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On the Cauchy problem for the nonlinear

semi-relativistic equation in Sobolev spaces

Van Duong Dinh

Abstract

We proved the local well-posedness for the power-type nonlinear semi-relativistic or half-
wave equation (NLHW) in Sobolev spaces. Our proofs mainly base on the contraction map-
ping argument using Strichartz estimate. We also apply the technique of Christ-Colliander-
Tao in [7] to prove the ill-posedness for (NLHW) in some cases of the super-critical range.

1 Introduction and main results

We consider the Cauchy semi-relativistic or half-wave equation posed on Rd, d ≥ 1, namely{
i∂tu(t, x) + Λu(t, x) = −µ|u|ν−1u(t, x), (t, x) ∈ R× Rd,

u(0, x) = u0(x), x ∈ Rd, (NLHW)

where ν > 1, µ ∈ {±1} and Λ =
√
−∆ is the Fourier multiplier by |ξ|. The number µ = 1 (resp.

µ = −1) corresponds to the defocusing case (resp. focusing case). The Cauchy problem problem
such as (NLHW) arises in various physical contexts, such as water waves (see e.g. [19]), and
gravitational collapse (see e.g. [11], [12]).

It is worth noticing that the (NLHW) is invariant under the scaling

uλ(t, x) = λ−
1

ν−1u(λ−1t, λ−1x).

That is, for T ∈ (0,+∞], u solves (NLHW) on (−T, T ), which is equivalent to uλ solves (NLHW)
on (−λT, λT ). A direct computation gives

‖uλ(0)‖Ḣγ = λ
d
2−

1
ν−1−γ‖u0‖Ḣγ .

From this, we define the critical regularity exponent for (NLHW) by

γc =
d

2
− 1

ν − 1
. (1.1)

One said that Hγ is sub-critical (critical, super-critical) if γ > γc (γ = γc, γ < γc) respectively.
Another important property of (NLHW) is that the following mass and energy are formally
conserved under the flow of the equation,

M(u(t)) =

∫
|u(t, x)|2dx, E(u(t)) =

∫
1

2
|Λ1/2u(t, x)|2 +

µ

ν + 1
|u(t, x)|ν+1dx.

The nonlinear half-wave equation (NLHW) has attracted a lot of works in a past decay (see
e.g. [12], [23], [14], [6], [13] and references therein). The main purpose of this note is to give the
well-posedness and ill-posedness results for (NLHW) in Sobolev spaces. The proofs of the well-
posedness base on Strichartz estimate and the standard contraction argument. We thus only
focus on the case d ≥ 2 where Strichartz estimate appears, and just recall the known results in
one dimensional case. Precisely, we prove the well-posedness in Hγ with{

γ > 1− 1/max(ν − 1, 4) when d = 2,
γ > d/2− 1/max(ν − 1, 2) when d ≥ 3,

(1.2)
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and of course with some regularity assumption on ν. This remains a gap between γc and
1 − 1/max(ν − 1, 4) when d = 2 and d/2 − 1/max(ν − 1, 2) when d ≥ 3. Next, we can apply
successfully the argument of [18] (see also [10]) to prove the local well-posedness with small data
scattering in the critical case provided ν > 5 for d = 2 and ν > 3 for d ≥ 3. The cases ν ∈ (1, 5]
when d = 2 and ν ∈ (1, 3] when d ≥ 3 still remain open. It requires another technique rather
than just Strichartz estimate. Finally, using the technique of Christ-Colliander-Tao given in [7],
we are able to prove the ill-posedness for (NLHW) in some cases of the super-critical range,
precisely in Hγ with γ ∈ ((−∞,−d/2] ∩ (−∞, γc)) ∪ [0, γc). We expect that the ill-posedness
still holds in the range γ ∈ (−d/2, 0) ∩ (−∞, γc) as for the nonlinear Schrödinger equation (see
[7]). But it is not clear to us how to prove it at the moment. Recently, Hong and Sire in [18]
used the technique of [7] with the pseudo-Galilean transformation to get the ill-posedness for the
nonlinear fractional Schrödinger equation with negative exponent. Unfortunately, it seem to be
difficult to control the error of the pseudo-Galilean transformation in high Sobolev norms and
so far only restricted in one dimension. Note also that one has a sharp ill-posed result for the
cubic (NLHW) in 1D (see [6]). Specifically, one has the ill-posedness for γ < 1/2 which is larger
than γc. The proof of this result mainly bases on the relation with the cubic Szegö equation
which can not extend easily to general nonlinearity.

Let us firstly recall some known results about the local existence of (NLHW) in 1D. It is
well-known that (NLHW) is locally well-posed in Hγ(R) with γ > 1/2 and of course with some
regularity condition using the energy method and the contraction mapping argument. When
ν = 3, i.e. cubic nonlinearity, the (NLHW) is locally well-posed in Hγ(R) with γ ≥ 1/2 (see e.g.
[23], [25]). This result is optimal in the sense that the (NLHW) is ill-posed in Hγ(R) provided
γ < 1/2 (see e.g. [6]). To our knowledge, the local well-posedness for the generalized (NLHW)
in Hγ(R) with γ ≤ 1/2 seems to be an open question.

Before stating our results, let us introduce some notations (see the appendix of [15], Chapter
5 of [29] or Chapter 6 of [3]). Given γ ∈ R and 1 ≤ q ≤ ∞, the Sobolev and Besov spaces are
defined by

Hγ
q :=

{
u ∈ S ′ | ‖u‖Hγq := ‖ 〈Λ〉γ u‖Lq <∞

}
, 〈Λ〉 :=

√
1 + Λ2,

Bγq :=
{
u ∈ S ′ | ‖u‖Bγq := ‖P0u‖Lq +

( ∑
N∈2N

N2γ‖PNu‖2Lq
)1/2

<∞
}
,

where S ′ is the space of tempered distributions. The Littlewood-Paley projections P0 := ϕ0(D)
and PN := ϕ(N−1D), N ∈ 2Z are the Fourier multipliers by ϕ0(ξ) and ϕ(N−1ξ) respectively,
where ϕ0 ∈ C∞0 (Rd) is such that ϕ0(ξ) = 1 for |ξ| ≤ 1, supp(ϕ0) ⊂ {ξ ∈ Rd, |ξ| ≤ 2} and
ϕ(ξ) := ϕ0(ξ)− ϕ0(2ξ). The homogeneous Sobolev and Besov spaces are defined by

