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Abstract: Computer-aided management tools or models of production systems in the manufacturing 
or agricultural domains generally rely implicitly on the theory of planned action. Every action is as-
sumed to be part of an anticipated sequence leading from a current state to a predetermined goal. 
The main limits of this classical view are due to the difficulty to deal with unexpected changes and 
disturbances. To overcome these limits, we developed an agent model based on the theory of situat-
ed action. Whereas the classical approach puts the emphasis on actor’s decision (action being as-
sumed to straightforwardly follow), situated action is viewed as a process endowed with a temporal 
thickness, spontaneously emerging from the situations created by the local interactions between the 
actor and its environment. This model, accounting for both the temporal and spatial dimensions of 
action as well as its contingent features, implements the concepts of affordance (capacity of objects to 
trigger actions) and stigmergy (self-organization mediated by marks left by individuals in their envi-
ronment). Therefore we propose a multi-agents system where the perspective is reversed compared 
with the usual view: in our model it is the environment which is agentified and, so, endowed with the 
capacity of acting by handling the entities it contains. Unlike in classical multi-agents systems, these 
entities (standing for humans, animals…) are, actually, considered as non-autonomous and passive. 
After advocating our choice to put the emphasis on action rather than on decision to represent actual 
human activity, we explain the concepts of affordance and stigmergy and outline the non-classical 
multi-agents system we devised with the perspective to simulate agricultural production systems. 
 
Keywords: planned action; situated action; affordance; stigmergy; multi-agent systems. 
 
 
1 INTRODUCTION: ACTION-CENTRED MODELLING OF HUMAN ACTIVITY 
 
Since the 1950’s with the early applications of emerging Operations Research methods in the firms, 
the emphasis has mainly been put on decision: every action is assumed to stem from decision-making 
by a (often unique) rational decision-maker, even though the notion of rationality has evolved from 
mere optimisation to the search for a ‘satisficing’ solution (Pomerol, 2002). Applied to operations 
management this approach posits the centrality of a ‘plan’ as a representation of sequences of ac-
tions to be executed to attain a goal (Miller, 1960). Managing comes down to generate and control the 
plan execution on the basis of sensed data to reduce the discrepancies between planned and actual 
actions. This stance, largely dominant in the Western culture and, so, in various research fields (cog-
nitive science, artificial intelligence, robotics, management…), has inspired various computer-based 
tools to support the management of manufacturing systems (Johnston and Brennan, 1996) and to 
design information systems (Johnston et al., 2005). Also, until recently, the management and human 
aspects have not often been adressed in farming system modelling or, when it were the case, the 
same decision-driven/planning approach prevailed (McCown, 2002; Garcia et al., 2005; Martin-
Clouaire and Rellier, 2009). 
 
However, this ‘deliberative’ theory of action has been criticized by many authors (Suchman, 1987; 
Johnston and Brennan, 1996; Clancey, 2002). In effect, the analysis of human activity at operations 
level actually shows that, if the plan is a common representation to talk about action (i.e. to analyse, 
prescribe, justify it; Javaux, 1996), actual activities rely only partly upon using plans but, rather, on 
implementing a great variety of ad hoc behaviours spontaneously generated in response to the actual 
situations the agent is engaged in: routines, adaptive cultural patterns, distributed sensori-motor cou-
pling. Those behaviours do not necessitate, neither conscious representation, nor reasoning, nor de-
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cision making (Cohendet and Diani, 2005). As quoted by Clancey (2002): "All human activity is pur-
poseful. But not every goal is a problem to be solved and not every action is motivated by a task". As 
an alternative to the dominant theory of planned action these authors proposed in the late 1980’s the 
theory of ‘situated action’ (Suchman, 1987). Managing, here, consists mainly in structuring the physi-
cal and organizational environment of action to foster adaptive behaviours of the agents, embodying 
their routines in the real world (Hirose, 2002; Cohendet and Diani, 2005), while avoiding as far as 
possible those situations where they must have recourse to decision making through deliberation 
(Johnston et al., 2005). The decisional paradigm of Management Science and Operations Research 
thus appears shifted with respect to most actual working practices. This could explain why numerous 
users in manufacturing (Johnston et al., 2005) as well as in agriculture (see the description by 
McCown, 2002, of the “problem of implementation”) are reluctant to adopt these tools. 
 
