
HAL Id: hal-01426971
https://hal.science/hal-01426971

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-domain simulation of flute-like instruments:
Comparison of jet-drive and discrete-vortex models

Roman Auvray, Augustin Ernoult, Benoît Fabre, Pierre-Yves Lagrée

To cite this version:
Roman Auvray, Augustin Ernoult, Benoît Fabre, Pierre-Yves Lagrée. Time-domain simulation of
flute-like instruments: Comparison of jet-drive and discrete-vortex models. Journal of the Acoustical
Society of America, 2014, 136, pp.389 - 400. �10.1121/1.4875716�. �hal-01426971�

https://hal.science/hal-01426971
https://hal.archives-ouvertes.fr


Time-domain simulation of flute-like instruments: comparison of

jet-drive and discrete-vortex models

Roman Auvray, Augustin Ernoult, and Benôıt Fabre
LAM, Institut Jean Le Rond d’Alembert, UPMC Univ Paris 06, UMR CNRS 7190, 11 rue de Lourmel, 75015 Paris,
France

Pierre-Yves Lagrée
CNRS, Institut Jean Le Rond d’Alembert, UPMC Univ Paris 06, UMR CNRS 7190, 4 place Jussieu, 75005 Paris,
France

This paper presents two models of sound production in flute-like instruments that allow time-domain
simulations. The models are based on different descriptions of the jet flow within the window of the
instrument. The jet-drive model depicts the jet by its transverse perturbation that interacts with
the labium to produce sound. The discrete-vortex model depicts the jet as two independent shear
layers along which vortices are convected and interact with the acoustic field within the window.
The limit of validity between both models is usually discussed according to the aspect ratio of the jet
W/h, with W the window length and h the flue channel height. The present simulations, compared
with experimental data gathered on a recorder, allow to extend the aspect ratio criterion to the
notion of dynamic aspect ratio defined as λ/h where λ is the hydrodynamic wavelength that now
accounts for geometrical properties, such as W/h, as well as for dynamic properties, such as the
Strouhal number. The two models are found to be applicable over neighboring values of geometry
and blowing pressure.

PACS numbers: 43.75Ef, 43.75Qr

I. INTRODUCTION

To describe flute-like instruments, and more generally
the coupling between an air jet and a resonator, two mod-
els have emerged based on two distinct descriptions of the
unstable jet. In a first model, the jet perturbation is as-
sumed to remain small. The jet is described within the
linear analysis framework. This is the jet-drive model.
In a second model, the jet instabilities are assumed to
be fully developed so that the shear layers break down
into large coherent vortical structures, called discrete vor-
tices. To a first approximation, the jet is described as two
independent shear layers on which discrete vortices are
convected. This is the discrete-vortex model.
The aerodynamic nature of the flute is a highly intri-

cate problem. Reduction of such a problem to a set of
equations that still handles the physics of the problem
will inevitably go through a series of restrictive assump-
tions. Assumptions such as these will produce limitations
to the validity of a model and thus awareness of these lim-
itations is as important as the predictions of the model
themselves.
While the jet-drive model has been widely developed

and studied, it still presents limitations due to the crude
description of the jet flow. For instances, it does not
accurately predict the higher hydrodynamic regimes of
oscillation. There are some parameters that would be
interesting to vary but are fixed by the assumptions of
the model, such as the angle of the labium. Conversely,
the discrete-vortex model has received less attention inso-
much as no time domain simulation has been performed
yet. Even if this model is also based on a crude descrip-
tion of the jet flow, the comparison of both models allows
a better understanding of their limitations and brings
some insights about the source mechanisms.

This paper presents a reformulation of the discrete-
vortex model that can be implemented in a time domain
simulation. The resolution of both models applied com-
pared with experimental data allows conclusion on the
validity range allowable for each model.

II. ONE FLUTE, TWO MODELS

A. General formulation of flute models

As it is the custom1, the generic model of a flute as
a feedback loop system including a linear part, the res-
onator, and a non-linear excitation, the source, as shown
in figure 1. The source, visualized as a force acting on
the air column at the entrance of the pipe, is discussed
later for each of the two models. The resonator is usu-
ally described using the acoustic admittance which deter-
mines the acoustic velocity response to a pressure source.
Whether measured or deduced from a theoretical model,
the admittance can be described as a series of modal con-
tributions

Y (ω) =
∑

n

jωYn

ω2
n − ω2 + jεnωn

, (1)

with the convention eiωt for the direct Fourier transform
and where Yn, ωn and εn are the amplitude, the natu-
ral frequency and the damping coefficient of each mode
n, respectively. This description does not account for
the zeros of admittance that are assumed to have little
influence on the behavior of the instrument.
The losses due to the flow separation at the window in-

duced by the acoustic flow are know to be a crucial factor
in the amplitude of the limit cycle. For a large amplitude
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FIG. 1. Generic modeling of self-sustained instruments ex-
tended to the case of flute-like instruments: it presents an
additional non-linear term due to the losses by shedding of
the acoustic flow at the labium.

of oscillation, the acoustic flow separates from the sharp
edge of the labium resulting in a free jet, from which ki-
netic energy is dissipated as a result of turbulence. A
first approximation for the pressure difference across the
mouth, corresponding to these losses, is obtained using
the Bernoulli’s equation2:

∆plos = −1

2
ρ0

vac|vac|
α2
vc

, (2)

with vac the transverse harmonic acoustic velocity at the
flue exit, ρ0 the air density and where αvc is a vena con-
tracta coefficient of the order of 0.6.
Modeling the pipe response as an admittance corre-

sponds to the reduction from a three dimensional geom-
etry (pipe and radiation) to a one dimensional geometry
only accounting for the acoustic plane waves within the
resonator. The source is represented by a pressure dis-
continuity ∆psource across the mouth which can either
be estimated by using the jet-drive model or the discrete-
vortex model. Both models are based on reductions of
the geometrical dimension as discussed in the next sec-
tions.