Ḣγ
q :=

{
u ∈ S ′0 | ‖u‖Ḣγq := ‖Λγu‖Lq <∞

}
,

Ḃγq :=
{
u ∈ S ′0 | ‖u‖Ḃγq :=

( ∑
N∈2Z

N2γ‖PNu‖2Lq
)1/2

<∞
}
,

where S0 is a subspace of the Schwartz space S consisting of functions φ satisfying Dαφ̂(0) = 0
for all α ∈ Nd where ·̂ is the Fourier transform on S and S ′0 its topological dual space. Under
these settings, Hγ

q , B
γ
q , Ḣ

γ
q and Ḃγq are Banach spaces with the norms ‖u‖Hγq , ‖u‖Bγq , ‖u‖Ḣγq and

‖u‖Ḃγq respectively. In this note, we shall use Hγ := Hγ
2 , Ḣγ := Ḣγ

2 . We note that (see again

Chapter 6 of [3] or the appendix of [15]) if 2 ≤ q < ∞, then Ḃγq ⊂ Ḣγ
q . The reverse inclusion

holds for 1 < q ≤ 2. In particular, Ḃγ2 = Ḣγ and Ḃ0
2 = Ḣ0

2 = L2. Moreover, if γ > 0, then
Hγ
q = Lq ∩ Ḣγ

q and Bγq = Lq ∩ Ḃγq .
Throughout this sequel, a pair (p, q) is said to be admissible if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 3),
2

p
+
d− 1

q
≤ d− 1

2
.
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We also denote for (p, q) ∈ [1,∞]2,

γp,q =
d

2
− d

q
− 1

p
. (1.3)

Since we are working in spaces of fractional order γ or γc, we need the nonlinearity F (z) =
−µ|z|ν−1z to have enough regularity. When ν is an odd integer, F ∈ C∞(C,C) (in the real
sense). When ν is not an odd integer, we need the following assumption

dγe or dγce ≤ ν, (1.4)

where dγe is the smallest integer greater than or equal to γ, similarly for dγce. Our first result
concerns the local well-posedness of (NLHW) in the sub-critical case.

Theorem 1.1. Let γ ≥ 0 and ν > 1 be such that (1.2), and also, if ν is not an odd integer,
(1.4). Then for all u0 ∈ Hγ , there exist T ∗ ∈ (0,∞] and a unique solution to (NLHW) satisfying

u ∈ C([0, T ∗), Hγ) ∩ Lploc([0, T ∗), L∞),

for some p > max(ν − 1, 4) when d = 2 and some p > max(ν − 1, 2) when d ≥ 3. Moreover, the
following properties hold:

(i) If T ∗ <∞, then ‖u(t)‖Hγ →∞ as t→ T ∗.

(ii) u depends continuously on u0 in the following sense. There exists 0 < T < T ∗ such that
if u0,n → u0 in Hγ and if un denotes the solution of (NLHW) with initial data u0,n, then

0 < T < T ∗(u0,n) for all n sufficiently large and un is bounded in La([0, T ], H
γ−γa,b
b ) for

any admissible pair (a, b) with b <∞. Moreover, un → u in La([0, T ], H
−γa,b
b ) as n→∞.

In particular, un → u in C([0, T ], Hγ−ε) for all ε > 0.

(iii) Let β > γ be such that if ν is not an odd integer, dβe ≤ ν. If u0 ∈ Hβ, then u ∈
C([0, T ∗), Hβ).

The continuous dependence can be improved to hold in C([0, T ], Hγ) if we assume that ν > 1
is an odd integer or dγe ≤ ν − 1 otherwise (see Remark 2.8).

Theorem 1.2. Let {
ν > 5 when d = 2,
γ > 3 when d ≥ 3,

(1.5)

and also, if ν is not an odd integer, (1.4). Then for all u0 ∈ Hγc , there exist T ∗ ∈ (0,∞] and a
unique solution to (NLHW) satisfying

u ∈ C([0, T ∗), Hγc) ∩ Lploc([0, T ∗), Bγc−γp,qq ),

where p = 4, q = ∞ when d = 2; 2 < p < ν − 1, q = p? = 2p/(p − 2) when d = 3; p = 2, q =
2? = 2(d− 1)/(d− 3) when d ≥ 4. Moreover, if ‖u0‖Ḣγc < ε for some ε > 0 small enough, then
T ∗ =∞ and the solution is scattering in Hγc , i.e. there exists u+

0 ∈ Hγc such that

lim
t→+∞

‖u(t)− eitΛu+
0 ‖Hγc = 0.

Our final result is the following ill-posedness for the (NLHW).

Theorem 1.3. Let ν > 1 be such that if ν is not an odd integer, ν ≥ k + 1 for some integer
k > d/2. Then (NLHW) is ill-posed in Hγ for γ ∈ ((−∞,−d/2]∩ (−∞, γc))∪ [0, γc). Precisely,
if γ ∈ ((−∞,−d/2] ∩ (−∞, γc)) ∪ (0, γc), then for any t > 0 the solution map S 3 u(0) 7→ u(t)
of (NLHW) fails to be continuous at 0 in the Hγ topology. Moreover, if γc > 0, the solution
map fails to be uniformly continuous on L2.
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2 Well-posedness

In this section, we will give the proofs of Theorem 1.1 and Theorem 1.2. Our proof is based on
the standard contraction mapping argument using Strichartz estimate and nonlinear fractional
derivatives estimates.

2.1 Linear estimates

In this subsection, we recall Strichartz estimate for the half-wave equation.

Theorem 2.1 ([2], [21], [22]). Let d ≥ 2, γ ∈ R and u be a (weak) solution to the linear half-wave
equation, namely

u(t) = eitΛu0 +

∫ t

0

ei(t−s)ΛF (s)ds,

for some data u0, F . Then for all (p, q) and (a, b) admissible pairs,

‖u‖Lp(R,Ḃγq ) . ‖u0‖Ḣγ+γp,q + ‖F‖
La′ (R,Ḃ

γ+γp,q−γa′,b′−1

q′ )
, (2.1)

where γp,q and γa′,b′ are as in (1.3). In particular,

‖u‖
Lp(R,Ḃγ−γp,qq )

. ‖u0‖Ḣγ + ‖F‖L1(R,Ḣγ). (2.2)

Here (a, a′) and (b, b′) are conjugate pairs.