But in agricultural systems, our application field, sustainability is obviously strongly dependent upon 
farming practices. If one wants to assess the former, one needs to focus on the latter. Due to the in-
herent complexity of such systems, made of numerous interacting components, the recourse to mod-
elling is unavoidable. Our research, therefore, aims at building a modelling framework to represent 
human actions and their impacts to help assess farming practices. After a first approach based on 
systems dynamics that dealt with action in the temporal domain (Guerrin, 2009), we have recently 
developed a novel approach based on multi-agents modelling. Using the concepts of ‘affordance’ and 
‘stigmergy’ this model integrates the spatial and agent dimensions of action (Afoutni, 2015). It is this 
second piece of work which is presented hereafter. 
 
 
2 PLANNED VS. SITUATED ACTION 
 
Management issues are classically formulated as planning and decision problems. This is due to the 
widespread conception, stemming namely from standard economy (Cohendet and Diani, 2005), that 
human actions necessarily require some kinds of representations like plans to decide at every time 
what to do next: “Planning is the reasoning side of acting” (Ghallab et al., 2004). Planning is so a de-
liberative process enabling one to select and organize a set of actions based on their expected out-
comes. The output of this process is a plan, defined by Miller (1960) as “any hierarchical process (…) 
that can control the order in which a sequence of operations is to be performed”. This definition em-
phasises two features of a plan: its hierarchical structure and its role to control action. Action is de-
fined by its preconditions, its effects and its possible decomposition in sub-actions (Allen, 1984). Ac-
cording to this planning theory: 

• Every actor has a goal, predetermined and stable, viewed as the state of the world to attain; 
• A ‘plan’, symbolic representation of a sequence of actions, is generated to reach the goal; 
• Acting means executing the plan as a program, more or less flexibly to account for the actual 

conditions encountered during its execution; 
• The actor is viewed out of the environment which does not provide any help and is, at worst, 

hostile (source of constraints and uncertainties) or, at best, neutral (stable and previsible); 
• Action stops when the goal is reached; 
• Managing consists in generating the plan and controlling its execution to minimize the dis-

crepancies between anticipated and realized actions. 
 
Away from this deliberative theory viewing action as problem solving (Pomerol, 2002), analyzing activ-
ity systems in many domains has demonstrated that a very large part of human activity is essentially 
reactive. According to the theory of ‘situated action’ (Suchman, 1987) in effect: 

• Every actor, moved by various motivations, often aims more at maintaining his/her relation 
with the environment (including other actors) or a subjective internal state (e.g. satisfaction) 
than to reach an objective state; the ‘goal’, when explicited, is evolutive, contingent and often 
elaborated during the course of action itself: "the unequivocal pursuit of objectives (…) is 
very much the occasional special case; it is certainly not the norm" (Checkland, 1999); 

• There is no need of formal centralized representation of the activity to perform; even (partial, 
coarse) plans may be used as resources to guide action, but never determine it completely; 

• Acting means implementing a great variety of ad hoc behaviours in response to the situations 
the actors participate: routines, cultural or adaptive schemes, distributed sensorimotor cou-
pling…, all necessitating neither representation, nor reasoning, nor decision-making; 
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• Action never stops (sleeping, resting are still activities) and self-maintains dynamically: situa-
tions create actions and actions contribute to create new situations; plans and goals are ac-
tually emergent features of action but are not decisive; 

• Actors are continuously interacting with their environment structured by their practices; this 
help them alleviate their cognitive burden, co-ordinate and adjust their activity in real-time; 

• Managing means structuring the environment by creating ‘affordances’ (Gibson, 1979; Reed, 
1996) to guide actors’ adaptive behaviour and avoid the situations where they must decide. 

 
Our objective is to contribute to this theorizing endeavor about action simulation modelling through the 
design of a simple formalization, based upon a limited number of concepts (i.e. an ontology), to allow 
the structure of action to be represented and analysed in its dynamic and spatial dimensions, its func-
tioning in real settings to be understood and improved management policies to be devised. 
 
