x divides y

holds, if and only if R is integrally closed.

Proof. (1–2 ) This follows from the previous lemma because

A ⊢⊲d
b ⇐⇒ Ab−1 ⊢⊲d

1,

bm =
∑m

k=1 ckb
m−k with ck ∈ 〈A〉R

k
⇐⇒ 1 ∈

∑m
k=1 〈Ab−1〉R

k
,

1 ∈ 〈A〉R[A] ⇐⇒ ∃m 1 ∈
∑m

k=1 〈A〉R
k.

(3 ) ⊲d-closedness is equivalent to 1 ⊢⊲d
b =⇒ b ∈ R; by Item (1 ), 1 ⊢⊲d

b
holds if and only if b is integral over R.

4 The lattice-ordered group freely generated by a

finitely presented ordered group

4.1 A Positivstellensatz for ordered groups

Reference: Coste, Lombardi, and Roy (2001, Section 5). In the article we refer to,
Theorem 5.7 can be seen as a generalisation of results concerning rational linear
programming (e.g. the Farkas lemma).

If G is a commutative group and x1, . . . , xm are indeterminates, let G{x} =
G{x1, . . . , xm} be the group of Z-affine forms onG, i.e. of polynomials g+

∑m
µ=1 zµxµ

with g in G and the zµs in Z. We may consider G as the subgroup of G{x} con-
sisting of the constant forms.
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Theorem 4.1 (Positivstellensatz: algebraic certificates for ordered groups, see
Coste, Lombardi, and Roy 2001). Let (G, · + ·,−·, 0, · = 0, · > 0, · > 0) be a dis-
crete divisible linearly ordered group. Let x1, . . . , xm be indeterminates and R=0,
R>0, R>0 three finitely enumerated subsets of G{x1, . . . , xm}. Consider the asso-
ciated system S of sign conditions

S






z(ξ) = 0 if z ∈ R=0,

p(ξ) > 0 if p ∈ R>0,

s(ξ) > 0 if s ∈ R>0.

There is an algorithm giving the following answer:
1. either an algebraic certificate telling that the system S is impossible in G

(and in every linearly ordered group extending G),
2. or a point ξ = (ξ1, . . . , ξm) ∈ Gm realising the system S.
An algebraic certificate is an algebraic identity

s+ p+ z = 0 in G{x1, . . . , xm},

where s is a (nonempty) sum of elements of R>0∪G>0, p is a (possibly empty) sum
of elements of R>0 ∪G>0, and z is a Z-linear combination of elements of R=0.

4.2 A concrete construction

A finitely presented ordered group G is given by a finite system of generators
e1, . . . , em with a finite set of relations R = R=0 ∪R>0. The relations in R=0 have
the form z = 0, and those in R>0 have the form p > 0, where z, p ∈ Ze1 ⊕· · ·⊕Zem.
Since a relation q = 0 is equivalent to the two relations q > 0 and −q > 0, we
may assume that the presentation of G as an ordered group is given by a finite
subset R>0 = {p1, . . . , pℓ} only. Let us work with this new presentation.

Let LGOG(G) be the ℓ-group freely generated by the ordered groupG. We shall
give a description of an ℓ-group Lgog(G), and prove that it is naturally isomorphic
to LGOG(G).

Let Z′ be the group Z with the usual linear order, and let Lo(G,Z′) be the
set of order morphisms from G to Z′ that are linear for the Z-module structure
of G. This is an additive monoid whose natural order relation is compatible with
addition.

We define Lgog(G) as the sub-ℓ-group of

Set(Lo(G,Z′),Z′)

generated by the join-semilattice-ordered monoid (G), where  is the bidual morph-
ism of ordered groups G → (G) ⊆ Lgog(G) ⊆ Set(Lo(G,Z′),Z′):

(z) is the map α 7→ α(z).
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This Z-linear map is a morphism of ordered groups since, if z > 0 in G and
α ∈ Lo(G,Z′), then one has α(z) > 0 in Z′. Let us denote the element (z) viewed
in Lgog(G) by z.

We shall use the following principle (Lombardi and Quitté 2015, Principle XI-
2.10).