The proof of the above result is based on the scaling argument and the Fourier transform of
spherical measure.

Corollary 2.2. Let d ≥ 2 and γ ∈ R. If u is a (weak) solution to the linear half-wave equation
for some data u0, F , then for all (p, q) admissible satisfying q <∞,

‖u‖
Lp(R,Hγ−γp,qq )

. ‖u0‖Hγ + ‖F‖L1(R,Hγ). (2.3)

Proof. We firstly remark that (2.2) together with the Littlewood-Paley theorem yield for any
(p, q) admissible satisfying q <∞,

‖u‖
Lp(R,Ḣγ−γp,qq )

. ‖u0‖Ḣγ + ‖F‖L1(R,Ḣγ). (2.4)

We next write ‖u‖
Lp(R,Hγ−γp,qq )

= ‖ 〈Λ〉γ−γp,q u‖Lp(R,Lq) and apply (2.4) with γ = γp,q to get

‖u‖
Lp(R,Hγ−γp,qq )

. ‖ 〈Λ〉γ−γp,q u0‖Ḣγp,q + ‖ 〈Λ〉γ−γp,q F‖L1(R,Ḣγp,q ).

The estimate (2.3) then follows by using the fact that γp,q > 0 for all (p, q) is admissible satisfying
q <∞.

2.2 Nonlinear estimates

In this subsection, we recall some nonlinear fractional derivatives estimates related to our pur-
pose. Let us start with the following fractional Leibniz rule (or Kato-Ponce inequality). We
refer the reader to [17] for the proof of a more general result.

Proposition 2.3. Let γ ≥ 0, 1 < r <∞ and 1 < p1, p2, q1, q2 ≤ ∞ satisfying

1

r
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

Then there exists C = C(d, γ, r, p1, q1, p2, q2) > 0 such that for all u, v ∈ S ,

‖Λγ(uv)‖Lr ≤ C
(
‖Λγu‖Lp1 ‖v‖Lq1 + ‖u‖Lp2 ‖Λγv‖Lq2

)
, (2.5)

‖ 〈Λ〉γ (uv)‖Lr ≤ C
(
‖ 〈Λ〉γ u‖Lp1 ‖v‖Lq1 + ‖u‖Lp2‖ 〈Λ〉γ v‖Lq2

)
. (2.6)
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We also have the following fractional chain rule.

Proposition 2.4. Let F ∈ C1(C,C) and G ∈ C(C,R+) such that F (0) = 0 and

|F ′(θz + (1− θ)ζ)| ≤ µ(θ)(G(z) +G(ζ)), z, ζ ∈ C, 0 ≤ θ ≤ 1,

where µ ∈ L1((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p <∞, 1 < q ≤ ∞ satisfying

1

r
=

1

p
+

1

q
,

there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

‖ΛγF (u)‖Lr ≤ C‖F ′(u)‖Lq‖Λγu‖Lp , (2.7)

‖ 〈Λ〉γ F (u)‖Lr ≤ C‖F ′(u)‖Lq‖ 〈Λ〉γ u‖Lp . (2.8)

We refer to [8] (see also [26]) for the proof of (2.7) and Proposition 5.1 of [28] for (2.8).
Combining the fractional Leibniz rule and the fractional chain rule, one has the following result
(see the appendix of [20]).

Lemma 2.5. Let F ∈ Ck(C,C), k ∈ N\{0}. Assume that there is ν ≥ k such that

|DiF (z)| ≤ C|z|ν−i, z ∈ C, i = 1, 2, ...., k.

Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1
r = 1

p + ν−1
q , there exists

C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

‖ΛγF (u)‖Lr ≤ C‖u‖ν−1
Lq ‖Λ

γu‖Lp , (2.9)

‖ 〈Λ〉γ F (u)‖Lr ≤ C‖u‖ν−1
Lq ‖ 〈Λ〉

γ
u‖Lp . (2.10)

Moreover, if F is a homogeneous polynomial in u and u, then (2.9) and (2.10) hold true for any
γ ≥ 0.

Corollary 2.6. Let F (z) = |z|ν−1z with ν > 1, γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying
1
r = 1

p + ν−1
q .

(i) If ν is an odd integer or 1 dγe ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0
such that for all u ∈ S ,

‖F (u)‖Ḣγr ≤ C‖u‖
ν−1
Lq ‖u‖Ḣγp .

A similar estimate holds with Ḣγ
r , Ḣ

γ
p -norms are replaced by Hγ

r , H
γ
p -norms respectively.

(ii) If ν is an odd integer or dγe ≤ ν − 1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0
such that for all u, v ∈ S ,

‖F (u)− F (v)‖Ḣγr ≤ C
(

(‖u‖ν−1
Lq + ‖v‖ν−1

Lq )‖u− v‖Ḣγp

+ (‖u‖ν−2
Lq + ‖v‖ν−2

Lq )(‖u‖Ḣγp + ‖v‖Ḣγp )‖u− v‖Lq
)
.

A similar estimate holds with Ḣγ
r , Ḣ

γ
p -norms are replaced by Hγ

r , H
γ
p -norms respectively.

The next result will give a good control on the nonlinear term which allows us to use the
contraction mapping argument.

Lemma 2.7. Let ν be as in Theorem 1.2 and γc as in (1.1). Then

‖u‖ν−1
Lν−1(R,L∞) .


‖u‖4

L4(R,Ḃ
γc−γ4,∞
∞

‖u‖ν−5

L∞(R,Ḃγc2 )
when d = 2,

‖u‖p
Lp(R,Ḃ

γc−γp,p?
p?

)
‖u‖ν−1−p

L∞(R,Ḃγc2 )
where 2 < p < ν − 1 when d = 3,

‖u‖2
L2(R,Ḃ

γc−γ2,2?
2?

)
‖u‖ν−3

L∞(R,Ḃγc2 )
when d ≥ 4,

where p? = 2p/(p− 2) and 2? = 2(d− 1)/(d− 3).

1see (1.4) for the definition of d·e.
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The above lemma follows the same spirit as Lemma 3.5 of [18] (see also [10]) using the
argument of Lemma 3.1 of [9].

