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Well-posedness of nonlinear fractional Schr ödinger and wave equations in Sobolev spaces

In this paper, we establish the local well-posedness results in sub-critical and critical cases for the pure power-type nonlinear fractional Schrödinger and wave equations on

 in the context of the damped fractional wave equation.

Introduction and main results

Let σ ∈ (0, ∞)\{1}. We consider the Cauchy fractional Schrödinger and wave equations posed on R d , d ≥ 1, namely i∂ t u + Λ σ u + µ|u| ν-1 u, u |t=0 = ϕ, (NLFS) and

∂ 2 t v + Λ 2σ v + µ|v| ν-1 v, v |t=0 = ϕ, ∂ t v |t=0 = φ, (NLFW) 
where ν > 1 and µ ∈ {±1}. The operator Λ σ = ( √ -∆) σ is the Fourier multiplier by |ξ| σ where ∆ = d j=1 ∂ 2 j is the free Laplace operator on R d . The number µ = 1 (resp. µ = -1) corresponds to the defocusing case (resp. focusing case). When σ ∈ (0, 2)\{1}, the fractional Schrödinger equation was discovered by N. Laskin (see [START_REF] Laskin | Fractional quantum mechanis and Lévy path integrals[END_REF], [START_REF]Fractional Schrödinger equation[END_REF]) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water wave models (see [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF]). When σ ∈ [2, ∞), the (NLFS) generalizes the well-known nonlinear Schrödinger equation σ = 2 or the fourth-order nonlinear Schrödinger equation σ = 4 (see e.g. [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF] and references therein). In the case σ ∈ (0, 2)\{1}, the fractional wave equation, introduced in [START_REF] Chen | Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law[END_REF], reflects the Lévy stable process and the fractional Brownian motion. In the other side, when σ ∈ [2, ∞), the (NLFW) can be seen as a generalization of the fourth-order nonlinear wave equation (see e.g. [START_REF]Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations[END_REF]).

The study of nonlinear fractional Schrödinger and wave equations has attracted a lot of interest in the past several years (see [START_REF] Cho | On inhomogeneous Strichartz estimates for fractional Schrödinger equations and theirs applications[END_REF], [START_REF] Cho | On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity[END_REF], [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF], [START_REF] Guo | Global well-posedness for the fractional nonlinear Schrödinger equation[END_REF], [START_REF]Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation[END_REF], [START_REF] Guo | Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations[END_REF], [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF], [START_REF] Ionescu | Nonlinear fractional Schrödinger equations in one dimension[END_REF], [START_REF] Miao | Global strong solutions for nonlinear higher order Schrödinger equations[END_REF], [START_REF] Pausader | Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case[END_REF], [START_REF] Wang | Nonlinear scattering theory for a class of wave equations in H s[END_REF] and references therein). It is well known that (see [START_REF] Ginibre | On the global Cauchy problem for some nonlinear Schrödinger equations[END_REF], [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF], [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] or [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF]) the (NLFS) and (NLFW) are locally well-posed in H γ with γ ≥ d/2 provided the nonlinearity is sufficiently regular. The main purpose of this note is to prove the local well-posedness for (NLFS) and (NLFW) for γ ∈ [0, d/2).

For the (NLFS), we extend the previous results in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] for σ ≥ 2. These results cover the wellknown results for Schrödinger equation σ = 2 given in [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. In the case σ ∈ (0, 2)\{1}, we show the local well-posedness in the sub-critical case for ν > 1 in contrast to ν ≥ 2 when d = 1, and ν ≥ 3 when d ≥ 2 of [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]. These results generalize the ones of [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF] when d = 1, and of [START_REF]Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation[END_REF] when d ≥ 2, where the authors considered the cubic fractional Schrödinger equation with σ ∈ (1, 2). We also give the global existence in energy space, namely H σ/2 under some assumptions. Moreover, in the critical case, we prove the global existence and scattering with small homogeneous data instead of inhomogeneous one in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]. To our knowledge, the (NLFW) does not seem to have been much considered, up to [START_REF] Wang | Nonlinear scattering theory for a class of wave equations in H s[END_REF] on the scattering operator with σ an even integer and [START_REF] Chen | Space-time estimates on damped fractional wave equations[END_REF], [START_REF] Chen | Estimates for damped fractional wave equations and applications[END_REF] in the context of the damped fractional wave equation.