Principle of covering by quotients (for ℓ-groups). In order to prove an equal-
ity u = v or an inequality u 6 v in an ℓ-group H, we can always suppose that the
(finite number of) elements which occur in a computation for a proof are compar-
able.

In fact, we shall need the following easy consequence of this principle.

Lemma 4.2. In an ℓ-group H, if
∑k

i=1 ui > 0 holds (with an integer k > 0),

then one has
⋁k

i=1 ui > 0.

Let us now consider the canonical morphism ı : G → LGOG(G) and the unique
(surjective) morphism ϑ : LGOG(G) → Lgog(G) factorising  (i.e. such that ϑ◦ ı =
). In order to show that ϑ is an isomorphism, it suffices to show that ϑ(y) > 0
implies y > 0 for all y ∈ LGOG(G).

Let us write the element y ∈ LGOG(G) as y =
⋀

yj =
⋀

j

⋁

i
ı(yji) with

the yjis in G. The hypothesis is that
⋀

j

⋁

i
yji > 0, i.e. that for each j one has

ϑ(yj) =
⋁

i
yji > 0. In order to show that

⋀

yj > 0, it is thus sufficient to show
that if

⋁

ui > 0 with u1, . . . , uk in G, then
⋁

ı(ui) > 0 in LGOG(G).
Let us write ui =

∑m
µ=1 uiµeµ, i = 1, . . . , k, and pj =

∑m
µ=1 pjµeµ, j = 1, . . . , ℓ,

and introduce indeterminates x1, . . . , xm and linear forms

λi(x1, . . . , xm) =
∑m

µ=1 uiµxµ and ρj(x1, . . . , xm) =
∑m

µ=1 pjµxµ.

Let us consider the following system of sign conditions w.r.t. the indetermin-
ates x1, . . . , xm for the divisible linearly ordered group (Q,6Q):

S

{
λi(x1, . . . , xm) < 0 for i = 1, . . . , k;

ρj(x1, . . . , xm) > 0 for j = 1, . . . , ℓ.

Theorem 4.1 says that we are in one of the two following cases.
1. The system S is incompatible, and this implies an algebraic identity

∑
niλi =

P for integers ni > 0 not all zero and P in the additive monoid generated by the ρjs.
When one substitutes the xµs with the eµs, one gets P (e1, . . . , em) > 0 in G be-
cause each ρj(e1, . . . , em) = pj is > 0 in G, and therefore

∑
niui > 0 in G and∑

ni ı(ui) > 0 in LGOG(G), and
∑
ni ui > 0 in Lgog(G). Lemma 4.2 implies that

we have
⋁

ı(ui) > 0 as well as
⋁

ui > 0.

28



2. One can find (ξ1, . . . , ξm) ∈ Qm such that the λi(ξ)s are all < 0 and the
ρj(ξ)s are all > 0. Multiplying by a convenient positive rational number, we
may assume that (ξ1, . . . , ξm) ∈ Zm. Let α : G → Z′ be the linear form such
that eµ 7→ ξµ: as α(pj) = ρj(ξ) > 0 for j = 1, . . . , ℓ, we have that α belongs
to Lo(G,Z′); let us note that ui(α) = α(ui) = λi(ξ). We deduce that v =

⋁

ui is
not > 0, as v > 0 implies that for all β ∈ Lo(G,Z′), one has v(β) > 0; however
α ∈ Lo(G,Z′) and v(α) =

⋁

ui(α) =
⋁

λi(ξ) < 0.
In brief, we have proved that

⋁

ui � 0 and
⋁

ı(ui) > 0 are exclusive of each
other. The case distinction above shows more precisely the following theorem.

Theorem 4.3. Let G be a finitely presented ordered group.

1. The canonical morphism LGOG(G) → Lgog(G) is an isomorphism.

2. Let u1, . . . , uk be elements of the ℓ-group LGOG(G). T.f.a.e.:

•
⋁

ı(ui) > 0;

• there exist integers ni > 0 not all zero such that
∑
niui > 0 in G.

In particular, an element x of G is > 0 in LGOG(G) if and only if one has nx > 0
in G for some integer n > 0.

