
HAL Id: hal-01427165
https://inria.hal.science/hal-01427165

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Complexity Tale: Web Configurators
Gilles Perrouin, Mathieu Acher, Jean-Marc Davril, Axel Legay, Patrick

Heymans

To cite this version:
Gilles Perrouin, Mathieu Acher, Jean-Marc Davril, Axel Legay, Patrick Heymans. A Complexity
Tale: Web Configurators. VACE 2016 - 1st International Workshop on Variability and Complexity
in Software Design Pages (co-located with ICSE’16), May 2016, Austin, United States. pp.28 - 31,
�10.1145/2897045.2897051�. �hal-01427165�

https://inria.hal.science/hal-01427165
https://hal.archives-ouvertes.fr


A Complexity Tale: Web Configurators

Gilles Perrouin
PReCISE Research Center

University of Namur, Belgium
gilles.perrouin@unamur.be

Mathieu Acher
IRISA, University of Rennes I,

France
mathieu.acher@irisa.fr

Jean-Marc Davril
PReCISE Research Center,
University of Namur, Belgium

jean-marc.davril@unamur.be

Axel Legay
INRIA Rennes, France
axel.legay@inria.fr

Patrick Heymans
PReCISE Research Center,
University of Namur, Belgium

patrick.heymans@unamur.be

ABSTRACT
Online configurators are basically everywhere. From physi-
cal goods (cars, clothes) to services (cloud solutions, insur-
ances, etc.) such configurators have pervaded many areas
of everyday life, in order to provide the customers products
tailored to their needs. Being sometimes the only interfaces
between product suppliers and consumers, much care has
been devoted to the HCI aspects of configurators, aiming
at offering an enjoyable buying experience. However, at the
backend, the management of numerous and complex configu-
ration options results from ad-hoc process rather than a sys-
tematic variability-aware engineering approach. We present
our experience in analysing web configurators and formalis-
ing configuration options in terms of feature models or prod-
uct configuration matrices. We also consider behavioural
issues and perspectives on their architectural design.

CCS Concepts
•Software and its engineering → Software product
lines; Software reverse engineering; Software configu-
ration management and version control systems;

Keywords
Web Configurator, Complexity, Variability

1. WEB CONFIGURATORS
Many B2B and B2C companies provide their customers

with Web configurators. The purpose of these configurators
is to assist stakeholders in configuring a product or service
that will meet their requirements and expectations.

Our experience with industrial partners, as well as our
empirical study of 111 Web configurators [1], reveal that
configurators are commonly developed in an ad hoc manner,
which can raise reliability and maintenance issues. From a
security perspective, a naive implementation can be prob-
lematic as well [4] (e.g., users can bypass a configurator to
get access to features or copyrighted data).

The root cause of these issues is the complexity encoun-
tered in the variability of the configurable products. A com-
plex variability translates into a large number of configu-
ration options and constraints among them. As a result
organizations face difficulties for eliciting, formalizing, real-
izing, and maintaining configurators (e.g., variability cross-
cuts different artefacts, constraints can be hard-coded in the
control-flow).

In this paper we perform a short retrospective of what
has been investigated so far. We consider three major axes
– reverse engineering, behavioural analysis, and forward en-
gineering of configurators – and we discuss some of the un-
derlying challenges. We present model-driven engineering
approaches to address them and manage complexity.

The remainder of the paper is structured as follows. Sec-
tion 2 presents reverse engineering techniques to help prac-
titioners recover variability models from existing artefacts.
This is a key step towards the re-engineering of legacy sys-
tems into more reliable model-driven configurators. Section
3 presents techniques and formalisms for behavioural analy-
sis. We discuss the need of model-driven techniques capable
validating configuration tasks or configurator evolution, pos-
sibly at run-time. Section 4 proposes a generic architecture
for deriving web configurators from models. Section 5 sum-
marizes the different problems and challenges to undertake
for taming the complexity of configurators.