 
3 REPRESENTING ACTIVITIES AT OPERATIONS LEVEL 
 
The modelling framework of action we devised is based on the situated action theory for two reasons. 
Firstly, it is linked to the object of our modelling endeavour. If we aim at modelling whole-scale farming 
systems, making action rely on a single global plan (or a bundle of partial plans) is clearly unattaina-
ble due to the inherent complexity of planning itself. Actually, existing farming systems simulators 
ignore this crucial step. The plan is often made ‘manually’, based on expertise, and used as a fixed, a 
priori determined, model input (e.g. in Martin-Clouaire and Rellier, 2009). This comes from the difficul-
ty to generate or revise a plan in due time for acting (Jennings et al., 1998). Questioning the planning 
concept is also unavoidable with a theoretical viewpoint: if every activity needs a plan, so is the plan-
ning activity itself as well as the planning of planning and so on. Until which Great Planner should we 
go to comply with the plan absolutism? Secondly, it is linked to the expected uses of our models. If we 
want to assess by simulation agricultural production systems with respect to sustainability, it is by 
representing as accurately as possible what is (or will be) done in practice that we can measure their 
impacts (performances, resource consumptions, emissions of pollutants, etc.) and, reciprocally, as-
sess the influence of possible changes on the farming activity. Taking an a priori defined plan as de-
termining action, would be taking a static reference to account for an intrinsically dynamic system 
based on the interaction between actors and the environment.  
 
Therefore it is the operations level of management our models must reproduce being prioritarily fo-
cused on action, immanent and dynamical, rather than on decisions and plans, transcendental and 
static. This recalls Brooks’ stance (1991): "representations are not necessary and appear only in the 
eye or mind of the observer". But it is at the tactic or strategic levels, at which decisions are made, 
these models should be used. Otherwise said, if the model must represent virtual agents’ actions at 
the operations level, it should be used to support real actors’ decision-making at the tactic or strategic 
levels. Eventually, the dialectic opposition between planned and situated action matches quite well 
the distinction made by Aristotle between ‘praxis’ (i.e. action for itself) and ‘poiesis’ (i.e. action for 
reaching a goal). Hence, our role should be, by representing actors’ praxis at operations level, support 
the poiesis of decision-makers at the strategic level. Although, both functions are actually exerted by 
the same individual in a classical farm (the farmer) they should conceptually be distinguished. 
 
 
4 THREE CONCEPTS FOR REPRESENTING ACTION AT OPERATIONS LEVEL 
 
 
4.1 The Concept of Situation  
 
Hence, we have based our model on the situated action theory. Every action is situated both in time 
and space and modelled as a dynamic process evolving with the actor’s situation. It is endowed with 
starting and ending dates, a duration and location. Action influences the situation that triggered it. It is 
not frozen but changes adaptively because of its realization. The situation refers to the information 
sensed and interpreted by every actor. A situation is the whole set of resources and constraits playing 
a role to guide actors’ actions. Thus it is not reduced to a set of mental images (Visetti, 1989) though 
it has a subjective aspect: several actors do not necessarily perceive the same setting similarly. For 
Lave (1988), every situation combines two elements: the actor’s spatial environment (the objective 
part called ‘arena’) and the actor’s perception (its subjective dimension called ‘setting’). 
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4.2 The Concept of Affordance 
 
The concept of affordance has been popularized by Gibson (1979) in his theory of direct perception in 
ecological psychology (see also Reed, 1996). For Gibson, when an actor perceives objects or events 
in his/her environment, he/she automatically understands the possibilities of action they afford. This 
concept has motivated a lot of research to make clearer whether affordances were intrinsic properties 
of the environment or, rather, emerging features from the actor-environment coupling. Turvey (1992) 
defined an affordance as a ‘dispositional’ property of the environment. That is, action is triggered only 
if the actor owns the ‘dispositional effectivity’ to complement the object’s property. This definition, 
however, has been criticized by authors like Chemero (2003) and Stoffregen (2003) for whom an af-
fordance does not belong to the environment or the actor but is a contingent relationship possibly 
emerging from the interaction between the actor’s capacities and the environment’s characteristics. 
We stick with this latter definition. For us, an affordance emerges from the agent-environment cou-
pling and situated in time and space. But it is only a possibility of action (necessary condition). The 
corresponding action is realized iff all other conditions for its occurrence are satisfied. 
 
 
4.3 The Concept of Stigmergy 
 
Stigmergy has been coined by Grassé (1959) studying social insects. He demonstrated the control 
and coordination of actions in termites building their nest do not depend upon themselves but on the 
building itself. Each individual’s actions are thus guided by the result of actions made by the commu-
nity. Stigmergy is thus an indirect form of communication mediated by local changes made by the 
actors in their environment. There exist two forms of stigmergy: the one based on actors’ realizations 
like in termites (called ‘sematectonic’); and the one based on marks left by the individuals. We consid-
ered only this latter form of stigmergy based on marks which classical example is ant colonies (De-
neubourg et al., 1990). Foraging ants start moving randomly to explore the environment around their 
nest while dropping pheromones. When an ant finds food it brings it back to the nest following the 
marks already left which are reinforced by its continuous droppings. Being attractive, these marks will 
foster other ants to follow the path to food they will, in turn, reinforce by new droppings. The stability 
of the path between the nest and the food source depends on the ants’ traffic. When the food source 
progressively becomes exhausted, the path is less and less followed and, as pheromones evaporate, 
becomes less and less attractive to ants until it vanishes. Although humans are obviously not social 
insects, stigmergy is deemed relevant to account for human activity (Christensen, 2013). Heylighen 
(2016) considers even it a universal mechanism for enabling “complex, coordinated activity without 
any need for planning, control, communication, simultaneous presence, or even mutual awareness”. 
 