Let us introduce some standard notations (see the appendix of [START_REF]The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF], Chapter 5 of [START_REF] Triebel | Theory of function spaces[END_REF] or Chapter 6 of [START_REF] Bergh | Interpolation spaces[END_REF]). Let χ 0 ∈ C ∞ 0 (R d ) be such that χ 0 (ξ) = 1 for |ξ| ≤ 1 and supp(χ 0 ) ⊂ {ξ ∈ R d , |ξ| ≤ 2}. We set χ(ξ) := χ 0 (ξ) -χ 0 (2ξ). It is easy to see that χ ∈ C ∞ 0 (R d ) and supp(χ) ⊂ {ξ ∈ R d , 1/2 ≤ |ξ| ≤ 2}. We denote the Littlewood-Paley projections by P 0 := χ 0 (D), P N := χ(N -1 D) with N = 2 k , k ∈ Z where χ 0 (D), χ(N -1 D) are the Fourier multipliers by χ 0 (ξ) and χ(N -1 ξ) respectively. Given γ ∈ R and 1 ≤ q ≤ ∞, one defines the Sobolev and Besov spaces as

H γ q := u ∈ S | u H γ q := Λ γ u L q < ∞ , Λ := 1 + Λ 2 , B γ q := u ∈ S | u B γ q := P 0 u L q + N ∈2 N N 2γ P N u 2 L q 1/2 < ∞ ,
where S is the space of tempered distributions. Now, let S 0 be a subspace of the Schwartz space S consisting of functions φ satisfying D α φ(0) = 0 for all α ∈ N d where • is the Fourier transform on S and S 0 its topological dual space. One can see S 0 as S /P where P is the set of all polynomials on R d . The homogeneous Sobolev and Besov spaces are defined by

Ḣγ q := u ∈ S 0 | u Ḣγ q := Λ γ u L q < ∞ , Ḃγ q := u ∈ S 0 | u Ḃγ q := N ∈2 Z N 2γ P N u 2 L q 1/2 < ∞ .
We again refer the reader to the appendix of [START_REF]The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF], Chapter 5 of [START_REF] Triebel | Theory of function spaces[END_REF] or Chapter 6 of [START_REF] Bergh | Interpolation spaces[END_REF] for various properties of these function spaces. We note that H γ q , B γ q , Ḣγ q and Ḃγ q are Banach spaces with the norms u H γ q , u B γ q , u Ḣγ q and u Ḃγ q respectively. In the sequel, we shall use H γ := H γ 2 , Ḣγ := Ḣγ 2 . We also have that if 2 ≤ q < ∞, then Ḃγ q ⊂ Ḣγ q with the reverse inclusion for 1 < q ≤ 2. In particular, Ḃγ 2 = Ḣγ and Ḃ0 2 = Ḣ0 2 = L 2 . Moreover, if γ > 0, then H γ q = L q ∩ Ḣγ q and B γ q = L q ∩ Ḃγ q . Before stating main results, we recall some facts on (NLFS) and (NLFW). By a standard approximation argument, the following quantities are conserved by the flow of (NLFS),

M s (u) = |u(t, x)| 2 dx, E s (u) = 1 2 |Λ σ/2 u(t, x)| 2 + µ ν + 1 |u(t, x)| ν+1 dx.
Moreover, if we set for λ > 0,

u λ (t, x) = λ -σ ν-1 u(λ -σ t, λ -1 x),
then the (NLFS) is invariant under this scaling that is for T ∈ (0, +∞],

u solves (NLFS) on (-T, T ) ⇐⇒ u λ solves (NLFS) on (-λ σ T, λ σ T ).

We also have

u λ (0) Ḣγ = λ d 2 -σ ν-1 -γ ϕ Ḣγ .
From this, we define the critical regularity exponent for (NLFS) by

γ s = d 2 - σ ν -1 . (1.1)
Similarly, the following energy is conserved under the flow of (NLFW),

E w (v) = 1 2 |∂ t v(t, x)| 2 + 1 2 |Λ σ v(t, x)| 2 + µ ν + 1 |v(t, x)| ν+1 dx,
and the (NLFW) is invariant under the following scaling

v λ (t, x) = λ -2σ ν-1 v(λ -σ t, λ -1 x). Using v λ (0) Ḣγ = λ d 2 -2σ ν-1 -γ ϕ Ḣγ , ∂ t v λ (0) Ḣγ-σ = λ d 2 -2σ ν-1 -γ φ Ḣγ-σ ,
we define the critical regularity exponent for (NLFW) by

γ w = d 2 - 2σ ν -1 . (1.2)
By the standard argument (see e.g [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF]), it is easy to see that the (NLFS) (resp. (NLFW)) is ill-posed if ϕ ∈ Ḣγ with γ < γ s (resp. v 0 ∈ Ḣγ , v 1 ∈ Ḣγ-σ with γ < γ w ). Indeed if u solves the (NLFS) with initial data ϕ ∈ Ḣγ and the lifespan T , then the norm u λ (0) Ḣγ and the lifespan of u λ go to zero as λ → 0. Thus we can expect the well-posedness results for (NLFS) (resp. (NLFW)) when γ ≥ γ s (resp. γ ≥ γ w ). Throughout this note, a pair (p, q) is said to be admissible if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 . (1.3) 
We also denote for (p,

q) ∈ [1, ∞] 2 , γ p,q = d 2 - d q - σ p . (1.4) 
Note that when σ ∈ (0, 2)\{1}, then γ p,q > 0 for all admissible pairs except (p, q) = (∞, 2). Therefore, it is convenient to separate two cases σ ∈ (0, 2)\{1} and σ ∈ [2, ∞). Moreover, since we are working in spaces of fractional order γ, γ s or γ w , we need the nonlinearity F (z) = -µ|z| ν-1 z to have enough regularity. When ν is an odd integer, F ∈ C ∞ (C, C) (in the real sense). When ν is not an odd integer, we need the following assumption

