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Lattice-ordered groups generated by ordered

groups and regular systems of ideals

Thierry Coquand Henri Lombardi Stefan Neuwirth

11th January 2017

Abstract

Unbounded entailment relations, introduced by Paul Lorenzen (1951), are
a slight variant of a notion which plays a fundamental rôle in logic (see Scott
1974) and in algebra (see Lombardi and Quitté 2015). We propose to define
systems of ideals for a commutative ordered monoid G as unbounded single-
conclusion entailment relations that preserve its order and are equivariant:
they describe all morphisms from G to meet-semilattice-ordered monoids gen-
erated by (the image of) G. Taking an article by Lorenzen (1953) as a starting
point, we also describe all morphisms from a commutative ordered group G

to lattice-ordered groups generated by G through unbounded entailment rela-
tions that preserve its order, are equivariant, and satisfy a “regularity” property
invented by Lorenzen (1950); we call them regular systems of ideals. In partic-
ular, the free lattice-ordered group generated by G is described by the finest
regular system of ideals for G, and we provide an explicit description for it; it is
order-reflecting if and only if the morphism is injective, so that the Lorenzen-
Clifford-Dieudonné theorem fits in our framework. In fact, Lorenzen’s research
in algebra is motivated by the system of Dedekind ideals for the divisibility
group of an integral domain R; in particular, we provide an explicit description
of the lattice-ordered group granted by Wolfgang Krull’s “Fundamentalsatz”
if (and only if) R is integrally closed as the “regularisation” of the Dedekind
system of ideals.

Keywords. Ordered monoid · Unbounded single-conclusion entailment
relation · System of ideals · Morphism from an ordered monoid to a meet-
semilattice-ordered monoid · Ordered group · Regular system of ideals · Un-
bounded entailment relation · Morphism from an ordered group to a lattice-
ordered group · Lorenzen-Clifford-Dieudonné theorem · Fundamentalsatz for
integral domains · Grothendieck ℓ-group.
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1 Introduction

In this article, all monoids and groups are supposed to be commutative.

The idea of describing an unbounded semilattice by an unbounded single-con-
clusion entailment relation, and an unbounded distributive lattice by an unbounded
entailment relation, dates back to Lorenzen (1951, §2) and is motivated there by
ideal theory, which provides formal gcds, i.e., formal meets for elements of an integral
domain.

An unbounded meet-semilattice is by definition a purely equational algebraic
structure with a unique law ∧ that is idempotent, commutative and associative. We
are dropping the axiom of meet-semilattices providing a greatest element (i.e., meets
are only supposed to exist for nonempty finitely enumerated sets).

Notation I (see Lorenzen 1951, Satz 1). Let P∗
fe(G) be the set of nonempty finitely

enumerated subsets of a set G. For an unbounded meet-semilattice S we denote
by A ⊲ x or A ⊲S x the relation defined between the sets P∗

fe(S) and S in the
following way:

A ⊲ x
def

⇐⇒
∧
A 6 x

def

⇐⇒ x∧
∧
A =

∧
A.

This relation is reflexive, monotone (a property also called “thinning”) and trans-
itive (a property also called “cut” because it cuts x) in the following sense:

a ⊲ a (reflexivity);

if A ⊲ b, then A,A′ ⊲ b (monotonicity);

if A ⊲ x and A, x ⊲ b, then A ⊲ b (transitivity).

In the context of relations, we shall make the following abuses of notation for finitely
enumerated sets: we write a for the singleton consisting of a, and A,A′ for the union
of the sets A and A′.

These three properties correspond respectively to the “tautologic assertions”, the
“immediate deductions”, and to an elementary form of the “syllogisms” of the systems
of axioms introduced by Paul Hertz (1923, § 1), so that the following notion may
be attributed to him1; see also Gerhard Gentzen (1933, § 2), who coined the terms
“thinning” and “cut”.

Definition II. Let G be an arbitrary set.

1See Jean-Yves Béziau (2006, § 6) for a discussion on its relationship with Alfred Tarski’s
consequence operation, which may be compared to the relationship of our Definition III of a system
of ideals with the set-theoretic star-operation: see Item 2 of Remarks 2.4.
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1. A relation between P∗
fe(G) and G which is reflexive, monotone and transitive

is called an unbounded single-conclusion entailment relation for G.
2. The unbounded single-conclusion entailment relation ⊲2 is coarser than the

unbounded single-conclusion entailment relation ⊲1 if A ⊲1 y implies A ⊲2 y. One
says also that ⊲1 is finer than ⊲2.

Now suppose that (G,6G) is an ordered monoid2, (M,6M ) a meet-semilattice-
ordered monoid3, a meet-monoid for short, and ψ : G → M a morphism of ordered
monoids. The relation ∧

i∈J1..nK

ψ(xi) 6M ψ(y)

defines an unbounded single-conclusion entailment relation for G that satisfies fur-
thermore the following properties:

S1 if a 6G b, then a ⊲ b (preservation of order);

S2 if A ⊲ b, then x+A ⊲ x+ b (x ∈ G) (equivariance).

We may thus introduce systems of ideals in a purely algebraic way (i.e., as entailment
relations that require only a naive set theory for finitely enumerated sets): we pro-
pose the following definition, that we extracted from Lorenzen (1939, Definition 1)
(or Jaffard 1960, I, § 3, 1).

Definition III. A system of ideals for an ordered monoid G is an unbounded single-
conclusion entailment relation for G satisfying Properties S1 and S2.

Theorem I. Let ⊲ be a system of ideals for an ordered monoid G. Let S be the
unbounded meet-semilattice generated by the unbounded single-conclusion entailment
relation ⊲. There is a unique law + on S that makes S a meet-monoid and for
which the natural morphism of ordered sets G → S is a monoid morphism.

Lorenzen (1950, page 486) emphasises the transparency of this approach with
respect to the set-theoretic ideals: “But if one removes this set-theoretic clothing,
then the concept of ideal may be defined quite simply: a system of ideals of a pre-
ordered set is nothing other than an embedding into a semilattice.” See Remarks 2.4
for more on this.

An unbounded distributive lattice is by definition a purely equational algebraic
structure with two laws ∧ and ∨ satisfying the axioms of distributive lattices, except
the two axioms providing a greatest and a least element.

2I.e., a monoid (G,+, 0) endowed with an order relation 6G compatible with addition: x 6G

y ⇒ x+ z 6G y + z.
3I.e., a monoid endowed with an unbounded meet-semilattice law ∧ inducing 6M and compatible

with addition: the equality x+ (y ∧ z) = (x+ y) ∧ (x+ z) holds.
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Notation IV (see Lorenzen 1951, Satz 5). Let L be an unbounded distributive
lattice and let us define the relation A ⊢ B or A ⊢L B on the set P∗

fe(L) in the
following way:

A ⊢ B
def

⇐⇒
∧
A 6

∨
B.

This relation is reflexive, monotone (a property also called “thinning”) and trans-
itive (a property also called “cut”) in the following sense.

a ⊢ a (reflexivity);

if A ⊢ B, then A,A′ ⊢ B,B′ (monotonicity);

if A ⊢ B, x and A, x ⊢ B, then A ⊢ B (transitivity).

We insist on the fact that A and B must be nonempty.

The following definition is a variant of a notion whose name has been coined
by Dana Scott (1974, page 417). It is introduced as a description of an unbounded
distributive lattice (see Theorem 3.1) in Lorenzen (1951, § 2).

Definition V. 1. For an arbitrary set G, a binary relation on P∗
fe(G) which is

reflexive, monotone and transitive is called an unbounded entailment relation.
2. An unbounded entailment relation ⊢2 is coarser than an unbounded entail-

ment relation ⊢1 if A ⊢1 B implies A ⊢2 B. One says also that ⊢1 is finer than ⊢2.

Now suppose that (G,6G) is an ordered group4, (H,6H) a lattice-ordered
group5, an ℓ-group for short, and ϕ : G → H a morphism of ordered groups.

The laws ∧ and ∨ on an ℓ-group provide an unbounded distributive lattice
structure, and the relation

∧

i∈J1..nK

ϕ(xi) 6H

∨

j∈J1..mK

ϕ(yj)

defines typically an unbounded entailment relation for G that satisfies furthermore
the following properties:

R1 if a 6G b, then a ⊢ b (preservation of order);

R2 x+ a, y + b ⊢ x+ b, y + a (regularity);

R3 if A ⊢ B, then x+A ⊢ x+B (x ∈ G) (equivariance).

Properties R1 and R3 are straightforward, and the property R2 of regularity follows
from the fact that if x′, a′, y′, b′ are elements of H , then the inequality

(x′ + a′)∧ (y′ + b′) 6H (x′ + b′)∨ (y′ + a′)

4I.e., a group that is an ordered monoid.
5I.e., an ordered group that is a semilattice: this is enough to ensure that it is a meet-monoid,

that any two elements have a join, and that the distributivity laws hold.
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reduces successively to

0 6H

(
(−x′ − a′)∨ (−y′ − b′)

)
+
(
(x′ + b′)∨ (y′ + a′)

)

0 6H (b′ − a′)∨ (y′ − x′)∨ (x′ − y′)∨ (a′ − b′)

0 6H |b′ − a′|∨ |y′ − x′|.

We hence propose the following new definition (compare Lorenzen 1953, § 1).

Definition VI. Let G be an ordered group.
1. A regular system of ideals for G is an unbounded entailment relation for G

satisfying Properties R1, R2 and R3.
2. A system of ideals for G is regular if it is the restriction of a regular system

of ideals to P∗
fe(G)×G.

The ambiguity introduced by these two definitions is harmless because it turns
out that a regular system of ideals is determined by its restriction to P∗

fe(G)×G (see
Theorem 3.9).

A system of ideals gives rise to a regular system of ideals if one affords to suppose
that elements occurring in a computation are comparable, in the following way.

Definition VII (see Lorenzen 1953, (2.2) and page 23). Let ⊲ be a system of ideals
for an ordered group G.

1. For every element x of G, consider the system of ideals ⊲x coarser than ⊲

obtained by forcing the property x > 0. The regularisation of ⊲ is the relation
on P∗

fe(G) defined by

A ⊢⊲ B
def

⇐⇒

{
there are x1, . . . , xℓ such that for every choice of signs ±

A−B ⊲±x1,...,±xℓ
0 holds.

2. The group G is ⊲-closed if a ⊢⊲ b ⇒ a 6G b holds for all a, b ∈ G.

Theorem II (see Lorenzen 1953, § 1). Let ⊲ be a system of ideals for an ordered
group G. The regularisation A ⊢⊲ B given in Definition VII is the finest regular
system of ideals for G whose restriction to P∗

fe(G)×G is coarser than ⊲.

This enhances the first part of the proof of the remarkable Satz 1 of Lorenzen
(1953). In place of its second part, we propose the new Theorem IV below: regular
systems of ideals provide a description of all morphisms from an ordered group G
to ℓ-groups generated by (the image of) G.

Underway, we provide the following constructive version of a key observation
concerning the ℓ-group freely generated by an ordered group.
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Theorem III. Let ı be the morphism from an ordered group G to the ℓ-group H
that it freely generates. Let u1, . . . , uk ∈ G. We have

∨k
j=1 ı(uj) >H 0 if and only

if there exist integers mj > 0 not all zero such that
∑k

j=1mjuj >G 0.

Theorem IV. Let ⊢ be a regular system of ideals for an ordered group G. Let H be
the unbounded distributive lattice generated by the unbounded entailment relation ⊢.
Then H has a (unique) group law which is compatible with its lattice structure and
such that the morphism (of ordered sets) ϕ : G → H is a group morphism.

These results give rise to the following construction and corollary, that one can
find in Lorenzen (1953, § 2 and page 23).