 
5 A MODEL OF SITUATED ACTION. 
 
 
5.1 Environment 
 
We have exploited the little classical idea of the 
environment endowed with an intelligence ena-
bling it to pilot the entities it encompasses to 
make them act. The physical space is a 2D 
continuous space partitioned into a set of cells 
(called ‘places’) with regular or irregular shapes 
forming a grid (Fig. 1). On this space are locat-
ed a set of ‘environmental entities’. We distin-
guish two types of entities whether passive or 
active. Passive entities are the ones that can 
just undergo actions. For example, a food stock 
can undergo being filled or emptied. Active 
entities are those that can be used for acting. 
The operational coupling of active entities 
forms what we call an ‘actuator’. Actuators are 

Agent

Environment

Figure 1. Model architecture: environment layer
made of a 2D physical space partitioned into places
holding environmental entities; every place is
supervised by one abstract agent.
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the actual action performers. They are endowed with the capacities to execute action although they 
cannot decide to act by themselves. This role is assigned to the ‘place-agents’ controlling the places 
on which entities are situated (see §5.2). For example, the action of ploughing can be realized with an 
actuator made of the ‘farmer-tractor-plough’ entities coupled together by the place-agent controlling 
their place. An actuator thus differs from an agent as it lacks autonomy. It can only execute the ac-
tions ordered by the place-agent it depends upon. An environmental entity thus can play a role of 
passive object or actuator according to its situation. But, whatever their role, they all contribute to the 
emergence of the affordances leading to actions that will be performed by the actuators (see §4.2). 
These entities have attributes to describe their state and internal processes. Actuators, in addition, 
have processes standing for the actions they perform and, so, affecting the environment. 
 
 
5.2 Place-agents  
 
The physical space and the environmental entities are controlled by abstract situated agents called 
‘place-agents’ (Fig. 1). Their role is to detect, thanks to the rules they hold, the affordances possibly 
emerging from the interaction between the environmental entities located on their place and, whenev-
er possible, trigger the appropriate actions in the corresponding actuators. A place-agent is equipped 
only with the rules corresponding to actions likely to be executed on its place (the actions to be made 
on a crop plot are not the same than in a cattle workshop). But it may happen that various actuators 
emerge and, so, many candidate actions appear on the same place. To select the action to be exe-
cuted, the place-agent uses the priority rank associated to every action. Beyond its own place, a 
place-agent can also perceive other places comprised in its perception field. It can thus possibly also 
detect affordances emerging from entities located at its neighbours without being able to order them 
to act. When this happens, the place-agent exhibits its interest by the means of stigmergy (see §5.3). 
The fact a place-agent can only order the actuators located on its place, made possible by the space 
partition, thus avoids the conflicts that would arise when ordering the same actuators by neighbours. 
Finally, the behaviour of every place-agent is as follows: 

• At each time-step, detect the affordances from the set of perceived entities; 
• Select the affordance corresponding to the action with highest priority; 
• Check whether the remaining conditions to execute this action are satisfied; 
• If so, trigger the chosen action in the corresponding actuator. 

Once realized the action will impact the state of its place and of the environmental entities present. 
The place-agents are thus ‘situated’ as they sense and act locally. This contrasts with classical ap-
proaches where, unrealistically, agents possess the whole knowledge of the world. 
 
 
5.3 Agent Coordination Based on Stigmergy 
 
If a place-agent moved by the affordances it detects has no need to coordinate its own actions, af-
fordances do not suffice to coordinate a community of agents. For this, stigmergy is used. Place-
agents coordinate with others based on the marks they drop on their place. Perceived marks are con-
stitutive of agents’ situation. Two types of marks are distinguished: flags and traces. 
 