2. FORMALISING CONFIGURATION OP-
TIONS

2.1 Re-Engineering Legacy Configurators
While web configurators are commonly developed in an

ad hoc manner [1], configurators engineered from variability
models are easier to maintain, to test and are more reli-
able. This is especially true when the number of configu-
ration options becomes large and when the configurator is
required to enforce many complex configuration constraints.
In order to address the widespread absence of model-driven
solutions observed in web configurators, we proposed an ap-
proach based on feature modeling for re-engineering legacy
online configurators [10].

Feature Models (FM) were introduced 25 years ago as part
of the FODA (Feature Oriented Domain Analysis) method
[27]. FMs are tree-like diagrams which purpose is to spec-
ify the variability among the products of a product line.
A FM hierarchically decomposes the features of its prod-
ucts by using boolean operators. FMs have been extended
and formalised through formal semantics [13,17,30] and are
now equipped with comprehensive tool support [8, 28]. The
formal semantics of FMs can be used to support the execu-
tion of configuration tasks [21] and to generate configurators’
Graphical User Interfaces (GUI) [11].

The re-engineering approach in [10] proposes to recover
variability patterns from existing web configurators and syn-



thesize them into an FM that can be used to engineer a
new configurator. In this approach, we analyze the GUI of
an existing configurator and classify graphical widgets (e.g.
HTML or jQuery elements and images) into configuration
elements (e.g. option, description field, and constraint). As
an example, radio buttons are commonly used to ensure that
an end-user can only select one single configuration option
from a group of several options. Radio buttons can thus
be mapped to a variability pattern expressing a mutual ex-
clusion between the options. The set of all the extracted
variability patterns can be encoded into an FM that will
then be used to engineer the new configurator.

2.2 Reverse-Engineering Variability Models
from Heterogenous Data

In addition to support the (re)engineering of configura-
tors, FMs can also be useful for conducting configurator’s
domain analysis tasks. Domain knowledge about the prod-
ucts, their commonalities/variabilities, and their features is
often scattered through heterogeneous types of documents.
While some of these documents can provide structured or
semi-structured data (e.g. list of products specifications)
others are unstructured and require prior processing (e.g.
textual description of products). Large collections of prod-
uct documentation artefacts call for the development of au-
tomatic techniques to help practitioners recover the scat-
tered variability information.

Existing works address the synthesis of FMs from both
product specifications [5, 6, 18, 24, 31, 32] and collections of
textual documents [19,20,23,34].

These techniques typically use an intermediate (formal)
representation before actually performing the synthesis of
the model. For instance, a formula representing the set of
products/configurations can be used. The gathering of a for-
mula can be a difficult task and involves static or dynamic
source code analysis [31], mining features’ co-occurrences [19],
etc. Then satisfiability techniques are applied on the formula
to compute variability information. As many different FMs
can be built from the same formula, the extraction requires
heuristics for guiding the selection of the proper organization
of features (i.e., feature hierarchy, feature groups, attribute
placement) [5, 6].

Another possible approach is to use a product compar-
ison matrix (PCM) as an intermediate representation. A
PCM is a tabular product-by-feature representation that de-
scribes the list of possible product configurations in terms
of features. PCMs can be directly found on the web (e.g.,
in configurators or comparators). PCMs can also be ex-
tracted from a collection of documents written in natural
language [7]. Once the product configurations are formal-
ized into a PCM, a synthesis algorithm can be applied to re-
cover variability patterns among the features and construct
an FM (see, e.g., [6, 18]).

3. BEHAVIOURAL ANALYSIS

3.1 Feature Configuration Workflows
Configuring a complex product requires expertise. Indeed,

dependencies between certain options may requires that a
given sequence of choices is followed in order to avoid re-
doing some of them. The situation is even more complicated
when several users (because they own expertise on only one
part of the configuration options) need to interact with the

configurator. To organise such a configuration process, fea-
ture configuration workflows were proposed [2, 25, 26]. The
idea is to explicitly model the configuration process in a
workflow, where tasks corresponds to set of choices relevant
for a given stakeholder of the configurator. Relying on the
formal underpinning of workflows [33], it is possible to guide
the user through configuration steps and perform soundness
analyses and ensure that each option have been covered at
the end of the process.