B. Source: jet-drive

The jet drive model was proposed by Coltman4,23 and
then improved by several authors5–9. The actual form of
the jet drive model is extensively discussed by Dequand
et al.10 and Auvray et al.11, therefore only a brief de-
scription is proposed here. It is based on the description
of the jet/labium interaction as a volume flux injection
at both sides of the labium. The subsequent out-of-phase
flow injection constitutes a dipolar source that is associ-
ated to a fluctuating force. The oscillation of the flux
injection, and thus the force, is due to the convection of
an unsteady transverse perturbation of the jet from the
flue exit to the labium. The initialization of the pertur-
bation occurs near the flow separation points of the jet at
the flue exit where the jet vorticity is strongly sensitive
to any external perturbation. Among others, the jet is
sensitive to the acoustic oscillation due to accumulation
of acoustic energy in the resonator.
The model can be reduced to the followings semi-

empirical set of equations. The amplification and the
convection of the transverse displacement η perturbation

is described by

η(x, t) = eαixη0(t− x/cp), (3)

in agreement with the linear stability theory of infinite
jets, with the growth rate αi and the phase velocity cp.
These two parameters have been subject to several the-
oretical and experimental studies. De la Cuadra12 and
Blanc13 experimentally found αi = β/h and cp = γjdu0

with β ∼ 0.3 and γjd ∼ 0.4. The function η0(t) is the
perturbation of the jet generated at the flue exit (x = 0)
by the transverse acoustic perturbation. De la Cuadra
proposed the equation:

η0(t) = h
vac(t)

u0
, (4)

with h the channel height, u0 the jet centerline velocity
estimated by applying the law of Bernoulli on the pres-
sure reservoir. Values of the amplification and the con-
vection coefficients β and γ are also shown12,14 to depend
on the jet velocity profile and therefore on the geometry
of the channel. This is an empirical result that is only
valid over a distance of a few jet thicknesses, h. The pres-
sure source due to the flux injection at both sides of the
labium depends on the velocity profile (a Bickley profile
is assumed here) and is modulated by the oscillations of
the transverse perturbation of the jet at the labium (at
x = W ):

∆psource = ∆pjd =
ρ0δdu0b

W

d

dt

[

tanh
η(t)− yoff

b

]

, (5)

with ρ0 the air density, δd = 4
√
2hW/π the effective

acoustic distance between the two injection point that
are assumed to be at a physical distance h behind the in-
finitely thin labium, W the window length, yoff the off-
set between the center of the channel and the labium and
b = 2h/5 the half-width of the Bickley profile obtained by
momentum conservation of the jet between the assumed
Poiseuille flow at the flue exit and an assumed Bickley
profile with equal centerline velocity at the labium. The
conservation of the centerline velocity is a strong assump-
tion (neglecting the damping) and would fail to describe
long thin jets such as found in organ pipes with a ratio
W/h ≃ 10 or 20.

C. Source: discrete vortex

The discrete-vortex model was initiated by Meissner15

and Dequand et al.10 following suggestions by
Hirschberg16 and Fabre et al.17. It is based on the
work of Holger et al.18 and Nelson et al.19.
The jet is assumed to have a uniform velocity profile

(Top-hat) u0x̂ at the channel exit (with x̂ the unit vector
along the x-axis) and to emerge in a stagnant fluid. The
inner and the outer shear layers, located at y = −h/2
and y = h/2, respectively, are assumed to behave inde-
pendently.
The jet instability, as depicted in the jet-drive model,

can be seen as a progressive reorganization of the vortic-
ity of the two shear layers due to the convection of the
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FIG. 2. Jet-drive source model. The jet transverse pertur-
bation is triggered by the acoustic perturbation near the flue
exit. It is convected downstream through the window, while
growing because of the jet instability. The aeroacoustic force
of the jet/labium interaction is interpreted as a dipolar source
whose volume injection rate at each side of the labium de-
pends on the jet velocity profile and the jet centerline position
η.

FIG. 3. Discrete vortex source model. Shedding of the vor-
tices is triggered by the acoustic perturbation near the flue
exit. After emerging from the creation area, the vorticity is
accumulated onto discrete locations that are convected down-
stream. The areoacoustic force is interpreted as the interac-
tion of the moving vortices with the acoustic field within the
window.

perturbations. Starting from a slightly perturbed initial
distribution of the vorticity, the growth of the instabil-
ity corresponds to the concentration of the vorticity into
coherent vortical structures called vortices. The subse-
quent distribution of vorticity Ω(x, y) is convected along
the window of the flute. It acts on the acoustic field as a
Coriolis action which leads to an acoustical source.
The system is assumed to be invariant along the

depth of the window H reducing the problem to a two-
dimensional description as illustrated on figure 3. A sur-
face expression of the Coriolis action is given by:

f(x, y, t) = −Hρ0 (Ω(x, y, t) ∧ uΓ) , (6)

where uΓ = γdvu0x̂ is the convection velocity of vorticity.
The ratio γdv is assumed constant and equals 0.4 for the

FIG. 4. Reorganisation of the vorticity of the outer shear
layer into vortical structures.

two shear layers.
In the discrete-vortex model, the vortices concentrate

all the vorticity of the shear layer. In a two-dimensional
representation, the nth vortex is located at a point
(xn(t), yn(t)), where is concentrated its circulation Γn(t).
The total distribution of vorticity Ω(x, y, t) results from
the contribution of all the vortices:

Ω(x, y, t) =
∑

n

Γn(t)δ(x − xn(t))δ(y − yn(t)), (7)

where δ(x) is the Dirac function.
In order to compute a time domain simulation of this

model of source, a temporal formulation of the time-
dependent quantities, i.e. the circulation Γn(t) and the
position (xn(t), yn(t)) of each vortex, must be achieved
first. An analytical expression of the time-dependent
source is presented in the next sections, based on some
approximations. These are discussed for the case of the
outer shear layer, an equivalent expression for the inner
shear layer only requiring minor changes. The positions
of the vortices (xn(t), yn(t)) are determined in section
II.C.1 and the circulations Γn(t) are determined in sec-
tion II.C.2. The time-dependant surface force is then es-
timated taking into account the specific geometry of the
recorder (and the inner shear layer). The inclusion of a
two-dimensional source into a one-dimensional acoustical
model should be performed with care. This is discussed
in section II.C.3, in comparison with the method used by
Dequand et al.10.

1. Position of the vortices on the outer shear layer

This section aims at providing expression of the time-
dependent position (xn(t), yn(t)) of each vortex of the
outer shear layer.
As for the jet-drive model, it is assumed that the shear

layer is strongly sensitive to any perturbation at the flow
separation point, located at (x = 0, y = h/2). The jet is
assumed to be perturbed only by the y component v′ of
the acoustical velocity u′ = u′x̂ + v′ŷ. The outer shear
layer is therefore perturbed at x = 0 by the transverse
velocity vp(t) = v′(x = 0, y = h/2, t).
The initial modification of the vorticity distribution

leads to the accumulation of vorticity in some particular
points called rolling points and denoted xn(t). The pre-
viously continuous shear layer is then cut at some other
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points called shedding points, denoted an(t), as illus-
trated on figure 4. The subsequent vortices are assumed
to be convected downstream at the velocity uΓ = (u0/2)x̂
while remaining on the initial vertical position of the
shear layer: yn(t) = h/2.
The triggering of the rolling points xn(t) and shedding

points an(t) are governed by the temporal evolution of
the acoustic perturbation vp(t). They are then convected
downstream at the velocity uΓ. The rolling points xn(t)
are triggered at x = 0 at the instants tn when the ve-
locity perturbation changes direction from outwards to
inwards, towards the jet. For the outer shear layer it
corresponds to a sign change of the perturbation from
positive to negative. The rolling points are convected
and are located in:

{

xn(t) = (t− tn)uΓ

vp(tn) = 0 &
(

dvp
dt

)

tn

< 0
. (8)

Conversely, as suggested by Nelson’s experimental
observations19, the shedding points an(t) are triggered at
the instants Tn, when the velocity perturbation changes
direction from inwards to outwards away from the jet:

{

an(t) = (t− Tn)uΓ

vp(Tn) = 0 &
(

dvp
dt

)

Tn

> 0 . (9)

The positions of the rolling points and the shedding
points make it possible to estimate the circulation accu-
mulated by each vortex. This is presented in the next
section.