3. The group LGOG(G) is discrete (the order is decidable).

4.3 Proof of Theorem III

Constructive proof of Theorem III. This theorem follows from the preceding The-
orem 4.3, from the fact that every ordered group is a filtered colimit of finitely
presented ordered groups, and from the fact that the functor LGOG preserves
filtered colimits.

5 The lattice-ordered group generated by a regu-

lar system of ideals

Comment 5.1. Lorenzen (1953, § 2) starts with a system of ideals ⊲ for an ordered
group and uses the heuristics of Scholion 3.8 to define the regular system of
ideals ⊢⊲ of Definition 1.10. Then he applies the fundamental theorem for un-
bounded entailment relations, Theorem 3.1, and obtains a distributive lattice Vra

(“V ” like “Verband”, lattice). Theorem IV is new and replaces the second step
of the proof of Satz 1 in Lorenzen (1953), which establishes that Vra

is in fact an
ℓ-group. Its first step is the proof of Lemma 3.13, in which the entailment rela-
tion ⊢⊲ is constructed and shown to be regular (see Remark 1.13). Its second step
is a construction “by hand” of group laws for Vra

in which the rôle of regularity is
not emphasised. ⋄
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5.1 The free case

Theorem 5.2. Let (G,6G) be an ordered group. Let Gs be the unbounded dis-
tributive lattice generated by the finest regular system of ideals ⊢⊲s

. Then Gs ad-
mits a (unique) group law that is compatible with the lattice structure and such
that the morphism (of ordered sets) G → Gs is a group morphism. This defines
the ℓ-group freely generated by the ordered group (G,6G) (in the sense of the left
adjoint functor of the forgetful functor).

Proof. Using the distributivity of + over ∧ and ∨, there is no choice in defining
the group laws + and − from those of G. The problem is to show that these laws
are well-defined and are in fact group laws.

Let us consider the ℓ-group LGOG(G) freely generated by G. It is generated as
an unbounded distributive lattice by (the image of) G because any term construc-
ted from G, +, −, ∧, ∨ can be rewritten as an ∧-∨-combination of elements of G.
Let us denote by ⊢free the entailment relation thus defined for G. We know that
u1, . . . , uk ⊢free 0 is equivalent to u1, . . . , uk ⊢⊲s

0: this follows from Theorem III
and Lemma 3.15. Moreover LGOG(G) satisfies the equivalent properties given in
Theorem 3.9 simply because it is an ℓ-group. If we see it as an unbounded dis-
tributive lattice generated by G, LGOG(G) is thus the distributive lattice which
is defined by the unbounded entailment relation ⊢⊲s

. Therefore the laws + and −
on Gs are well-defined and Gs, endowed with these laws, becomes an ℓ-group for
which we have a canonical isomorphism LGOG(G) → Gs.

5.2 The general case: proof of Theorem IV

Proof of Theorem IV. Let Gs denote the ℓ-group freely generated by (G,6G) con-
structed in Theorem 5.2 via the entailment relation ⊢⊲s

. The relation ⊢ is coarser
than the relation ⊢⊲s

, so that the distributive lattice H is a quotient lattice of Gs.
It remains to see that the group law descends to the quotient.

Let G0 = {x ∈ Gs | x =H 0 }. We have to show that
(i) G0 is a subgroup of Gs;
(ii) for x, y, z ∈ Gs with x =H y holds x+ z =H y + z.
It is enough to show that
1. for x ∈ Gs, if 0 6H x, then −x 6H 0;
2. for x, y ∈ Gs, if 0 6H x and 0 6H y, then 0 6H x+ y;
3. for x, y, z ∈ Gs, if x 6H y, then x+ z 6H y + z.
Item (1 ) is a particular case of Item (3 ) and Item (2 ) follows easily from

Item (3 ).
(3 ) Let us write x =

⋁

i

⋀

j
xij , y =

⋀

k

⋁

ℓ
ykℓ with the xijs and the ykℓs in G.