Definition VIII. Let ⊲ be a system of ideals for an ordered groupG. The Lorenzen
group associated to ⊲ is the ℓ-group provided by Theorems II and IV.

Corollary to Theorem IV. Let ⊲ be a system of ideals for an ordered group G.
If G is ⊲-closed, then G embeds into the Lorenzen group associated to ⊲.

In this paper, our aim is to give a precise account of the approach by regular
systems of ideals; we are directly inspired by Lorenzen (1953). The literature on
ℓ-groups seems not to have taken notice of these results. In Lorenzen’s work, this
approach supersedes another, based on the Grothendieck ℓ-group of the meet-monoid
obtained by forcing cancellativity of the system of ideals, ideated by Heinz Prüfer
(1932) and generalised to the setting of ordered monoids in the Ph.D. thesis Lorenzen
(1939). We also provide an account for that approach, which yields a construction
of an ℓ-group from a system of ideals which turns out to be the associated Lorenzen
group.

The motivating example for Lorenzen’s analysis of the concept of ideal is Wolf-
gang Krull’s “Fundamentalsatz” that an integral domain is an intersection of valu-
ation rings if and only if it is integrally closed. As Krull (1935, page 111) himself
emphasises, “Its main defect, that one must not overlook, lies in that it is a purely
existential theorem”, resulting from a well-ordering argument. Lorenzen’s goal is to
unveil its constructive content, i.e., to express it without reference to valuations. He
shows that the well-ordering argument may be replaced by the right to compute as if
the divisibility group was linearly ordered (see Definition VII above)6, that integral

6In a letter to Heinrich Scholz dated 18th April 1953 (Scholz-Archiv, Westfälische Wilhelms-Uni-
versität Münster, http://www.uni-muenster.de/IVV5WS/ScholzWiki/doku.php?id=scans:blogs:ko-05-064
accessed 21st September 2016), Krull writes: “At working with the uncountable, in particular with
the well-ordering theorem, I always had the feeling that one uses fictions there that need to be
replaced some day by more reasonable concepts. But I was not getting upset over it, because I
was convinced that at a careful application of the common “fictions” nothing false comes out, and
because I was firmly counting on the man who would some day put all in order. Lorenzen has now
found according to my conviction the right way [. . . ]”.
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closedness guarantees that such computations do not add new relations of divisib-
ility to the integral domain, and that this generates an ℓ-group. The corollary to
Theorem IV is in fact an abstract version of the following theorem (see Theorem 5.5).

Theorem. Let R be an integral domain, K its field of fractions, and G = K×/R×

its divisibility group. Consider the Dedekind system of ideals for G defined by

A ⊲d b
def

⇐⇒ b ∈ 〈A〉R ,

where 〈A〉R is the fractional ideal generated by A over R in K. Then G embeds into
an ℓ-group that contains the Dedekind system of ideals if and only if R is integrally
closed.

Let us now briefly describe the structure of this article.
Section 2 deals with unbounded meet-semilattices as generated by unbounded

single-conclusion entailment relations, discusses systems of ideals for an ordered
monoid and the meet-monoid they generate (Theorem I), and describes the case
in which the system of ideals for an ordered group is in fact a group: then G is a
divisorial group, a notion tightly connected to Weil divisor groups.

Section 3 deals with unbounded distributive lattices as generated by unbounded
entailment relations, discusses regular systems of ideals and provides the proof of
Theorem II. It also provides two applications: a description of the finest regular
system of ideals and Lorenzen’s theory of divisibility for integral domains.

Section 4 provides a constructive proof of Theorem III based on the Positivstel-
lensatz for ordered groups.

Section 5 proves the main theorem of the paper, Theorem IV, that regular sys-
tems of ideals for an ordered group generate in fact an ℓ-group. Some consequences
for Lorenzen’s theory of divisibility for integral domains are stated.

Section 6 reminds us of an important theorem by Prüfer which leads to the
historically first approach to the Lorenzen group associated to a system of ideals.

A more elaborate study of Lorenzen’s work will be the subject of another article
that will provide a detailed analysis of Lorenzen (1950, 1952, 1953). These works,
all published in Mathematische Zeitschrift, are written with careful attention to the
possibility of constructive formulations for abstract existence theorems.

The paper is written in Errett Bishop’s style of constructive mathematics (Bishop
1967; Bridges and Richman 1987; Lombardi and Quitté 2015; Mines, Richman and
Ruitenburg 1988): all theorems can be viewed as providing an algorithm that con-
structs the conclusion from the hypotheses.
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2 Unbounded meet-semilattices and systems of

ideals

2.1 Unbounded meet-semilattices

Let us first discuss the notion of single-conclusion entailment relations.

Remarks 2.1 (for Definition II). 1. If instead of nonempty subsets, we had con-
sidered nonempty multisets, we would have had to add a contraction rule, and if we
had considered nonempty lists, we would have had to add also a permutation rule.

2. The terminology “coarser than” has the following explanation. The nonempty
finitely enumerated set A to the left of ⊲ represents a formal meet of A for the
preorder 6⊲ on P∗

fe(G) associated to the unbounded single-conclusion entailment
relation ⊲ (and defined by the equivalence (*) below). To say that the relation ⊲2

is coarser than the relation ⊲1 is to say this for the associated preorders, i.e., that
A 6⊲1

B implies A 6⊲2
B, and this corresponds to the usual meaning of “coarser

than” for preorders, since A =⊲1
B implies then A =⊲2

B, i.e., the equivalence
relation =⊲2

is coarser than =⊲1
.

A fundamental theorem holds for an unbounded single-conclusion entailment
relation for a given set G: it states that it generates an unbounded meet-semi-
lattice S which defines in turn an unbounded single-conclusion entailment relation
that reflects the original one. This is the single-conclusion analogue of the better
known Theorem 3.1.

Theorem and definition 2.2 (Fundamental theorem of unbounded single-con-
clusion entailment relations, see Lorenzen 1951, Satz 3). Let G be a set and ⊲G

an unbounded single-conclusion entailment relation between P∗
fe(G) and G. Let us

consider the unbounded meet-semilattice S defined by generators and relations in the
following way: the generators are the elements of G and the relations are the

A ⊲S x whenever A ⊲G x.

Then, for all (A, x) in P∗
fe(G)×G, we have the reflection of entailment

if A ⊲S x, then A ⊲G x.

In fact, S can be defined as the ordered set obtained by descending to the quotient of
(P∗

fe(G),6⊲), where 6⊲ is the preorder defined by

A 6⊲ B
def

⇐⇒ A ⊲ b for all b ∈ B. (*)

Proof. One sees easily that 6⊲ is a preorder on P∗
fe(G) that endows the quotient

by =⊲ with a meet-semilattice structure, where the law∧⊲ is obtained by descending
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the law (A,B) 7→ A ∪ B to the quotient. The reader will prove that S can also be
defined by generators and relations as in the statement.

Note that the preorder x ⊲ y on G makes its quotient a subobject of S in the
category of ordered sets.

Remarks 2.3. 1. Suppose that (G,6G) is an ordered set. The “finite Dedekind-
MacNeille completion” that adds formal finite meets to G in a minimal way corres-
ponds to the construction of an unbounded semilattice from (G,⊲v), where ⊲v is
the coarsest order-reflecting unbounded single-conclusion entailment relation for G:

A ⊲v b
def

⇐⇒ ∀z ∈ G if z 6G A, then z 6G b, (†)

where z 6G A means z 6G a for all a ∈ A.
2. The relation x ⊲G y is a priori just a preorder relation for G, not an order

relation. Let us denote the element x viewed in the ordered set G associated to this
preorder by x, and let A = {x | x ∈ A } for a subset A of G. In Theorem 2.2, we
consider a meet-semilattice S yielding the same single-conclusion entailment relation
for G as ⊲G; for the sake of rigour, we should have written A ⊲S x rather than
A ⊲S x in order to deal with the fact that the equality of S is coarser than the
equality of G. In particular, it is G rather than G which can be identified with a
subset of S.

2.2 Systems of ideals for an ordered monoid

Let us now discuss the definition of a system of ideals à la Lorenzen for an ordered
monoid, Definition III, given in the language of single-conclusion entailment rela-
tions.

Remarks 2.4 (for Definition III). 1. We find that it is more natural to state a
direct implication rather than an equivalence in Item S1 ; we deviate here from
Lorenzen and Paul Jaffard (1960, page 16). The reverse implication expresses the
supplementary property that the system of ideals is order-reflecting.

2. Lorenzen (1939), following Prüfer (1932, § 2) and Hilbert who subordinated
algebra to set theory, describes a (finite) “r-system” of ideals through a set-theoretical
map (sometimes called star-operation)

P∗
fe(G) −→ P(G), A 7−→ {x ∈ G | A ⊲ x }

def

= Ar

(here P(G) stands for all subsets of G, and r is just a variable name for distinguishing
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different systems) that satisfies:

I1 Ar ⊇ A;

I2 Ar ⊇ B =⇒ Ar ⊇ Br;

I3 {a}r = { x ∈ G | a 6 x } (preservation and reflection of order);

I4 (x+A)r = x+Ar (equivariance).

Let us note that the containment Ar ⊇ Br corresponds to the inequality A 6⊲ B
in the meet-semilattice associated to the single-conclusion entailment relation ⊲ by
Theorem 2.2.
As previously indicated, in contradistinction to Lorenzen and Jaffard, we find it more
natural to relax the equality in I3 to a containment: if we do so, the reader can
prove that the definition of the star-operation7 is equivalent to Definition III. Items
I1 and I2 correspond to the definition of a single-conclusion entailment relation, and
Items I3 (relaxed) and I4 correspond to Items S1 and S2 in Definition III. Compare
Lorenzen (1950, pages 504-505).

3. In the set-theoretic framework of the previous item, the r2-system is coarser
than the r1-system exactly if Ar2 ⊇ Ar1 holds for all A ∈ P∗

fe(G) (see Jaffard 1960,
I, § 3, Proposition 2).

In the case that G is an ordered group, we may state an apparently simpler
definition for systems of ideals.

Proposition 2.5 (Variant for the definition of a system of ideals for an ordered
group). Let us consider a predicate · ⊲ 0 on P∗

fe(G) for an ordered group G and let
us define a relation between the sets P∗

fe(G) and G by

A ⊲ b
def

⇐⇒ A− b ⊲ 0.

In order for this relation to be a system of ideals, it is necessary and sufficient that
the following properties be fulfilled:

T1 if a 6G 0, then a ⊲ 0 (preservation of order);

T2 if A ⊲ 0, then A,A′ ⊲ 0 (monotonicity);

T3 if A− x ⊲ 0 and A, x ⊲ 0, then A ⊲ 0 (transitivity).
7Lorenzen unveiled the lattice theory behind multiplicative ideal theory step by step, the decisive

one being dated back by him to 1940. In a footnote to his definition, Lorenzen (1939, page 536)
writes: “If one understood hence by a system of ideals every [semi]lattice that contains the principal
ideals and satisfies Property [I4 ], then this definition would be only unessentially broader”. In a
letter to Krull dated 13th March 1944 (Philosophisches Archiv, Universität Konstanz, PL-1-1-
131), he writes: “For example, the insight that a system of ideals is actually nothing more than a
supersemilattice, and a valuation nothing more than a linear order, strikes me as the most essential
result of my effort”.
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Proof. Left to the reader.

The finest and the coarsest system of ideals admit the following descriptions.

Proposition 2.6 (Lorenzen 1950, Satz 14, Satz 15, Footnote 26). Let G be an
ordered monoid.

1. The finest system of ideals for G is defined by

A ⊲s b
def

⇐⇒ a 6G b for some a ∈ A.