2. Circulation of the vortices on the outer shear layer

Two areas are distinguished along the shear layer, the
vortex creation area and the steady vortex area. The
vortex creation area is necessary for the accumulation
of the vorticity into discrete vortices. This would also
be considered as the area in which the jet-drive descrip-
tion could be valid. Holger18 estimated this area to be
between one and three characteristic distances between
vortices. In this study, it is limited to one characteris-
tic distance, i.e. one hydrodynamic wavelength, and the
evolution of the circulation distribution along this area
is drastically simplified.
The reorganization of the vorticity into discrete struc-

tures within the creating area is progressive and contin-
uous. However, it is modeled as a discrete phenomena.
The creation of the nth vortex starts with the creation
of the shedding point an−1 at t = Tn−1 defined by Eq.
(9). It is assumed that the circulation of the shear layer
is accumulated in x = 0 until the triggering of the rolling
point xn at t = tn defined by Eq. (8). After t = tn, the
circulation keeps accumulating but is convected down-
stream with the rolling point. Finally, after the next
shedding point an at t = Tn, the circulation stops grow-
ing. The vortex is steady. All its properties remain con-
stant, including its circulation Γn.
This discrete description of the birth of the vortices

adds a delay between the formation of a new vortex (t =

Tn−1) and the start of its movement (t = tn). This has
no physical meaning but allows to write the continuous
birth as a discrete phenomena. The creating area remains
close to the flue exit and far from the labium where the
acoustic power generated by the vortices is small. This
has only little consequences on the sound production.
At each time, the circulation of the nth vortex must

verify the conservation of the circulation with the cor-
responding undisturbed shear layer. This circulation Γn

equals the circulation of a hypothetical undisturbed shear
layer between x = 0 and an−1(t) during the creation part,
or between the two shedding points an−1(t) and an(t)
within the steady vortex area. Finally, it leads to the
following expression of the corrected position xn(t) and
the circulation Γn(t):

xn(t) =

{

0 if t ≤ tn
(t− tn)uΓ elsewhere

, (10)

Γn(t) =















0 if t ≤ Tn−1

u0

(

an−1(t)− 0
)

ẑ if Tn−1 ≤ t ≤ Tn

u0

(

an−1(t)− an(t)
)

ẑ elsewhere

=







0 if t ≤ Tn−1

(t− Tn−1)u0uΓẑ if Tn−1 ≤ t ≤ Tn

(Tn − Tn−1)u0uΓẑ elsewhere
. (11)

The general shapes of the circulation and the spatial dis-
tribution are shown in figure 5 as function of time in the
specific case of a harmonic perturbation. The instant,
T0, starting the creation of the first vortex n = 1 is arbi-
trarily chosen as T0 = 0.
Combining the expressions of xn(t) and Γn(t) in Eqs.

(10) and (11) with Eq. (6) yields the distribution of the
surface force induced by the vorticity of the outer shear
layer:

f(x, y, t) = −Hρ0uΓδ(y − h/2)
∑

n

(Γn(t)δ(x − xn(t))) ŷ,

(12)
with Γn = ‖Γn‖.
Conversely, the surface force induced by the inner shear

layer can be calculated as a similar way as in Eq. (12).
The rolling and shedding points are now triggered by
a vertical perturbation v′(x = 0, y = −h/2, t). For a
basic geometry, as assumed here, the potential flow is
locally symmetrical around the flue exit: v′(0, h/2, t) =
v′(0,−h/2, t). However, the relative positions of the stag-
nant and the moving fluids are switched. The change
of direction of the perturbation from outwards to in-
wards for the outer shear layer becomes a change from
inwards to outwards for the inner shear layer, and vice

versa. Expressions of the rolling and shedding points in
Eqs. (8) and (9) remain valid with the transformation
(tn, Tn)outer 7→ (Tn, tn)inner . In addition, the vorticity
accumulated by one vortex has the same magnitude on
the outer shear layer as on the inner shear layer but differs
by a minus sign: Eq.(11) is still valid for the inner shear
layer with the transformation (Γn)outer 7→ (−Γn)inner .
The vortices on each shear layer act on the fluid at the

precise location of the shear layers y = ±h/2. This is
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FIG. 5. Evolution of time and space dependent functions that
characterize each vortex for a harmonic excitation vp for the
outer shear layer. The balance of delay developed in section
III.B is also illustrated for the second hydrodynamic jet mode
(m=1): the nth vortex shed at time tn induces a Dirac-like
force when it reaches the edge of the labium after a delay of
convection τdv = W/uΓ, the force filtered and phase shifted
by the resonator self-sustains the oscillation by a delay of
(4m+ 1)T/4 after the shedding time tn.

discussed in the next section where the two-dimensional
force described in Eq. (12) is injected, as a source term,
in a one-dimensional acoustic model.

3. From 2D to 1D

The instantaneous power generated by the force of the
moving vortices

P =

∫

∞

−∞

dy

∫

∞

x=0

f(x, y) · u′(x, y)dx, (13)

depends on the two-dimensional acoustic field u′ in which
the vortices evolve. The potential flow u′ can be es-
timated for basic geometries by the mean of conformal
mapping as done by Verge et al.8 or Dequand et al.10.
Additionally, numerical methods can be used to obtain
the potential flow in more realistic geometries. In the
present study, the potential flow u′ is obtained using a
Finite Element Method21 (FEM) to calculate the incom-
pressible flow through the mouth of the recorder based
on the work of Auvray et al.20.
For the purpose of comparison, the potential flow ob-

tained by the conformal mapping and by the FEM are
shown on figure 6 for a thin labium. The FEM is also
used for a more realistic case, a labium with an angle of
15◦. The results are shown in figure 6. As already ob-
served by Auvray et al.20 for the thin labium case, the
conformal mapping and the FEM provide the same ten-
dency near the tip of the labium. While the conformal

mapping predicts a symmetrical flow with respect to the
x axis, the FEM predicts a flow shifted slightly outwards
because of the bottom of the recorder below the labium
that breaks the symmetry in the geometry. The modi-
fications due to 15◦ labium affect the upper part of the
flow, above the labium mainly.
The velocity calculated through the different meth-

ods are normalized with respect to the one-dimensional
acoustic velocity vac by the acoustic flow that passes
through the window between x = 0 and x = W at the
labium tip y = y0:

∫ x=W

x=0

Hv′(x, y = y0, t)dx = −WHvac(t), (14)

where v′ is the y component of the potential flow u′

and where the minus sign accounts for the convention
of the orientation of the acoustic velocity vac in the one-
dimensional model.
The perturbations that modulate the vorticity at the

flow separation are assumed to be the same for the in-
ner and the outer shear layers: vp = v′(0, h/2, t) =
v′(0,−h/2, t). Thus, as the only relevant information
used from the perturbations are the zero-crossing times
tn and Tn, the velocity perturbation is taken vp = −vac
(with a − sign for the different conventions of orienta-
tion).
The inclusion of the two-dimensional source term into

the one-dimensional acoustic model is carried by guar-
anteeing the acoustic power equivalence between the two
descriptions. Denoting F the one-dimensional equivalent
force of the outer shear layer and vac the one-dimensional
acoustic velocity, and using Eqs. (12) and (13), the power
continuity equation Fvac = P yields

F = −Hρ0uΓ

∑

n

Γn(t)
v′(xn(t), h/2)

vac
, (15)

where Γn = ‖Γn‖ is defined in Eq. (11) and where the
field v′ obtained by the FEM with the 15◦ labium is nor-
malized according to Eq. 14.
An equivalent expression of the one-dimensional force

F can be obtained for the inner shear layer by using the
transformations already discussed in the previous section
and by changing +h/2 to −h/2. Finally, the pressure
source of the discrete-vortex model is given by combining
the contributions of both shear layers:

∆psource = ∆pdv =
F

WH
+ inner shear layer. (16)

III. FURTHER ANALYSIS

A. linearization of the jet-drive model

The jet-drive model can be linearized and it yields the
condition of oscillation11:

ω(m)τjd −
π

2
− arg

(

Y
(

ω(m)
))

= 2mπ, (17)

with m is the hydrodynamical mode number (first mode
for m = 0). This is a reformulation of the balance of
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FIG. 6. Potential flow within the recorder window estimated by conformal mapping (left), Finite Element Method for a thin
labium (middle) and for a 15◦ labium (right). The simplified geometry used to compute the flow is sketched above each figure.

phase delay formulated by Powell22 and Coltman23. The
sum of phase shifts in the loop of a feedback system is an
integer number of oscillation cycles (2π). The numerical
resolution of this equation gives the admissible frequency,
in the limit of the linearization, as function of the con-
vection delay τjd = W/cp of vorticity perturbations from
the flue exit to the edge of the labium.

B. Phase balance of the discrete-vortex model

The source of force of the discrete vortex model can not
be linearized. However some assumptions can be made
in order to derive a phase balance, in which the sum of
phase shifts along the feedback loop matches an integer
number of 2π. To do that, the acoustic velocity field
is reduced to its singularity at the labium edge. Each
vortex is assumed to produce a Dirac-like force when it
reaches the labium:

∆pdv ≃
∑

n

δ(t− (tn+W/uΓ))+ inner shear layer. (18)

Thus, the acoustic velocity is assumed to be a purely
harmonic tone. In other words, only the fundamental fre-
quency contribution in the Fourier decomposition of the
periodic Dirac pulses is considered. The harmonic acous-
tic oscillation is assumed to be due to the force driving
the resonator. The sound generation of the force at the
labium will be maximum when the pulse is in phase with
the maximum of the harmonic acoustic oscillation veloc-
ity at the labium. Then, between the vortex creation,
at the zero-crossing of the acoustic velocity, and its cor-
responding maximum of the acoustic velocity, there is a
time delay of m periods plus 1/4 as illustrated on fig-
ure 5. The similar expression as Eq. (17) is obtained by
balancing the delay of convection τdv = W/uΓ and the

delay τφ = − arg(Y (ω))/ω due to the phase shift of the
resonator over (mp+ 1)/4 periods of oscillation T :

τdv −
arg(Y (ω))

ω
=

4m+ 1

4
T. (19)

This is Eq. (17) in which τjd has been replaced by τdv
and thus provides the same dependency of the frequency
on the jet velocity.

C. Optimal sound production

Oscillation at the resonance frequency of the resonator
f1 occurs for a specific value of the jet velocity, called
optimal jet velocity uopt. This occurs when the convec-
tion delay of the perturbation of the jet from the flue
exit to the edge of the labium exactly balances the lag
introduced by the source term and the pure propagation
and reflection within the pipe (see Eqs. (17) and (19)).
The corresponding optimal Strouhal number is given by:

Stopt =
4m+ 1

4
γ, (20)

with γ either γjd or γdv and m the hydrodynamic mode
of the jet. An optimal dimensionless amplitude of oscil-
lation (u0/vac)opt is associated to this optimal Strouhal
number that cannot be estimated by the present lin-
earization but requires a numerical resolution of the non-
linear models that will be presented in section VI.

D. Limit comparison of both models

The limit of validity of each model is discussed by De-
quand et al.10 as the ability of the two shear layers to
interact with each other. When the two shear layers are
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TABLE I. Parameters used for the computation. The modal
parameters of the pipe are taken from Auvray et al.11.

Modal
ω1 = 3547rad/s ε1 = 0.0397 Y1 = 0.00138
ν2 = 2.023 ε2 = 0.0318 Y2 = 0.00121
ν3 = 3.066 ε3 = 0.0285 Y3 = 0.000981

JD γjd = 0.4 β = 0.3
DV γdv = 0.4

Comput.
Ts = 15s Sr = 0.1GHz u0 = 1 ⇆ 56m/s
ρ0=1.2kg/m3 αvc = 0.6 y0 = 0.1mm
W = 4mm H = 12mm h = 0.27 → 6.7mm

close enough to form a thin jet, the instability of the
whole jet is well described by a linear approximation of
the Navier-Stokes equations. In a frictionless approxima-
tion this yields the theory of Rayleigh24. The jet-drive
model is based on the linear description of the jet in-
stability characterized by its growth rate and the phase
velocity for convection of vortical perturbations. Con-
versely, when the two shear layers are far enough to form
a thick jet, they behave independently. The reorganiza-
tion of the vorticity of each shear layer into vortices does
not interact with the other. The discrete-vortex model
is more suitable in this case. Therefore, the jet aspect
ratio W/h seems to be a good indicator of whether the
jet-drive or the discrete-vortex model is more appropri-
ate. Dequand et al. found a critical aspect ratio (W/h)∗

around 2 for an optimal sound production at the optimal
Strouhal number Stopt defined in the previous section.
The transition between the two models will be further
discussed in section VI.