3.2 Analysing Configured Products
Variability also induces complexity in the behaviour of

configured products. Let us take the example of the well-
known Tesla electric cars. Tesla offers only two different
models (S and X). Hardware variability is limited to dif-
ferent battery capacities, transmission options, car colors.
But these cars have the particularity to be configurable by
the user even once the car is delivered: the autopilot/self-
parking feature is downloaded and activated by the owner.
In terms of configuration, this implies that owners continu-
ously configures their cars, not only prior to ordering them.
This “feature on demand” approach [12], obviously raises
challenges in terms of security and safety of the configured
products, as these features have the ability to change con-
figured products behaviour.

To address this situation, we need to couple configura-
tion models with verification ones, and we believe that for-
malisms such as featured transition systems (FTSs) [14], aka
transition systems tagged with features, are appropriate.
FTSs enable to concisely model the product(s) that exe-
cute a given behaviour and variability-aware model checkers
have been developed for them [16]. Of course, as for software
product line verification where this formalism comes from,
variability-aware configurators are relevant for TESLA when
it incorporates a new feature to its catalogue. Additionally
since these cars dynamically adapt - the behaviour of the car
is itself variability-aware and context-dependent - verifying
if the introduction of a new feature is safe, may require that
the configurator of the car itself embeds its FTS and model-
checker. To be efficient, on-the-fly reduction techniques of
the verification space must be employed: for example, Kim
et al. prune statically configurations that cannot violate
a given property, reducing the number of configurations to
monitor at runtime [29]. Cordy et al. have proposed in-
cremental verification of software product lines to deal with
partial configurations [15], though this technique has not
been extended to run-time scenarios yet. Thus, both run-
time and design time verification techniques are needed in
this case.

This scenario illustrates the complexity web configurators
have or will have to face, calling for dedicated architectural
solutions. In the next section, we present an architectural
pattern for such configurators to harness complexity and
discuss perspective on their engineering.

4. MODEL-BASED ENGINEERING

4.1 An architectural Pattern for Web Config-
urators

Model-driven engineering techniques can provide the right
formalisms and abstractions to manage the multi-faceted
complexity of configurators. Figure 1 presents a generic
model-based architecture for web configurators.



Modelling Layer

Variability Model

Configuration 
Workflow

FTS

Presentation 
Models

Context Models

Reasoning Layer

Runtime Reasoners 
(ECA, Goals)

SAT/SMT Solvers

Configuration GUI

Environment

updates

APIs Layer

Configuration APIPresentation API

updates

reads

callsmonitors

Figure 1: A Generic Web Configurator Architecture

The architecture is decomposed in three layers: (i) the
APIs layer offers high-level services such as knowing the
consequences of a choice realized by the user or updates the
interface to hide options that are no longer available, (ii)
the modelling layer that contains all the models required
for the operation of the configurator and (iii) the reason-
ing layer that contains solving and adaptation engines. In
the modelling layer, a FM formally describes the options
and constraints of the configurator. The presentation mod-
els contain views, beautification (such as CSS sheets, styles,
etc. [9]) that drive the generation of the configurator GUI.
Models and tools represented in frames with dashed lines are
optional. We already mentioned behavioural models roles.
Context models reflect the environment. They support sce-
narios in which a given set of options should be deactivated
because of the environment: e.g. sudden failure of the bat-
tery implies energy-saving mode by turning off multimedia
or air conditioning. Runtime adaptation is often realized
through Event Condition Action (ECA) rules or goal-based
optimisation of a quantitative property. Such properties are
also relevant for recommendation: it is well-known that some
applications are weather-dependent: e.g; food, clothes, etc.
A configurator aware of this can therefore rank configura-
tions accordingly. This run-time information may be com-
bined with recommendations obtained by mining product
descriptions [22], and we believe that PCMs form a suited
formalism to support recommendation computations.