Proof. We only give a sketch of the proof in the case d ≥ 4, the cases d = 2, 3 are treated
similarly. By interpolation, we can assume that ν − 1 = m/n > 2,m, n ∈ N with gcd(m,n) = 1.
We proceed as in [18] and set

cN (t) = Nγc−γ2,2?‖PNu(t)‖L2? (Rd), c′N (t) = Nγc‖PNu(t)‖L2(Rd).

By Bernstein’s inequality, we have

‖PNu(t)‖L∞(Rd) . N
d
2?
−γc+γ2,2? cN (t) = N

n
m−

1
2 cN (t), (2.11)

‖PNu(t)‖L∞(Rd) . N
d
2−γcc′N (t) = N

n
m c′N (t).

This implies that for θ ∈ (0, 1) which will be chosen later,

‖PNu(t)‖L∞(Rd) . N
n
m−

θ
2 (cN (t))θ(c′N (t))1−θ. (2.12)

We next use

A(t) :=
( ∑
N∈2Z

‖PNu(t)‖L∞(Rd)

)m
.

∑
N1≥···≥Nm

m∏
j=1

‖PNju(t)‖L∞(Rd).

Estimating the n highest frequencies by (2.11) and the rest by (2.12), we get

A(t) .
∑

N1≥···≥Nm

( n∏
j=1

N
n
m−

1
2

j cNj (t)
)( m∏

j=n+1

N
n
m−

θ
2

j (cNj (t))
θ(c′Nj (t))

1−θ
)
.

For an arbitrary δ > 0, we set

c̃N (t) =
∑
N ′∈2Z

min(N/N ′, N ′/N)δcN ′(t), c̃′N (t) =
∑
N ′∈2Z

min(N/N ′, N ′/N)δc′N ′(t).

Using the fact that cN (t) ≤ c̃N (t) and c̃Nj (t) . (N1/Nj)
δ c̃N1

(t) for j = 2, ...,m and similarly for
primes, we see that

A(t) .
∑

N1≥···≥Nm

( n∏
j=1

N
n
m−

1
2

j (N1/Nj)
δ c̃N1(t)

)( m∏
j=n+1

N
n
m−

θ
2

j (N1/Nj)
δ(c̃N1(t))θ(c̃′N1

(t))1−θ
)
.

We can rewrite the above quantity in the right hand side as

∑
N1≥···≥Nm

( m∏
j=n+1

N
n
m−

σθ
2 −δ

j

)( n∏
j=2

N
n
m−

1
2−δ

j

)
N

n
m−

1
2 +(m−1)δ

1 (c̃N1(t))n+(m−n)θ(c̃′N1
(t))(m−n)(1−θ).

By choosing θ = 1/(ν − 2) ∈ (0, 1) and δ > 0 so that

n

m
− θ

2
− δ > 0,

n

m
− 1

2
+ (m− 1)δ < 0 or δ <

m− 2n

2m(m− 1)
.

Here condition ν > 3 ensures that m− 2n > 0. Summing in Nm, then in Nm−1,..., then in N2,
we have

A(t) .
∑
N1∈2Z

(c̃N1
(t))2n(c̃′N1

(t))(ν−3)n.

The Hölder inequality with the fact that (ν − 3)n ≥ 1 implies

A(t) . ‖(c̃(t))2n‖`2(2Z)‖(c̃′(t))(ν−3)n‖`2(2Z)

= ‖c̃(t)‖2n`4n(2Z)‖c̃
′(t)‖(ν−3)n

`2(ν−3)n(2Z)
≤ ‖c̃(t)‖2n`2(2Z)‖c̃

′(t)‖(ν−3)n

`2(2Z)
,
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where ‖c̃(t)‖`q(2Z) :=
(∑

N∈2Z |c̃N (t)|q
)1/q

and similarly for prime. The Minkowski inequality

then implies

A(t) . ‖c(t)‖2n`2(2Z)‖c
′(t)‖(ν−3)n

`2(2Z)
.

This implies that A(t) <∞ for amost allwhere t, hence that
∑
N ‖PNu(t)‖L∞(Rd) <∞. There-

fore
∑
N ‖PNu(t)‖L∞(Rd) converges in L∞(Rd). Since it converges to u in the ditribution sense,

so the limit is u(t). Thus

‖u‖ν−1
Lν−1(R,L∞(Rd))

=

∫
R
‖u(t)‖m/n

L∞(Rd)
dt .

∫
R
‖c(t)‖2`2(2Z)‖c

′(t)‖ν−3
`2(2Z)

dt

. ‖c‖2LpR`2(2Z)‖c
′‖ν−3
L∞R `2(2Z)

= ‖u‖2
Lp(R,Ḃ

γc−γ2,2?
2?

(Rd))
‖u‖ν−3

L∞(R,Ḃγc2 (Rd))
.

The proof is complete.

2.3 Proof of Theorem 1.1

We now give the proof of Theorem 1.1 by using the standard fixed point argument in a suitable
Banach space. Thanks to (1.2), we are able to choose p > max(ν − 1, 4) when d = 2 and
p > max(ν − 1, 2) when d ≥ 3 such that γ > d/2− 1/p and then choose q ∈ [2,∞) such that

2

p
+
d− 1

q
≤ d− 1

2
.

Step 1. Existence. Let us consider

X :=
{
u ∈ L∞(I,Hγ) ∩ Lp(I,Hγ−γp,q

q ) | ‖u‖L∞(I,Hγ) + ‖u‖
Lp(I,H

γ−γp,q
q )

≤M
}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
Lp(I,H

−γp,q
q )

,

where I = [0, T ] and M,T > 0 to be chosen later. By the Duhamel formula, it suffices to prove
that the functional

Φ(u)(t) = eitΛu0 + iµ

∫ t

0

ei(t−s)Λ|u(s)|ν−1u(s)ds (2.13)

is a contraction on (X, d). The Strichartz estimate (2.3) yields

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,H

γ−γp,q
q )

. ‖u0‖Hγ + ‖F (u)‖L1(I,Hγ),

‖Φ(u)− Φ(v)‖L∞(I,L2) + ‖Φ(u)− Φ(v)‖
Lp(I,H

−γp,q
q )

. ‖F (u)− F (v)‖L1(I,L2),

where F (u) = |u|ν−1u and similarly for F (v). By our assumptions on ν, Corollary 2.6 gives

‖F (u)‖L1(I,Hγ) . ‖u‖ν−1
Lν−1(I,L∞)‖u‖L∞(I,Hγ) . T

1− ν−1
p ‖u‖ν−1

Lp(I,L∞)‖u‖L∞(I,Hγ), (2.14)

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2)

. T 1− ν−1
p

(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
‖u− v‖L∞(I,L2). (2.15)

The Sobolev embedding with the fact that γ − γp,q > d/q implies Lp(I,H
γ−γp,q
q ) ⊂ Lp(I, L∞).