IV. IMPLEMENTATION

Both models are implemented in a step by step time
domain simulation. The jet-drive model is written com-
bining Eqs. (1), (2), (3), (4) and (5). The discrete-vortex
is written using Eqs. (1), (2), (8), (9), (10), (11), (15)
and (16).
The filtering operations are carried using an equivalent

Z-transform calculated with a bilinear transformation25.
The filtering is computed as a difference equation. Care
is taken to include the derivative that appears in Eq. (5)
into the bilinear Z-transform of the transfer function (see
Eq. 1). Thus, the amplification of the high frequency due
to the poor approximation of the derivative is strongly
reduced25. This does not affect the variations of the con-
trol parameter jet velocity that are assumed to be slowly
varying in time with respect to the frequency of oscilla-
tion.
The sample rate Sr and the rate of change du0/dt of

the control parameter u0 are known to be sensitive pa-
rameters for the numerical procedure26. The sample rate
and the rate of change du0/dt are taken from the high-
est and lowest possible values, respectively, in order to
keep a decent computation time. The jet velocity is var-
ied following a linear increase from 1 m/s to 56 m/s fol-
lowed by a linear decrease back to the initial value 1 m/s

over a simulation time Ts=15s. The oscillation cannot
start from the solution zero. Thus a very low amplitude
noise (−160dB to the averaged amplitude of oscillation)
is added to the acoustic velocity vac in order to start the
auto-oscillation.
The implementation of the jet-drive source does not

show major difficulties. Conversely, the discrete-vortex
source makes implementation quite difficult by its un-
usual non-linearity. The detailed procedure is presented
in appendix A.
Both models present different parameters that would

be interesting to vary. Among others, the channel height
h is crucial since it is directly related to the aspect ratio
of the jet, a discriminant parameter between both mod-
els. The height h is varied such that the aspect ratio
W/h ∈ [0.6, 10]. Others parameters are indexed in ta-
ble I. Relevant information that are extracted from the
synthesized signals are the amplitude of oscillation and
the corresponding frequency estimated by a short time
Fourier transform (STFT) as functions of the jet veloc-
ity.

V. EXPERIMENT

In order to discuss the results simulated by both mod-
els, the results are compared to experimental data.
The experiment is made with the same experimental

setup as used by Auvray et al.11. The flute is a Zen-
On Bressan alto recorder whose passive end has been
replaced by a cylindrical tube of inner diameter of 19
mm. The resulting length of the recorder is 265 mm.
The first resonance frequency is at 564 Hz. The geomet-
rical parameters are the same as in the previous study.
The modified instrument can be modeled by the modal
contributions of the admittance (see Eq. (1)) with the
parameters indicated in table I.
The instrument is blown with a mixture of N2 and

O2 in the same proportion as air from a tank vessel.
The gas passes through an artificial mouth of volume
3 10−4 m3 completely filled with an acoustical damp-
ing material, to avoid any mouth resonances. The jet
velocity u0 is estimated by applying an energy conserva-
tion law (Bernoulli) between the pressure pm measured
within the artificial mouth (Honeywell pressure sensor
type 176PC14HG1) and the channel exit where the mean
pressure is assumed to be zero:

u0 =

√

2pm
ρ0

, (21)

with ρ0 the density of the gas. The acoustic velocity
is estimated from the acoustic pressure pac inside the
bore of the instrument measured with a B&Kmicrophone
type 4938 mounted flush in the wall of the recorder at
16mm from the cork at an angle of π/2 with respect to
the window axis. From that measurement, the modal
amplitude of the pressure p is deduced from

p =
pac

| sin 2πf0
c0

xm|
, (22)
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with f0 the frequency estimated by taking the max-
imum of a short time Fourier transform of the pres-
sure signal pac, c0 the velocity of the sound in the air
(corrected2 by measuring the temperature at the surface
of the recorder) and xm the distance between the mi-
crophone and the passive end, including the radiation
end correction ∆l = 0.6 × 9.5 mm, where the 0.6 fac-
tor corresponds to a infinitely thin pipe (the thickness
of the pipe wall is 0.5 mm). The dimensionless acous-
tic velocity within the window is then deduced from the
characteristic impedance :

vac
u0

=
pS

Swρ0c0u0
, (23)

with S the cross section of the pipe and Sw the cross
section of the window.
The pressure is adjusted using a Brooks mass flow

controller with PID constants that provide a smooth
non-overshooting increase of the pressure in the artifi-
cial mouth, necessary to obtain aeolian regimes. The
pressure is set back to zero by changing the flow target
back to zero. The results will be discussed along with
simulations in the next section.

VI. RESULTS AND DISCUSSION

Each model has several adjustable parameters. The
jet velocity is a shared one. A qualitative description of
the behavior of both models depending on this single pa-
rameter is presented in the next section. The influence of
another parameter, the height h of the channel, is briefly
discussed. The validity of both models is then discussed.
A more quantitative analysis of the models, concerning
the aspect ratio of the jet, is then proposed.

A. Qualitative behavior of the models

The typical evolution of the amplitude of oscillation
and the frequency predicted by the models are displayed
in figure 7 as function of the dimensionless jet velocity
u0/fW (inverse of the Strouhal number) for W/h = 4.
While increasing the jet velocity, the system locks on dif-
ferent oscillating regimes corresponding to the coupling of
a hydrodynamic mode of the jetm with an acoustic mode
of the pipe at the resonance frequency fn. The most pre-
dominant oscillating regimes correspond to the coupling
of the first hydrodynamic mode of the jet (m=0) with the
two first modes of the pipe (f=f1 or f2). This oscillat-
ing regime will be denoted (m=0,f=f1) or (m=0,f=f2).
Couplings with higher jet modes (m ≥ 1) are called ae-

olian regimes and occur for velocities lower than the jet
velocities commonly used. While decreasing the jet veloc-
ity, the system locks on the same main oscillating regimes
(m=0,f=f1 or f2), but it may switch to another aeo-
lian regimes. The thresholds of transition between the
regimes are different whether the jet velocity increases or
decreases, resulting in a well known hysteresis11.
Within each regime, the dimensionless frequency and

the dimensionless amplitude of the limit cycle slightly

change as the jet velocity increases: the frequency in-
creases from below to above the pipe resonance frequency
fn while the amplitude increases up to a maximum value
–corresponding to the jet velocity that provides a fre-
quency near the pipe resonance frequency– and then
decreases. The transition between different oscillating
regimes is sharp compared with the evolution of the limit
cycle within a regime: the frequency may change from
one acoustic mode to another and the amplitude usu-
ally decreases about two orders of magnitude below the
maximum value.
While both models predict the same qualitative behav-

ior for each isolated regime, significant discrepancies arise
in the prediction of the existence of the different regimes
for a given jet velocity ranges. For instance, the discrete-
vortex model predicts a (m=1,f=f1) regime, that is not
predicted by the jet-drive model for a dimensionless jet
velocity u0/fW ≃ 2.
Concerning the different thresholds of transition, the