γ , γ s or γ w ≤ ν, (1.5) 
where γ is the smallest integer greater than or equal to γ, similarly for γ s and γ w . Our first result is the following local well-posedness for (NLFS) in the sub-critical case.

Theorem 1.1. Given σ ∈ (0, 2)\{1} and ν > 1. Let γ ∈ [0, d/2) be such that γ > 1/2 -σ/ max(ν -1, 4) when d = 1, γ > d/2 -σ/ max(ν -1, 2) when d ≥ 2, (1.6)
and also, if ν is not an odd integer, (1.5). Then for all ϕ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to (NLFS) satisfying

u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), L ∞ ),
for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2. Moreover, the following properties hold:

i. If T * < ∞, then u(t) H γ → ∞ as t → T * .
ii. u depends continuously on ϕ in the following sense. There exists 0 < T < T * such that if ϕ n → ϕ in H γ and if u n denotes the solution of (NLFS) with initial data ϕ n , then 0 < T < T * (ϕ n ) for all n sufficiently large and

u n is bounded in L a ([0, T ], H γ-γ a,b b ) for any admissible pair (a, b) with b < ∞. Moreover, u n → u in L a ([0, T ], H -γ a,b b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all > 0.
Remark 1.2. If we assume that ν > 1 is an odd integer or

γ ≤ ν -1 (1.7)
otherwise, then the continuous dependence holds in C([0, T ], H γ ) (see Remark 4.1).

As mentioned before, this result improves the one in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] at the point that Hong-Sire only give the local well-posedness for ν ≥ 2 when d = 1 and ν ≥ 3 when d ≥ 2. This result also covers the one in [START_REF] Cho | Well-posedness and ill-posedness for the cubic fractional Schrödinger equations[END_REF] when d = 1 and in [START_REF]Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation[END_REF] when d ≥ 2, where the authors considered the cubic fractional Schrödinger equation with σ ∈ (1, 2). When σ ≥ 2, we have the following better result which generalizes the case σ = 2 given in [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF].

Theorem 1.3. Given σ ≥ 2 and ν > 1. Let γ ∈ [0, d/2
) be such that γ > γ s , and also, if ν is not an odd integer, (1.5). Let (p, q) be the admissible pair defined by

p = 2σ(ν + 1) (ν -1)(d -2γ) , q = d(ν + 1) d + (ν -1)γ . (1.8)
Then for all ϕ ∈ H γ , there exist T * ∈ (0, ∞] and a unique solution to (NLFS) satisfying

u ∈ C([0, T * ), H γ ) ∩ L p loc ([0, T * ), H γ q ).
Moreover, the following properties hold:

i. If T * < ∞, then u(t) Ḣγ → ∞ as t → T * .
ii. u depends continuously on ϕ in the following sense. There exists 0 < T < T * such that if ϕ n → ϕ in H γ and if u n denotes the solution of (NLFS) with initial data ϕ n , then 0 < T < T * (ϕ n ) for all n sufficiently large and u n is bounded in L a ([0, T ], H γ b ) for any admissible pair (a, b) with γ a,b = 0 and b < ∞. Moreover,

u n → u in L a ([0, T ], L b ) as n → ∞. In particular, u n → u in C([0, T ], H γ-) for all > 0.
Thanks to the conservation of mass, we immediately have the following global well-posedness in L 2 when σ ≥ 2.

Corollary 1.4. Let σ ≥ 2 and ν ∈ (1, 1 + 2σ/d). Then for all ϕ ∈ L 2 , there exists a unique global solution to (NLFS) satisfying u ∈ C(R, L 2 ) ∩ L p loc (R, L q ), where (p, q) given in (1.8).

Proposition 1.5.

Let        σ ∈ (2/3, 1) when d = 1, σ ∈ (1, 2) when d = 2, σ ∈ (3/2, 3) when d = 3, σ ∈ [2, d) when d ≥ 4, (1.9) 
and ν > 1 be such that σ/2 > γ s , and also, if ν is not an odd integer, σ/2 ≤ ν. Then for any ϕ ∈ H σ/2 , the solution to (NLFS) given in Theorem 1.1 and Theorem 1.7 can be extended to the whole R if one of the following is satisfied:

i. µ = 1.
ii. µ = -1, ν < 1 + 2σ/d.

iii. µ = -1, ν = 1 + 2σ/d and ϕ L 2 is small.

iv. µ = -1 and ϕ H σ/2 is small.