Flags are marks that do not spread in the environment. They are used by the place-agents to com-
municate with their neigbours. For example, let us assume a place-agent is ploughing its place using 
a farmer-tractor-plough actuator and a neighbour is afforded by the farmer-tractor actuator to execute 
another action (e.g. transport). In that case the latter will exhibit its interest by hoisting a flag on its 
place. Flags hold two attributes: the identifier of the aimed entities (here farmer-tractor) and the priori-
ty of the intended action (here transport). If the priority rank of transport is higher than of ploughing, 
the farmer-tractor actuator will be sent to the demander’s place. Otherwise it will keep on ploughing. In 
either case, the demanding place-agent will put its flag down: either because its demand has been 
satisfied, or because the farmer-tractor actuator has gone out of its perception field and the corre-
sponding affordance has vanished. 
 
In contrast with flags, traces are spread over the environment, allowing remote place-agents unable to 
perceive themselves to communicate. Depositing a trace by an agent on its own place can be trig-
gered by three stimuli: (i) the interruption of an ongoing action due to the lack of a necessary re-
source; (ii) the demand of an action needing to be performed some unknown actuator to be sent from 
outside; (iii) the perception of a trace on a neighbouring place to be propagated in case a response 
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cannot be made. The validity of the information held by a trace evolves over time. It is thus necessary 
to update it when it becomes obsolete: 

• Instantaneously: when the demanded action has started, the demanding place-agent erases 
the trace it made, leading its neighbours with the same trace step by step to do the same; 

• Progressively: when the traces propagated during a search for a missing resource or actuator 
did not find their aim, their lifespan is decremented at each time-step until it vanishes.  

 
 
5.4 Model implementation 
 
The model has been im-
plemented with AnyLogic, 
a multimodelling platform 
bringing together systems 
dynamics, discrete events 
and multiagents represen-
tations. Fig. 2 displays a 
simulation interface featur-
ing two farms. In its center 
is the physical space parti-
tioned into places of differ-
ent kinds: crop plots (farm1 
green, farm2 red), ware-
houses (yellow), livestock 
buildings (purple), roads 
(grey), houses (black). A 
list of detected affordances 
is in the window to the left. 
Various actions can be 
simulated among which 
plot disinfection and feed-
ing animals are represented on the two graphs at the bottom of the right panel. They display the time 
evolutions of actions as binary processes (1: action on; 0: action off). Stock evolutions are in the top-
most graph. The spatial dimension of actions appears as different shades of colours of the crop plots, 
contrasting thei(r treated vs. untreated parts. 
 
 
6 CONCLUSION AND PERSPECTIVES 
 
The modelling framework outlined in this paper can compare nicely with other authors’ work: Allen’s 
theory of action and time (Allen, 1984), ontology of action in production systems (Grüninger and Pinto, 
1995), the Brahms agent-based model to simulate human activities (Sierhuis, 2001) and, since it was 
our starting point, the theory of situated action (Suchman, 1987). It satisfies many requirements 
deemed necessary by some of these authors to represent action as a process embodied in the real 
world and, so, situated in time, space and society (Suchman, 1987; Sierhuis, 2001; Clancey, 2002).  
 
Our model is built with three main components: the environment made of a physical space and envi-
ronmental entities, embedded agents and the marks they deposit. The originality of this approach is to 
endow the environment with capacities of triggering and controlling actions.This stance is in keeping 
with the situated action and the affordance concepts. It is also coherent with psychology famous ex-
periments by Stanley Milgram at Yale in the 60’s (see the movie ‘Experimenter’ by Michael Almerey-
da, 2015) suggesting the human propensity to behave following external pressures. Human action 
stems from a continuous dynamical interaction between the agents and their environment. However, 
as it has been conceived dynamical, our model of action clearly departs from the static approaches 
actually aimed at reasoning about already made actions rather than representing ongoing actions. 
This is the case of approaches based on variants of predicate logics (see the synthesis on temporal 
reasoning in Artificial intelligence by Chittaro and Montanari, 2000) like situation calculus (Grüninger 
et Pinto, 1995), temporal logic (Allen, 1984) or event calculus (Kowalski and Sergot, 1986). However 
similarities may be found: for example, we translated into a dynamic representation, Allen’s static 
temporal relations. Relying on similar features (constraints of temporal order, extension, duration…) 

Figure 2. Model interface displaying the case of two farms (see text).
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our model could undoubtedly allow one to simulate dynamically Javaux’s (1996) formalization for task 
analysis. 
 