regime change mechanisms have not been fully under-
stood yet. Different parameters seem to rule the tran-
sition at different dimensionless jet velocities11. Among
others, the losses associated with the vortex shedding at
the labium appears to be determining for the transition
from the first regime (m=0,f=f1) to the second regime
(m=0,f=f2) (increasing u0) while it has no effect on the
reverse transition from the second to the first regime (de-
creasing u0). The fact that the vortex shedding losses are
non-linear (see Eq. (2)), and that the amplitude of os-
cillation is not the same for both models explains the
deviation in the transition thresholds, at least for the
increasing jet velocities.
The predicted oscillation frequency is not the same for

the two models. For the jet-drive model, the frequency
of each regime roughly behaves as predicted by lineariza-
tion of the model. For the discrete-vortex model, the
frequency is not well predicted by the approximation de-
veloped in section III.B (see Eq. (19)). The dimension-
less jet velocity u0/fW , beyond which it starts deviating,
corresponds approximatively to 8. It is associated with
a wavelength λh = γdvu0/f of 4W . For such a large
hydrodynamic wavelength, the discrete-vortex model is
expected to fail since the vortex creation area extents
over the window.
The discrete-vortex model allows identification of the

hydrodynamic mode of the jet m, and thus the corre-
sponding aeolian regimes, by a direct count of the number
of vortices within the window. For the jet-drive model,
the hydrodynamic mode can be estimated by comparing
the regimes given by the simulation with the frequency
predicted by Eq. (17) for different jet modes m. Fig-
ure 7 shows the evolution of the frequency with the jet
velocity and the frequency obtained by linearization of
both models. The aeolian regimes are clearly identified
as higher hydrodynamic jet modes m ≥ 1.
The differences in the amplitude predictions of the dif-

ferent regimes show reverse trends according to the hy-
drodynamic jet mode. For the first hydrodynamic mode
m = 0, the amplitude predicted by the discrete-vortex
model is three times larger than the one predicted by
the jet-drive model. Conversely, for higher hydrody-
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FIG. 7. Predicted dimensionless frequency f/f1 (top) and dimensionless amplitude vac/u0 (bottom) versus the dimensionless
jet velocity St−1 = u0/fW (inverse of the Strouhal number) for the jet-drive model (left) and the discrete-vortex model (right)
for a ratio W/h = 4. The vertical dashed line marks the limit λh ≃ 10h discussed in section VI.D.

namic modes m ≥ 1, the amplitude predicted by the
jet-drive model is much larger than the discrete-vortex
model prediction. As showed by Dequand et al.10, the
model predicting the lowest oscillation amplitude should
be selected. In the present case (W/h = 4), this coin-
cides with the separation of the first hydrodynamic mode
m = 0 and higher modes m ≥ 1. Predictions from both
models should be compared to the experimental results.

B. Experimental results

Experimental results are shown in figure 8 in terms
of dimensionless frequency and dimensionless amplitude
of oscillation as function of the dimensionless jet ve-
locity u0/Wf (inverse of the Strouhal number). In
the present experiment, the recorder sounds on several
regimes: the two main regimes of oscillation (m=0,f=f1)
and (m=0,f=f2), and an aeolian regime (m=1,f=f1).
As it has been observed in previous experiments15

the first regime of oscillation (m=0,f=f1) is different
within two jet velocity ranges. For high jet veloci-
ties u0/fW > 6, the frequency slightly increases with
the dimensionless jet velocity before changing oscillat-
ing regime. Below a critical dimensionless jet velocity
of u0/fW = 5.3, the behavior is very different. Instead
of having a frequency increase at constant dimensionless
jet velocity (or Strouhal number) as Meissner obtained

on a Helmholtz resonator15, the increase of frequency is
associated with a decrease of the dimensionless jet veloc-
ity (or an increase of the Strouhal number) down to the
minimum value of u0/fW = 5.3.

At low jet velocities u0/fW < 7, the oscillation fre-
quency decreases below half the pipe resonance frequency
approaching an antiresonance of the pipe. That seems
counterintuitive but the corresponding oscillation ampli-
tude is two orders of magnitude lower than the maximal
amplitude found around u0/fW = 9. The resonator does
not amplify the oscillation at the antiresonance. Note
that the system does not actually sound at the exact fre-
quency of the antiresonance. Instead, the system sounds
on the aeolian regime (m=1,f=f1). An increase in the
hydrodynamic jet mode m allows to change the phase
shift associated with the convective delay, that was too
large for the first hydrodynamic modem=0 in association
with the first acoustic mode. Along with a better phase
balance, the adjustment of the oscillation frequency to
that of the first pipe mode results in an amplitude of os-
cillation one order of magnitude above the amplitude of
oscillation of the first regime around the antiresonance.

The validity domain of the models can now be dis-
cussed by comparing both the amplitudes and the fre-
quencies of oscillation predicted by each model with the
measured ones. Focusing on the first hydrodynamic jet
mode m=0, the jet-drive model underestimates the am-
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FIG. 8. Experimental dimensionless frequency f/f1 (top) and
dimensionless amplitude vac/u0 (bottom) versus the dimen-
sionless jet velocity St−1 = u0/fW (inverse of the Strouhal
number). The aeolian regime has been obtained with an in-
creasing jet velocity only. For the other regimes, the data has
been obtained both by increasing and by decreasing the jet
velocity.

plitude of oscillation by a factor of two whereas the
discrete-vortex model predicts the amplitude more ac-
curately. Reversely, the prediction of frequency is more
accurate for the jet-drive model while the frequency pre-
dicted by the discrete-vortex model deviates from the
resonance frequency. The velocity range within which
the main oscillating regime (m=0,f=f1) occurs is be-
yond the one allowed by the discrete-vortex assumption:
for high jet velocities, the vortex creation area extents
over the window. Furthermore, the value of the aspect
ratio W/h = 4 is close to the critical value found by De-
quand et al.. Near the critical value the system is sensi-
tive to any other parameters that would modify the limit
cycle and no clear distinction can be draw from the sim-
ulation. The parameters in the jet-drive model were set
to match the frequency behavior and not the amplitude.
This model, being confirmed by other studies7,10,11 for
the first jet mode m=0, and as the discrete-vortex model
is not applicable for large jet velocity, the jet-drive model
will be considered as valid for oscillation regime involving
the first hydrodynamic mode of the jet m=0.