We now turn to the local well-posedness and scattering with small data for (NLFS) in the critical case. be such that γ s ≥ 0, and also, if ν is not an odd integer, (1.5). Then for all ϕ ∈ H γs , there exist T * ∈ (0, ∞] and a unique solution to (NLFS) satisfying

u ∈ C([0, T * ), H γs ) ∩ L p loc ([0, T * ), B γs-γp,q q ),
where p = 4, q = ∞ when d = 1; 2 < p < ν -1, q = p = 2p/(p -2) when d = 2 and p = 2, q = 2 = 2d/(d -2) when d ≥ 3. Moreover, if ϕ Ḣγs < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in H γs , i.e. there exists ϕ + ∈ H γs such that

lim t→+∞ u(t) -e itΛ σ ϕ + H γs = 0.
This theorem is a modification of Theorem 1.2 and Theorem 1.3 in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] where the authors proved the global well-posedness and scattering for small inhomogeneous data. Note that Strichartz estimate is not sufficient to give the local existence in the critical case. It needs a delicate estimate on L ν-1 t L ∞

x (see Lemma 3.5 in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF]). The range ν ∈ (1, 5] when d = 1 and ν ∈ [START_REF] Bahouri | Fourier analysis and non-linear partial differential equations[END_REF][START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF] still remains open, and it requires another technique rather than Strichartz estimate. The situation becomes better when σ ≥ 2, and we have the following result.

Theorem 1.7. Let σ ≥ 2 and ν > 1 such that γ s ≥ 0, and also, if ν is not an odd integer, (1.5). Let

p = ν + 1, q = 2d(ν + 1) d(ν + 1) -2σ . (1.11)
Then for any ϕ ∈ H γs , there exist T * ∈ (0, ∞] and a unique solution to (NLFS) satisfying

u ∈ C([0, T * ), H γs ) ∩ L p loc ([0, T * ), H γs q ).
Moreover, if ϕ Ḣγs < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in H γs .

We next give the local well-posedness results for the (NLFW). Let us start with the local well-posedness in the sub-critical case.

Theorem 1.8. Given σ ∈ (0, ∞)\{1} and ν > 1. Let γ ∈ [0, d/2) be as in (1.6) and also, if ν is not an odd integer, (1.5). Then for all (ϕ, φ) ∈ H γ × H γ-σ , there exist T * ∈ (0, ∞] and a unique solution to (NLFW) satisfying

v ∈ C([0, T * ), H γ ) ∩ C 1 ([0, T * ), H γ-σ ) ∩ L p loc ([0, T * ), L ∞ ),
for some p > max(ν -1, 4) when d = 1 and some p > max(ν -1, 2) when d ≥ 2. Moreover, the following properties hold:

i. If T * < ∞, then [v](t) H γ → ∞ as t → T * .
ii. v depends continuously on (ϕ, φ) in the following sense. There exists 0 < T < T * such that if (ϕ n , φ n ) → (ϕ, φ) in H γ × H γ-σ and if v n denotes the solution of (NLFW) with initial data (ϕ n , φ n ), then 0 < T < T * (ϕ n , φ n ) for all n sufficiently large and

v n is bounded in L a ([0, T ], H γ-γ a,b b ) for any admissible pair (a, b) with b < ∞. Moreover, v n → v in L a (I, H -γ a,b b ) as n → ∞. In particular, v n → v in C([0, T ], H γ-) ∩ C 1 ([0, T ], H γ-σ-) for all > 0.
We note that (1.6) is necessary to use the Sobolev embedding, but it produces a gap between γ w and 1/2 -σ/ max(ν -1, 4) when d = 1 and d/2 -σ/ max(ν -1, 2) when d ≥ 2. Moreover, if we assume that ν > 1 is an odd integer or (1.7) otherwise, then the continuous dependence holds in C([0, T ],

H γ ) ∩ C 1 ([0, T ], H γ-σ ).
The following result gives the local well-posedness for (NLFW) in the σ-sub-critical case.

Theorem 1.9. 1. Assume for d = 1, 2, 3, 4,

σ ∈ 0, d d + 2 , ν ∈ d d -2σ , 2d -dσ 2d -(d + 4)σ or σ ∈ d d + 2 , d 2 \{1}, ν ∈ d d -2σ , d + 2σ d -2σ
; (1.12)

for d = 5, ..., 11, σ ∈ 0, 2 3 , ν ∈ d d -2σ , 2d -dσ 2d -(d + 4)σ or σ ∈ 2 3 , d 6 \{1}, ν ∈ d d -2σ , d d -3σ or σ ∈ d 6 , 2 \{1}, ν ∈ d d -2σ , d + 2σ d -2σ ; (1.13)
and for d ≥ 12,

