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On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces

 to prove the ill-posedness for (NLHW) in some cases of the super-critical range.

Introduction and main results

We consider the Cauchy semi-relativistic or half-wave equation posed on R d , d ≥ 1, namely i∂ t u(t, x) + Λu(t, x) = -µ|u| ν-1 u(t, x), (t,

x) ∈ R × R d , u(0, x) = u 0 (x), x ∈ R d , (NLHW) 
where ν > 1, µ ∈ {±1} and Λ = √ -∆ is the Fourier multiplier by |ξ|. The number µ = 1 (resp. µ = -1) corresponds to the defocusing case (resp. focusing case). The Cauchy problem problem such as (NLHW) arises in various physical contexts, such as water waves (see e.g. [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF]), and gravitational collapse (see e.g. [START_REF] Elgart | Mean field dynamics of boson stars[END_REF], [START_REF] Fröhlich | Blowup for nonlinear wave equations descrbing boson stars[END_REF]).

It is worth noticing that the (NLHW) is invariant under the scaling u λ (t, x) = λ -1 ν-1 u(λ -1 t, λ -1 x).

That is, for T ∈ (0, +∞], u solves (NLHW) on (-T, T ), which is equivalent to u λ solves (NLHW) on (-λT, λT ). A direct computation gives

u λ (0) Ḣγ = λ d 2 -1 ν-1 -γ u 0 Ḣγ .
From this, we define the critical regularity exponent for (NLHW) by

γ c = d 2 - 1 ν -1 . (1.1) 
One said that H γ is sub-critical (critical, super-critical) if γ > γ c (γ = γ c , γ < γ c ) respectively. Another important property of (NLHW) is that the following mass and energy are formally conserved under the flow of the equation,

M (u(t)) = |u(t, x)| 2 dx, E(u(t)) = 1 2 |Λ 1/2 u(t, x)| 2 + µ ν + 1 |u(t, x)| ν+1 dx.
The nonlinear half-wave equation (NLHW) has attracted a lot of works in a past decay (see e.g. [START_REF] Fröhlich | Blowup for nonlinear wave equations descrbing boson stars[END_REF], [START_REF] Krieger | Nondispersive solutions to the L 2 -critical halfwave equation[END_REF], [START_REF] Fujiwara | Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearity[END_REF], [START_REF] Choffrut | Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line[END_REF], [START_REF] Fujiwara | On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases[END_REF] and references therein). The main purpose of this note is to give the well-posedness and ill-posedness results for (NLHW) in Sobolev spaces. The proofs of the wellposedness base on Strichartz estimate and the standard contraction argument. We thus only focus on the case d ≥ 2 where Strichartz estimate appears, and just recall the known results in one dimensional case. Precisely, we prove the well-posedness in H γ with γ > 1 -1/ max(ν -1, 4) when d = 2, γ > d/2 -1/ max(ν -1, 2) when d ≥ 3, (

and of course with some regularity assumption on ν. This remains a gap between γ c and 1 -1/ max(ν -1, 4) when d = 2 and d/2 -1/ max(ν -1, 2) when d ≥ 3. Next, we can apply successfully the argument of [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] (see also [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]) to prove the local well-posedness with small data scattering in the critical case provided ν > 5 for d = 2 and ν > 3 for d ≥ 3. The cases ν ∈ [START_REF] Ben-Artzi | Saut Disperion estimates for fourth-order Schrödinger equations[END_REF][START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] when d = 2 and ν ∈ (1, 3] when d ≥ 3 still remain open. It requires another technique rather than just Strichartz estimate. Finally, using the technique of Christ-Colliander-Tao given in [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF], we are able to prove the ill-posedness for (NLHW) in some cases of the super-critical range, precisely in H γ with γ ∈ ((-∞, -d/2] ∩ (-∞, γ c )) ∪ [0, γ c ). We expect that the ill-posedness still holds in the range γ ∈ (-d/2, 0) ∩ (-∞, γ c ) as for the nonlinear Schrödinger equation (see [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF]). But it is not clear to us how to prove it at the moment. Recently, Hong and Sire in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] used the technique of [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF] with the pseudo-Galilean transformation to get the ill-posedness for the nonlinear fractional Schrödinger equation with negative exponent. Unfortunately, it seem to be difficult to control the error of the pseudo-Galilean transformation in high Sobolev norms and so far only restricted in one dimension. Note also that one has a sharp ill-posed result for the cubic (NLHW) in 1D (see [START_REF] Choffrut | Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line[END_REF]). Specifically, one has the ill-posedness for γ < 1/2 which is larger than γ c . The proof of this result mainly bases on the relation with the cubic Szegö equation which can not extend easily to general nonlinearity. Let us firstly recall some known results about the local existence of (NLHW) in 1D. It is well-known that (NLHW) is locally well-posed in H γ (R) with γ > 1/2 and of course with some regularity condition using the energy method and the contraction mapping argument. When ν = 3, i.e. cubic nonlinearity, the (NLHW) is locally well-posed in H γ (R) with γ ≥ 1/2 (see e.g. [START_REF] Krieger | Nondispersive solutions to the L 2 -critical halfwave equation[END_REF], [START_REF] Pocovnicu | First and second order approximations for a nonlinear wave equation[END_REF]). This result is optimal in the sense that the (NLHW) is ill-posed in H γ (R) provided γ < 1/2 (see e.g. [START_REF] Choffrut | Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line[END_REF]). To our knowledge, the local well-posedness for the generalized (NLHW) in H γ (R) with γ ≤ 1/2 seems to be an open question.