Thus, we get

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,H

γ−γp,q
q )

. ‖u0‖Hγ + T 1− ν−1
p ‖u‖ν−1

Lp(I,H
γ−γp,q
q )

‖u‖L∞(I,Hγ),

and
d(Φ(u),Φ(v)) . T 1− ν−1

p

(
‖u‖ν−1

Lp(I,H
γ−γp,q
q )

+ ‖v‖ν−1

Lp(I,H
γ−γp,q
q )

)
‖u− v‖L∞(I,L2).
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This shows that for all u, v ∈ X, there exists C > 0 independent of u0 ∈ Hγ and T such that

‖Φ(u)‖L∞(I,Hγ) + ‖Φ(u)‖
Lp(I,H

γ−γp,q
q )

≤ C‖u0‖Hγ + CT 1− ν−1
p Mν ,

d(Φ(u),Φ(v)) ≤ CT 1− ν−1
p Mν−1d(u, v).

Therefore, if we set M = 2C‖u0‖Hγ and choose T > 0 small enough so that CT 1− ν−1
p Mν−1 ≤ 1

2 ,
then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a
unique u ∈ X so that Φ(u) = u.
Step 2. Uniqueness. Consider u, v ∈ C(I,Hγ)∩Lp(I, L∞) two solutions of (NLHW). Since the
uniqueness is a local property (see Chapter 4 of [5]), it suffices to show u = v for T is small. We
have from (2.15) that

d(u, v) ≤ CT 1− ν−1
p

(
‖u‖ν−1

Lp(I,L∞) + ‖v‖ν−1
Lp(I,L∞)

)
d(u, v).

Since ‖u‖Lp(I,L∞) is small if T is small and similarly for v, we see that if T > 0 small enough,

d(u, v) ≤ 1

2
d(u, v) or u = v.

Step 3. Item (i). Since the time of existence constructed in Step 1 only depends on Hγ-norm
of the initial data. The blowup alternative follows by standard argument (see again Chapter 4
of [5]).
Step 4. Item (ii). Let u0,n → u0 in Hγ and C, T = T (u0) be as in Step 1. Set M = 4C‖u0‖Hγ .
It follows that 2C‖u0,n‖Hγ ≤ M for sufficiently large n. Thus the solution un constructed in
Step 1 belongs to X with T = T (u0) for n large enough. We have from Strichartz estimate (2.3)
and (2.14) that

‖u‖
La(I,H

γ−γa,b
b )

. ‖u0‖Hγ + T 1− ν−1
p ‖u‖ν−1

Lp(I,L∞)‖u‖L∞(I,Hγ),

provided (a, b) is admissible and b < ∞. This shows the boundedness of un in La(I,H
γ−γa,b
b ).

We also have from (2.15) and the choice of T that

d(un, u) ≤ C‖u0,n − u0‖L2 +
1

2
d(un, u) or d(un, u) ≤ 2C‖u0,n − u0‖L2 .

This yields that un → u in L∞(I, L2) ∩ Lp(I,H−γp,qq ). Strichartz estimate (2.3) again implies

that un → u in La(I,H
−γa,b
b ) for any admissible pair (a, b) with b < ∞. The convergence in

C(I,Hγ−ε) follows from the boundedness in L∞(I,Hγ), the convergence in L∞(I, L2) and that

‖u‖Hγ−ε ≤ ‖u‖
1− ε

γ

Hγ ‖u‖
ε
γ

L2 .
Step 5. Item (iii). If u0 ∈ Hβ for some β > γ satisfying dβe ≤ ν if ν > 1 is not an odd
integer, then Step 1 shows the existence of Hβ solution defined on some maximal interval [0, T ).
Since Hβ solution is also a Hγ solution, thus T ≤ T ∗. Suppose that T < T ∗. Then the unitary
property of eitΛ and Lemma imply that

‖u(t)‖Hβ ≤ ‖u0‖Hβ + C

∫ t

0

‖u(s)‖ν−1
L∞ ‖u(s)‖Hβds,

for all 0 ≤ t < T . The Gronwall’s inequality then gives

‖u(t)‖Hβ ≤ ‖u0‖Hβ exp
(
C

∫ t

0

‖u(s)‖ν−1
L∞ ds

)
,

for all 0 ≤ t < T . Using the fact that u ∈ Lν−1
loc ([0, T ∗), L∞), we see that lim sup ‖u(t)‖Hβ <∞

as t→ T which is a contradiction to the blowup alternative in Hβ . �
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Remark 2.8. If we assume that ν > 1 is an odd integer or

dγe ≤ ν − 1

otherwise, then the continuous dependence holds in C(I,Hγ). To see this, we consider X as
above equipped with the following metric

d(u, v) := ‖u− v‖L∞(I,Hγ) + ‖u− v‖
Lp(I,H

γ−γp,q
q )

.

Using Item (ii) of Corollary 2.6, we have

‖F (u)− F (v)‖L1(I,Hγ) . (‖u‖ν−1
Lν−1(I,L∞) + ‖v‖ν−1

Lν−1(I,L∞))‖u− v‖L∞(I,Hγ)

+ (‖u‖ν−2
Lν−1(I,L∞) + ‖v‖ν−2

Lν−1(I,L∞))(‖u‖L∞(I,Hγ) + ‖v‖L∞(I,Hγ))‖u− v‖Lν−1(I,L∞).

The Sobolev embedding then implies for all u, v ∈ X,

d(Φ(u),Φ(v)) . T 1− ν−1
p Mν−1d(u, v).

Therefore, the continuity in C(I,Hγ) follows as in Step 4.

2.4 Proof of Theorem 1.2

We now turn to the proof of the local well-posedness and small data scattering in critical case
by following the same argument as in [10].
Step 1. Existence. We only treat for d ≥ 4, the ones for d = 2, d = 3 are completely similar.
Let us consider

X :=
{
u ∈ L∞(I,Hγc) ∩ L2(I,B

γc−γ2,2?
2? ) | ‖u‖L∞(I,Ḣγc ) ≤M, ‖u‖

L2(I,Ḃ
γc−γ2,2?
2?