σ ∈ 0, 2 3 , ν ∈ d d -2σ , 2d -dσ 2d -(d + 4)σ or σ ∈ 2 3 , 2 \{1}, ν ∈ d d -2σ , d d -3σ . (1.14)
Let (p, q) be an admissible pair defined by

p = 2σν (d -2σ)ν -d , q = 2ν. (1.15) 
Then for all (ϕ, φ) ∈ Ḣσ × L 2 , there exist T * ∈ (0, ∞] and a unique solution to (NLFW)

satisfying v ∈ C([0, T * ), Ḣσ ) ∩ C 1 ([0, T * ), L 2 ) ∩ L p loc ([0, T * ), L q
). Moreover, the following properties hold:

i. If T * < ∞, then [v](t) Ḣσ → ∞ as t → T * .
ii. v depends continuously on (ϕ, φ) in the following sense. There exists

0 < T < T * such that if (ϕ n , φ n ) → (ϕ, φ) in Ḣσ × L 2 and if v n denotes the solution of (NLFW) with initial data (ϕ n , φ n ), then 0 < T < T * (ϕ n , φ n ) for all n sufficiently large and v n → v in C([0, T ], Ḣσ ) ∩ C 1 ([0, T ], L 2 ). 2. Let σ ∈ 2, d 2 , ν ∈ dσ * d + σ , σ * , (1.16) 
where σ * := (d + 2σ)/(d -2σ). Let (p, q) be an admissible pair defined by

p = 2σ * , p = 2dσ * d + σ . (1.17)
Then the same conclusion as in Item 1 holds true.

This theorem and the conservation of energy imply the following global well-posedness for the defocusing (NLFW).

Corollary 1.10. Under the assumptions of Theorem 1.9, for all (ϕ, φ) ∈ Ḣσ × L 2 , there exists a unique global solution to the defocusing (NLFW) satisfying

v ∈ C(R, Ḣσ ) ∩ C 1 (R, L 2 ) ∩ L p loc (R, L q
), where (p, q) are as in Theorem 1.9.

The next result gives the local well-posedness with small data scattering for (NLFW) in the critical case.

Theorem 1.11. 1. Assume for d ≥ 1 that σ ∈ d d + 1 , d \{1}, ν ∈ 1 + 4σ d -σ , ∞ , (1.18) 
and also, if ν is not an odd integer,

γ w - σ 2 ≤ ν -1. (1.19)
Let p, a be defined by

p = (d + σ)(ν -1) 2σ , a = 2(d + σ) d -σ . (1.20)
Then for all (ϕ, φ) ∈ Ḣγw × Ḣγw-σ , there exist T * ∈ (0, ∞] and a unique solution to (NLFW) satisfying

v ∈ C([0, T * ), Ḣγw ) ∩ C 1 ([0, T * ), Ḣγw-σ ) ∩ L p loc ([0, T * ), L p ) ∩ L a loc ([0, T * ), Ḣγw-σ 2 a
).

Moreover, if [v](0) Ḣγw < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in Ḣγw × Ḣγw-σ , i.e. there exist (ϕ + , φ + ) ∈ Ḣγw × Ḣγw-σ such that the (weak) solution to the linear fractional wave equation

∂ 2 t v + (t, x) + Λ 2σ v + (t, x) = 0, (t, x) ∈ R × R d , v + (0, x) = ϕ + (x), ∂ t v + (0, x) = φ + (x), x ∈ R d , satisfy lim t→+∞ [v(t) -v + (t)] Ḣγw = 0. 2. Assume for d ≥ 1 that σ ∈ d 2 + 4d 3d + 4 , ∞ \{1}, ν ∈ 1 + 4σ(d + 2) d(d + σ) , ∞ or σ ∈ d d + 1 , d 2 + 4d 3d + 4 \{1}, ν ∈ 1 + 4σ(d + 2) d(d + σ) , 1 + 4σ(d + 2) d 2 -3dσ + 4d -4σ . (1.21)
Then for all (ϕ, φ) ∈ Ḣγw × Ḣγw-σ , there exist T * ∈ (0, ∞] and a unique solution to (NLFW)

satisfying v ∈ C([0, T * ), Ḣγw ) ∩ C 1 ([0, T * ), Ḣγw-σ ) ∩ L p loc ([0, T * ), L p
), where p is as above. Moreover, if [v](0) Ḣγw < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in Ḣγw × Ḣγw-σ .

Finally, we have the following local well-posedness and scattering with small data for (NLFW) in the σ-critical case.