Focusing now on the aeolian regimes involving a higher
hydrodynamic jet mode m=1, the comparison is only
possible for the regime experimentally obtained: a cou-

pling between the second jet mode (m=1) and the first
acoustic pipe mode (f=f1). The jet-drive does not pre-
dict the aeolian regime (m=1,f=f1). However, if such
regime should be predicted by this model, its dimension-
less amplitude would be of the same order than the pre-
dicted regime (m=1,f=f2), as shown by Verge et al.27.
The simulated dimensionless amplitude of the regime
(m=1,f=f2) is larger by a factor of 10 than the measured
dimensionless amplitude of the regime (m=1,f=f1). The
predicted dimensionless amplitude of the aeolian regimes
are even larger than that of the main regimes (m=0,f=f1
or f2). The discrete-vortex model predicts two aeolian
regimes corresponding to the second jet mode m=1: the
(m=1,f=f1) regime and the (m=1,f=f2) regime. The
maximum dimensionless amplitude of the (m=1,f=f1)
regime is 2.5 10−2. The experimental value is 2.5 10−2.
The agreement in the amplitudes is fairly good, however
there was an observed mismatch of the predicted dimen-
sionless jet velocity range within which the aeolian regime
appears.
Considering the increase of the dimensionless jet veloc-

ity u0/fW when decreasing the jet velocity close to the
oscillation threshold for the first regime (m=0,f=f1), as
observed on figure 8 for u0/fW < 6, none of the two
models predict such a behavior. However, the acoustic
model of the pipe (Eq. (1)) only takes resonances into
account. The antiresonances are ignored as well as the
direct hydrodynamic feedback driving the edge-tone os-
cillation, which may have an influence within this specific
velocity range.
For the present experiment, the discrete-vortex model

is valid for the prediction of the aeolian regime
(m=1,f=f1) while the jet-drive model is valid for the pre-
diction of the main regimes (m=0,f=f1 or f2). It seems
common to both models to overestimate the amplitude
of oscillation when they are used outside their domains
of validity. Using both models in parallel is an option.
The model predicting the lowest amplitude of oscillation
should be selected preferentially. This is experimentally
verified by Dequand et al.10 for the variation of the as-
pect ratio of the jet W/h, which is discussed in the next
section.

C. Aspect ratio of the jet

Following Dequand et al.10, the aspect ratio of the jet
W/h appears to be the criterion that determines whether
the jet-drive or the discrete-vortex model is most ap-
propriate. Regarding the amplitude of oscillation, De-
quand et al. showed the discrete-vortex model is valid
for W/h < 2.5 while the jet-drive model is valid for
W/h > 2.5. The critical aspect ratio is denoted (W/h)∗.
This is shown for the optimal value of the Strouhal num-
ber. The present time domain simulation of both models
allows the height h of the channel to vary and thus the
aspect ratio W/h, the other parameters remain constant.
The optimal dimensionless amplitude of oscillation

(vac/u0)opt defined in section III.C corresponds to a jet
velocity that provides an oscillation at the resonance fre-
quency of the first acoustic mode: f = f1. Figure 9
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of the (m=1,f2) regime and (m=1,f1) regime are compared
because both models do not predict the same aeolian regimes.

shows the optimal dimensionless amplitude (vac/u0)opt
predicted by both models for different thickness W/h.
As found by Dequand et al., the discrete-vortex model
predicts an amplitude larger than the one predicted by
the jet-drive model for thin jets (high aspect ratio W/h)
and this trend is reversed for thick jets (low aspect ratio
W/h). The critical aspect ratio at which both models
predict the same optimal amplitude for the first regime
(m=0,f=f1) is of the same order as the one found by
Dequand et al.: (W/h)∗ ≃ 2.3.
Figure 9 also shows the optimal amplitude of aeolian

regimes (m=1,f=f1 or f2) as a function of the aspect
ratio. Even if the jet-drive model does not predict the
regime (m=1,f=f1), the comparison of the amplitude
with the regime (m=1,f=f2) is justified since for a given
hydrodynamic jet mode the dimensionless amplitudes of
the fundamental are of the same order for the acoustic
modes27. The same reverse trends as the first jet mode
is predicted. The critical aspect ratio is now much larger
W/h ≃ 13. The critical aspect ratio depends on the
considered hydrodynamic jet mode m.
The critical aspect ratio (W/h)∗ defined above only

stands for an optimal sound production, near the reso-
nance frequency. However, as described in the previous
section, the behavior of both models also depends on the
Strouhal number. Therefore, a more global criterion is
needed. It would have to account for the jet thickness and
at the same time would depend on the Strouhal number
and the hydrodynamic jet mode m.

D. Dynamic aspect ratio of the jet

The criterion based on the aspect ratio of the jet ac-
knowledges for the interaction of the two shear layers.
The dynamic aspect ratio is defined by comparing a char-

acteristic distance in stream wise direction, the hydrody-
namic wavelength λh, with a characteristic distance in
cross stream direction, the channel height h. The hydro-
dynamic wavelength depends on the convective velocity
of vortical perturbations along the jet: cp = γjdu0 for the
jet-drive and uΓ = γdvu0 for the discrete-vortex. The hy-
drodynamic wavelength is given by λh = γu0/f γ either
γjd or γdv. The corresponding dynamic aspect ratio is
defined as λh/h and now depends on the Strouhal num-
ber:

λh

h
=

γ

St

W

h
. (24)

The optimal wavelength λopt at the optimal Strouhal
number is obtained by combining Eqs (20) and (24):

λopt

h
=

4

4m+ 1

(

W

h

)

. (25)

For an oscillation on the first hydrodynamic jet mode
(m = 0), the optimal wavelength is 4W .
As a first approximation, the critical dynamic aspect

ratio (λh/h)
∗ that marks the limit between both models

is expected to depend only on the hydrodynamic mode
m. An estimation of the critical aspect ratio can be ap-
proached by taking Eq. (25) with the critical static as-
pect ratio (W/h)∗:

(

λh

h

)

∗

=
4

4m+ 1

(

W

h

)

∗

. (26)

The static thickness (W/h)∗ has been found to be in
the order of 2.3 for the first jet mode (m = 0) and 13
for the second jet mode (m = 1). This yields the critical
dynamic aspect ratio (λh/h)

∗ to be of the order of 9.2
for the first jet mode and 10.4 for the second jet mode
(see Eq. (26)). The dynamic aspect ratio seems to be
less dependent on the hydrodynamic jet mode. It is a
consistent criterion that extents the definition of the as-
pect ratio proposed by Dequand et al. to a wider range
of Strouhal numbers.
The relationship between the dynamic aspect ratio, the

static aspect ratio and the Strouhal number can be rep-
resented by the schematic diagram shown on figure 10.
Domains of validity of both models are represented in a
(St,W/h) plane. The criterion λh/h = constant appears
as a line given by St = γ/constant × (W/h) (see Eq.
(24)). For a given static aspect ratio W/h, which is the
case for a recorder or a flue organ pipe, the limit between
both models is restrained to a specific Strouhal number.
In the case W/h = 4, taking λh/h = 10 as found previ-

ously, the critical Strouhal that discriminates both mod-
els is St = 0.2, equivalent to a critical dimensionless jet
velocity u0/fW = 5. Above the critical dimensionless
jet velocity u0/fW = 5, the jet-drive is more appropri-
ate. It corresponds to an oscillation on the first hydro-
dynamic mode m=0. Below the critical dimensionless jet
velocity u0/fW = 5, the discrete-vortex is more appro-
priate. This mainly corresponds to oscillation on higher
hydrodynamic modes of the jet (m ≥ 1) and on a part
of the first hydrodynamic mode of the jet m=0. This
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FIG. 10. Schematic diagram of the domains of validity of
the jet-drive and discrete-vortex models as function of the
Strouhal number St and the static aspect ratio W/h. The
dynamic aspect ratio λh/h is represented by the three oblique
lines for three arbitrary values (1, 4 and 8). Assuming
(λh/h)