4.2 Perspective: Configurator Integration

While the design of complex configurators can be facil-
itated by the use of model-based techniques and efficient
design/run-time analysis, one aspect should not be neglected:
configurators seldom work in isolation. Indeed, configura-
tors must integrate with product databases to provide price
information, warehouses/shops to compute the number of
remaining products, 3D engines to provide visual rendering
of products, or 3D printers to build configured products di-
rectly [3]. Given the heterogeneity of systems configurators
have to connect to, modular configurator architectures with
explicit interfaces are key to manage this diversity.

5. CONCLUSION
We presented problems and existing solutions for address-

ing the complexity of web configurators. The large number
of options and constraints practitioners have to handle typ-
ically induces maintenance, reliability, security and integra-
tion issues.

Three research axes have proposed: reverse engineering,
behavioural analysis, and forward engineering. These topics
are still subject to active investigation; here are a few exam-
ples of possible research directions. From a reverse engineer-
ing perspective, the use of dynamic methods to explore and
mine the configuration space is promising but their compu-
tational cost can be prohibitive. More heuristics and empir-
ical studies are needed to further understand the limits and
possible trade-offs. From a behavioural analysis perspective,
the integration of different verification mechanisms is a dif-
ficult challenge, demanding in term of model expressiveness
and hybrid analyses (quantitative/qualitative). Finally, for-
ward engineering challenges include the systematic use of
generative techniques for various configurators’ parts and
dealing with integration issues, particularly for e-commerce
web configurators.

Acknowledgements
We would like to thank the organisers to have invited us to
present our views in this paper. This research was partly
funded by Walloon region under the INOGRAMS project
(n◦7171). Jean-Marc Davril is supported by the FNRS un-
der a FRIA doctoral grant.

6. REFERENCES
[1] E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher, and

P. Heymans. The anatomy of a sales configurator: An
empirical study of 111 cases. In CAISE, volume 7908
of Lecture Notes in Computer Science, pages 162–177,
Valencia, Spain, June 2013. Springer.

[2] E. K. Abbasi, A. Hubaux, and P. Heymans. A toolset
for feature-based configuration workflows. In SPLC,
pages 65–69. IEEE, 2011.

[3] M. Acher, B. Baudry, O. Barais, and J.-M. Jézéquel.
Customization and 3d printing: A challenging
playground for software product lines. In SPLC (Vol.
1), pages 142–146. ACM, 2014.

[4] M. Acher, G. Bécan, B. Combemale, B. Baudry, and
J.-M. Jézéquel. Product lines can jeopardize their
trade secrets. In ESEC/FSE, pages 930–933, New
York, NY, USA, 2015. ACM.

[5] G. Bécan, M. Acher, B. Baudry, and S. Ben Nasr.
Breathing ontological knowledge into feature model



synthesis: An empirical study. Empirical Software
Engineering (ESE), 2015.

[6] G. Bécan, R. Behjati, A. Gotlieb, and M. Acher.
Synthesis of attributed feature models from product
descriptions. In SPLC (Vol. 1), pages 1–10, Nashville,
TN, USA, jul 2015. ACM.

[7] S. Ben Nasr, G. Bécan, M. Acher, J. a. B.
Ferreira Filho, B. Baudry, N. Sannier, and J.-M.
Davril. Matrixminer: A red pill to architect informal
product descriptions in the matrix. In ESEC/FSE,
ESEC/FSE 2015, pages 982–985. ACM, 2015.

[8] D. Beuche. Modeling and building software product
lines with pure:: variants. In SPLC, pages 255–255.
ACM, 2012.

[9] Q. Boucher. Engineering Configuration Graphical User
Interfaces from Variability Models. PhD thesis,
University of Namur, September 2014.

[10] Q. Boucher, E. K. Abbasi, A. Hubaux, G. Perrouin,
M. Acher, and P. Heymans. Towards more reliable
configurators: a re-engineering perspective. In
PLEASE, pages 29–32. IEEE/ACM, 2012.