)
≤ N

}
,

equipped with the distance

d(u, v) := ‖u− v‖L∞(I,L2) + ‖u− v‖
L2(I,Ḃ

−γ2,2?
2?

)
,

where I = [0, T ] and T,M,N > 0 will be chosen later. One can check (see e.g. [4] or Chapter 4
of [5]) that (X, d) is a complete metric space. We will show that the functional

Φ(u)(t) = eitΛu0 + iµ

∫ t

0

ei(t−s)Λ|u(s)|ν−1u(s)ds =: uhom(t) + uinh(t), (2.16)

is a contraction on (X, d). The Strichartz estimate (2.2) yields

‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2?

)
. ‖u0‖Ḣγc . (2.17)

We see that ‖uhom‖
L2(I,Ḃ

γc−γ2,2?
2?

)
≤ ε for some ε > 0 small enough which will be chosen later,

provided that either ‖u0‖Ḣγc is small or it is satisfied for some T > 0 small enough by the
dominated convergence theorem. Therefore, we can take T =∞ in the first case and T be this
small time in the second. A similar estimate to (2.17) holds for ‖uhom‖L∞(I,Ḣγc ). On the other

hand, using again (2.2), we have

‖uinh‖
L2(I,Ḃ

γc−γ2,2?
2?

)
. ‖F (u)‖L1(I,Ḣγc ).

A same estimate holds for ‖uinh‖L∞(I,Ḣγc ). Corollary 2.6 and Lemma 2.7 give

‖F (u)‖L1(I,Ḣγc ) . ‖u‖
ν−1
Lν−1(I,L∞)‖u‖L∞(I,Ḣγc ) . ‖u‖

2

L2(I,Ḃ
γc−γ2,2?
2?

)
‖u‖ν−2

L∞(I,Ḣγc )
. (2.18)
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Similarly, we have

‖F (u)− F (v)‖L1(I,L2) .
(
‖u‖ν−1

Lν−1(I,L∞) + ‖v‖ν−1
Lν−1(I,L∞)

)
‖u− v‖L∞(I,L2) (2.19)

.
(
‖u‖2

L2(I,Ḃ
γc−γ2,2?
2?

)
‖u‖ν−3

L∞(I,Ḣγc )
+ ‖v‖2

L2(I,Ḃ
γc−γ2,2?
2?

)
‖v‖ν−3

L∞(I,Ḣγc )

)
‖u− v‖L∞(I,L2).

This implies for all u, v ∈ X, there exists C > 0 independent of u0 ∈ Hγc such that

‖Φ(u)‖
L2(I,Ḃ

γc−γ2,2?
2?

)
≤ ε+ CN2Mν−2,

‖Φ(u)‖L∞(I,Ḣγc ) ≤ C‖u0‖Ḣγc + CN2Mν−2,

d(Φ(u),Φ(v)) ≤ CN2Mν−3d(u, v).

Now by setting N = 2ε and M = 2C‖u0‖Ḣγc and choosing ε > 0 small enough such that
CN2Mν−3 ≤ min{1/2, ε/M}, we see that X is stable by Φ and Φ is a contraction on X. By the
fixed point theorem, there exists a unique solution u ∈ X to (NLHW). Note that when ‖u0‖Ḣγc
is small enough, we can take T =∞.

Step 2. Uniqueness. The uniqueness in C∞(I,Hγc) ∩ L2(I,B
γc−γ2,2?
2? ) follows as in Step 2 of

the proof of Theorem 1.1 using (2.19). Here ‖u‖
L2(I,Ḃ

γc−γ2,2?
2?

)
can be small as T is small.

Step 3. Scattering. The global existence when ‖u0‖Ḣγc is small is given in Step 1. It remains
to show the scattering property. Thanks to (2.18), we see that

‖e−it2Λu(t2)− e−it1Λu(t1)‖Ḣγc =
∥∥∥iµ∫ t2

t1

e−isΛ(|u|ν−1u)(s)ds
∥∥∥
Ḣγc

≤ ‖F (u)‖L1([t1,t2],Ḣγc ) . ‖u‖
2

L2([t1,t2],Ḃ
γc−γ2,2?
2?

)
‖u‖ν−2

L∞([t1,t2],Ḣγc )
→ 0 (2.20)

as t1, t2 → +∞. We have from (2.19) that

‖e−it2Λu(t2)− e−it1Λu(t1)‖L2 . ‖u‖2
L2([t1,t2],Ḃ

γc−γ2,2?
2?

)
‖u‖ν−3

L∞([t1,t2],Ḣγc )
‖u‖L∞([t1,t2],L2), (2.21)

which also tends to zero as t1, t2 → +∞. This implies that the limit

u+
0 := lim

t→+∞
e−itΛu(t)

exists in Hγc . Moreover, we have

u(t)− eitΛu+
0 = −iµ

∫ +∞

t

ei(t−s)ΛF (u(s))ds.

The unitary property of eitΛ in L2, (2.20) and (2.21) imply that ‖u(t)− eitΛu+
0 ‖Hγc → 0 when

t→ +∞. This completes the proof of Theorem 1.2. �

3 Ill-posedness

In this section, we will give the proof of Theorem 1.3. We follow closely the argument of [7]
using small dispersion analysis and decoherence arguments.

3.1 Small dispersion analysis

Now, let us consider for 0 < δ � 1 the following equation{
i∂tφ(t, x) + δΛφ(t, x) = −µ|φ|ν−1φ(t, x), (t, x) ∈ R× Rd,

φ(0, x) = φ0(x), x ∈ Rd. (3.1)

Note that (3.1) can be transformed back to (NLHW) by using

u(t, x) := φ(t, δx).



Cauchy Problem Semi-relativistic Equation 11

Lemma 3.1. Let k > d/2 be an integer. If ν is not an odd integer, then we assume also
the additional regularity condition ν ≥ k + 1. Let φ0 be a Schwartz function. Then there
exists C, c > 0 such that if 0 < δ ≤ c sufficiently small, then there exists a unique solution
φ(δ) ∈ C([−T, T ], Hk) of (3.1) with T = c| log δ|c satisfying

‖φ(δ)(t)− φ(0)(t)‖Hk ≤ Cδ1/2, (3.2)

for all |t| ≤ c| log δ|c, where

φ(0)(t, x) := φ0(x) exp(−iµt|φ0(x)|ν−1)

is the solution of (3.1) with δ = 0.