Before stating our results, let us introduce some notations (see the appendix of [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF], Chapter 5 of [START_REF] Triebel | Theory of function spaces[END_REF] or Chapter 6 of [START_REF] Bergh | Interpolation spaces[END_REF]). Given γ ∈ R and 1 ≤ q ≤ ∞, the Sobolev and Besov spaces are defined by

H γ q := u ∈ S | u H γ q := Λ γ u L q < ∞ , Λ := 1 + Λ 2 , B γ q := u ∈ S | u B γ q := P 0 u L q + N ∈2 N N 2γ P N u 2 L q 1/2 < ∞ ,
where S is the space of tempered distributions. The Littlewood-Paley projections P 0 := ϕ 0 (D) and P N := ϕ(N -1 D), N ∈ 2 Z are the Fourier multipliers by ϕ 0 (ξ) and ϕ(N -1 ξ) respectively, where 

ϕ 0 ∈ C ∞ 0 (R d ) is such that ϕ 0 (ξ) = 1 for |ξ| ≤ 1, supp(ϕ 0 ) ⊂ {ξ ∈ R d , |ξ| ≤ 2} and ϕ(ξ) := ϕ 0 (ξ) -ϕ 0 (2ξ
q := u ∈ S 0 | u Ḣγ q := Λ γ u L q < ∞ , Ḃγ q := u ∈ S 0 | u Ḃγ q := N ∈2 Z N 2γ P N u 2 L q 1/2 < ∞ ,
where S 0 is a subspace of the Schwartz space S consisting of functions φ satisfying D α φ(0) = 0 for all α ∈ N d where • is the Fourier transform on S and S 0 its topological dual space. Under these settings, H γ q , B γ q , Ḣγ q and Ḃγ q are Banach spaces with the norms u H γ q , u B γ q , u Ḣγ q and u Ḃγ q respectively. In this note, we shall use H γ := H γ 2 , Ḣγ := Ḣγ 2 . We note that (see again Chapter 6 of [START_REF] Bergh | Interpolation spaces[END_REF] or the appendix of [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF]) if 2 ≤ q < ∞, then Ḃγ q ⊂ Ḣγ q . The reverse inclusion holds for 1 < q ≤ 2. In particular, Ḃγ 2 = Ḣγ and Ḃ0 2 = Ḣ0 2 = L 2 . Moreover, if γ > 0, then H γ q = L q ∩ Ḣγ q and B γ q = L q ∩ Ḃγ q . Throughout this sequel, a pair (p, q) is said to be admissible if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 3), 2 p + d -1 q ≤ d -1 2 .
We also denote for (p,

q) ∈ [1, ∞] 2 , γ p,q = d 2 - d q - 1 p . (1.3)
Since we are working in spaces of fractional order γ or γ c , we need the nonlinearity F (z) = -µ|z| ν-1 z to have enough regularity. When ν is an odd integer, F ∈ C ∞ (C, C) (in the real sense). When ν is not an odd integer, we need the following assumption

γ or γ c ≤ ν, (1.4) 
where γ is the smallest integer greater than or equal to γ, similarly for γ c . Our first result concerns the local well-posedness of (NLHW) in the sub-critical case.

Theorem 1.1. Let γ ≥ 0 and ν > 1 be such that (1.2), and also, if ν is not an odd integer, (1.4). Then for all u 0 ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to (NLHW) satisfying

u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), L ∞ ),
for some p > max(ν -1, 4) when d = 2 and some p > max(ν -1, 2) when d ≥ 3. Moreover, the following properties hold:

(i) If T * < ∞, then u(t) H γ → ∞ as t → T * .
(ii) u depends continuously on u 0 in the following sense. There exists 0 < T < T * such that if u 0,n → u 0 in H γ and if u n denotes the solution of (NLHW) with initial data u 0,n , then 0 < T < T * (u 0,n ) for all n sufficiently large and

u n is bounded in L a ([0, T ], H γ-γ a,b b ) for any admissible pair (a, b) with b < ∞. Moreover, u n → u in L a ([0, T ], H -γ a,b b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all > 0. (iii) Let β > γ be such that if ν is not an odd integer, β ≤ ν. If u 0 ∈ H β , then u ∈ C([0, T * ), H β ).
The continuous dependence can be improved to hold in C([0, T ], H γ ) if we assume that ν > 1 is an odd integer or γ ≤ ν -1 otherwise (see Remark 2.8).

Theorem 1.2. Let ν > 5 when d = 2, γ > 3 when d ≥ 3, (1.5) 
and also, if ν is not an odd integer, (1.4). Then for all u 0 ∈ H γc , there exist T * ∈ (0, ∞] and a unique solution to (NLHW) satisfying

u ∈ C([0, T * ), H γc ) ∩ L p loc ([0, T * ), B γc-γp,q q ),
where p = 4, q = ∞ when d = 2; 2 < p < ν -1, q = p = 2p/(p -2) when d = 3; p = 2, q = 2 = 2(d -1)/(d -3) when d ≥ 4. Moreover, if u 0 Ḣγc < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in H γc , i.e. there exists u + 0 ∈ H γc such that

lim t→+∞ u(t) -e itΛ u + 0 H γc = 0.
Our final result is the following ill-posedness for the (NLHW).

Theorem 1.3. Let ν > 1 be such that if ν is not an odd integer, ν ≥ k + 1 for some integer

k > d/2. Then (NLHW) is ill-posed in H γ for γ ∈ ((-∞, -d/2] ∩ (-∞, γ c )) ∪ [0, γ c ). Precisely, if γ ∈ ((-∞, -d/2] ∩ (-∞, γ c )) ∪ (0, γ c
), then for any t > 0 the solution map S u(0) → u(t) of (NLHW) fails to be continuous at 0 in the H γ topology. Moreover, if γ c > 0, the solution map fails to be uniformly continuous on L 2 .