Conceiving the environment as an intelligent entity directing action enables easily to implement the 
concept of situatedness. However this does not imply the model can simulate the most appropriate 
actions. Otherwise said, it is not aimed at optimizing working flows but, rather, at proposing a pretty 
much realisitic representation of what can occur in the reality where optimization is scarce, which was 
actually our objective. In our system intelligence is distributed over numerous simple agents rather 
than concentrated within a limited number of smart, cognitively complex, ones. Agents’ behaviour, 
based on affordances, allows them to adapt to the changes occurring in their environment without 
calling for complex algorithms (e.g. replanning). The use of stigmergy based on marks allows the 
agents to coordinate implicitly. This also preserves agents’ flexibility and versatility. Finally, we believe 
this model can represent human action in farming systems in a relatively realistic fashion. In effect, it 
is generally observed in this domain behaviours guided by the strong interaction between the actors 
and their local environment. This may be the case in many other domains too. In the next phase of 
this work, we envision to apply our representation framework to real complex farming systems involv-
ing lot of plots, roads, entities and activities interacting in a common territory. 
 
In contrast with what implies more or less explicitly the planned action paradigm (Garcia et al., 2005) 
according to which every action stems from a decision, we believe decision and action are not misci-
ble or interchangeable: “decisions do not always lead to actions, whereas actions are not always pre-
ceded by decisions” (Urfalino, 2004). Our model, focusing on action as such, meets the Checkland’s 
(1999) wish: "modelling purposeful human activity systems as sets of linked activities which together 
could exhibit the emergent property of purposefulness." If a plan denotes obviously an intention, inten-
tion may as well be considered, not as a premise of action, but as its result (Livet, 2005). 
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	2.1 The Nitroscape model
	2.2 Experimental design
	In order to evaluate the impact of model inputs on model outcomes, 11 parameters were selected, characterizing the spatial resolution of the model (A, B), the physical features of the virtual landscape (C - I) and the agronomic management (J, K). The impact of model inputs was evaluated on 29 model outcomes: 5 variables describing the outflow (e.g.: daily nitrogen concentration and amount), 9 spatially-distributed variables describing inter-compartment fluxes (e.g.: evapotranspiration, amount of mineralized amonium or nitrate) and 15 spatially-distributed variables describing the local state of the system (e.g. amonium or nitrate content in groundwater or in soil).
	A complete fractional factorial design (FFD) of size 243 for 11 factors and 3 levels per factor was generated using the R package Planor (Kobilinsky et al., 2012). The resulting FFD was a saturated design of resolution 5: with 243 runs, main effects and two-factor interactions could determined for any output variable, with unconfounded factorial effects and zero residual degree of freedom.
	2.3 Aggregation of model outcomes
	Spatially-distributed outcomes formed large sets that were difficult to handle with conventional statistical tools: each outcome was described by a matrix of size 243 rows x 7·105 columns, with each row representing a unit of the FFD and each column a measure on a pixel (under the highest resolution, the virtual landscape comprised 19600 pixels, with 36 monthly samples per pixel).
	For this reason, these outcomes were spatially or temporally aggregated to obtain different types of data sets: time-series describing spatially-aggregated outcomes were used to carry out a dynamic sensitivity analysis (Section 3.1), while maps of temporally aggregated outcomes were used in a spatial sensitivity analysis (Section 3.2). All the outcomes were also spatially and temporally aggregated in order to carry out a synthesis of the results of the sensitivity analyses applied on the ensemble of model outcomes (Section 3.3).
	2.4 Principal Component Analysis
	2.5 Analysis of sensitivity
	2.6 Cluster analysis
	3.1 Dynamic sensitivity analysis
	Figure 1 outlines the detailed results for the dynamic analysis of sensitivity of the variable "Cumulated NOx emissions". The analysis below was applied on every outflow variable and spatially aggregated outcome. Extracting conclusions from the ensemble of results of the dynamic sensitivity analyses was out of the scope of this work. An equivalent synthesis for all outcomes is presented in Section 3.3.
	