Proof. We refer to Lemma 2.1 of [7], where the small dispersion analysis is invented to prove
the ill-posedness for the nonlinear Schrödinger equation. The same proof can be applied to the
nonlinear half-wave equation without any difficulty. By using the energy method, we end up
with the following estimate

‖φ(δ)(t)− φ(0)(t)‖Hk ≤ Cδ exp(C(1 + |t|)C).

Thus, if |t| ≤ c| log δ|c for suitably small 0 < δ ≤ c, then exp(C(1 + |t|)C) ≤ δ−1/2 and (3.2)
follows.

Remark 3.2. By the same argument as in [7], we can get the following better estimate

‖φ(δ)(t)− φ(0)(t)‖Hk,k ≤ Cδ1/2, (3.3)

for all |t| ≤ c| log δ|c, where Hk,k is the weighted Sobolev space

‖φ‖Hk,k :=

k∑
|α|=0

‖ 〈x〉k−|α|Dαφ‖L2 .

Now, let λ > 0 and set

u(δ,λ)(t, x) := λ−
1

ν−1φ(δ)(λ−1t, λ−1δx). (3.4)

It is easy to see that u(δ,λ) is a solution of (NLHW).

Lemma 3.3. Let γ ∈ R and 0 < λ ≤ δ � 1. Let φ0 ∈ S be such that if γ ≤ −d/2,

φ̂0(ξ) = O(|ξ|κ) as ξ → 0,

for some κ > −γ − d/2, where ·̂ is the Fourier transform. Then there exists C > 0 such that

‖u(δ,λ)(0)‖Hγ ≤ Cλγc−γδγ−d/2. (3.5)

Proof. The proof of this lemma is essentially given in [7]. For reader’s convenience, we give a
sketch of the proof. We firstly have

[u(δ,λ)(0)]̂ (ξ) = λ−
1

ν−1 (λδ−1)dφ̂0(λδ−1ξ).

Thus,

‖u(δ,λ)(0)‖2Hγ = λ−
2

ν−1 (λδ−1)2d

∫
(1 + |ξ|2)γ |φ̂0(λδ−1ξ)|2dξ

= λ−
2

ν−1 (λδ−1)d
∫

(1 + |λ−1δξ|2)γ |φ̂0(ξ)|2dξ

∼ λ−
2

ν−1 (λδ−1)d−2γ

∫
|ξ|≥λδ−1

|ξ|2γ |φ̂0(ξ)|2dξ + λ−
8

ν−1 (λδ−1)d
∫
|ξ|≤λδ−1

|φ̂0(ξ)|2dξ

= λ−
2

ν−1 (λδ−1)d−2γ
(∫

Rd
|ξ|2γ |φ̂0(ξ)|2dξ −

∫
|ξ|≤λδ−1

((λδ−1)2γ − |ξ|2γ)|φ̂0(ξ)|2dξ
)
.
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Using the fact that λδ−1 ≤ 1, we obtain for γ > −d/2 that

‖u(δ,λ)(0)‖Hγ = cλ−
1

ν−1 (λδ−1)d/2−γ(1 +O((λδ−1)γ+d/2)) ≤ Cλγc−γδγ−d/2,

where c 6= 0 provided that φ0 is not identically zero. Moreover, for γ ≤ −d/2, the assumption

on φ̂0 also implies
‖u(δ,λ)(0)‖Hγ ≤ Cλγc−γδγ−d/2.

Here we use the fact that∫
|ξ|≤λδ−1

((λδ−1)2γ − |ξ|2γ)|φ̂0(ξ)|2dξ ≤ C(λδ−1)d+2γ+2κ ≤ C.

This completes the proof of (3.5).

3.2 Proof of Theorem 1.3

We are now able to prove Theorem 1.3. We only consider the case t ≥ 0, the one for t < 0 is
similar. Let ε ∈ (0, 1] be fixed and set

λγc−γδγ−d/2 =: ε, (3.6)

equivalently

λ = δθ, where θ =
d/2− γ
γc − γ

> 1,

hence 0 < λ ≤ δ � 1. Note that we are considering here γ < γc. We now split the proof into
several cases.

The case 0 < γ < γc. Using (3.6), Lemma 3.3 gives

‖u(δ,λ)(0)‖Hγ ≤ Cε.

Since the support of φ(0)(t, x) is independent of t, we see that for t large enough, depending on
γ,

‖φ(0)(t)‖Hγ ∼ tγ ,

whenever γ ≥ 0 provided either ν > 1 is an odd integer or γ ≤ ν − 1 otherwise. Thus for δ � 1
and 1� t ≤ c| log δ|c, (3.2) implies

‖φ(δ)(t)‖Hγ ∼ tγ . (3.7)

We next have
[u(δ,λ)(λt)]̂ (ξ) = λ−

1
ν−1 (λδ−1)d[φ(δ)(t)]̂ (λδ−1ξ).

This shows that

‖u(δ,λ)(λt)‖2Hγ =

∫
(1 + |ξ|2)γ |[u(δ,λ)(λt)]̂ (ξ)|2dξ

= λ−
2

ν−1 (λδ−1)d
∫

(1 + |λ−1δξ|2)γ |[φ(δ)(t)]̂ (ξ)|2dξ

≥ λ−
2

ν−1 (λδ−1)d−2γ

∫
|ξ|≥1

|ξ|2γ |[φ(δ)(t)]̂ (ξ)|2dξ

≥ λ−
2

ν−1 (λδ−1)d−2γ
(
c‖φ(δ)(t)‖2Hγ − C‖φ(δ)(t)‖2L2

)
.

Thanks to (3.7), we have ‖φ(δ)(t)‖L2 � ‖φ(δ)(t)‖Hγ for t� 1. This yields that

‖u(δ,λ)(λt)‖Hγ ≥ cλ−
1

ν−1 (λδ−1)d/2−γ‖φ(δ)(t)‖Hγ ≥ cεtγ ,
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for 1� t ≤ c| log δ|c. We now choose t = c| log δ|c and pick δ > 0 small enough so that

εtγ > ε−1, λt < ε.