Note that ⊲s is order-reflecting: x ⊲s y iff x 6G y.
2. The coarsest order-reflecting system of ideals for G is defined by

A ⊲v b
def

⇐⇒ ∀z, w ∈ G if z 6G A+ w, then z 6G b + w,

where z 6G A+ w means z 6G a+ w for all a ∈ A.
3. If G is an ordered group, this simplifies to the definitional equivalence (†) on

page 9.

Remarks 2.7. 1. As noted in Item 3 for ⊲v, the definition of ⊲s could be stated
verbatim in the framework of ordered sets and single-conclusion entailment relations.

2. The system of ideals ⊲v was introduced independently by Bartel Leendert
van der Waerden (see van der Waerden 1931, § 103)8 and Prüfer (1932) (“v” like
“Vielfache”, “multiples” of gcds). The system of ideals ⊲s appears first in Lorenzen
(1939) (“s” standing perhaps for “sum”).

Proof. 1. Left to the reader.
2. One sees easily that ⊲v is a single-conclusion entailment relation for G.
• S1. Let y ∈ G. Suppose a 6G b: then a + y 6G b + y, i.e., if x 6G a + y,

then x 6G b+ y; hence a ⊲v b.
• Reflection of order. Conversely, suppose a ⊲v b: taking x = a and y = 0 in

the definition of a ⊲v b, we get a 6G b.
• S2. Let us suppose A ⊲v b and proveA+x ⊲v b+x for x ∈ G. Let z, w ∈ G;

if z 6G (A+ x) +w, then z 6G A+ (x+w), and by hypothesis z 6G b+(x+w),
i.e., z 6G (b + x) + w.
Now let ⊲ be an order-reflecting system of ideals for G and suppose that A ⊲ b.
Let us prove that A ⊲v b. Let z, w ∈ G and suppose that z 6G A + w; by the
definition of 6⊲ and because A + w ⊲ b + w, we have z 6⊲ A+ w 6⊲ b+ w.
Since 6⊲ reflects the order on G, z 6G b+ w.

8Or the translation van der Waerden (1950, § 105) of its second edition.
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2.3 Proof of Theorem I

Proof of Theorem I. We define A + B = { a+ b | a ∈ A, b ∈ B } in P∗
fe(G). We

have to check that this law descends to the quotient S. It suffices to show that
B 6⊲ C implies A+B 6⊲ A+C: in fact, B 6⊲ C implies x+B 6⊲ x+C by
equivariance, and A + B 6⊲ x + C for every x ∈ A by monotonicity. Finally, let
us verify the compatibility of ∧⊲ with addition: we note that already in P∗

fe(G) we
have A+ (B ∪ C) = (A+B) ∪ (A+ C).

2.4 The classical (Weil) divisor group in commutative
algebra

Prüfer (1932, § 3) introduces a property for a system of ideals, “Property B”, ex-
pressing that the associated meet-monoid is in fact a group (and hence an ℓ-group).
The next proposition shows that this is essentially a property of the ordered monoid
itself.

Proposition 2.8 (Lorenzen 1950, Satz 16). Let G be an ordered monoid and ⊲ an
order-reflecting system of ideals for G. If the associated meet-monoid is a group,
then ⊲ coincides with the coarsest system of ideals ⊲v for G.

Proof. Suppose that A ⊲v b, i.e., that A 6⊲v
b. We need to prove that A ⊲ b, i.e.,

that A 6⊲ b. Since 6⊲v
and 6⊲ reflect 6G, we know that

0 6⊲v
B ⇐⇒ 0 6⊲ B ⇐⇒ 0 6G B.

Let C ∈ P∗
fe(G) such that A+ C =⊲ 0. We have 0 6⊲ A+ C and hence

0 6⊲v
A+ C. We get 0 6⊲v

A+ C 6⊲v
b+ C. Therefore 0 6⊲ b+ C and

A 6⊲ b+ C +A =⊲ b.

In the rest of this section, we shall only consider the case where G is a group
because of the lack of applications, and because it avoids a more involved definition
of divisorial opposites below.

Proposition 2.11 shows that “Property B” may be caught by the following defin-
itions.

Definitions 2.9. Let G be an ordered group.
1. Two nonempty finitely enumerated subsets A, B of G are divisorially opposite

if 0 is meet for A+B in G.
2. The group G is divisorial if every nonempty finitely enumerated subset admits

a divisorial opposite.
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Remarks 2.10. 1. The notion of divisorially opposite sets coincides with the no-
tion of divisorially inverse lists in (the multiplicative notation of) Coquand and
Lombardi (2016).

2. Formally, in Item 1, we think of
∧
B =

∨
−A as of

∧
(A + B) = 0, so that

the join of −A is given by the meet of B. It remains to show that this intuition
works.

Proposition 2.11. Let G be an ordered group. T.f.a.e.
1. The meet-monoid associated to the system of ideals ⊲v is a group.
2. The group G is divisorial.

Proof. 1 ⇒ 2. ConsiderA ∈ P∗
fe(G). Then the opposite of A in the meet-monoid

associated to ⊲v writes B for some B ∈ P∗
fe(G), i.e., A+B =⊲v

0. But A+B 6⊲v

0 means that x 6G A+B ⇒ x 6G 0, and 0 6⊲v
A+B means that every element

of A+B is >G 0.
2 ⇒ 1. It suffices to check that if A ∈ P∗

fe(G), then a divisorial opposite B of A
satisfies A+B =⊲v

0. First 0 6G A+B, so that 0 6⊲v
A+B. Second, let x ∈ G

such that x 6⊲v
A +B. We have x 6G A+B (⊲v is order-reflecting), so x 6G 0

and x 6⊲v
0. Thus A+B 6⊲v

0.

Divisorial groups will provide natural examples of the Lorenzen group associated
to a system of ideals, i.e., the meet-monoid associated to ⊲v.

Remarks 2.12. 1. Proposition 2.11 can be seen as a variant of Jaffard (1960, II,
§ 3, Corollaire du théorème 3, page 55).

2. Divisorial groups are tightly connected to Weil divisor groups in commutative
algebra. Coquand and Lombardi (2016) give a constructive presentation of “rings
with divisors” (in French, “anneaux à diviseurs”), which they define as integral do-
mains whose divisibility group is divisorial. Rings with divisors with an additional
condition of noetherianity are called Krull domains. H. M. Edwards (1990) describes
in his Divisor theory an approach à la Kronecker to rings with divisors in the case
where they are constructed as integral closures of finite extensions of “Kronecker
natural rings”. See also in the same spirit Hermann Weyl (1940). Rings with di-
visors are called “pseudo-Prüferian integral domains” by Nicolas Bourbaki (1972,
VII.2.Ex.19), and “Prüfer-v-multiplication domains (PvMD)” in the English literat-
ure (one can also find the terminology “rings with a theory of divisors”). The main
examples are the gcd domains (for which the divisor group coincides with the divis-
ibility group) and the coherent normal domains (especially in algebraic geometry).
In case of noetherian coherent normal domains, the divisor group is usually called
the Weil divisor group. For a ring with divisors R, the Weil divisor group Div(R) is
a quotient of the Lorenzen group Lor(R) as defined in Definition 5.4, with equality
in the case of Prüfer domains. We expand on this topic in Remark 5.8.

13



3 Unbounded distributive lattices and regular

systems of ideals

3.1 Unbounded distributive lattices

References: Grätzer (2011, Chapter 2), Cederquist and Coquand (2000); Lombardi
and Quitté (2015); Lorenzen (1951).

Note that Item 1 of Remark 2.1 applies again verbatim for Definition V.
Let us adapt Theorem 2.2 to the setting of unbounded entailment relations: this

yields Theorem 3.1, an unbounded variant of the fundamental theorem of entailment
relations (Cederquist and Coquand 2000, Theorem 1), which dates back to Lorenzen
(1951, Satz 7). It states that an unbounded entailment relation for a set G generates
an unbounded distributive lattice L which defines an unbounded entailment relation
that reflects the original one. The proof is essentially the same as in Cederquist and
Coquand (2000) or in Lombardi and Quitté (2015, Theorem XI-5.3).

Theorem 3.1 (Fundamental theorem of unbounded entailment relations, see Loren-
zen 1951, Satz 7). Let G be a set and ⊢G an unbounded entailment relation
on P∗

fe(G). Let us consider the unbounded distributive lattice L defined by gener-
ators and relations in the following way: the generators are the elements of G and
the relations are the

A ⊢L B whenever A ⊢G B.

Then, for all A, B in P∗
fe(G), we have the reflection of entailment

if A ⊢L B, then A ⊢G B.

Item 2 of Remark 2.3 applies again mutatis mutandis.

3.2 Regular systems of ideals for an ordered group

Let us now undertake an investigation of Definition VI.

Comment 3.2 (for Definition VI). The property of regularity arises in Lorenzen’s
analysis of the rôle played by the commutativity of the group: he isolates an in-
equality which is trivially verified in a commutative ℓ-group (see page 5), but not in
a noncommutative one: that (x+ a)∧ (b + y) 6 (x+ b)∨ (a+ y). Lorenzen (1950,
Satz 13) states that a (noncommutative) ℓ-group that is regular in this sense is a
subdirect product of linearly preordered groups by a well-ordering argument. In
the commutative setting, this corresponds to the theorem (in classical mathematics)
stating that any commutative ℓ-group is a subdirect product of linearly preordered
commutative groups.
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When we assume Property R1, the following fact concerning entailment relations
takes a flavour of “monotonicity for the order relation of G”.

Fact 3.3. Assume that c ⊢ d.
1. If A ⊢ B, c, then A ⊢ B, d.
2. If A, d ⊢ B, then A, c ⊢ B.

Proof. By monotonicity, c ⊢ d gives A, c ⊢ B, d. 1. A ⊢ B, c gives A ⊢ B, c, d.
Cutting c, we get A ⊢ B, d. 2. Symmetric argument.

Proposition 3.4. Let ⊢ be a regular system of ideals for an ordered group G. The
following properties (of which R2 is a particular case) are valid for each integer n >

1:
R2n if x1 + · · ·+ xn =G y1 + · · ·+ yn, then x1, . . . , xn ⊢ y1, . . . , yn.

Note that if we have x1+ · · ·+xn =G y1+ · · ·+ ym with m 6= n, we may add 0s
to the shorter list in order to apply the lemma. E.g., if a =G b+ c, then 0, a ⊢ b, c.
In this way, we get9 0 ⊢ a,−a and a,−a ⊢ 0.

Proof. Case n = 2. This is Property R2 : if x, y, a, b are given, let x1 = x + a,
x2 = y+ b, y1 = x+ b and y2 = y+ a; conversely, if x1 + x2 =G y1+ y2 are given,
let x = x1, a = 0, y = y2 and b = x2 − y2 =G y1 − x1.
Case n > 2. By induction. Assume that x1+ · · ·+xn =G y1+ · · ·+yn. We remark
that it is sufficient to prove x1, . . . , xn ⊢ y1, . . . , yn in the case y1 =G 0, as we get
the general case by a translation (Property R3 ). Here we use the fact that the same
number of terms are being added on both sides.
So, assume x1 + · · ·+ xn =G y2 + · · ·+ yn. We need to prove

x1, . . . , xn ⊢ 0, y2, . . . , yn. (‡)

By the induction hypothesis we have on the one hand

x3, . . . , xn, (x1 + x2) ⊢ y2, . . . , yn,

which gives by monotonicity

x1, x2, x3, . . . , xn, (x1 + x2) ⊢ 0, y2, . . . , yn. (§)

On the other hand, we have x1, x2 ⊢ (x1 + x2), 0 which gives by monotonicity

x1, x2, x3, . . . , xn ⊢ (x1 + x2), 0, y2, . . . , yn. (‖)

Finally, cutting x1 + x2 in (§) and (‖), we get (‡).