Well-posedness

In this section, we will give the proofs of Theorem 1.1 and Theorem 1.2. Our proof is based on the standard contraction mapping argument using Strichartz estimate and nonlinear fractional derivatives estimates.

Linear estimates

In this subsection, we recall Strichartz estimate for the half-wave equation.

Theorem 2.1 ([2], [START_REF] Keel | Endpoint Strichartz estimates[END_REF], [START_REF] Koch | Dispersive equations and nonlinear waves[END_REF]). Let d ≥ 2, γ ∈ R and u be a (weak) solution to the linear half-wave equation, namely

u(t) = e itΛ u 0 + t 0 e i(t-s)Λ F (s)ds,
for some data u 0 , F . Then for all (p, q) and (a, b) admissible pairs,

u L p (R, Ḃγ q ) u 0 Ḣγ+γp,q + F L a (R, Ḃγ+γp,q-γ a ,b -1 q ) , (2.1) 
where γ p,q and γ a ,b are as in (1.3). In particular,

u L p (R, Ḃγ-γp,q q ) u 0 Ḣγ + F L 1 (R, Ḣγ ) . (2.2)
Here (a, a ) and (b, b ) are conjugate pairs.

The proof of the above result is based on the scaling argument and the Fourier transform of spherical measure.

Corollary 2.2. Let d ≥ 2 and γ ∈ R. If u is a (weak) solution to the linear half-wave equation for some data u 0 , F , then for all (p, q) admissible satisfying q < ∞,

u L p (R,H γ-γp,q q ) u 0 H γ + F L 1 (R,H γ ) .
(2.3)

Proof. We firstly remark that (2.2) together with the Littlewood-Paley theorem yield for any (p, q) admissible satisfying q < ∞,

u L p (R, Ḣγ-γp,q q ) u 0 Ḣγ + F L 1 (R, Ḣγ ) . (2.4) 
We next write u L p (R,H γ-γp,q q ) = Λ γ-γp,q u L p (R,L q ) and apply (2.4) with γ = γ p,q to get

u L p (R,H γ-γp,q q ) Λ γ-γp,q u 0 Ḣγp,q + Λ γ-γp,q F L 1 (R, Ḣγp,q ) .
The estimate (2.3) then follows by using the fact that γ p,q > 0 for all (p, q) is admissible satisfying q < ∞.

Nonlinear estimates

In this subsection, we recall some nonlinear fractional derivatives estimates related to our purpose. Let us start with the following fractional Leibniz rule (or Kato-Ponce inequality). We refer the reader to [START_REF] Grafakos | The Kato-Ponce inequality[END_REF] for the proof of a more general result.

Proposition 2.3. Let γ ≥ 0, 1 < r < ∞ and 1 < p 1 , p 2 , q 1 , q 2 ≤ ∞ satisfying 1 r = 1 p 1 + 1 q 1 = 1 p 2 + 1 q 2 .
Then there exists C = C(d, γ, r, p 1 , q 1 , p 2 , q 2 ) > 0 such that for all u, v ∈ S ,

Λ γ (uv) L r ≤ C Λ γ u L p 1 v L q 1 + u L p 2 Λ γ v L q 2 , (2.5) 
Λ γ (uv) L r ≤ C Λ γ u L p 1 v L q 1 + u L p 2 Λ γ v L q 2 . (2.6)
We also have the following fractional chain rule.

Proposition 2.4. Let F ∈ C 1 (C, C) and G ∈ C(C, R + ) such that F (0) = 0 and |F (θz + (1 -θ)ζ)| ≤ µ(θ)(G(z) + G(ζ)), z, ζ ∈ C, 0 ≤ θ ≤ 1,
where µ ∈ L 1 ((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying

1 r = 1 p + 1 q ,
there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

Λ γ F (u) L r ≤ C F (u) L q Λ γ u L p , (2.7) 
Λ γ F (u) L r ≤ C F (u) L q Λ γ u L p . (2.8)
We refer to [START_REF] Christ | Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation[END_REF] (see also [START_REF] Staffilani | The initial value problem for some dispersive differential equations[END_REF]) for the proof of (2.7) and Proposition 5.1 of [START_REF] Taylor | Tool for PDE Pseudodifferential operators, Paradifferential operators and Layer Potentials[END_REF] for (2.8). Combining the fractional Leibniz rule and the fractional chain rule, one has the following result (see the appendix of [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF]).

Lemma 2.5. Let F ∈ C k (C, C), k ∈ N\{0}. Assume that there is ν ≥ k such that |D i F (z)| ≤ C|z| ν-i , z ∈ C, i = 1, 2, ...., k. Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q , there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S , Λ γ F (u) L r ≤ C u ν-1 L q Λ γ u L p , (2.9) 
Λ γ F (u) L r ≤ C u ν-1 L q Λ γ u L p . (2.10)
Moreover, if F is a homogeneous polynomial in u and u, then (2.9) and (2.10) hold true for any γ ≥ 0.

Corollary 2.6. Let F (z) = |z| ν-1 z with ν > 1, γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q . (i) If ν is an odd integer or 1 γ ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

F (u) Ḣγ r ≤ C u ν-1 L q u Ḣγ p .
A similar estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. (ii) If ν is an odd integer or γ ≤ ν -1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u, v ∈ S ,

F (u) -F (v) Ḣγ r ≤ C ( u ν-1 L q + v ν-1 L q ) u -v Ḣγ p + ( u ν-2 L q + v ν-2 L q )( u Ḣγ p + v Ḣγ p ) u -v L q .
A similar estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. The next result will give a good control on the nonlinear term which allows us to use the contraction mapping argument. Lemma 2.7. Let ν be as in Theorem 1.2 and γ c as in (1.1). Then

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγc-γ 4,∞ ∞ u ν-5 L ∞ (R, Ḃγc 2 ) when d = 2, u p L p (R, Ḃγc-γ p,p p ) u ν-1-p L ∞ (R, Ḃγc 2 ) where 2 < p < ν -1 when d = 3, u 2 L 2 (R, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (R, Ḃγc
The above lemma follows the same spirit as Lemma 3.5 of [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] (see also [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]) using the argument of Lemma 3.1 of [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF].