The hypothesis x 6H y means that for each i and k we have
⋀

j
xij 6H

⋁

ℓ
ykℓ,

i.e.
xi1, . . . , xip ⊢ yk1, . . . , ykq.
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Using R3 one has

xi1 + z, . . . , xip + z ⊢ yk1 + z, . . . , ykq + z,

i.e. for each (i, k),
⋀

j(xij + z) 6H

⋁

ℓ(ykℓ + z),

from which we deduce that

x+ z =H

⋁

i

⋀

j

(xij + z) 6H

⋀

k

⋁

ℓ

(ykℓ + z) = y + z.

5.3 The Lorenzen divisor group of an integral domain

In this section, we draw the conclusions allowed by Theorem IV for Lorenzen’s
theory of divisibility presented in Section 3.7 on page 25.

Definition 5.3. Let R be an integral domain. The Lorenzen divisor group Lor(R)
of R is the Lorenzen group associated by Definition 1.16 to the Dedekind system
of ideals ⊲d.

Theorem 5.4. Let R be an integral domain with field of fractions K and divis-
ibility group G = K×/R×. The entailment relation ⊢⊲d

generates the Lorenzen
divisor group Lor(R) together with a morphism of ordered groups ϕ : G → Lor(R)
that satisfies the following properties.

1. The “ideal Lorenzen gcd” of a family (ai)i∈⟦1..n⟧ in K∗ is characterised by

ϕ(a1) ∧ · · · ∧ ϕ(an) 6 ϕ(b) ⇐⇒

b is integral over the ideal 〈a1, . . . , an〉R. (∗∗)

2. The morphism ϕ is an embedding if and only if R is integrally closed.

Proof. As the entailment relation ⊢⊲d
is a regular system of ideals (Theorem II),

the corresponding distributive lattice H admits a unique group law such that the
natural morphism ϕ : G → H is a morphism of ordered groups (by Theorem IV):
this justifies Definition 5.3 since H is the distributive lattice underlying Lor(R).

1. Theorem 3.19 states that ϕ(a1) ∧ · · · ∧ ϕ(an) 6⊢⊲
d
ϕ(b) if and only if b is

integral over 〈A〉R. On the other hand ϕ(a1)∧ · · ·∧ϕ(an) 6⊢⊲
d
ϕ(b1)∧ · · ·∧ϕ(bp)

if and only if ϕ(a1) ∧ · · · ∧ ϕ(an) 6⊢⊲
d
ϕ(bj) for each j because ϕ(b1) ∧ · · · ∧ ϕ(bp)

is the meet of the bjs in Lor(R). This explains why Property (∗∗) characterises
the element ϕ(a1) ∧ · · · ∧ ϕ(an) of Lor(R).

2. The morphism ϕ is an embedding if and only if ϕ(a) 6⊢⊲
d
ϕ(b) implies

a ⊲d b, which means that R is integrally closed.
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Corollary 5.5 (see Macaulay 1916, pages 108–109). Let R be an integrally closed
domain. When a is a finitely generated ideal, we let a be the integral closure of a.
Then, if a, b, and c are nonzero finitely generated ideals, we have the cancellation
property

a b ⊇ a c =⇒ b ⊇ c.

This corollary is a key result for “containment in the wider sense” as con-
sidered by Leopold Kronecker (1883) (see Penchèvre (preprint), pages 36–37). H.
S. Macaulay (1916) gives a proof based on the multivariate resultant. We may also
deduce it as a consequence of Prüfer’s theorem 6.7 (see Item (2 ) of Remarks 6.11,
compare Prüfer 1932, § 6, Krull 1935, 46.).

In Items (2 ), (4 ), and (6 ) below, we use the conventional additive notation for
divisor groups of an integral domain.

Corollary 5.6. Let R be an integral domain. The Lorenzen divisor group Lor(R)
can be realised set-theoretically in the following way.

1. Basic nonnegative divisors are realised as integral closures Icl(a1 . . . , an) of
(ordinary, i.e. integral) finitely generated ideals 〈a1 . . . , an〉R with a1, . . . , an ∈ R.
Note that if R is not integrally closed, Icl(a1, . . . , an) may contain elements not in
R.

2. The neutral element of the group, i.e. the divisor 0, is realised as Icl(1).
3. The meet of two basic nonnegative divisors is realised as

Icl(a1, . . . , an) ∧ Icl(b1, . . . , bm) = Icl(a1, . . . , an, b1, . . . , bm).