9Precisely, we get 0, 0 ⊢ a,−a, which contracts to 0 ⊢ a,−a.
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When x1+· · ·+xn 6G y1+· · ·+yn, we have x1+· · ·+xn =G y1+· · ·+yn−1+y
′
n

for some y′n 6G yn. So y′n ⊢ yn and x1, . . . , xn ⊢ y1, . . . , yn−1, y
′
n, and Fact 3.3

yields again x1, . . . , xn ⊢ y1, . . . , yn. In particular, the following holds.

Corollary 3.5. Let ni be integers > 0 not all zero. If 0 6G

∑p
i=1 niui, then we

have 0 ⊢ u1, . . . , up. Similarly, if
∑p

i=1 niui 6G 0, then u1, . . . , up ⊢ 0.

Proof. Assume, e.g., that 0 6G 2u1 + 3u2; then

0 + 0 + 0 + 0 + 0 6G u1 + u1 + u2 + u2 + u2.

Proposition 3.4 gives 0, 0, 0, 0, 0 ⊢ u1, u1, u2, u2, u2. By contraction and monoton-
icity 0 ⊢ u1, u2, . . . , up holds.

Lemma 3.6 (Lorenzen’s inequality, Lorenzen 1953, (2.11)). Let ⊢ be a regular
system of ideals. Let x1, . . . , xn, y1, . . . , ym ∈ G, let τ be a map J1..nK → J1..mK,
and σ a map J1..mK → J1..nK. Then

x1 + yτ1 , . . . , xn + yτn ⊢ xσ1
+ y1, . . . , xσm

+ ym

holds10.

Proof. Consider the sequence defined by λ1 = 1 and λk+1 = στλk
, Then this se-

quence “contains a cycle”: there are i 6 j such that λi = λj+1. Therefore

(xλi
+ yτλi

)− (xστλi

+ yτλi
) + · · ·+ (xλj

+ yτλj
)− (xστλj

+ yτλj
)

is a telescopic sum and

(xλi
+ yτλi

) + · · ·+ (xλj
+ yτλj

) =G (xστλi

+ yτλi
) + · · ·+ (xστλj

+ yτλj
).

By Proposition 3.4,

xλi
+ yτλi

, . . . , xλj
+ yτλj

⊢ xστλi

+ yτλi
, . . . , xστλj

+ yτλj
.

The result follows by monotonicity.

10Note that
∨

τ

∧
i(xi + yτi) =H

∧
i

∨
j(xi + yj) and that

∧
σ

∨
i(xσj

+ yj) =H

∨
j

∧
i(xi + yj).

If we already knew that + is compatible with the lattice operations in H, then this entailment
would follow from the simple observation that

∧
i

∨
j(xi + yj) 6H

∨
j

∧
i(xi + yj) because both

would be seen to be equal to (
∧

i xi) + (
∨

j yj).
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Comment 3.7. Lorenzen (1953) proceeds in the following way for the proof of his
Satz 1: he starts by proving the key facts that (for a noncommutative group, in
multiplicative notation)

if c, c1, . . . , cn ⊢ 1, then xcx−1, c1, . . . , cn ⊢ 1

c1c
−1
2 , c2c

−1
3 , . . . , cn−1c

−1
n , cnc

−1
1 ⊢ 1

(the second of which corresponds to Corollary 3.5) and deduces from these Prop-
erty R2 only as the basic ingredient for proving that the distributive lattice generated
by ⊢ is regular. The main use of these facts is for establishing Lemma 3.6 as a tool
for endowing the distributive lattice with a compatible group operation as in our
Main Theorem IV.

Scholion 3.8. In an ℓ-group (H,6H), the inequality x1∧ . . .∧xn 6H y1∨ . . .∨ym
is equivalent to ∧

i∈J1..nK,j∈J1..mK

(xi − yj) 6H 0.

Proof. The inequality x1 ∧ . . .∧ xn 6H y1 ∨ . . .∨ ym is equivalent to

(x1 ∧ . . .∧ xn)− (y1 ∨ . . .∨ ym) 6H 0

and also, by distributivity, to the stated inequality.

This scholion explains why the following theorem is decisive.

Theorem 3.9. Let ⊢ be a regular system of ideals. We have

x1, . . . , xn ⊢ y1, . . . , ym (#)

if and only if
0 ⊢ (yj − xi)i∈J1..nK,j∈J1..mK (¶)

if and only if
(xi − yj)i∈J1..nK,j∈J1..mK ⊢ 0. (%)

Proof. (#) ⇒ (¶). Let C be the right-hand side of (¶). The hypothesis gives by
equivariance for each k ∈ J1..nK

Lk ⊢ y1 − xk, . . . , ym − xk

with Lk = {x1 − xk, . . . , xn − xk}, and by monotonicity holds Lk ⊢ C. By The-
orem 3.1 we have for each k ∈ J1..nK an inequality

∧
Lk 6H

∨
C. So

∨

k∈J1..nK

∧
Lk 6H

∨
C.
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By distributivity we get

∨

k∈J1..nK

∧
Lk =

∧

σ : J1..nK→J1..nK

∨

k∈J1..nK

xσk
− xk.

Let σ : J1..nK → J1..nK. By Lemma 3.6 with τk = k,

x1 − x1, . . . , xn − xn ⊢ xσ1
− x1, . . . , xσn

− xn,

so that 0 6H

∨
k∈J1..nK xσk

− xk and by transitivity 0 6H

∨
C.

(¶) ⇒ (#). Let X = {x1, . . . , xn} and Y = {y1, . . . , yn}. By a translation, we
have for each k that xk ⊢ (Y − xi + xk)i∈J1..nK. Thus X ⊢ (Y − xi + xk)i∈J1..nK.
By Theorem 3.1 we have for each k ∈ J1..nK an inequality

∧
X 6H

∨

i∈J1..nK

∨
Y − xi + xk,

so that ∧
X 6H

∧

k∈J1..nK

∨

i∈J1..nK

∨
Y − xi + xk,

By distributivity we get

∧

k∈J1..nK

∨

i∈J1..nK

∨
Y − xi + xk =

∨

υ : J1..nK→J1..mK

∨

τ : J1..nK→J1..nK

∧

k∈J1..nK

yυk
− xτk + xk.

Let υ : J1..nK → J1..mK and τ : J1..nK → J1..nK. By Lemma 3.6 with σk = k,

(x1 + yυ1
)− xτ1 , . . . , (xn + yυn

)− xτn ⊢ (x1 + yυ1
)− x1, . . . , (xn + yυn

)− xn,

so that by monotonicity
∧

k∈J1..nK yυk
−xτk+xk 6H

∨
Y , and by transitivityX ⊢ Y .

Finally (#) ⇔ (¶) shows that u1, . . . , uℓ ⊢ 0 is equivalent to 0 ⊢ −u1, . . . ,−uℓ,
and this yields (¶) ⇔ (%).

In particular, this theorem asserts that a regular system of ideals is determined
by its restriction to P∗

fe(G)×G. However, given an unbounded single-conclusion en-
tailment relation ⊲, there are several unbounded entailment relations that reflect ⊲,
and the coarsest one admits a simple description, given in Lorenzen (1952, § 3):

A ⊢v
⊲ B

def

⇐⇒ ∀C ∈ Pfe(G) ∀z ∈ G if C, b ⊲ z for all b in B, then C,A ⊲ z (‖)

(here Pfe(G) stands for the set of finitely enumerated subsets of the set G; see Scott
(1974, Theorem 1.2) for a proof; ⊢v

⊲ is ⊢max
⊲ in Rinaldi, Schuster and Wessel (2016,
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§ 3.1)). This definition is “dual” to the definitional equivalence (†) on page 9 for the
coarsest single-conclusion entailment relation; the presence of the C in (‖) is needed
for proving transitivity of ⊢v

⊲ . The following corollary tells us that if a system of
ideals ⊲ is regular, then the unique regular system of ideals extending it coincides
with the coarsest unbounded entailment relation ⊢v

⊲ (see Lorenzen 1950, page 509).

Corollary 3.10. Let G be an ordered group and ⊢ a regular system of ideals for G.
Let ⊲ be the system of ideals given as the restriction of the relation ⊢ to P∗

fe(G)×G.
Then ⊢ coincides with the coarsest unbounded entailment relation ⊢v

⊲ that reflects ⊲,
defined in (‖).

Proof. It suffices to prove that ⊢v
⊲ is a regular system of ideals, because then The-

orem 3.9 yields that it is determined by its restriction to P∗
fe(G)×G.

R1. Suppose that a 6G b, so that a ⊲ b. If C, b ⊲ z, then C, a ⊲ z by trans-
itivity. Therefore a ⊢v

⊲ b.
R2. As ⊢ is regular, we have x+a, y+ b ⊢ x+ b, y+a. As ⊢v

⊲ is coarser than ⊢,
we have x+ a, y + b ⊢v

⊲ x+ b, y + a.
R3. Just note that if C, b+x ⊲ z, then C−x, b ⊲ z−x, and that if C−x,A ⊲

z − x, then C,A+ x ⊲ z.

Now we are also able to give the analogue of Proposition 2.5 for regular systems
of ideals.

Corollary 3.11 (Variant for the definition of a regular system of ideals).
Let us consider a predicate · ⊲ 0 on P∗

fe(G) for an ordered group G and let us define
a binary relation on P∗

fe(G) by

x1, . . . , xn ⊢ y1, . . . , ym
def

⇐⇒ (xi − yj)i∈J1..nK,j∈J1..mK ⊲ 0 (°)

(n,m > 1). In order for this relation to be a regular system of ideals, it is necessary
and sufficient that the following properties be fulfilled:

G1 if
∑n

i=1 xi 6G 0, then x1, . . . , xn ⊲ 0 (preservation of order);

G2 if A ⊲ 0, then A,A′ ⊲ 0 (monotonicity);

G3 if B + C,B ⊲ 0 and B + C,C ⊲ 0, then B + C ⊲ 0 (transitivity).

Proof. Using the definitional equivalence (°), Property G3 is a direct translation of
the cut of 0 in B ⊢ 0,−C and B, 0 ⊢ −C. For the other properties, use Theorem 3.9
and Corollary 3.5. The details are left to the reader.
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3.3 The regularisation of a system of ideals for an ordered
group

Let us now discuss Definition VII, and prove Theorem II.
The precise description of the system ⊲x obtained by forcing the property x > 0

given in Proposition 3.12 is the counterpart for single-conclusion entailment relations
to the cone generated by adding an element to a cone in an ordered monoid (see
Lorenzen 1950, page 518).

Proposition 3.12. Let ⊲ be a system of ideals for an ordered monoid G. Let us
denote by ⊲x the finest system of ideals coarser than ⊲ and satisfying the prop-
erty x > 0. Then we have the equivalence

A ⊲x b ⇐⇒ there exists a p > 0 such that A,A+ x, . . . , A+ px ⊲ b.

Proof. Let us denote by A ⊲′ b the right-hand side in the equivalence above. In
any meet-monoid, x > 0 implies

∧
(A,A + x, . . . , A + px) =

∧
A, so that A ⊲′ b

implies A ⊲̃ b for any system of ideals ⊲̃ coarser than ⊲ and satisfying 0 ⊲̃ x.
It remains to prove that A ⊲′ b defines a system of ideals for G (clearly 0 ⊲′ x

and ⊲′ is coarser than ⊲). Reflexivity, preservation of order, equivariance and
monotonicity are straightforward. It remains to prove transitivity. Assume, e.g.,
that A ⊲′ z and A, z ⊲′ y. We have to show that A ⊲′ y. E.g., we have

A,A+ x,A+ 2x,A+ 3x ⊲ z, (*)

A,A+ x,A+ 2x, z, z + x, z + 2x ⊲ y. (†)

(*) gives by a translation A+2x,A+3x,A+4x,A+5x ⊲ z+2x, and by monotonicity

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x ⊲ z + 2x. (**)

(†) gives by monotonicity

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x, z + 2x ⊲ y. (††)

By transitivity we get from (**) and (††)

A,A+ x,A+ 2x,A+ 3x,A+ 4x,A+ 5x, z, z + x ⊲ y.