Proof. We only give a sketch of the proof in the case d ≥ 4, the cases d = 2, 3 are treated similarly. By interpolation, we can assume that ν -1 = m/n > 2, m, n ∈ N with gcd(m, n) = 1. We proceed as in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] and set

c N (t) = N γc-γ 2,2 P N u(t) L 2 (R d ) , c N (t) = N γc P N u(t) L 2 (R d ) .
By Bernstein's inequality, we have

P N u(t) L ∞ (R d ) N d 2 -γc+γ 2,2 c N (t) = N n m -1 2 c N (t), (2.11) 
P N u(t) L ∞ (R d ) N d 2 -γc c N (t) = N n m c N (t).
This implies that for θ ∈ (0, 1) which will be chosen later,

P N u(t) L ∞ (R d ) N n m -θ 2 (c N (t)) θ (c N (t)) 1-θ .
(2.12)

We next use

A(t) := N ∈2 Z P N u(t) L ∞ (R d ) m N1≥•••≥Nm m j=1 P Nj u(t) L ∞ (R d ) .
Estimating the n highest frequencies by (2.11) and the rest by (2.12), we get

A(t) N1≥•••≥Nm n j=1 N n m -1 2 j c Nj (t) m j=n+1 N n m -θ 2 j (c Nj (t)) θ (c Nj (t)) 1-θ .
For an arbitrary δ > 0, we set

cN (t) = N ∈2 Z min(N/N , N /N ) δ c N (t), c N (t) = N ∈2 Z min(N/N , N /N ) δ c N (t).
Using the fact that c N (t) ≤ cN (t) and cNj (t) (N 1 /N j ) δ cN1 (t) for j = 2, ..., m and similarly for primes, we see that

A(t) N1≥•••≥Nm n j=1 N n m -1 2 j (N 1 /N j ) δ cN1 (t) m j=n+1 N n m -θ 2 j (N 1 /N j ) δ (c N1 (t)) θ (c N1 (t)) 1-θ .
We can rewrite the above quantity in the right hand side as

N1≥•••≥Nm m j=n+1 N n m -σθ 2 -δ j n j=2 N n m -1 2 -δ j N n m -1 2 +(m-1)δ 1 (c N1 (t)) n+(m-n)θ (c N1 (t)) (m-n)(1-θ) .
By choosing θ = 1/(ν -2) ∈ (0, 1) and δ > 0 so that

n m - θ 2 -δ > 0, n m - 1 2 + (m -1)δ < 0 or δ < m -2n 2m(m -1)
.

Here condition ν > 3 ensures that m -2n > 0. Summing in N m , then in N m-1 ,..., then in N 2 , we have

A(t) N1∈2 Z (c N1 (t)) 2n (c N1 (t)) (ν-3)n .
The Hölder inequality with the fact that (ν -3)n ≥ 1 implies

A(t) (c(t)) 2n 2 (2 Z ) (c (t)) (ν-3)n 2 (2 Z ) = c(t) 2n 4n (2 Z ) c (t) (ν-3)n 2(ν-3)n (2 Z ) ≤ c(t) 2n 2 (2 Z ) c (t) (ν-3)n 2 (2 Z ) , where c(t) q (2 Z ) := N ∈2 Z |c N (t)| q 1/q
and similarly for prime. The Minkowski inequality then implies

A(t) c(t) 2n 2 (2 Z ) c (t) (ν-3)n 2 (2 Z
) . This implies that A(t) < ∞ for amost allwhere t, hence that

N P N u(t) L ∞ (R d ) < ∞. There- fore N P N u(t) L ∞ (R d ) converges in L ∞ (R d ).
Since it converges to u in the ditribution sense, so the limit is u(t). Thus

u ν-1 L ν-1 (R,L ∞ (R d )) = R u(t) m/n L ∞ (R d ) dt R c(t) 2 2 (2 Z ) c (t) ν-3 2 (2 Z ) dt c 2 L p R 2 (2 Z ) c ν-3 L ∞ R 2 (2 Z ) = u 2 L p (R, Ḃγc-γ 2,2 2 (R d )) u ν-3 L ∞ (R, Ḃγc 2 (R d )) .
The proof is complete.

Proof of Theorem 1.1

We now give the proof of Theorem 1.1 by using the standard fixed point argument in a suitable Banach space. Thanks to (1.2), we are able to choose p > max(ν -1, 4) when d = 2 and

p > max(ν -1, 2) d ≥ 3 such that γ > d/2 -1/p and then choose q ∈ [2, ∞) such that 2 p + d -1 q ≤ d -1 2 .
Step 1. Existence. Let us consider

X := u ∈ L ∞ (I, H γ ) ∩ L p (I, H γ-γp,q q ) | u L ∞ (I,H γ ) + u L p (I,H γ-γp,q q ) ≤ M ,
equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q q ) ,
where I = [0, T ] and M, T > 0 to be chosen later. By the Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = e itΛ u 0 + iµ t 0 e i(t-s)Λ |u(s)| ν-1 u(s)ds (2.13) is a contraction on (X, d). The Strichartz estimate (2.3) yields Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) u 0 H γ + F (u) L 1 (I,H γ ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) F (u) -F (v) L 1 (I,L 2 ) ,
where F (u) = |u| ν-1 u and similarly for F (v). By our assumptions on ν, Corollary 2.6 gives