4. The sum of two basic nonnegative divisors is realised as

Icl(a1, . . . , an) + Icl(b1, . . . , bm) = Icl(a1b1, . . . . . . , anbm).

5. The order relation between basic nonnegative divisors is realised as

Icl(a1, . . . , an) 6 Icl(b1, . . . , bm) ⇐⇒ Icl(a1, . . . , an) ⊇ Icl(b1, . . . , bm).

In particular, Icl(a) 6 Icl(b) holds if and only if b is integral over 〈a〉.
6. General divisors are realised as formal differences of two basic nonnegative

divisors.

Proof. Item (1 ) is a rephrasing of Item (1 ) in Theorem 5.4. Items (2 ) to (5 ) are
clear. Let us consider Item (6 ). Lor(R) is generated by ϕ(G) as an ℓ-group. An
element of ϕ(G) is written as ϕ(a) − ϕ(b) with a, b ∈ R∗. It remains to verify
that differences of basic nonnegative divisors are stable by the laws ∧, +, and −
of an ℓ-group. Only the ∧-stability requires a little trick: in order to compute
δ = (ϕ(A) − ϕ(B)) ∧ (ϕ(C) − ϕ(D)), it is sufficient to compute δ + ϕ(B) + ϕ(D),
which is equal to (ϕ(A) + ϕ(D)) ∧ (ϕ(C) + ϕ(B)), which can be computed using
the previous items.
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Remarks 5.7. 1. WhenR is a Prüfer domain, the Lorenzen divisor group Lor(R)
coincides with the usual divisor group, the group of finitely generated fractional
ideals defined by Dedekind and Kronecker. In fact, the relation ⊢⊲d

is determined
by its trace on P∗

fe(R
∗) × R∗, and in a Prüfer domain all finitely generated ideals

are integrally closed, so that A ⊢⊲d
b simplifies to b ∈ 〈A〉R (see Item (1 ) of

Theorem 3.19). For more general rings with divisors, the Weil divisor group (see
Item (2 ) of Remarks 2.11) is a strict quotient of the Lorenzen divisor group.

2. The integral domain R = Q[x, y] is a gcd domain of dimension > 2, so that
its divisibility groupG is an ℓ-group. The domain R is not Prüfer and the Lorenzen
divisor group is much greater than G: e.g. the ideal gcd of x3 and y3 in Lor(R)
corresponds to the integrally closed ideal 〈x3, x2y, xy2, y3〉, whereas their gcd in
R∗ is 1, corresponding to the ideal 〈1〉. In this case, we see that G is a proper
quotient of Lor(R). ⋄

6 Systems of ideals and Prüfer’s theorem

In this section, we account for another way to obtain the Lorenzen group associated
to a system of ideals for an ordered group (Definition 1.16). This way has historical
precedence, as it dates back to Lorenzen’s Ph.D. thesis (1939), that builds on
earlier work by Prüfer (1932). As a particular case this provides another access to
understanding the Lorenzen divisor group of an integral domain.

6.1 The Grothendieck ℓ-group of a meet-semilattice-ordered
monoid

The following easy construction, for which we did not locate a good reference, is
particularly significant in the case where the meet-monoid associated to a system
of ideals proves to be cancellative.

Theorem 6.1. Let (M,+, 0,∧) be a meet-monoid. Let H be the Grothendieck
group of M with monoid morphism ϕ : M → H.

1. There exists a unique meet-monoid structure on H such that ϕ is a morph-
ism of ordered sets.

2. (H,+,−, 0,∧) is an ℓ-group: it is the ℓ-group generated by (M,+, 0,∧) in
the usual meaning of adjoint functors, and called the Grothendieck ℓ-group of M .

3. Assume that M is cancellative, i.e. that x+y = x+z implies y = z. Then ϕ
is an embedding of meet-monoids.

Proof. (1 ) The elements ofH are written as a−b for a, b ∈ M , with the equality
a− b = c− d holding if and only if there exists x such that a+ d+ x = b+ c+ x.
By transitivity and symmetry, every equality a− b = c− d may be reduced to two
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“elementary” ones, i.e. of the form e− f = (e+ y) − (f + y):

a− b = (a+ d+ x) − (b+ d+ x) = (b + c+ x) − (b + d+ x) = c− d.