	Figure 1: Dynamic analysis of sensitivity for NOx emissions. i) Time series of each simulated run (colored lines), average (bold black line) and inter quantile range (dashed black line); ii) Time-series of 3 clusters grouping most-similar curves; iCL: cluster label. iii) Dynamic main sensitivity indexes of each factor (colored lines) and of the sum of interactions (dashed black line). Global sensitivity analysis: (iv-vi) decomposition of the first three principal components (PC); (vii-ix) total sensitivity indexes of each factor on each PC, split into main effect (black) and interaction (grey) terms.
	Figure 1 can be interpreted as follows:
	time series showed peaks of NOx emissions during spring (fertilisation period);
	clusters grouped time-series based on their mean-over-time, range of peaks and dynamic variance. This classification could not be considered independent from the splitting by levels of factors A, C, E, F and G;
	NOx emissions were mostly sensitive to factor B -the vertical resolution- (mSIB = (45 ± 6 )%) ; they were equally sensitive to the sum of pairwise interactions (iTOT = (41 ± 6)%);
	PC1 represented the mean-over-time of time-series. It was mainly sensitive to the main effects of factors B and F;
	PC2 showed 1-year periodicity and a strong correlation with the peaks of time-series and a strong correlation with the peaks of time-series. It reflected the main effect of factor F and the interactions C:G, A:B and B:F
	PC3 showed 6-month seasonality with peaks on the extremes of PC2. It reflected the main effect of factor C and the interactions F:G, B:C and C:F.
	3.3 Spatial sensitivity analysis
	Figure 2 outlines the detailed results for the spatial analysis of sensitivity of the variable “Average amount of nitrate in the soil mineral pool at 60cm".
	Figure 2: Spatial sensitivity analysis of nitrate concentration at a 60cm depth. i) map of averages over time and over the factorial design. ii) rsd: coefficient of variation between runs of the factorial design; iii) map of the factors with the highest total sensitivity index (tSI) at each pixel; iv) maps of the main effects of each factor and of the sum of interactions (iTOT); global sensitivity analysis: (v-vii) decomposition of the first three principal components; viii-x) total sensitivity indexes of each factor on each PC, split into main effect (black) and interaction (grey) terms.
	Figure 2 can be interpreted as follows:
	average nitrate concentration was smaller for unmanaged plots than for crops and it presented local maxima around farm buildings;
	the variance of the FFD was greater in unmanaged parcels and around farm buildings, indicating that these areas were more sensible to model inputs;
	the factors with highest impact were spatially distributed. Locally most important factors were: size of the horizontal spatial mesh (A) around farm buildings, lateral transmissivity of soil (C) in unmanaged parcels downslope, exponential decrease in soil transmissivity with depth (D) in some croplands upslope, and the porosity of soil ( F) elsewhere;
	the main sensitivity indexes were spatially distributed accordingly, and interactions had significant impact everywhere;
	PC1 described the spatial mean of FFD variance and it was mostly sensitive to the main effect of factor F as well as most of the interaction terms;
	PC2 was positively correlated with unmanaged plots downslope and negatively correlated with croplands upslope; it was sensitive mainly to the main effects of factors C and D;
	PC3 was positively correlated with unmanaged plot and with croplands upslope; it was sensitive to the main effects of factor F and its interactions.
	3.3 Global sensitivity analysis for multiple outcomes
	A cluster analysis was applied to the ensemble of spatially and temporally aggregated outcomes to group outcomes with similar response to the ensemble of factors (Kaufman, 2009) .
	Figure 3: Cluster analysis of the NitroScape outcomes based on their global sensitivity index profiles: a) Percentage of variance explained by clusters as a function of the number M of clusters; black line: SA results are expressed in terms of main effects (mSI) and sum of pairwise interactions (iSI) of each factor; grey line: SA results are expressed in terms of main effects of each factor and the ensemble of pairwise interaction terms Ω(pairwise SI); b) hierarchical clustering of outcomes: outcomes are linked together if they have similar profiles of sensitivity indices; Inertia gain: variance explained when outcomes are linked together. Colour boxes indicate the clusters obtained for M = 5; c) main effects of each factor on each outcome; d) sum of pairwise interactions of each factor on each outcome. Colours of each line are set according to the colours of clusters.
	The number of clusters (M=5) was selected with the elbow method (with 81.3% of variance explained). It also corresponds to the number of clusters that provides equal classifications of outcomes with different clustering methods.
	In order to better visualize the clusters of similar outcomes and the relations between the effects of each factor, a PCA was applied to transform the space of sensitivity indexes. The projections of outcomes and sensitivity indexes on the axes of the transformed space are shown in Figure 4.
	