So we have cancelled z + 2x out of the left-hand side of (†). A similar trick allows
us to cancel out successively z + x and z.

Let us go through a simple example that shows how regularisation catches the
content of Corollary 3.5.
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Example 3.13 (an illustration of Definition VII). Let us apply a case by case reas-
oning in order to prove that in a linearly ordered group, if n1u1 + · · · + nkuk 6 0
for some integers ni > 0 not all zero, then uj 6 0 for some j. If uj 6 0 for
some j, everything is all right. If uj > 0 for all j, take i such that ni > 1: then
ui 6 niui 6 n1u1 + · · ·+ nkuk 6 0. The conclusion holds in each case.

Similarly, assume that n1u1+ · · ·+nkuk ⊲ 0 with ni > 0 not all zero. We have
uj ⊲−uj

0 for each j. By monotonicity,

u1, . . . , uk ⊲ǫ1u1,...,ǫkuk
0

if at least one ǫj is equal to −1. Suppose that 0 ⊲ uj for each j; take i such
that ni > 1: then ui 6⊲ niui 6⊲ n1u1 + · · ·+ nkuk 6⊲ 0. This proves that
u1, . . . , uk ⊲+u1,...,+uk

0. We conclude that

u1, . . . , uk ⊢⊲ 0.

Comment 3.14 (for Definition VII). Lorenzen (1950, 1952, 1953) considers a pre-
ordered commutative or noncommutative group (G,4G) and a meet-monoid Hr

(“H” like “Halbverband”, semilattice, r a variable name for distinguishing different
monoids) given by a system of ideals ⊲ for G. The monoid Hr gives rise to an-
other meet-monoid, Hra (“a” like “algebraically representable”), given by a system
of ideals ⊲a that is not defined as in Section 6 by forcing cancellativity, but so as to
catch the classical definition of integral dependence of an element b over a nonempty
finitely enumerated set A, i.e.,

A ⊲a b
def

⇐⇒ minA 6 b holds for every linear order 6 that is coarser than ⊲.

Lorenzen’s analysis of the constructive content of this definition results in the system
of ideals ⊢⊲ of Definition VII with B a single conclusion, i.e., in the system ⊲

while affording to suppose that elements occurring in a computation are comparable.
Lorenzen (1950, Satz 24) proves that A ⊢⊲ b holds if and only if A ⊲a b: more
precisely, it is straightforward that every linear order coarser than ⊲ is also coarser
than ⊢⊲ , so that A ⊢⊲ b ⇒ A ⊲a b; conversely, he considers a maximal order
without A ⊢⊲ b holding (granted by a well-ordering argument) and shows that it
cannot be other than linear. He defines that G is r-closed if one recovers its preorder
when restricting ⊢⊲ to G, i.e., if a ⊢⊲ b implies a 4G b.

Proof of Theorem II

Comment 3.15. Lemma 3.16 corresponds to the first part of the proof of Satz 1 in
Lorenzen (1953). In our analysis of Lorenzen’s proof, we separate the construction
of the regularisation from the investigation of its relationship with the group law.
In doing so, we make the regularity property (Property R2 ) the lever for sending G
homomorphically into an ℓ-group.
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Lemma 3.16. Let ⊲ be a system of ideals for an ordered group G. Its regularisa-
tion ⊢⊲ is a regular system of ideals for G.

Proof. The regularisation is clearly reflexive and monotone, and satisfies Proper-
ties R1 and R3.

Let us prove that the regularisation is transitive. Suppose that A, 0 ⊢⊲ B and A ⊢⊲

0, B with A = {a1, . . . , am} and B = {b1, . . . , bn}: there are x1, . . . , xk, y1, . . . , yℓ
such that for every choice of signs ± holds

A−B,−B ⊲±x1,...,±xk
0 and A,A−B ⊲±y1,...,±yℓ

0.

If ai ⊲ 0 for some i, then A 6⊲ A, 0 and A−B 6⊲ A−B,−B. Therefore

A−B 6⊲−ai,±x1,...,±xk
A−B,−B 6⊲−ai,±x1,...,±xk

0 for i = 1, . . . ,m.

If 0 ⊲ bj for some j, then −bj ⊲ 0 and −B 6⊲ 0,−B and A −B 6⊲ A,A − B.
Therefore

A−B 6⊲bj,±y1,...,±yℓ
A,A−B 6⊲bj,±y1,...,±yℓ

0 for j = 1, . . . , n.

If 0 ⊲ a1, . . . , 0 ⊲ am, then we have 0 6⊲ A, 0 and −B 6⊲ A−B,−B. Therefore

−B 6⊲a1,...,am,±x1,...,±xk
0.

If b1 ⊲ 0, . . . , bn ⊲ 0, then 0 ⊲ −b1, . . . , 0 ⊲ −bn, and we have 0 6⊲ 0,−B and
A 6⊲ A,A−B. Therefore successively

A 6⊲−b1,...,−bn,±y1,...,±yℓ
0,

A−B 6⊲−b1,...,−bn,±y1,...,±yℓ
−B,

and A−B 6⊲a1,...,am,−b1,...,−bn,±x1,...,±xk,±y1,...,±yℓ
0.

We conclude that

A−B ⊲±a1,...,±am,±b1,...,±bn,±x1,...,±xk,±y1,...,±yℓ
0.

Let us prove that the regularisation is regular, i.e., that x+ a, y + b ⊢⊲ x+ b, y + a
holds for all a, b, x, y ∈ G: it suffices to note that

if a− b ⊲ 0, then a− b, x− y, y − x, b− a ⊲ 0;

if b− a ⊲ 0, then a− b, x− y, y − x, b− a ⊲ 0.

The following lemma justifies the terminology of Definition VII: with the ambi-
guity introduced by the two items of Definition VI, one may say that regularisation
leaves a regular system of ideals unchanged.
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Lemma 3.17. Let G be an ordered group and ⊢ a regular system of ideals for G.
Let ⊲⊢ be the system of ideals given as the restriction of ⊢ to P∗

fe(G) × G. Then
⊢ coincides with the regularisation of ⊲⊢ .

Proof. Let p, q > 0 be integers. It suffices to prove that if A,A+x, . . . , A+px ⊲⊢ 0
and A,A− x, . . . , A− qx ⊲⊢ 0, then A ⊲⊢ 0. By Theorem 3.9, the hypotheses are

A ⊢ 0,−x, . . . ,−px and A ⊢ 0, x, . . . , qx.

If p = 0 or q = 0, we are done. Otherwise, since q × (−p) + p × q = 0, Co-
rollary 3.5 gives −px, qx ⊢ 0. Cutting −px yields A, qx ⊢ 0,−x, . . . ,−px; cut-
ting qx yields A ⊢ −(p − 1)x, . . . ,−x, 0, x, . . . , (q − 1)x. If p = 1, we may iterate
this and obtain that A ⊢ 0. Otherwise, first acknowledge that A′ ⊢ 0,−x and
A′ ⊢ 0, x, . . . , (q − 1)x imply A′ ⊢ 0; with A′ equal to A,A+ x, . . . , A+ (p− 1)x
these hypotheses turn out to be

A ⊢ 0,−x, . . . ,−px and A ⊢ −(p− 1)x, . . . ,−x, 0, x, . . . , (q − 1)x

and do therefore hold. We may iterate this and obtain that A ⊢ 0.

Proof of Theorem II. Lemma 3.16 tells that ⊢⊲ is a regular system of ideals, and it
is clear from the definition that its restriction to P∗

fe(G)×G is coarser than ⊲. Now
let ⊢ be a regular system of ideals whose restriction ⊲⊢ to P∗

fe(G) × G is coarser
than ⊲. Then the same holds for their regularisation, i.e., by Lemma 3.17, ⊢ is
coarser than ⊢⊲ .

3.4 The finest regular system of ideals

We shall now give a precise description of the regularisation ⊢⊲s
of the finest system

of ideals.

Lemma 3.18. Let G be an ordered group. For u1, . . . , uk ∈ G, t.f.a.e.
1. u1, . . . , uk ⊢⊲s

0.
2. There exist integers ni > 0 not all zero such that we have

n1u1 + · · ·+ nkuk 6G 0.

Proof. Let us denote Item 2 by ̺(u1, . . . , uk).
1 ⇒ 2. First it is clear that u1, . . . , uk ⊲s 0 implies ̺(u1, . . . , uk). Thus it is

enough to prove that if one supposes that for some p and q,

̺(u1, . . . , uk, u1 + x, . . . , uk + x, . . . , u1 + px, . . . , uk + px) and

̺(u1, . . . , uk, u1 − x, . . . , uk − x, . . . , u1 − qx, . . . , uk − qx),
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then ̺(u1, . . . , uk). The hypothesis implies that there are integers ni, n > 0, at least
one ni nonzero, such that n1u1 + · · · + nkuk + nx 6G 0, and integers mj,m > 0,
at least one mj nonzero, such that m1u1 + · · ·+mkuk −mx 6G 0. If n = 0 or if
m = 0, then we are done; otherwise, (mn1 + nm1)u1 + · · ·+ (mnk + nmk)uk 6G 0
with at least one mni + nmi > 0.

2 ⇒ 1. Consequence of Theorem II and Corollary 3.5.

Theorem 3.19. Let (G,6G) be an ordered group.
1. The finest regular system of ideals for G is the regularisation ⊢⊲s

of the finest
system of ideals ⊲s.

2. The group G is ⊲s-closed if and only if

nx >G 0 implies x >G 0 (x ∈ G, n > 1).

Proof. Theorem 3.9 shows that a regular system of ideals for G is determined by
the unbounded single-conclusion entailment relation that it defines by restriction
to P∗

fe(G) × G. Thus every regular system of ideals for G is coarser than ⊢⊲s
by

Lemma 3.18 and Corollary 3.5.

3.5 The regularisation of the Dedekind system of ideals

Let R be an integral domain, K its field of fractions and G = K×/R× its divisibility
group (where, in multiplicative notation, 1 6G x when x ∈ R). One defines the
Dedekind system of ideals ⊲d for G by letting

A ⊲d b
def

⇐⇒ b ∈ 〈A〉R ,

where 〈A〉R is the (fractional) ideal generated by A over R in K: if a1, . . . , an are the
elements of A, then 〈A〉R = a1R + · · · + anR. Note that if A contains nonintegral

elements, i.e., elements not in R, then 〈A〉R
2

is not contained in 〈A〉R.
Adding the constraint x > 1 for an x ∈ K× amounts to replacing R by R[x]

since we get by Proposition 3.12 that for the new system of ideals

A (⊲d)x b ⇐⇒ there is a p > 0 such that A,Ax, . . . , Axp ⊲d b

which means that b ∈ 〈A〉R[x] (where A and b are in K×).

An element b ∈ K is said to be integral over the ideal 〈A〉R when one has an

integral dependence relation bm =
∑m

k=1 ckb
m−k with ck ∈ 〈A〉R

k
. If A = {1},

then this reduces to the same integral dependence relation with ck ∈ R, i.e., to
b being integral over R.