When trying to define z = (e− f) ∧ (g − h) we need to ensure that

f + h+ z = (e+ h) ∧ (g + f).

So we may propose to set (e− f) ∧ (g − h)
def

= ((e+ h) ∧ (g + f)) − (f + h).
Let us show first that the law ∧ is well-defined on H .

It suffices to show that (e − f) ∧ (g − h) = ((e + y) − (f + y)) ∧ (g − h), which
reduces successively to

((e+ h) ∧ (g + f)) − (f + h) = ((e+ h+ y) ∧ (g + f + y)) − (f + h+ y)

and to

((e+ h) ∧ (g + f)) + (f + h+ y) = ((e+ h+ y) ∧ (g + f + y)) + (f + h).

Since ∧ is compatible with + in M , both sides are equal to

(e+ 2h+ f + y) ∧ (g + 2f + h+ y).

• The map ϕ : M → H preserves ∧: in fact ϕ(a)
def

= a− 0, and the checking is
immediate.

• The law ∧ on H is idempotent, commutative, and associative. This is easy
to check and left to the reader.

• The law ∧ is compatible with + on H . This is easy to check and left to the
reader.

(2 ) Left to the reader.
(3 ) The meet-monoid structure is purely equational. So an injective morphism

is always an embedding.

As an application of this construction, let us state a variant of Theorem IV.

Corollary 6.2 (to Theorem IV). Let (G,6G) be an ordered group and ⊲ a system
of ideals for G. The following are equivalent:

1. The system of ideals ⊲ is regular, i.e. it is the restriction of a regular system
of ideals ⊢.

2. The meet-monoid associated to the system of ideals ⊲ for G (Theorem I) is
cancellative.
When this is the case, let (H,6H) be the unbounded distributive lattice generated by
the regular system of ideals ⊢. Then the group law and the group morphism ϕ : G →
H constructed by Theorem IV can also be obtained as the Grothendieck ℓ-group of
the monoid in Item (2).
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Proof. (1) =⇒ (2). The subset M ⊆ H of those elements that may be written
ϕ(x1) ∧ · · · ∧ ϕ(xn) for some x1, . . . , xn is the meet-semilattice associated to the
system of ideals ⊲ obtained by restricting ⊢ to P∗

fe(G)×G. This subset M is stable
by addition, so that the restriction of addition to M endows it with the structure
of a cancellative meet-monoid. Thus H is necessarily (naturally isomorphic to) the
Grothendieck ℓ-group of M .

(2) =⇒ (1). If the monoid is cancellative, then it embeds into its Grothendieck
ℓ-group H . So, using the observation on page 6 leading to Definition 1.8, we get
Item (1 ).

6.2 Prüfer’s properties Γ and ∆

Let us now express cancellativity of the meet-monoid as a property of the system
of ideals itself, as in Prüfer (1932, § 3).

Lemma 6.3 (Prüfer’s Property Γ). Let ⊲ be a system of ideals for an ordered
group G. The corresponding meet-monoid M is cancellative, i.e. a + b = a + c
implies b = c in M , if and only if the following property holds:

A+B 6⊲ x+B =⇒ A ⊲ x. (††)

This holds if and only if

A+B 6⊲ B =⇒ A ⊲ 0.

Proof. The second implication, a particular case of the first one, implies the first
one by a translation. Let us work with the first implication.

Cancellativity means that if A+B 6⊲ C+B, then A 6⊲ C. Property (††) is ne-
cessary: take C = {x}. Let us show that it is sufficient. Assume A+ B 6⊲ C +B
and let x ∈ C. As C ⊲ x, we get by equivariance C +B 6⊲ x+B, whence
A+B 6⊲ x+B. So A ⊲ x. Since this holds for each x ∈ C, we get A 6⊲ C.

Remark 6.4. The original version for Prüfer’s Property Γ states, for a set-theoretical
star-operationA 7→ Ar on nonempty finitely enumerated subsets ofG as considered
in Item (2 ) of Remarks 1.4, the cancellation property (A + B)r ⊇ (C + B)r =⇒
Ar ⊇ Cr. ⋄

Prüfer’s theorem 6.7 will reveal the significance of the following definition. We
shall check in Proposition 6.10 that it agrees with Definition 1.10.