F (u) L 1 (I,H γ ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I,H γ ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , (2.14) 
F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) u -v L ∞ (I,L 2 ) .
(2.15)

The Sobolev embedding with the fact that γ -γ p,q > d/q implies L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ). Thus, we get

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) u 0 H γ + T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) u L ∞ (I,H γ ) , and 
d(Φ(u), Φ(v)) T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) + v ν-1 L p (I,H γ-γp,q q ) u -v L ∞ (I,L 2 ) .
This shows that for all u, v ∈ X, there exists C > 0 independent of u 0 ∈ H γ and T such that

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ≤ C u 0 H γ + CT 1-ν-1 p M ν , d(Φ(u), Φ(v)) ≤ CT 1-ν-1 p M ν-1 d(u, v).
Therefore, if we set M = 2C u 0 H γ and choose T > 0 small enough so that CT 1-ν-1 p M ν-1 ≤ 1 2 , then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique u ∈ X so that Φ(u) = u.

Step 2. Uniqueness. Consider u, v ∈ C(I, H γ ) ∩ L p (I, L ∞ ) two solutions of (NLHW). Since the uniqueness is a local property (see Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), it suffices to show u = v for T is small. We have from (2.15) that

d(u, v) ≤ CT 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) d(u, v).
Since u L p (I,L ∞ ) is small if T is small and similarly for v, we see that if T > 0 small enough,

d(u, v) ≤ 1 2 d(u, v) or u = v.
Step 3. Item (i). Since the time of existence constructed in Step 1 only depends on H γ -norm of the initial data. The blowup alternative follows by standard argument (see again Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]).

Step 4. Item (ii). Let u 0,n → u 0 in H γ and C, T = T (u 0 ) be as in Step 1. Set M = 4C u 0 H γ . It follows that 2C u 0,n H γ ≤ M for sufficiently large n. Thus the solution u n constructed in

Step 1 belongs to X with T = T (u 0 ) for n large enough. We have from Strichartz estimate (2.3) and (2. ). We also have from (2.15) and the choice of T that

u 0 H γ + T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , provided ( 
d(u n , u) ≤ C u 0,n -u 0 L 2 + 1 2 d(u n , u) or d(u n , u) ≤ 2C u 0,n -u 0 L 2 .
This yields that

u n → u in L ∞ (I, L 2 ) ∩ L p (I, H -γp,q q ). Strichartz estimate (2.3) again implies that u n → u in L a (I, H -γ a,b b
) for any admissible pair (a, b) with b < ∞. The convergence in C(I, H γ-) follows from the boundedness in L ∞ (I, H γ ), the convergence in L ∞ (I, L 2 ) and that

u H γ-≤ u 1-γ H γ u γ L 2 . Step 5. Item (iii). If u 0 ∈ H β for some β > γ satisfying β ≤ ν if ν > 1 is not an odd integer, then
Step 1 shows the existence of H β solution defined on some maximal interval [0, T ). Since H β solution is also a H γ solution, thus T ≤ T * . Suppose that T < T * . Then the unitary property of e itΛ and Lemma imply that

u(t) H β ≤ u 0 H β + C t 0 u(s) ν-1 L ∞ u(s) H β ds,
for all 0 ≤ t < T . The Gronwall's inequality then gives

u(t) H β ≤ u 0 H β exp C t 0 u(s) ν-1 L ∞ ds ,
for all 0 ≤ t < T . Using the fact that u ∈ L ν-1 loc ([0, T * ), L ∞ ), we see that lim sup u(t) H β < ∞ as t → T which is a contradiction to the blowup alternative in H β . Remark 2.8. If we assume that ν > 1 is an odd integer or γ ≤ ν -1 otherwise, then the continuous dependence holds in C(I, H γ ). To see this, we consider X as above equipped with the following metric

d(u, v) := u -v L ∞ (I,H γ ) + u -v L p (I,H γ-γp,q q ) .
Using Item (ii) of Corollary 2.6, we have

F (u) -F (v) L 1 (I,H γ ) ( u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) ) u -v L ∞ (I,H γ ) + ( u ν-2 L ν-1 (I,L ∞ ) + v ν-2 L ν-1 (I,L ∞ ) )( u L ∞ (I,H γ ) + v L ∞ (I,H γ ) ) u -v L ν-1 (I,L ∞ ) .
The Sobolev embedding then implies for all u, v ∈ X,

d(Φ(u), Φ(v)) T 1-ν-1 p M ν-1 d(u, v).
Therefore, the continuity in C(I, H γ ) follows as in Step 4.

Proof of Theorem 1.2

We now turn to the proof of the local well-posedness and small data scattering in critical case by following the same argument as in [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF].

Step 1. Existence. We only treat for d ≥ 4, the ones for d = 2, d = 3 are completely similar. Let us consider

X := u ∈ L ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 
) | u L ∞ (I, Ḣγc ) ≤ M, u L 2 (I, Ḃγc-γ 2,2 2 
)
≤ N , equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L 2 (I, Ḃ-γ 2,2 2 
)
,

where I = [0, T ] and T, M, N > 0 will be chosen later. One can check (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) that (X, d) is a complete metric space. We will show that the functional