Lemma 3.20. One has A ⊢⊲d
1 if and only if 1 ∈ 〈A〉R[A].
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Proof. Suppose that A ⊢⊲d
1, i.e., that there are elements x1, . . . , xℓ ∈ G such

that 1 ∈ 〈A〉R[x±1

1
,...,x

±1

ℓ
]. It suffices to prove the following fact and to use it in

an induction argument: suppose that 1 ∈ 〈A〉R[A,x] and 1 ∈ 〈A〉R[A,x−1]; then 1 ∈

〈A〉R[A]. In fact, the hypothesis means that 1 ∈ 〈A,Ax, . . . , Axp〉R[A] and 1 ∈〈
A,Ax−1, . . . , Ax−p

〉
R[A]

for some p, which implies that

∀i ∈ J−p..pK xi ∈
〈
Ax−p, . . . , Ax−1, A,Ax, . . . , Axp

〉
R[A]

,

i.e., that there is a matrix M with coefficients in 〈A〉R[A] such that (xi)p−p =

M(xi)p−p, i.e., (1 −M)(xi)p−p = 0. Let us now apply the determinant trick: mul-
tiplying 1−M by the matrix of its cofactors and expanding yields that 1 ∈ 〈A〉R[A].

Conversely, let a1, . . . , an be the elements of A. For each j, 1 = aja
−1
j , so

that 1 ∈ 〈A〉R[a−1

j ] and A (⊲d)a±1

1
,...,a

±1
n

1 for every choice of signs with at least

one negative sign: the only missing choice of signs consists in the hypothesis 1 ∈
〈A〉R[A].

Theorem 3.21 (Lorenzen 1953, Satz 2). Let R be an integral domain and ⊲d the
Dedekind system of ideals.

1. One has A ⊢⊲d
b, i.e., there are x1, . . . , xℓ such that for every choice of signs

holds b ∈ 〈A〉R[x±1

1
,...,x

±1

ℓ
], if and only if b is integral over the ideal 〈A〉R.

2. One has A ⊢⊲d
B, i.e., there are x1, . . . , xℓ such that for every choice of signs

holds 1 ∈
〈
AB−1

〉
R[x±1

1
,...,x

±1

ℓ
]
, if and only if 1 ∈

∑m
k=1 〈AB

−1〉R
k
, i.e., there is

an equality 1 =
∑m

k=1 fk with each fk a homogeneous polynomial of degree k in the
elements of AB−1 with coefficients in R.

3. The divisibility group G is ⊲d-closed, i.e., the equivalence x ⊢⊲d
y ⇔ x di-

vides y holds, if and only if R is integrally closed.

Proof. 1 and 2. This follows from the previous lemma because

A ⊢⊲d
b ⇐⇒ Ab−1 ⊢⊲d

1,

bm =
∑m

k=1 ckb
m−k with ck ∈ 〈A〉R

k
⇐⇒ 1 ∈

∑m
k=1

〈
Ab−1

〉
R

k
,

1 ∈ 〈A〉R[A] ⇐⇒ ∃m 1 ∈
∑m

k=1 〈A〉R
k
.

3. ⊲d-closedness is equivalent to 1 ⊢⊲d
b ⇒ b ∈ R; by Item 1, 1 ⊢⊲d

b holds if
and only if b is integral over R.
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4 The lattice-ordered group freely generated by a

finitely presented ordered group

4.1 A Positivstellensatz for ordered groups

Reference: Coste, Lombardi and Roy (2001, Section 5).
In the article we refer to, Theorem 5.7 can be seen as a generalisation of results

concerning rational linear programming (e.g., the Farkas lemma).
If G is a commutative group and x1, . . . , xm are indeterminates, let G{xxx} =

G{x1, . . . , xm} be the group of Z-affine forms on G, i.e., of polynomials g +∑m
µ=1 zµxµ with g in G and the zµs in Z. We may consider G as the subgroup

of G{xxx} consisting of the constant forms.

Theorem 4.1 (Positivstellensatz: algebraic certificates for ordered groups, see
Coste, Lombardi and Roy 2001). Let (G, ·+ ·,−·, 0, · = 0, · > 0, · > 0) be a dis-
crete divisible linearly ordered group. Let x1, . . . , xm be indeterminates and R=0,
R>0, R>0 three finitely enumerated subsets of G {x1, . . . , xm}. Consider the associ-
ated system S of sign conditions

S : z(ξξξ) = 0 if z ∈ R=0, p(ξξξ) > 0 if p ∈ R>0, s(ξξξ) > 0 if s ∈ R>0.

There is an algorithm giving the following answer:
1. either an algebraic certificate telling that the system S is impossible in G (and

in every linearly ordered group extending G),
2. or a point (ξξξ) = (ξ1, . . . , ξm) ∈ Gm realising the system S.

An algebraic certificate is an algebraic identity

s+ p+ z = 0 in G {x1, . . . , xm} ,

where s is a (nonempty) sum of elements of R>0∪G>0, p is a (possibly empty) sum
of elements of R>0 ∪G>0, and z is a Z-linear combination of elements of R=0.

4.2 A concrete construction

A finitely presented ordered group G is given by a finite system of generators
e1, . . . , em with a finite set of relations R = R=0 ∪R>0. The relations in R=0 have
the form z = 0, and those in R>0 have the form p > 0, where z, p ∈ Ze1⊕· · ·⊕Zem.

Since a relation q = 0 is equivalent to the two relations q > 0 and −q > 0,
we may assume that the presentation of G as an ordered group is given by a finite
subset R>0 = {p1, . . . , pℓ} only. Let us work with this new presentation.
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Let LGOG(G) be the ℓ-group freely generated by the ordered group G. We shall
give a description of an ℓ-group Lgog(G), and prove that it is naturally isomorphic
to LGOG(G).

Let Z′ be the group Z with the usual linear order, and let Lo(G,Z′) be the set of
order morphisms from G to Z′ that are linear for the Z-module structure of G. This
is an additive monoid whose natural order relation is compatible with addition.

We define Lgog(G) as the sub-ℓ-group of

Set(Lo(G,Z′),Z′)

generated by the join-semilattice-ordered monoid (G), where  is the bidual morph-
ism of ordered groups G → (G) ⊆ Lgog(G) ⊆ Set(Lo(G,Z′),Z′):

(z) is the map α 7→ α(z).

This Z-linear map is a morphism of ordered groups since, if z > 0 in G and α ∈
Lo(G,Z′), then one has α(z) > 0 in Z′. Let us denote the element (z) viewed
in Lgog(G) by z.

We shall use the following principle (Lombardi and Quitté 2015, Principle XI-
2.10).

Principle of covering by quotients (for ℓ-groups). In order to prove an equality
u = v or an inequality u 6 v in an ℓ-group H, we can always suppose that the (finite
number of) elements which occur in a computation for a proof are comparable.

In fact, we shall need the following easy consequence of this principle.

Lemma 4.2. In an ℓ-group H, if
∑k

i=1 ui > 0 holds (with an integer k > 0), then

one has
∨k

i=1 ui > 0.

Let us now consider the canonical morphism ı : G → LGOG(G) and the unique
(surjective) morphism ϑ : LGOG(G) → Lgog(G) factorising  (i.e., such that ϑ◦ı =
). In order to show that ϑ is an isomorphism, it suffices to show that ϑ(y) > 0
implies y > 0 for all y ∈ LGOG(G).

Let us write the element y ∈ LGOG(G) as y =
∧
yj =

∧
j

(∨
i ı(yji)

)
with

the yjis in G. The hypothesis is that
∧

j(
∨

i yji) > 0, i.e., that for each j one has
ϑ(yj) =

∨
i yji > 0. In order to show that

∧
yj > 0, it is thus sufficient to show

that if
∨
ui > 0 with u1, . . . , uk in G, then

∨
ı(ui) > 0 in LGOG(G).

Let us write ui =
∑m

µ=1 uiµeµ, i = 1, . . . , k, and pj =
∑m

µ=1 pjµeµ, j =
1, . . . , ℓ, and introduce indeterminates x1, . . . , xm and linear forms

λi(x1, . . . , xm) =
∑m

µ=1 uiµxµ and ρj(x1, . . . , xm) =
∑m

µ=1 pjµxµ.

Let us consider, on the divisible linearly ordered group (Q,6Q), the following
system of sign conditions w.r.t. the indeterminates x1, . . . , xm:
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• λi(x1, . . . , xm) < 0 for i = 1, . . . , k;
• ρj(x1, . . . , xm) > 0 for j = 1, . . . , ℓ.

Theorem 4.1 says that we are in one of the two following cases.
1. The system is incompatible and this implies an algebraic identity

∑
niλi = P

for integers ni > 0 not all zero and P in the additive monoid generated by the ρjs.
When one substitutes the xµs with the eµs, one gets P (e1, . . . , em) > 0 in G be-
cause each ρj(e1, . . . , em) = pj is > 0 in G, and therefore

∑
niui > 0 in G and∑

ni ı(ui) > 0 in LGOG(G), and
∑
ni ui > 0 in Lgog(G). Lemma 4.2 implies that

we have
∨
ı(ui) > 0 as well as

∨
ui > 0.

2. One can find (ξ1, . . . , ξm) ∈ Qm such that the λi(ξξξ)s are all< 0 and the ρj(ξξξ)s
are all > 0. Multiplying by a convenient positive rational number, we may assume
that (ξ1, . . . , ξm) ∈ Zm. Let α : G → Z′ be the linear form such that eµ 7→ ξµ:
as α(pj) = ρj(ξξξ) > 0 for j = 1, . . . , ℓ, we have that α belongs to Lo(G,Z′); let
us note that ui(α) = α(ui) = λi(ξξξ). We deduce that v =

∨
ui is not > 0, as

v > 0 implies that for all β ∈ Lo(G,Z′), one has v(β) > 0; but α ∈ Lo(G,Z′) and
v(α) =

∨
ui(α) =

∨
λi(ξξξ) < 0.

In brief, we have proved that
∨
ui � 0 and

∨
ı(ui) > 0 are exclusive of each

other. The case distinction above shows more precisely the following theorem.

Theorem 4.3. Let G be a finitely presented ordered group.
1. The canonical morphism LGOG(G) → Lgog(G) is an isomorphism.
2. Let u1, . . . , uk be in the ℓ-group LGOG(G). T.f.a.e.:
•

∨
ı(ui) > 0;

• there exist integers ni > 0 not all zero such that
∑
niui > 0 in G.

In particular, an element x of G is > 0 in LGOG(G) if and only if one has nx > 0
in G with an integer n > 0.

3. The group LGOG(G) is discrete (the order is decidable).

4.3 Proof of Theorem III

Constructive proof of Theorem III. This follows from the preceding theorem, from
the fact that any ordered group is a filtered colimit of finitely presented ordered
groups, and from the fact that the functor LGOG preserves filtered colimits.

Theorem III may be seen as a generalisation of the classical Lorenzen-Clifford-
Dieudonné theorem, Corollary 4.4 below.

Corollary 4.4 (Lorenzen-Clifford-Dieudonné, see Lorenzen 1939, Satz 14 for the
s-system of ideals, Clifford 1940, Theorem 1, Dieudonné 1941, Section 1). The
ordered group (G,6G) is embeddable into an ℓ-group if and only if

nx >G 0 implies x >G 0 (x ∈ G, n > 1). (§)
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Proof. The condition is clearly necessary. Theorem III shows that it yields the
injectivity of the morphism ı : G → H as well as the fact that ı(x) 6H ı(y) implies
x 6G y.

Comments 4.5. 1. The reader will recognise in Condition (§) the condition of
⊲s-closedness established in Item 2 of Theorem 3.19. In fact, in his Ph.D. thesis,
Lorenzen (1939) proves Corollary 4.4 as a side-product of his enterprise of general-
ising the concepts of multiplicative ideal theory to preordered groups. More precisely,
he follows there the Prüfer approach of Section 6, in which ⊲s-closedness is intro-
duced according to Definition 6.4 and the equivalence with Condition (§) is easy to
check (see Lorenzen 1939, page 358 or Jaffard 1960, I, § 4, Théorème 2).