Definition 6.5 (Prüfer’s Property ∆ of integral closedness). Let ⊲ be a system
of ideals for an ordered group G. The group G is ⊲-closed if B 6⊲ x+B =⇒
0 6G x.

Remark 6.6. The original version for Prüfer’s Property ∆ states the cancellation
property Br ⊇ x+Br =⇒ 0 6G x. ⋄
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6.3 Forcing cancellativity: Prüfer’s theorem

When the monoid M in Theorem I is not cancellative, it is possible to adjust
the system of ideals in order to straighten the situation. A priori, it suffices to
consider the Grothendieck ℓ-group of M (Theorem 6.1). But we have to see that
this corresponds to a system of ideals for G, and to provide a description for it.

The following theorem is a reformulation of Prüfer’s theorem (Prüfer 1932,
§ 6). We follow the proofs in Jaffard (1960, pages 42–43). In fact, the language
of single-conclusion entailment relations simplifies the proofs. Jaffard’s statement
corresponds to Items (1 ) and (4 ), and Items (2 ) and (3 ) have been added by us.

Theorem 6.7 (Prüfer’s theorem). Let ⊲ be a system of ideals for an ordered
group G. We define the relation ⊲a between P∗

fe(G) and G by

A ⊲a y
def

⇐⇒ ∃B ∈ P∗
fe(G) A+B 6⊲ y +B.

1. The relation ⊲a is a system of ideals for G, and the associated meet-monoid Ma

(Theorem I) is cancellative.
2. Therefore Ma embeds into its Grothendieck ℓ-group Ha.
3. The system ⊲a is the finest system of ideals that is coarser than ⊲ and such

that Ma is cancellative.
4. We have that a ⊲a b implies a 6G b if (and only if) G is ⊲-closed (Defini-

tion 6.5); in this case, G embeds into Ha.

Proof. Note that if A+B 6⊲ y+B, then A+B+C 6⊲ y+B+C for all C (see the
proof of Theorem I on page 14). This makes the definition of ⊲a very easy to use.
In the proof below, we have two preorder relations on P∗

fe(G) (6⊲ and 6a), and
we shall do as if they were order relations (i.e. we shall descend to the quotients).

(1 ) • Reflexivity and preservation of order (of the relation ⊲a). Setting B =
{0} in the definition of ⊲a shows that x 6G y implies x ⊲a y.

• Monotonicity. It suffices to note that the elements (A∪A′)+B and (A+B)∪
(A′ +B) of P∗

fe(G) are the same: therefore, if A+B 6⊲ y+B, then (A,A′)+B 6⊲

y +B.
• Transitivity. Assume A ⊲a x and A, x ⊲a b: we have a B such that A+B 6⊲

x+B and a C such that (A, x)+C 6⊲ b+C; these inequalities imply respectively
A+B+C 6⊲ x+B+C and (A+B+C), (x+B+C) 6⊲ b+B+C; we deduce
A+B + C 6⊲ b+B + C, so that A ⊲a b.

• Equivariance. If A ⊲a y, we have a B such that A + B 6⊲ y + B, so that,
since 6⊲ is equivariant, x+A+B 6⊲ x+ y +B. This yields x+A ⊲a x+ y.

• Cancellativity (of the meet-monoid Ma). Let us denote by A 6a B the or-
der relation associated to ⊲a. By Lemma 6.3, it suffices to suppose that A+B 6a A
and to deduce that B ⊲a 0. But the hypothesis means that A + B ⊲a y for each
y ∈ A, i.e. that for each y ∈ A there is a Cy such that A+B+Cy 6⊲ y+Cy. Let

36



C =
∑

y∈A Cy: we have

A+B + C 6⊲ y + C 6⊲ y + z for each y ∈ A and each z ∈ C,

so that A+B + C 6⊲ A+ C. This yields B ⊲a 0 as desired.
(2 ) Follows from Item (1 ) by Theorem 6.1.
(3 ) This is immediate from the definition of ⊲a: it has been defined in a

minimal way as coarser than ⊲ and forcing the cancellativity of the monoid Ma.
(4 ) If x ⊲a y, then we have a B such that x + B 6⊲ y + B, so that by a

translation B 6⊲ (y − x) + B. The hypothesis on G yields 0 ⊲ y − x. By a
translation, we get x ⊲ y.