Φ(u)(t) = e itΛ u 0 + iµ t 0 e i(t-s)Λ |u(s)| ν-1 u(s)ds =: u hom (t) + u inh (t), (2.16) 
is a contraction on (X, d). The Strichartz estimate (2.2) yields

u hom L 2 (I, Ḃγc-γ 2,2 2 ) u 0 Ḣγc . (2.17) 
We see that

u hom L 2 (I, Ḃγc-γ 2, 2 2 ) 
≤ ε for some ε > 0 small enough which will be chosen later, provided that either u 0 Ḣγc is small or it is satisfied for some T > 0 small enough by the dominated convergence theorem. Therefore, we can take T = ∞ in the first case and T be this small time in the second. A similar estimate to (2.17) holds for u hom L ∞ (I, Ḣγc ) . On the other hand, using again (2.2), we have

u inh L 2 (I, Ḃγc-γ 2,2 2 ) F (u) L 1 (I, Ḣγc ) .
A same estimate holds for u inh L ∞ (I, Ḣγc ) . Corollary 2.6 and Lemma 2.7 give

F (u) L 1 (I, Ḣγc ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I, Ḣγc ) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-2 L ∞ (I, Ḣγc ) . (2.18) 
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Similarly, we have

F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) (2.19) u 2 L 2 (I, Ḃγc-γ 2,2 2 ) u ν-3 L ∞ (I, Ḣγc ) + v 2 L 2 (I, Ḃγc-γ 2,2 2 ) v ν-3 L ∞ (I, Ḣγc ) u -v L ∞ (I,L 2 ) .
This implies for all u, v ∈ X, there exists C > 0 independent of u 0 ∈ H γc such that Φ(u)

L 2 (I, Ḃγc-γ 2,2 2 ) ≤ ε + CN 2 M ν-2 , Φ(u) L ∞ (I, Ḣγc ) ≤ C u 0 Ḣγc + CN 2 M ν-2 , d(Φ(u), Φ(v)) ≤ CN 2 M ν-3 d(u, v).
Now by setting N = 2ε and M = 2C u 0 Ḣγc and choosing ε > 0 small enough such that CN 2 M ν-3 ≤ min{1/2, ε/M }, we see that X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique solution u ∈ X to (NLHW). Note that when u 0 Ḣγc is small enough, we can take T = ∞.

Step 2. Uniqueness. The uniqueness in

C ∞ (I, H γc ) ∩ L 2 (I, B γc-γ 2,2 2 
) follows as in Step 2 of the proof of Theorem 1.1 using (2.19). Here u

L 2 (I, Ḃγc-γ 2,2 2 
) can be small as T is small.

Step 3. Scattering. The global existence when u 0 Ḣγc is small is given in Step 1. It remains to show the scattering property. Thanks to (2.18), we see that

e -it2Λ u(t 2 ) -e -it1Λ u(t 1 ) Ḣγc = iµ t2 t1 e -isΛ (|u| ν-1 u)(s)ds Ḣγc ≤ F (u) L 1 ([t1,t2], Ḣγc ) u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-2 L ∞ ([t1,t2], Ḣγc ) → 0 (2.20) 
as t 1 , t 2 → +∞. We have from (2.19) that

e -it2Λ u(t 2 ) -e -it1Λ u(t 1 ) L 2 u 2 L 2 ([t1,t2], Ḃγc-γ 2,2 2 ) u ν-3 L ∞ ([t1,t2], Ḣγc ) u L ∞ ([t1,t2],L 2 ) , (2.21) 
which also tends to zero as t 1 , t 2 → +∞. This implies that the limit

u + 0 := lim t→+∞ e -itΛ u(t)
exists in H γc . Moreover, we have

u(t) -e itΛ u + 0 = -iµ +∞ t e i(t-s)Λ F (u(s))ds.
The unitary property of e itΛ in L 2 , (2.20) and (2.21) imply that u(t) -e itΛ u + 0 H γc → 0 when t → +∞. This completes the proof of Theorem 1.2.

Ill-posedness

In this section, we will give the proof of Theorem 1.3. We follow closely the argument of [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF] using small dispersion analysis and decoherence arguments.

Small dispersion analysis

Now, let us consider for 0 < δ 1 the following equation

i∂ t φ(t, x) + δΛφ(t, x) = -µ|φ| ν-1 φ(t, x), (t, x) ∈ R × R d , φ(0, x) = φ 0 (x), x ∈ R d . (3.1)
Note that (3.1) can be transformed back to (NLHW) by using u(t, x) := φ(t, δx).

Lemma 3.1. Let k > d/2 be an integer. If ν is not an odd integer, then we assume also the additional regularity condition ν ≥ k + 1. Let φ 0 be a Schwartz function. Then there exists C, c > 0 such that if 0 < δ ≤ c sufficiently small, then there exists a unique solution φ (δ) ∈ C([-T, T ], H k ) of (3.1) with T = c| log δ| c satisfying

φ (δ) (t) -φ (0) (t) H k ≤ Cδ 1/2 , (3.2) 
for all |t| ≤ c| log δ| c , where

φ (0) (t, x) := φ 0 (x) exp(-iµt|φ 0 (x)| ν-1 )
is the solution of (3.1) with δ = 0.

Proof. We refer to Lemma 2.1 of [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF], where the small dispersion analysis is invented to prove the ill-posedness for the nonlinear Schrödinger equation. The same proof can be applied to the nonlinear half-wave equation without any difficulty. By using the energy method, we end up with the following estimate

φ (δ) (t) -φ (0) (t) H k ≤ Cδ exp(C(1 + |t|) C ).
Thus, if |t| ≤ c| log δ| c for suitably small 0 < δ ≤ c, then exp(C(1 + |t|) C ) ≤ δ -1/2 and (3.2) follows.

Remark 3.2. By the same argument as in [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF], we can get the following better estimate

φ (δ) (t) -φ (0) (t) H k,k ≤ Cδ 1/2 , (3.3) 
for all |t| ≤ c| log δ| c , where H k,k is the weighted Sobolev space

φ H k,k := k |α|=0 x k-|α| D α φ L 2 .
Now, let λ > 0 and set

u (δ,λ) (t, x) := λ -1 ν-1 φ (δ) (λ -1 t, λ -1 δx). (3.4) 
It is easy to see that u (δ,λ) is a solution of (NLHW).