[11] Q. Boucher, G. Perrouin, and P. Heymans. Deriving
configuration interfaces from feature models: A vision
paper. In VaMoS, pages 37–44. ACM, 2012.

[12] N. Cardozo, W. D. Meuter, K. Mens, S. González, and
P. Orban. Features on demand. In VaMoS, pages
18:1–18:8. ACM, 2014.

[13] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of tvl. Science of Computer Programming,
76(12):1130–1143, 2011.

[14] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured transition
systems: Foundations for verifying variability-intensive
systems and their application to ltl model checking.
IEEE TSE, 39(8):1069–1089, 2013.

[15] M. Cordy, P.-Y. Schobbens, P. Heymans, and
A. Legay. Towards an incremental automata-based
approach for software product-line model checking. In
SPLC (Vol. 2), SPLC ’12, pages 74–81. ACM, 2012.

[16] M. Cordy, M. Willemart, B. Dawagne, P. Heymans,
and P. Schobbens. An extensible platform for
product-line behavioural analysis. In SPLC Workshops
(Vol. 2), pages 102–109. ACM, 2014.

[17] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software process: Improvement and
practice, 10(1):7–29, 2005.

[18] K. Czarnecki, S. She, and A. Wasowski. Sample spaces
and feature models: There and back again. In SPLC.
IEEE, 2008.

[19] J. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans. Feature model
extraction from large collections of informal product
descriptions. In ESEC/FSE, pages 290–300. ACM,
2013.

[20] J.-M. Davril, M. Cordy, P. Heymans, and M. Acher.
Using fuzzy modeling for consistent definitions of
product qualities in requirements. In IEEE 2nd
Workshop on Artificial Intelligence for Requirements
Engineering (AIRE’15), Ottawa , Canada, aug 2015.

[21] D. Dhungana, A. Falkner, and A. Haselböck.
Configuration of cardinality-based feature models
using generative constraint satisfaction. In 37th
EUROMICRO SEAA, pages 100–103. IEEE, 2011.

[22] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
B. Mobasher, C. Castro-Herrera, and M. Mirakhorli.
On-demand feature recommendations derived from
mining public product descriptions. In ICSE, pages
181–190. IEEE/ACM, May 2011.

[23] A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta.
Mining commonalities and variabilities from natural
language documents. In SPLC. ACM, 2013.

[24] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed.
On extracting feature models from sets of valid feature
combinations. In FASE, pages 53–67. Springer, 2013.

[25] A. Hubaux, A. Classen, and P. Heymans. Formal
modelling of feature configuration workflows. In
SPLC, volume 446, pages 221–230. ACM, 2009.

[26] A. Hubaux, P. Heymans, P. Schobbens, D. Deridder,
and E. K. Abbasi. Supporting multiple perspectives in
feature-based configuration. Software and System
Modeling, 12(3):641–663, 2013.

[27] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(foda) feasibility study. Technical report, DTIC
Document, 1990.

[28] C. Kastner, T. Thum, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. Featureide: A tool
framework for feature-oriented software development.
In ICSE, pages 611–614. IEEE Computer Society,
2009.

[29] C. H. P. Kim, E. Bodden, D. S. Batory, and
S. Khurshid. Reducing configurations to monitor in a
software product line. In Runtime Verification, volume
6418 of Lecture Notes in Computer Science, pages
285–299. Springer, 2010.

[30] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Generic semantics of feature diagrams.
Computer Networks, 51(2):456–479, 2007.

[31] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. Reverse engineering feature models. In
ICSE, pages 461–470. IEEE, 2011.

[32] S. She, U. Ryssel, N. Andersen, A. Wasowski, and
K. Czarnecki. Efficient synthesis of feature models.
Information and Software Technology,
56(9):1122–1143, 2014.

[33] W. van der Aalst and A. ter Hofstede. Yawl: yet
another workflow language. Information Systems,
30(4):245 – 275, 2005.

[34] N. Weston, R. Chitchyan, and A. Rashid. A
framework for constructing semantically composable
feature models from natural language requirements. In
SPLC, pages 211–220. ACM, 2009.