Theorem 1.12. Let    σ ∈ d d+2 , d 2 \{1} when d = {1, 2, 3, 4}, σ ∈ d 6 , d 2 \{1} when d ≥ 5, (1.22) 
and ν = 1 + 4σ/(d -2σ). Then for all (ϕ, φ) ∈ Ḣσ × L 2 , there exist T * ∈ (0, ∞] and a unique solution to (NLFW) satisfying

v ∈ C([0, T * ), Ḣσ ) ∩ C 1 ([0, T * ), L 2 ) ∩ L ν loc ([0, T * ), L 2ν ). Moreover, if [v](0) Ḣσ < ε for some ε > 0 small enough, then T * = ∞ and the solution is scattering in Ḣσ × L 2 .
The rest of this note is organized as follows. In Section 2, we prove Strichartz estimates for the fractional Schrödinger and wave equations. In Section 3, we recall the fractional derivatives of the nonlinearity. Section 4 is devoted to the proofs of the local well-posedness in the sub-critical case and the local well-posedness with small data scattering in the critical case for the (NLFS). We finally prove the local well-posedness in the sub-critical case and the local well-posedness with small data scattering in the critical case for the (NLFW) in Section 5.

Strichartz estimates

In this section, we recall Strichartz estimates for the linear fractional Schrödinger and wave equations.

Theorem 2.1 (Strichartz estimates [START_REF] Cho | Remarks on some dispersive estimates[END_REF]). Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R and a (weak) solution to the linear fractional Schrödinger equation, namely

u(t) = e itΛ σ ϕ + t 0 e i(t-s)Λ σ F (s)ds,
for some data ϕ, F . Then for all (p, q) and (a, b) admissible pairs,

u L p (R, Ḃγ q ) ϕ Ḣγ+γp,q + F L a (R, Ḃγ+γp,q-γ a ,b -σ b ) , (2.1) 
where γ p,q and γ a ,b are as in (1.4). In particular,

u L p (R, Ḃγ-γp,q q ) ϕ Ḣγ + F L 1 (R, Ḣγ ) , (2.2) 
and

u L ∞ (R, Ḃγp,q 2 ) + u L p (R, Ḃ0 q ) ϕ Ḣγp,q + F L a (R, Ḃ0 b ) , (2.3) 
provided that

γ p,q = γ a ,b + σ. (2.4)
Here (a, a ) is a conjugate pair.

Sketch of proof. We firstly note this theorem is proved if we establish

e itΛ σ P 1 ϕ L p (R,L q ) P 1 ϕ L 2 , (2.5) 
t 0 e i(t-s)Λ σ P 1 F (s)ds L p (R,L q ) P 1 F L a (R,L b ) , (2.6) 
for all (p, q), (a, b) admissible pairs. Indeed, by change of variables, we see that

e itΛ σ P N ϕ L p (R,L q ) = N -(d/q+σ/p) e itΛ σ P 1 ϕ N L p (R,L q ) , P 1 ϕ N L 2 = N d/2 P N ϕ L 2 ,
where ϕ N (x) = ϕ(N -1 x). The estimate (2.5) implies that

e itΛ σ P N ϕ L p (R,L q ) N γp,q P N ϕ L 2 , (2.7) for all N ∈ 2 Z . Similarly, t 0 e i(t-s)Λ σ P N F (s)ds L p (R,L q ) = N -(d/q+σ/p+σ) t 0 e i(t-s)Λ σ P 1 F N (s)ds L p (R,L q )
, where F N (t, x) = F (N -σ t, N -1 x). We also have from (2.6) and the fact

P 1 F N L a (R,L b ) = N (d/b +σ/a ) P N F L a (R,L b ) that t 0 e i(t-s)Λ σ P N F (s)ds L p (R,L q ) N γp,q-γ a ,b -σ P N F L a (R,L b ) , (2.8) 
for all N ∈ 2 Z . We see from (2.7) and (2.8) that

N γ P N u L p (R,L q ) N γ+γp,q P N ϕ L 2 + N γ+γp,q-γ a ,b -σ P N F L a (R,L b ) .
By taking the 2 (2 Z ) norm both sides and using the Minkowski inequality, we get (2.1). The estimates (2.2) and (2.3) follow easily from (2.1). It remains to prove (2.5) and (2.6). By the T T * -criterion (see [START_REF] Keel | Endpoint Strichartz estimates[END_REF] or [START_REF] Bahouri | Fourier analysis and non-linear partial differential equations[END_REF]), we need to show

T (t) L 2 →L 2 1, (2.9) 
T (t) L 1 →L ∞ (1 + |t|) -d/2 , (2.10) 
for all t ∈ R where T (t) := e itΛ σ P 1 . The energy estimate (2.9) is obvious by using the Plancherel theorem. The dispersive estimate (2.10) follows by the standard stationary phase theorem. The proof is complete.