Therefore, for any ε > 0, there exists a solution of (NLHW) satisfying

‖u(0)‖Hγ < ε, ‖u(t)‖Hγ > ε−1

for some t ∈ (0, ε). Thus for any t > 0, the solution map S 3 u(0) 7→ u(t) for the Cauchy
problem (NLHW) fails to be continuous at 0 in the Hγ-topology.

The case γ ≤ −d/2 and γ < γc. Let u(δ,λ) be as in (3.4). Thanks to (3.6), Lemma 3.3 implies

‖u(δ,λ)(0)‖Hγ ≤ Cε,

provided 0 < λ ≤ δ � 1 and φ0 ∈ S satisfying

φ̂0(ξ) = O(|ξ|κ) as ξ → 0,

for some κ > −γ − d/2. We recall that

φ(0)(t, x) = φ0(x) exp(−iµt|φ0(x)|ν−1).

It is clear that we can choose φ0 so that∣∣∣ ∫ φ(0)(1, x)dx
∣∣∣ ≥ c or |[φ(0)(1)]̂ (0)| ≥ c,

for some constant c > 0. Since φ(0)(1) is rapidly decreasing, the continuity implies that

|[φ(0)(1)]̂ (ξ)| ≥ c,

for |ξ| ≤ c with 0 < c � 1. On the other hand, using (3.3) (note that Hk,k controls L1 when
k > d/2), we have

|[φ(δ)(1)]̂ (ξ)− [φ(0)(1)]̂ (ξ)| ≤ Cδ1/2,

and then
|[φ(δ)(1)]̂ (ξ)| ≥ c,

for |ξ| ≤ c provided δ is taken small enough. Moreover, we have

u(δ,λ)(λ, x) = λ−
1

ν−1φ(δ)(1, λ−1δx)

and
[u(δ,λ)(λ)]̂ (ξ) = λ−

1
ν−1 (λδ−1)d[φ(δ)(1)]̂ (λδ−1ξ).

This implies that

[u(δ,λ)(λ)]̂ (ξ) ≥ cλ−
1

ν−1 (λδ−1)d,

for |ξ| ≤ cλ−1δ.
In the case γ < −d/2, we have

‖u(δ,λ)(λ)‖Hγ ≥ cλ−
1

ν−1 (λδ−1)d = cε(λδ−1)γ+d/2.

Here 0 < λ ≤ δ � 1, thus (λδ−1)γ+d/2 → +∞. We can choose δ small enough so that λ → 0
and (λδ−1)γ+d/2 ≥ ε−2 or

‖u(δ,λ)(λ)‖Hγ ≥ ε−1.

In the case γ = −d/2, we have

‖u(δ,λ)(λ)‖H−d/2 ≥ cλ−
1

ν−1 (λδ−1)d
(∫
|ξ|≤cλ−1δ

(1 + |ξ|)−ddξ
)1/2

= cλ−
1

ν−1 (λδ−1)d(log(cλ−1δ))1/2

= cε(log(cλ−1δ))1/2.

By choosing δ small enough so that λ→ 0 and log(cλ−1δ) ≥ ε−4, we see that

‖u(δ,λ)(λ)‖H−d/2 ≥ ε−1.

Combining both cases, we see that the solution map fails to be continuous at 0 in Hγ-topology.
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The case γ = 0 < γc. Let a, a′ ∈ [1/2, 2]. Let φ(a,δ) be the solution to (3.1) with initial data

φ(a,δ)(0) = aφ0.

Then, Lemma 3.1 gives

‖φ(a,δ)(t)− φ(a,0)(t)‖Hk ≤ Cδ1/2, (3.8)

for all |t| ≤ c| log δ|c, where

φ(a,0)(t, x) = aφ0(x) exp(−iµaν−1t|φ0(x)|ν−1) (3.9)

is the solution of (3.1) with δ = 0 and the same initial data as φ(a,δ). Note that since a belongs
to a compact set, then the constant C, c can be taken to be independent of a. We next define

u(a,δ,λ)(t, x) := λ−
1

ν−1φ(a,δ)(λ−1t, λ−1δx). (3.10)

It is easy to see that u(a,δ,λ) is also a solution of (NLHW). Using (3.9), a direct computation
shows that

‖φ(a,0)(t)− φ(a′,0)(t)‖L2 ≥ c > 0,

for some time t satisfying |a − a′|−1 ≤ t ≤ c| log δ|c provided that δ is small enough so that
c| log δ|c ≥ |a− a′|−1. The triangle inequality together with (3.8) yields

‖φ(a,δ)(t)− φ(a′,δ)(t)‖L2 ≥ c,

for all |a− a′|−1 ≤ t ≤ c| log δ|c. Now let ε be as in (3.6), i.e.

λ−
1

ν−1 (λδ−1)d/2 =: ε,

or λ = δθ with θ = d/2
γc

> 1. Moreover, using the fact

[u(a,δ,λ)(λt)]̂ (ξ) = λ−
1

ν−1 (λδ−1)d[φ(a,δ)(t)]̂ (λδ−1ξ),

we have

‖u(a,δ,λ)(λt)− u(a′,δ,λ)(λt)‖L2 = λ−
1

ν−1 (λδ−1)d/2‖φ(a,δ)(t)− φ(a′,δ)(t)‖L2 ≥ cε.

Similarly, using that

[u(a,δ,λ)(0)]̂ (ξ) = aλ−
1

ν−1 (λδ−1)dφ̂0(λδ−1ξ),

we have
‖u(a,δ,λ)(0)‖L2 , ‖u(a′,δ,λ)(0)‖L2 ≤ Cε,

and
‖u(a,δ,λ)(0)− u(a′,δ,λ)(0)‖L2 ≤ Cε|a− a′|.

Since |a − a′| can be arbitrarily small, this shows that for any 0 < ε, σ < 1 and for any t > 0,
there exist u1, u2 solutions of (NLHW) with initial data u1(0), u2(0) ∈ S such that

‖u1(0)‖L2 , ‖u2(0)‖L2 ≤ Cε, ‖u1(0)− u2(0)‖L2 ≤ Cσ, ‖u1(t)− u2(t)‖L2 ≥ cε.

This shows that the solution map fails to be uniformly continuous on L2. This completes the
proof of Thereom 1.3.
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