2. In each of the three references given in Corollary 4.4, the authors invoke a
maximality argument for showing that G embeds in fact into a direct product of
linearly ordered groups. The goal of Lorenzen (1950, § 4) and of Lorenzen (1953) is
to avoid the reference to linear orders in constructing embeddings into an ℓ-group,
and this endeavour culminates in the Corollary to Theorem IV. But this goal may
also be achieved in the Prüfer approach of Lorenzen (1939) and the sought-after
ℓ-group may be constructed via Item 2 of Theorem 6.5.

5 The lattice-ordered group generated by a

regular system of ideals

We shall now undertake the proof of the main theorem of this article, Theorem IV.

Comment 5.1. Lorenzen (1953, § 2) uses the heuristics of Scholion 3.8 to define a
distributive lattice Vra (“V ” like “Verband”, lattice) given by the regular system of
ideals ⊢⊲ of Definition VII. Theorem IV is new and replaces the second step of
the proof of Satz 1 in Lorenzen (1953), which establishes that Vra is in fact an ℓ-
group. Its first step is the proof of Lemma 3.16, in which the entailment relation ⊢⊲

is constructed and shown to be regular (see Comment 3.15). Its second step is a
construction “by hand” of group laws for Vra in which the rôle of regularity is not
emphasised. A merit of our approach is to reveal its importance and to allow for
more conceptual arguments, but with the price of resorting to Theorem III.

5.1 The free case

Theorem 5.2. Let (G,6G) be an ordered group. Let Gs be the unbounded dis-
tributive lattice generated by the finest regular system of ideals ⊢⊲s

. Then Gs admits
a (unique) group law that is compatible with the lattice structure and such that the
morphism (of ordered sets) G → Gs is a group morphism. This defines the ℓ-group
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freely generated by the ordered group (G,6G) (in the sense of the left adjoint functor
of the forgetful functor).

Proof. Using the distributivity of + over ∧ and ∨, there is no choice in defining the
group laws + and − from those of G. The problem is to show that these laws are
well-defined and are in fact group laws.

Let us consider the ℓ-group LGOG(G) freely generated byG. It is generated as an
unbounded distributive lattice by (the image of) G because any term constructed
from G, +, −, ∧, ∨ can be rewritten as an ∧-∨ combination of elements of G.
Let us denote by ⊢free the entailment relation thus defined for G. We know that
u1, . . . , uk ⊢free 0 is equivalent to u1, . . . , uk ⊢⊲s

0 (this follows from Theorem III
and Theorem 3.19). Moreover LGOG(G) satisfies the equivalent properties given
in Theorem 3.9 simply because it is an ℓ-group. If we see it as an unbounded
distributive lattice generated by G, LGOG(G) is thus the distributive lattice which
is defined by the unbounded entailment relation ⊢⊲s

. Therefore the laws + and −
on Gs are well-defined and Gs, endowed with these laws, becomes an ℓ-group for
which we have a canonical isomorphism LGOG(G) → Gs.

5.2 The general case: proof of Main Theorem IV

Proof of Theorem IV. Let Gs denote the ℓ-group freely generated by (G,6G) con-
structed in Theorem 5.2 via the entailment relation ⊢⊲s

. The relation ⊢ is coarser
than the relation ⊢⊲s

, so that the distributive lattice H is a quotient lattice of Gs.
It remains to see that the group law descends to the quotient.

Let G0 = { x ∈ Gs | x =H 0 }. We have to show that
i. G0 is a subgroup of Gs;
ii. for x, y, z ∈ Gs with x =H y holds x+ z =H y + z.
It is sufficient to show that
1. for x ∈ Gs, if 0 6H x, then −x 6H 0;
2. for x, y ∈ Gs, if 0 6H x and 0 6H y, then 0 6H x+ y;
3. for x, y, z ∈ Gs, if x 6H y, then x+ z 6H y + z.

Item 1 is a particular case of Item 3 and Item 2 follows easily from Item 3.

Item 3. Let us write x =
∨

i

∧
j xij , y =

∧
k

∨
ℓ ykℓ with the xijs and the ykℓs

in G. The hypothesis x 6H y means that for each i and k we have
∧

j xij 6H∨
ℓ ykℓ, i.e.,

xi1, . . . , xip ⊢ yk1, . . . , ykq.

Using R3 one has

xi1 + z, . . . , xip + z ⊢ yk1 + z, . . . , ykq + z,
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i.e., for each (i, k), ∧
j(xij + z) 6H

∨
ℓ(ykℓ + z),

from which we deduce that x+ z =
∨

i

∧
j(xij + z) 6H

∧
k

∨
ℓ(ykℓ + z) = y + z.

Remark 5.3. Lorenzen (1939, § 4) and Jaffard (1960, II, § 2, 2) define the Lorenzen
group associated to a system of ideals as in Definition 6.7, i.e., according to the Prüfer
approach. The present approach leading to Definition VIII dates back to Lorenzen
(1950, § 6). The two definitions are equivalent according to Proposition 6.8.

5.3 The Lorenzen divisor group of an integral domain

In this section, we draw the conclusions allowed by Theorem IV in Lorenzen’s theory
of divisibility presented in Section 3 on page 24.

Definition 5.4. Let R be an integral domain. The Lorenzen divisor group Lor(R)
of R is the Lorenzen group associated by Definition VIII to the Dedekind system of
ideals ⊲d.

Theorem 5.5. Let R be an integral domain with field of fractions K and divisibility
group G = K×/R×. The entailment relation ⊢⊲d

generates the Lorenzen divisor
group Lor(R) together with a morphism of ordered groups ϕ : G → Lor(R) that
satisfies the following properties.

1. The “ideal Lorenzen gcd” of a family (ai)i∈J1..nK in K∗ is characterised by

ϕ(a1)∧ . . .∧ ϕ(an) 6 ϕ(b) ⇐⇒ b is integral over the ideal 〈a1, . . . , an〉R. (#)

2. The morphism ϕ is an embedding if and only if R is integrally closed.

Proof. As the entailment relation ⊢⊲d
is a regular system of ideals (Theorem II),

the corresponding distributive lattice H admits a unique group law such that the
natural morphism ϕ : G → H is a morphism of ordered groups (by Theorem IV),
which explains Definition 5.4 since here H is the distributive lattice underlying
Lor(R).

1. Theorem 3.21 states that ϕ(a1) ∧ . . . ∧ ϕ(an) 6⊢⊲
d
ϕ(b) if and only if b is

integral over 〈A〉R. On the other hand ϕ(a1)∧ . . .∧ϕ(an) 6⊢⊲
d
ϕ(b1)∧ . . .∧ϕ(bp)

if and only if ϕ(a1)∧ . . .∧ ϕ(an) 6⊢⊲
d
ϕ(bj) for each j because ϕ(b1)∧ . . .∧ ϕ(bp)

is the meet of the bjs in Lor(R). This explains why Property (#) characterises the
element ϕ(a1)∧ . . .∧ ϕ(an) of Lor(R).

2. The morphism ϕ is an embedding if and only if ϕ(a) 6⊢⊲
d
ϕ(b) implies a ⊲d

b, which means that R is integrally closed.
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Corollary 5.6. Let R be an integrally closed domain. When a is a finitely generated
ideal, we let a be the integral closure of a. Then, if a, b and c are nonzero finitely
generated ideals, we have the cancellation property

a b ⊆ a c =⇒ b ⊆ c.

This corollary is considered by H. S. Macaulay (1916, pages 108-109) as a key
result; he gives a proof based on the multivariate resultant. We may also deduce it
as a consequence of Prüfer’s theorem 6.5 (see Remark 6.10, compare Prüfer 1932,
§ 6, Krull 1935, 46.).

In Items 2 and 4 below, we use the conventional additive notation for a “divisor
group” of an integral domain.

Corollary 5.7. Let R be an integral domain. The Lorenzen divisor group Lor(R)
can be described set-theoretically in the following way.

1. Basic nonnegative divisors are identified with integral closures Icl(a1 . . . , an) of
(ordinary, i.e., integral) finitely generated ideals11 〈a1 . . . , an〉R with a1, . . . , an ∈ R.

2. The zero divisor is Icl(1).
3. The meet of two basic nonnegative divisors is given by

Icl(a1, . . . , an)∧ Icl(b1, . . . , bm) = Icl(a1, . . . , an, b1, . . . , bm).

4. The sum of two basic nonnegative divisors is given by

Icl(a1, . . . , an) + Icl(b1, . . . , bm) = Icl(a1b1, . . . . . . , anbm).

5. The order relation between basic nonnegative divisors is given by

Icl(a1, . . . , an) 6 Icl(b1, . . . , bm) ⇐⇒ Icl(a1, . . . , an) ⊇ Icl(b1, . . . , bm).

6. General divisors are identified with formal differences of two basic nonnegative
divisors.

Proof. Item 1 is a rephrasing of Item 1 in Theorem 5.5. Items 2 to 5 are clear.
Let us consider Item 6. Lor(R) is generated by ϕ(G) as an ℓ-group. An ele-
ment of ϕ(G) is written as ϕ(a) − ϕ(b) with a, b ∈ R∗. It remains to verify
that differences of basic nonnegative divisors are stable by the laws ∧, +, and −
of an ℓ-group. Only the ∧-stability requires a little trick: in order to compute
δ = (ϕ(A) − ϕ(B)) ∧ (ϕ(C) − ϕ(D)), it is sufficient to compute δ + ϕ(B) + ϕ(D),
which is equal to (ϕ(A) + ϕ(D))∧(ϕ(C) + ϕ(B)), which can be computed using the
previous items.

11If the integral domain is not integrally closed, Icl(a1, . . . , an) may contain elements not in R.
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Remarks 5.8. 1. When R is a Prüfer domain, the Lorenzen divisor group Lor(R)
coincides with the usual divisor group, the group of finitely generated fractional
ideals defined by Dedekind and Kronecker. In fact, the relation ⊢⊲d

is determ-
ined by its trace on P∗

fe(R
∗) × R∗, and in a Prüfer domain all finitely generated

ideals are integrally closed, so that A ⊢⊲d
b simplifies to b ∈ 〈A〉R (see Item 1 of

Theorem 3.21). For more general rings with divisors, the Weil divisor group (see
Remark 2.12) is a strict quotient of the Lorenzen divisor group.

2. The integral domain R = Q[x, y] is a gcd domain of dimension > 2, so that
its divisibility group G is an ℓ-group. The domain R is not Prüfer and the Lorenzen
divisor group is much greater than G: e.g., the ideal gcd of x3 and y3 in Lor(R)
corresponds to the integrally closed ideal

〈
x3, x2y, xy2, y3

〉
, whereas their gcd in R∗

is 1, corresponding to the ideal 〈1〉. In this case, we see that G is a proper quotient
of Lor(R).

6 Systems of ideals and Prüfer’s theorem

In this section, we account for another way to obtain the Lorenzen group associated
to a system of ideals for an ordered group (Definition VIII). This way has historical
precedence, as it dates back to the Ph.D. thesis Lorenzen (1939), that builds on
earlier work by Prüfer (1932). As a particular case this provides another access to
understanding the Lorenzen divisor group of an integral domain.

6.1 The Grothendieck ℓ-group of a meet-semilattice-ordered
monoid

The following easy construction, for which we did not locate a good reference, is
particularly significant in the case where the meet-monoid associated to a system of
ideals proves to be cancellative.

Theorem 6.1. Let (M,+, 0,∧) be a meet-monoid. Let H be the Grothendieck group
of M with monoid morphism ϕ : M → H.

1. There exists a unique meet-monoid structure on H such that ϕ is a morphism
of ordered sets.

2. (H,+,−, 0,∧) is an ℓ-group: it is the ℓ-group generated by (M,+, 0,∧) in the
usual meaning of adjoint functors, and called the Grothendieck ℓ-group of M .