Comment 6.8. This is the approach proposed in Lorenzen (1939, § 4). Lorenzen
abandoned it in favour of Definition 1.10 for the purpose of generalising his theory
to noncommutative groups. See also Comments 1.12 and 1.15. ⋄

Definition 6.9 (see Lorenzen 1939, page 546 or Jaffard 1960, II, § 2, 2). The
ℓ-group in Item (2 ) of Theorem 6.7 is called the Lorenzen group for the system of
ideals ⊲.

Proposition 6.10 (Lorenzen 1950, Satz 27). The definition of A ⊲a 0 in The-
orem 6.7 agrees with Definition 1.10 of A ⊢⊲ 0. So Definition 6.5 of ⊲-closedness
agrees with that of Definition 1.10, and Definition 6.9 of the Lorenzen group agrees
with that of Definition 1.16.

Proof. This proposition expresses that, given a system of ideals ⊲ for an ordered
group G and an A ∈ P∗

fe(G), we have A ⊢⊲ 0 (Definition 1.10) if and only if
A+B 6⊲ B for some B ∈ P∗

fe(G).
First, A + B 6⊲x

B and A + C 6⊲−x
C imply A + D 6⊲ D for some D. In

fact, we have p and q such that

A+B,A+B + x, . . . , A+B + px 6⊲ B and

A+ C,A+ C − x, . . . , A+ C − qx 6⊲ C,

which yield that for c ∈ C, j 6 q, b ∈ B and k 6 p,

A+B + c− jx, . . . , A+B + c+ (p− j)x 6⊲ B + c− jx and

A+ b+ C + kx, . . . , A+ b+ C + (k − q)x 6⊲ b+ C + kx,

so that A+D 6⊲ D for D = B + C + {−qx, . . . , px}.
In the other direction assume that A+B ⊲ bi for each bi in B = {b1, . . . , bm}.

Let ci,j = bi − bj (i < j ∈ ⟦1..m⟧) and let us prove that A ⊲±c1,2,...,±cm−1,m
0. In

fact, for any system of constraints (ǫ1,2c1,2, . . . , ǫm−1,mcm−1,m) with ǫi,j = ±1, the
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elements bi in the corresponding meet-monoid Mǫ1,2,...,ǫm−1,m
are linearly ordered.

E.g. b1 6 b2 6 · · · 6 bm, in which case

⋀

(A+ b1, . . . , A+ bm) =
⋀

(A+ b1) 6 b1

holds in the monoid Mǫ1,2,...,ǫm−1,m
, which yields

⋀

A 6 0 by a translation.

Remarks 6.11. 1. Informally the content of this proposition may be expressed
as follows. By starting from ⊲ and by adding new pairs (A, b) such that A ⊲′ b,
on the one side Prüfer forces the cancellativity of the meet-monoid Ma, and on the
other side Lorenzen forces ⊲ to become the restriction of an entailment relation
(which is still a system of ideals, as follows trivially from Lorenzen’s definition).
In fact, each approach realises both aims, but each one realises its own aim in a
minimal way. So they give the same result.

2. Theorem 6.7 enables to recover the results of Theorem 3.19 and of The-
orem 5.4 in the Prüfer approach. In particular, one may check that A (⊲d)a b
holds if and only if b is integral over the fractional ideal 〈A〉R (by applying the
determinant trick, see Prüfer 1932, § 6), and that the hypothesis in Item (4 ) of
Theorem 6.7 is fulfilled when R is integrally closed. Furthermore, elements > 1 of
the ℓ-group Ma in Item (2 ) of Theorem 6.7 can be identified with integrally closed
ideals generated by nonempty finitely enumerated subsets A of R∗. Therefore
Item (1 ) of Theorem 6.7 yields the cancellation property stated in Corollary 5.5. ⋄
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