	The projection PC1-PC2 shows that 70% of the variance of the sensitivity indexes was explained by this projection (Fig. 4a and 4d). It allowed discriminating clusters 1, 2 and 3. Cluster splitting was driven by the main effects of factors D, F and A. In this projection, the main effects of each factor were independent from each other (indicated by the orthogonal projections of their indexes).
	The projection PC1-PC3 explained 60% of the variance (Fig. 4b and 4e). It allowed discriminating clusters 1 and 3 along the axis and clusters 4 and 5 along the axis . Cluster splitting was driven by the main effects of factors A, C, D and F (Fig. 4e). The effect of factor C was independent from the main effect of other factors and negatively correlated with the effects of pairwise interactions (indicated by anti-parallel projections of their indexes). Main effects of factors A and F were negatively correlated with the main effect of factor D (where the later had a high impact on the outcomes the former did not, and vice versa).
	The projection PC2-PC3 explained 30% of the variance (Fig. 4c and 4f).. It allowed discriminating clusters 4 and 5. Cluster splitting was driven by the main effects of factors A, C, D and F, and by the pairwise interactions A:F, C:E, F:G and F:K (Fig. 4f). Factor C was independent from the other factors, the main effects of factors A, D and F were negatively correlated with pairwise interactions.
	Table 1 summarizes the results of the cluster analysis and the PCA applied on the ensemble of spatially and temporally aggregated outcomes, characterized by their sensitivity indexes. Some closing remarks regarding this synthetic analysis are discussed next.
	Figure 4: Principal Component Analysis and clustering of the results of the global sensitivity analysis of NitroScape. a - c ) projections of the clusters of outcomes onto the plane defined by two principal components; d - f ) projections of sensitivity indexes of input factors onto the plane defined by the principal components.
	Table 1: Summary of the results of the clustering analysis and the principal component analysis applied to the global sensitivity indexes of the ensemble of NitroScape outcomes. N(k): number of outcomes in cluster k.
	Clusters grouped variables that were sensitive to the same factors. However, this did not entail that factors affected these variables in the same way. For example, sNH4(60cm) and NO3(GW) were grouped together in cluster 4 as they both had a high sensitivity to the lateral transmissivity of soil (factor C), but while sNH4(60cm) decreased when C increased, NO3(GW) increased with C.
	The horizontal resolution of the model (A) was the factor that had the highest main effect on the spatially and temporally aggregated outcomes describing nitrous oxide consumed by denitrification and ammonium / nitrate mineralisation and uptake by plants. The vertical resolution (B) was the factor that had the third highest total impact on the spatially and temporally aggregated cumulate NOx emissions. The soil physical parameter to which Nitroscape outcomes were the most sensitive was porosity (F), although lateral water transmissivity (C) and its decrease with depth (D) played significant roles. The total amount of nitrogen fertilizer (K) was the only parameter describing agronomic management that had a significant impact on the model results. Its impact was mediated through the interaction with the lateral transmissivity of soil (C:K): the amount of fertilisation was higher under soils with high transmissivity.
	4 CONCLUSIONS AND FUTURE WORK
	We developed a procedure to perform and synthesize a comprehensive spatial and dynamic analysis of sensitivity of a complex model with several input factors and outcome variables. Some general conclusions regarding the applicability of this analysis are presented below. The methods here presented offer many opportunities for future development. Some of them are listed next.
	The detailed spatial and dynamic analyses of sensitivity of model outcomes provided a thorough characterisation of each output variable. The synthesis of results for spatially and temporally aggregated variables permitted classifying outcomes based on their responses to input parameters. Conversely, it allowed classifying parameters based on their influence on each type of outcome and ruling out parameters that have no influence on the outcomes, within the range of explored values.
	In order to perform the detailed global analyses of sensitivity for each outcome, variables were aggregated either spatially or temporally. Other types of data aggregation could be applied: for instance, data could be aggregated by land use, selecting those pixels that hold a particular crop at a particular time. This could be used to compare different types of agronomic management.
	The detailed spatial and dynamic analyses of sensitivity of each model outcome were here presented for two sample outcomes only. Any other outcome could be thoroughly characterized this way.
	Due to space limitations, the cluster analysis and principal component analysis used to summarise the results of the sensitivity analyses on the ensemble of outcomes was here presented only for spatially and temporally aggregated variables. This synthesis could be easily extended to any set of outcomes characterized by any set of sensitivity indexes, in particular, by those resulting from the dynamic or spatial sensitivity analysis.
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	Appendix Tables: Description of NitroScape parameters and outcome variables
	Table A1: NitroScape input parameters that were varied in the experimental design. Nr: anthropogenic reactive forms of nitrogen, OL: organic liquid manure, OF: organic solid fertilizer, INO: inorganic mineral fertilizer. Levels of the amount of Nr in fertilization are set within a 20% range around a fixed value (X) that depends on the type of fertilization, the number of applications and the type of crop (average value: 180 kg(Nr) ha-1year-1).
	Table A2: NitroScape outcomes. Flow and state variables are dynamic (with monthly samples) and spatially distributed. Outflow variables are dynamic (with daily samples).
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