3. Assume that M is cancellative, i.e., that x+ y = x+ z implies y = z. Then
ϕ is an embedding of meet-monoids.

Proof. 1. The elements of H are written as a− b for a, b ∈ M , with the equality
a− b = c− d holding if and only if there exists x such that a+ d+ x = b+ c+ x.
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By transitivity and symmetry, every equality a− b = c− d may be reduced to two
“elementary” ones, i.e., of the form e− f = (e + y)− (f + y):

a− b = (a+ d+ x)− (b + d+ x) = (b+ c+ x) − (b+ d+ x) = c− d.

When trying to define z = (e− f)∧ (g − h) we need to ensure that

f + h+ z = (e + h)∧ (g + f).

So we may propose to set (e− f)∧ (g − h)
def

= ((e+ h)∧ (g + f))− (f + h).
Let us show first that the law ∧ is well-defined on H .

It suffices to show that (e−f)∧(g−h) = ((e+y)− (f+y))∧(g−h), which reduces
successively to

((e+ h)∧ (g + f))− (f + h) = ((e + h+ y)∧ (g + f + y))− (f + h+ y),

((e+ h)∧ (g + f)) + (f + h+ y) = ((e + h+ y)∧ (g + f + y)) + (f + h).

Since ∧ is compatible with + in M , both sides are equal to

(e+ 2h+ f + y)∧ (g + 2f + h+ y).

• The map ϕ : M → H preserves ∧: in fact ϕ(a)
def

= a− 0, and the checking is
immediate.

• The law ∧ on H is idempotent, commutative and associative. This is easy to
check and left to the reader.

• The law ∧ is compatible with + on H . This is easy to check and left to the
reader.

2. Left to the reader.
3. The meet-monoid structure is purely equational. So an injective morphism is

always an embedding.

As an application of this construction, let us state a variant of Theorem IV.

Corollary 6.2 (to Theorem IV). Let (G,6G) be an ordered group and ⊲ a system
of ideals for G. The following are equivalent:

1. The system of ideals ⊲ is regular, i.e., it is the restriction of a regular system
of ideals ⊢.

2. The meet-monoid associated to the system of ideals ⊲ for G (Theorem I) is
cancellative.
When this is the case, let (H,6H) be the unbounded distributive lattice generated by
the regular system of ideals ⊢. Then the group law and the group morphism ϕ : G →
H constructed by Theorem IV can also be obtained as the Grothendieck ℓ-group of
the monoid in Item 2.
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Proof. 1 ⇒ 2. The subset M ⊆ H of those elements that may be written
ϕ(x1) ∧ . . . ∧ ϕ(xn) for some x1, . . . , xn is the meet-semilattice associated to the
system of ideals ⊲ obtained by restricting ⊢ to P∗

fe(G)×G. This subset M is stable
by addition, so that the restriction of addition to M endows it with the structure
of a cancellative meet-monoid. Thus H is necessarily (naturally isomorphic to) the
Grothendieck ℓ-group of M .

2 ⇒ 1. If the monoid is cancellative, then it embeds into its Grothendieck ℓ-
group H . So, using the observation on page 5 leading to Definition VI, we get
Item 1.

6.2 Prüfer’s properties Γ and ∆

Let us now express cancellativity of the meet-monoid as a property of the system of
ideals itself, as in Prüfer (1932, § 3).

Lemma 6.3 (a version of Prüfer’s Property Γ). Let ⊲ be a system of ideals for an
ordered group G. The corresponding meet-monoid M is cancellative, i.e., a + b =
a+ c implies b = c in M , if and only if the following property holds:

A+B 6⊲ x+B ⇒ A ⊲ x.

This holds if and only if

A+B 6⊲ B ⇒ A ⊲ 0.

Proof. The second implication, a particular case of the first one, implies the first
one by a translation. Let us work with the first implication.

Cancellativity means that the implication A + B 6⊲ C + B ⇒ A 6⊲ C
holds. The property is necessary: take C = {x}. Let us show that it is sufficient.
Assume A+B 6⊲ C +B and let x ∈ C. As C ⊲ x, we get by equivariance
C +B 6⊲ x+B, whence A+B 6⊲ x+B. So A ⊲ x. Since this holds for each
x ∈ C, we get A 6⊲ C.

Prüfer’s theorem 6.5 will reveal the significance of the following definition. We
shall check in Proposition 6.8 that it agrees with Definition VII.

Definition 6.4 (a version of Prüfer’s Property ∆ of integral closedness). Let ⊲ be a
system of ideals for an ordered group G. The group G is ⊲-closed if B 6⊲ x+B ⇒
0 6G x.
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6.3 Forcing cancellativity: Prüfer’s theorem

When the monoid M in Theorem I is not cancellative, it is possible to adjust the
system of ideals in order to straighten the situation. A priori, it suffices to con-
sider the Grothendieck ℓ-group of M (Theorem 6.1). But we have to see that this
corresponds to a system of ideals for G, and to provide a description for it.

The following theorem is a reformulation of Prüfer’s theorem (Prüfer 1932, § 6).
We follow the proofs in Jaffard (1960, pages 42-43). In fact, the language of single-
conclusion entailment relations simplifies the proofs. We are adding Items 2 and 3
to Jaffard’s statement, which corresponds to Items 1 and 4 of ours.

Theorem 6.5 (Prüfer’s theorem). Let ⊲ be a system of ideals for an ordered
group G. We define the relation ⊲a between P∗

fe(G) and G by

A ⊲a y
def

⇐⇒ ∃B ∈ P∗
fe(G) A+B 6⊲ y +B.

1. The relation ⊲a is a system of ideals for G, and the associated meet-monoid
Ma (Theorem I) is cancellative.

2. Therefore Ma embeds into its Grothendieck ℓ-group Ha.
3. The system ⊲a is the finest system of ideals that is coarser than ⊲ and satisfies

Item 1.
4. We have that a ⊲a b implies a 6G b if (and only if) G is ⊲-closed (Defini-

tion 6.4); in this case, G embeds into Ha.

Proof. Note that if A+B 6⊲ y+B, then A+B+C 6⊲ y+B+C for all C (see
the proof of Theorem I on page 12). This makes the definition of ⊲a very easy to
use. In the proof below, we have two preorder relations on P∗

fe(G) (6⊲ and 6a), and
we shall do as if they were order relations (i.e., we shall descend to the quotients).

1. • Reflexivity and preservation of order (of the relation ⊲a). Setting B =
{0} in the definition of ⊲a shows that x 6G y implies x ⊲a y.

• Monotonicity. It suffices to note that the elements (A∪A′)+B and (A+B)∪
(A′+B) of P∗

fe(G) are the same: therefore, if A+B 6⊲ y+B, then (A,A′)+B 6⊲

y +B.
• Transitivity. Assume A ⊲a x and A, x ⊲a b: we have a B such that A+B 6⊲

x+B and a C such that (A, x) +C 6⊲ b+C; these inequalities imply respectively
A+B+C 6⊲ x+B+C and (A+B+C), (x+B+C) 6⊲ b+B+C; we deduce
A+B + C 6⊲ b+ B + C, so that A ⊲a b.

• Equivariance. If A ⊲a y, we have a B such that A + B 6⊲ y + B, so that,
since 6⊲ is equivariant, x+A+B 6⊲ x+ y +B. This yields x+A ⊲a x+ y.

• Cancellativity (of the meet-monoid Ma). Let us denote by A 6a B the order
relation associated to ⊲a. By Lemma 6.3, it suffices to suppose that A + B 6a A
and to deduce that B ⊲a 0. But the hypothesis means that A + B ⊲a y for each
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y ∈ A, i.e., that for each y ∈ A there is a Cy such that A + B + Cy 6⊲ y + Cy.
Let C =

∑
y∈A Cy; we have

A+B + C 6⊲ y + C 6⊲ y + z for each y ∈ A and each z ∈ C,

so that A+B + C 6⊲ A+ C. This yields B ⊲a 0 as desired.
2. Follows from Item 1 by Theorem 6.1.
3. This is immediate from the definition of ⊲a: it has been defined in a minimal

way as coarser than ⊲ and forcing the cancellativity of the monoid Ma.
4. If x ⊲a y, then we have a B such that x+B 6⊲ y+B, so that by a translation

B 6⊲ (y − x) + B. The hypothesis on G yields 0 ⊲ y − x. By a translation, we
get x ⊲ y.

Comment 6.6. This is the approach proposed in Lorenzen (1939, § 4). Lorenzen
abandoned it in favour of Definition VII for the purpose of generalising his theory
to noncommutative groups. See also Comments 3.14 and 4.5.

Definition 6.7. The ℓ-group in Item 2 of Theorem 6.5 is called the Lorenzen group
for the system of ideals ⊲.

Proposition 6.8 (Lorenzen 1950, Satz 27). The definition of A ⊲a 0 in The-
orem 6.5 agrees with Definition VII of A ⊢⊲ 0. So Definition 6.4 of ⊲-closedness
agrees with that of Definition VII, and Definition 6.7 of the Lorenzen group agrees
with that of Definition VIII.

Proof. This proposition expresses that, given a system of ideals ⊲ for an ordered
group G and an A ∈ P∗

fe(G), we have A ⊢⊲ 0 (Definition VII) if and only if
A+B 6⊲ B for some B ∈ P∗

fe(G).
First, A + B 6⊲x

B and A + C 6⊲−x
C imply A +D 6⊲ D for some D. In

fact, we have p and q such that

A+B,A+B + x, . . . , A+B + px 6⊲ B and

A+ C,A + C − x, . . . , A+ C − qx 6⊲ C,

which yield that for c ∈ C, j 6 q, b ∈ B and k 6 p,

A+B + c− jx, . . . , A+B + c+ (p− j)x 6⊲ B + c− jx and

A+ b+ C + kx, . . . , A+ b+ C + (k − q)x 6⊲ b + C + kx,

so that A+D 6⊲ D for D = B + C + {−qx, . . . , px}.

In the other direction assume that A+B ⊲ bi for each bi in B = {b1, . . . , bm}.
Let ci,j = bi − bj (i < j ∈ J1..mK) and let us prove that A ⊲±c1,2,...,±cm−1,m

0. In
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fact, for any system of constraints (ǫ1,2c1,2, . . . , ǫm−1,mcm−1,m) with ǫi,j = ±1, the
elements bi in the corresponding meet-monoid Mǫ1,2,...,ǫm−1,m

are linearly ordered.
E.g., b1 6 b2 6 · · · 6 bm, in which case

∧
(A+ b1, . . . , A+ bm) =

∧
(A+ b1) 6 b1

holds in the monoid Mǫ1,2,...,ǫm−1,m
, which yields

∧
A 6 0 by a translation.

Remark 6.9. Informally the content of this proposition may be expressed as follows.
By starting from ⊲ and by adding new pairs (A, b) such that A ⊲′ b, on the one
side Prüfer forces the cancellativity of the meet-monoid Ma, and on the other side
Lorenzen forces ⊲ to become the restriction of an entailment relation12. In fact,
each approach realises both aims, but each one realises its own aim in a minimal
way. So they give the same result.

Remark 6.10. Theorem 6.5 enables to recover the results of Theorem 3.21 and of
Theorem 5.5 in the Prüfer approach. In particular, one may check that A (⊲d)a b
holds if and only if b is integral over the fractional ideal 〈A〉R, and that both hypo-
theses in Item 4 of Theorem 6.5 are fulfilled when R is integrally closed. Further-
more, elements > 1 of the ℓ-group Ma in Item 2 of Theorem 6.5 can be identified
with integrally closed ideals generated by nonempty finitely enumerated subsets A
of R∗. Therefore Item 1 of Theorem 6.5 yields the cancellation property stated in
Corollary 5.6.
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