Lemma 3.3. Let γ ∈ R and 0 < λ ≤ δ 1. Let φ 0 ∈ S be such that if γ ≤ -d/2, φ0 (ξ) = O(|ξ| κ ) as ξ → 0,
for some κ > -γ -d/2, where • is the Fourier transform. Then there exists C > 0 such that

u (δ,λ) (0) H γ ≤ Cλ γc-γ δ γ-d/2 . (3.5)
Proof. The proof of this lemma is essentially given in [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF]. For reader's convenience, we give a sketch of the proof. We firstly have

[u (δ,λ) (0)]ˆ(ξ) = λ -1 ν-1 (λδ -1 ) d φ0 (λδ -1 ξ).
Thus,

u (δ,λ) (0) 2 H γ = λ -2 ν-1 (λδ -1 ) 2d (1 + |ξ| 2 ) γ | φ0 (λδ -1 ξ)| 2 dξ = λ -2 ν-1 (λδ -1 ) d (1 + |λ -1 δξ| 2 ) γ | φ0 (ξ)| 2 dξ ∼ λ -2 ν-1 (λδ -1 ) d-2γ |ξ|≥λδ -1 |ξ| 2γ | φ0 (ξ)| 2 dξ + λ -8 ν-1 (λδ -1 ) d |ξ|≤λδ -1 | φ0 (ξ)| 2 dξ = λ -2 ν-1 (λδ -1 ) d-2γ R d |ξ| 2γ | φ0 (ξ)| 2 dξ - |ξ|≤λδ -1 ((λδ -1 ) 2γ -|ξ| 2γ )| φ0 (ξ)| 2 dξ .
Using the fact that λδ -1 ≤ 1, we obtain for γ > -d/2 that

u (δ,λ) (0) H γ = cλ -1 ν-1 (λδ -1 ) d/2-γ (1 + O((λδ -1 ) γ+d/2 )) ≤ Cλ γc-γ δ γ-d/2 ,
where c = 0 provided that φ 0 is not identically zero. Moreover, for γ ≤ -d/2, the assumption on φ0 also implies

u (δ,λ) (0) H γ ≤ Cλ γc-γ δ γ-d/2 .
Here we use the fact that

|ξ|≤λδ -1 ((λδ -1 ) 2γ -|ξ| 2γ )| φ0 (ξ)| 2 dξ ≤ C(λδ -1 ) d+2γ+2κ ≤ C.
This completes the proof of (3.5).

Proof of Theorem 1.3

We are now able to prove Theorem 1.3. We only consider the case t ≥ 0, the one for t < 0 is similar. Let ∈ (0, 1] be fixed and set

λ γc-γ δ γ-d/2 =: , (3.6) 
equivalently

λ = δ θ , where θ = d/2 -γ γ c -γ > 1, hence 0 < λ ≤ δ 1.
Note that we are considering here γ < γ c . We now split the proof into several cases.

The case 0 < γ < γ c . Using (3.6), Lemma 3.3 gives

u (δ,λ) (0) H γ ≤ C .
Since the support of φ (0) (t, x) is independent of t, we see that for t large enough, depending on γ, φ (0) (t) H γ ∼ t γ , whenever γ ≥ 0 provided either ν > 1 is an odd integer or γ ≤ ν -1 otherwise. Thus for δ 1 and 1 t ≤ c| log δ| c , (3.2) implies

φ (δ) (t) H γ ∼ t γ . (3.7) We next have [u (δ,λ) (λt)]ˆ(ξ) = λ -1 ν-1 (λδ -1 ) d [φ (δ) (t)]ˆ(λδ -1 ξ).
This shows that

u (δ,λ) (λt) 2 H γ = (1 + |ξ| 2 ) γ |[u (δ,λ) (λt)]ˆ(ξ)| 2 dξ = λ -2 ν-1 (λδ -1 ) d (1 + |λ -1 δξ| 2 ) γ |[φ (δ) (t)]ˆ(ξ)| 2 dξ ≥ λ -2 ν-1 (λδ -1 ) d-2γ |ξ|≥1 |ξ| 2γ |[φ (δ) (t)]ˆ(ξ)| 2 dξ ≥ λ -2 ν-1 (λδ -1 ) d-2γ c φ (δ) (t) 2 H γ -C φ (δ) (t) 2 L 2 .
Thanks to (3.7), we have φ (δ) (t) L 2 φ (δ) (t) H γ for t 1. This yields that

u (δ,λ) (λt) H γ ≥ cλ -1 ν-1 (λδ -1 ) d/2-γ φ (δ) (t) H γ ≥ c t γ ,
for 1 t ≤ c| log δ| c . We now choose t = c| log δ| c and pick δ > 0 small enough so that t γ > -1 , λt < .

Therefore, for any ε > 0, there exists a solution of (NLHW) satisfying

u(0) H γ < ε, u(t) H γ > ε -1
for some t ∈ (0, ε). Thus for any t > 0, the solution map S u(0) → u(t) for the Cauchy problem (NLHW) fails to be continuous at 0 in the H γ -topology.