∗ = 10, the discrete-vortex model is valid within the
gray part, the jet-drive model within the white part.

limit between both models coincide with the limit be-
tween the main regimes (m=0,f1 or f2) and the aeolian
regimes (m ≥ 1) as already observed on figure 7 in sec-
tion VI.A. When not in their domains of validity, both
models overestimate the amplitude of oscillation. For an
instrument where the player has the possibility to control
both the static aspect ratio W/h and the Strouhal num-
ber St = fW/u0, the dynamic aspect ratio λh/h should
be used to decide which model is valid.

The limit formulated in terms of the dynamic aspect
ratio allows reinterpretation of some of the assumptions
made for both models. In the case of the jet-drive model,
valid for thin jets (high value of W/h), the hydrodynamic
wavelength is so much larger than the window length that
the only characteristic distance near the labium is the jet
height h. A sensitive assumption of the model concerns
the positions of the flow injection that characterizes the
dipole. Verge et al.8 proposed that each injection point
should be at a distance h behind the labium since it is
the only characteristic distance. This is in agreement
with the limit based on the dynamic aspect ratio which
provide the height h as the only characteristic distance.
When the jet gets thicker (low value of W/h), the hydro-
dynamic wavelength reaches the same order as the jet
height h. Both distances have to be considered. Due
to the assumption of the injection point at a distance h
behind the labium, the jet-drive model strongly overesti-
mates the amplitude of oscillation. A dynamic distance
of flow injection accounting for the hydrodynamic wave-
length would be a great improvement to the jet-drive
model, though intricate to implement. An other option
is to use the discrete-vortex model in which the wave-
length is intrinsically related to the sound production.
The distance between two vortices –that is now the only
characteristic distance– along with the convection veloc-
ity of the vortices entirely determines the oscillating fre-
quency.

VII. CONCLUSION

Both models presented in this paper are based on sim-
plifications of the jet flow: a linear transverse oscillation
of the jet centerline for the jet-drive model and the con-
vection of discrete vortices for the discrete-vortex model.
The critical aspect ratio that allows to discriminate both
models initially proposed by Dequand et al. has been
extended to a critical dynamic aspect ratio of the jet:
a comparison between the hydrodynamic wavelength of
the jet instabilities and the jet height. Both models are
found to be applicable within over neighboring values of
static aspect ratio W/h and blowing pressure.
For flute-like instruments, this limit roughly separates

the classical regimes, well predicted by the jet-drive
model, from the aeolian regimes, well predicted by the
discrete-vortex model. The aeolians regimes are of lim-
ited musical interest, but they offer an interesting pos-
sibility to enhance the understanding of the sound pro-
duction. In addition, it may find application in other non
musical contexts.
Even if the discrete-vortex model is based on a crude

description of the jet flow and seems only valid for non
musical application, it still represents, along with a de-
scription of the acoustic flow within the window, a tool
that allows to investigate the effect of the labium shape
on the sound production.

APPENDIX A: DISCRETE-VORTEX IMPLEMENTATION

This appendix briefly describes the implementation of
the force due to the vortices on the outer shear layer.
It is a reformulation of Eqs. (8), (9), (10), (11), (15)
and (16) that is easier to include in a step by step time
domain simulation. The force is ruled by the following
set of equations:

xn(t) =

{

0 if t ≤ tn
(t− tn)uΓ elsewhere

(A1)

with tn that holds vac(tn) = 0 &
(

dvac

dt

)

tn
< 0,

Γn(t) =







0 if t ≤ Tn−1

u0uΓ(t− Tn−1) if Tn−1 ≤ t ≤ Tn

u0uΓ(Tn − Tn−1) elsewhere
(A2)

with Tn that holds vac(Tn) = 0 &
(

dvac

dt

)

Tn
> 0,

F = −Hρ0uΓ

∑

n

Γn(t)A(xn(t), h/2) (A3)

with A the weighting coefficient defined

A(x, y) =
v′(x, y)

1
W

∫W

0 v′(x, y = y0)dx
(A4)

and which is computed once at the beginning of the sim-
ulation.
Each vortex is handled as an object whose attributes

are initialized when the vortex is shed. The vortex at-
tributes are:
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− the state: 0, 0.25, 0.75 or 1 whether there is no vor-
tex, the first shedding point appeared, the rolling
point appeared or the vortex is stable (the second
shedding point appeared),

− Tn, Tn−1: the two successive shedding times,
− tn: the rolling time,
− uΓ: the convection velocity of the vortex (at the

time it is shed),
The following algorithm is executed at each time step
denoted t to compute the force due to the vortices on the
outer shear layer. The time dependence is denoted [t] to
emphasizes the discretization.

1. Detection of the n-th shedding time Tn:
if vac[t− 1] ≤ 0 & vac[t] > 0

− the n-th vortex is initialized (Tn−1, uΓ, state=0.25)
− if it exists, the (n-1)-th vortex is updated (Tn,

state=1)

2. Detection of the n-th rolling time tn:
if vac[t− 1] > 0 & vac[t] ≤ 0

− the n-th vortex is updated (tn, uΓ, state=0.75)

3. Deleting vortices beyond the window:
for each vortex n if t− tn ≤ W/uΓ

− all attributes of the n-th vortex are reseted

4. Force of the stable vortices:
for each vortex n if state = 1

− compute the rolling point xn of the vortex
− update the force using Eqs. (A1) to (A4)

5. Force of the creating vortex:
for each vortex n if state = 0.25

− compute the shedding point an−1

− update the force using Eqs. (A1) to (A4) (the
weighting coefficient A is averaged between 0 and
an−1)

for each vortex n if state = 0.75
− compute the rolling point xn of the vortex
− update the force using Eqs. (A1) to (A4) (t−Tn−1

is used instead of Tn−Tn−1 since Tn does not exist
yet)

This algorithm includes a lot of conditional tests, that
are verified at each time step. The computational cost
is therefore quite expensive. A solution to reduce the
computational cost is to write the condition as logical
multiplication. The formulation is then heavier but the
resulting computational cost is much lighter. A real time
version has even been programmed using the language
Faust28.
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