Corollary 2.2. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R.
If u is a (weak) solution to the linear fractional Schrödinger equation for some data ϕ, F , then for all (p, q) and (a, b) admissible with q < ∞ and b < ∞ satisfying (2.4),

u L p (R, Ḣγ-γp,q q ) ϕ Ḣγ + F L 1 (R, Ḣγ ) , (2.11) 
u L ∞ (R, Ḣγp,q ) + u L p (R,L q ) ϕ Ḣγp,q + F L a (R,L b ) .
(2.12)

Corollary 2.3. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ≥ 0 and I a bounded interval. If u is a (weak)
solution to the linear fractional Schrödinger equation for some data ϕ, F , then for all (p, q) admissible satisfying q < ∞,

u L p (I,H γ-γp,q q ) ϕ H γ + F L 1 (I,H γ ) .
(2.13)

Proof. We firstly note that when γ p,q ≥ 0 (or at least σ ∈ (0, 2]\{1}), we can obtain (2.13) for any γ ∈ R and I = R. To see this, we write u L p (R,H γ-γp,q q ) = Λ γ-γp,q u L p (R,L q ) and use

(2.11) with γ = γ p,q to obtain

u L p (R,H γ-γp,q q ) Λ γ-γp,q ϕ Ḣγp,q + Λ γ-γp,q F L 1 (R, Ḣγp,q ) .
This gives the claim since v Ḣγp,q ≤ v H γp,q using that γ p,q ≥ 0. It remains to treat the case γ p,q < 0. By the Minkowski inequality and the unitary of e itΛ σ in L 2 , the estimate (2.13) is proved if we can show for γ ≥ 0, I ⊂ R a bounded interval and all (p, q) admissible with q < ∞ that

e itΛ σ ϕ L p (I,H γ-γp,q q ) ϕ H γ . (2.14)
Indeed, if we have (2.14), then

t 0 e i(t-s)Λ σ F (s)ds L p (I,H γ-γp,q q ) ≤ I 1 [0,t] (s)e i(t-s)Λ σ F (s) L p (I,H γ-γp,q q ) ds ≤ I e i(t-s)Λ σ F (s) L p (I,H γ-γp,q q ) ds I F (s) H γ ds = F L 1 (I,H γ ) .
We now prove (2.14). To do so, we write

Λ γ-γp,q e itΛ σ ϕ = ψ(D) Λ γ-γp,q e itΛ σ ϕ + (1 -ψ)(D) Λ γ-γp,q e itΛ σ ϕ,
for some ψ ∈ C ∞ 0 (R d ) valued in [0, 1] and equal to 1 near the origin. For the first term, the Sobolev embedding implies

ψ(D) Λ γ-γp,q e itΛ σ ϕ L q ψ(D) Λ γ-γp,q e itΛ σ ϕ H δ ,
for some δ > d/2 -d/q. Thanks to the support of ψ and the unitary property of e itΛ σ in L 2 , we get

ψ(D) Λ γ-γp,q e itΛ σ ϕ L p (I,L q ) ϕ L 2 ϕ H γ .
Here the boundedness of I is crucial to have the first estimate. For the second term, using (2.12), we obtain

(1 -ψ)(D) Λ γ-γp,q e itΛ σ ϕ L p (I,L q ) (1 -ψ)(D) Λ γ-γp,q ϕ Ḣγp,q ϕ H γ .
Combining the two terms, we have (2.14). This completes the proof.

Corollary 2.4. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R and a (weak) solution to the linear fractional wave equation, namely

v(t) = cos(tΛ σ )ϕ + sin(tΛ σ ) Λ σ φ + t 0 sin((t -s)Λ σ ) Λ σ G(s)ds,
for some data ϕ, φ, G. Then for all (p, q) and (a, b) admissible pairs,

[v] L p (R, Ḃγ q ) [v](0) Ḣγ+γp,q + G L a (R, Ḃγ+γp,q-γ a ,b -2σ b ) , (2.15) 
where

[v] L p (R, Ḃγ q ) := v L p (R, Ḃγ q ) + ∂ t v L p (R, Ḃγ-σ q ) ; [v](0) Ḣγ+γp,q := ϕ Ḣγ+γp,q + φ Ḣγ+γp,q-σ .
In particular,

[v] L p (R, Ḃγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-σ ) , (2.16 
)

and [v] L ∞ (R, Ḃγp,q 2 ) + [v] L p (R, Ḃ0 q ) [v](0) Ḣγp,q + G L a (R, Ḃ0 b ) , (2.17) 
provided that

γ p,q = γ a ,b + 2σ. (2.18)
Proof. It follows easily from Theorem 2.1 and the fact that

cos(tΛ σ ) = e itΛ σ + e -itΛ σ 2 , sin(tΛ σ ) = e itΛ σ -e -itΛ σ 2i .
As in Corollary 2.2, we have the following usual Strichartz estimates for the fractional wave equation.

Corollary 2.5. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ∈ R. If v
is a (weak) solution to the linear fractional wave equation for some data ϕ, φ, G, then for all (p, q) and (a, b) admissible satisfying q < ∞, b < ∞ and (2.18),

v L p (R, Ḣγ-γp,q q ) [v](0) Ḣγ + G L 1 (R, Ḣγ-σ ) , (2.19) [v] L ∞ (R, Ḣγp,q ) + v L p (R,L q ) [v](0) Ḣγp,q + G L a (R,L b ) .
(2.20)

The following result, which is similar to Corollary 2.3, gives the local Strichartz estimates for the fractional wave equation.