The case γ ≤ -d/2 and γ < γ c . Let u (δ,λ) be as in (3.4). Thanks to (3.6), Lemma 3.3 implies

u (δ,λ) (0) H γ ≤ C , provided 0 < λ ≤ δ 1 and φ 0 ∈ S satisfying φ0 (ξ) = O(|ξ| κ ) as ξ → 0,
for some κ > -γ -d/2. We recall that

φ (0) (t, x) = φ 0 (x) exp(-iµt|φ 0 (x)| ν-1 ).
It is clear that we can choose φ 0 so that

φ (0) (1, x)dx ≥ c or |[φ (0) (1)]ˆ(0)| ≥ c,
for some constant c > 0. Since φ (0) (1) is rapidly decreasing, the continuity implies that

|[φ (0) (1)]ˆ(ξ)| ≥ c, for |ξ| ≤ c with 0 < c 1. On the other hand, using (3.3) (note that H k,k controls L 1 when k > d/2), we have |[φ (δ) (1)]ˆ(ξ) -[φ (0) (1)]ˆ(ξ)| ≤ Cδ 1/2 ,
and then |[φ (δ) (1)]ˆ(ξ)| ≥ c, for |ξ| ≤ c provided δ is taken small enough. Moreover, we have u (δ,λ) (λ, x) = λ -1 ν-1 φ (δ) (1, λ -1 δx) and [u (δ,λ) (λ)]ˆ(ξ) = λ -1 ν-1 (λδ -1 ) d [φ (δ) (1)]ˆ(λδ -1 ξ). This implies that [u (δ,λ) (λ)]ˆ(ξ) ≥ cλ -1 ν-1 (λδ -1 ) d , for |ξ| ≤ cλ -1 δ.

In the case γ < -d/2, we have

u (δ,λ) (λ) H γ ≥ cλ -1 ν-1 (λδ -1 ) d = c (λδ -1 ) γ+d/2 .
Here 0 < λ ≤ δ 1, thus (λδ -1 ) γ+d/2 → +∞. We can choose δ small enough so that λ → 0 and (λδ -1 ) γ+d/2 ≥ -2 or u (δ,λ) (λ) H γ ≥ -1 .

In the case γ = -d/2, we have

u (δ,λ) (λ) H -d/2 ≥ cλ -1 ν-1 (λδ -1 ) d |ξ|≤cλ -1 δ (1 + |ξ|) -d dξ 1/2 = cλ -1 ν-1 (λδ -1 ) d (log(cλ -1 δ)) 1/2 = c (log(cλ -1 δ)) 1/2 .
By choosing δ small enough so that λ → 0 and log(cλ -1 δ) ≥ -4 , we see that

u (δ,λ) (λ) H -d/2 ≥ -1 .
Combining both cases, we see that the solution map fails to be continuous at 0 in H γ -topology.

The case γ = 0 < γ c . Let a, a ∈ [1/2, 2]. Let φ (a,δ) be the solution to (3.1) with initial data φ (a,δ) (0) = aφ 0 .

Then, Lemma 3.1 gives φ (a,δ) (t) -φ (a,0) (t)

H k ≤ Cδ 1/2 , (3.8) 
for all |t| ≤ c| log δ| c , where φ (a,0) (t, x) = aφ 0 (x) exp(-iµa ν-1 t|φ 0 (x)| ν-1 ) (3.9)

is the solution of (3.1) with δ = 0 and the same initial data as φ (a,δ) . Note that since a belongs to a compact set, then the constant C, c can be taken to be independent of a. We next define u (a,δ,λ) (t, x) := λ -1 ν-1 φ (a,δ) (λ -1 t, λ -1 δx).

(3.10)

It is easy to see that u (a,δ,λ) is also a solution of (NLHW). Using (3.9), a direct computation shows that φ (a,0) (t) -φ (a ,0) (t) L 2 ≥ c > 0, for some time t satisfying |a -a | -1 ≤ t ≤ c| log δ| c provided that δ is small enough so that c| log δ| c ≥ |a -a | -1 . The triangle inequality together with (3.8) yields φ (a,δ) (t) -φ (a ,δ) (t) L 2 ≥ c, for all |a -a | -1 ≤ t ≤ c| log δ| c . Now let be as in (3.6), i.e.

λ -1 ν-1 (λδ -1 ) d/2 =: , or λ = δ θ with θ = d/2 γc > 1. Moreover, using the fact [u (a,δ,λ) (λt)]ˆ(ξ) = λ -1 ν-1 (λδ -1 ) d [φ (a,δ) (t)]ˆ(λδ -1 ξ),

we have u (a,δ,λ) (λt) -u (a ,δ,λ) (λt) L 2 = λ -1 ν-1 (λδ -1 ) d/2 φ (a,δ) (t) -φ (a ,δ) (t) L 2 ≥ c .

Similarly, using that [u (a,δ,λ) (0)]ˆ(ξ) = aλ -1 ν-1 (λδ -1 ) d φ0 (λδ -1 ξ),

we have u (a,δ,λ) (0) L 2 , u (a ,δ,λ) (0) L 2 ≤ C , and u (a,δ,λ) (0) -u (a ,δ,λ) (0)

L 2 ≤ C |a -a |.
Since |a -a | can be arbitrarily small, this shows that for any 0 < , σ < 1 and for any t > 0, there exist u 1 , u 2 solutions of (NLHW) with initial data u 1 (0), u 2 (0) ∈ S such that

u 1 (0) L 2 , u 2 (0) L 2 ≤ C , u 1 (0) -u 2 (0) L 2 ≤ Cσ, u 1 (t) -u 2 (t) L 2 ≥ c .
This shows that the solution map fails to be uniformly continuous on L 2 . This completes the proof of Thereom 1.3.

  a, b) is admissible and b < ∞. This shows the boundedness of u n in L a (I, H γ-γ a,b b

  ). The homogeneous Sobolev and Besov spaces are defined by

	Ḣγ

) when d ≥ 4, where p = 2p/(p -2) and 2 = 2(d -1)/(d -3).1 see (1.4) for the definition of • .
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