Corollary 2.6. Let d ≥ 1, σ ∈ (0, ∞)\{1}, γ ≥ 0 and I ⊂ R a bounded interval. If v is a (weak) solution to the linear fractional wave equation for some data ϕ, φ, G, then for all (p, q) admissible satisfying q < ∞,

v L p (I,H γ-γp,q q ) [v](0) H γ + G L 1 (I,H γ-σ ) .
(2.21)

Proof. The proof is similar to the one of Corollary 2.3. Thanks to the Minkowski inequality, it suffices to prove for all γ ≥ 0, all I ⊂ R bounded interval and all (p, q) admissible pair with q < ∞,

cos(tΛ σ )ϕ L p (I,H γ-γp,q q ) ϕ H γ , (2.22) sin(tΛ σ ) Λ σ φ L p (I,H γ-γp,q q ) φ H γ-σ . (2.23)
The estimate (2.22) follows from the ones of e ±itΛ σ . We will give the proof of (2.23). To do this, we write

Λ γ-γp,q sin(tΛ σ ) Λ σ = ψ(D) Λ γ-γp,q sin(tΛ σ ) Λ σ + (1 -ψ)(D) Λ γ-γp,q sin(tΛ σ ) Λ σ ,
for some ψ as in the proof of Corollary 2.3. For the first term, the Sobolev embedding and the fact sin(tΛ σ )

Λ σ L 2 →L 2 ≤ |t| imply ψ(D) Λ γ-γp,q sin(tΛ σ ) Λ σ φ L q |t| ψ(D) Λ γ+δ-γp,q φ L 2 ,
for some δ > d/2 -d/q. This gives

ψ(D) Λ γ-γp,q sin(tΛ σ ) Λ σ φ L p (I,L q ) φ H γ-σ .
Here we use the fact that ψ(D) Λ δ+σ-γp,q L 2 →L 2

1. For the second term, we apply (2.14) with the fact sin(tΛ σ ) = (e itΛ σ -e -itΛ σ )/2i and get

(1 -ψ)(D) Λ γ-γp,q sin(tΛ σ ) Λ σ φ L p (I,L q ) (1 -ψ)(D)Λ -σ φ H γ φ H γ-σ .
Here we use that (

1-ψ)(D) Λ σ Λ -σ L 2 →L 2
1 by functional calculus. Combining two terms, we have (2.23). The proof is complete.

Nonlinear estimates

In this section, we recall some estimates related to the fractional derivatives of nonlinear operators. Let us start with the following Kato-Ponce inequality (or fractional Leibniz rule).

Proposition 3.1. Let γ ≥ 0, 1 < r < ∞ and 1 < p 1 , p 2 , q 1 , q 2 ≤ ∞ satisfying 1 r = 1 p1 + 1 q1 = 1 p2 + 1 q2 .
Then there exists C = C(d, γ, r, p 1 , q 1 , p 2 , q 2 ) > 0 such that for all u, v ∈ S ,

Λ γ (uv) L r ≤ C Λ γ u L p 1 v L q 1 + u L p 2 Λ γ v L q 2 , (3.1) 
Λ γ (uv) L r ≤ C Λ γ u L p 1 v L q 1 + u L p 2 Λ γ v L q 2 . (3.2)
We refer to [START_REF] Grafakos | The Kato-Ponce inequality[END_REF] (and references therein) for the proof of above inequalities and more general results. We also have the following fractional chain rule.

Proposition 3.2. Let F ∈ C 1 (C, C) and G ∈ C(C, R + ) such that F (0) = 0 and |F (θz + (1 -θ)ζ)| ≤ µ(θ)(G(z) + G(ζ)), z, ζ ∈ C, 0 ≤ θ ≤ 1,
where µ ∈ L 1 ((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + 1 q , there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

Λ γ F (u) L r ≤ C F (u) L q Λ γ u L p , (3.3) 
Λ γ F (u) L r ≤ C F (u) L q Λ γ u L p . (3.4) 
We refer to [START_REF] Christ | Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation[END_REF] (see also [START_REF] Staffilani | The initial value problem for some dispersive differential equations[END_REF]) for the proof of (3.3) and Proposition 5.1 of [START_REF] Taylor | Tool for PDE Pseudodifferential operators, Paradifferential operators and Layer Potentials[END_REF] for (3.4). A direct consequence of the fractional Leibniz rule and the fractional chain rule is the following fractional derivatives estimates.

Corollary 3.3. Let F ∈ C k (C, C), k ∈ N\{0}. Assume that there is ν ≥ k such that |D i F (z)| ≤ C|z| ν-i , z ∈ C, i = 1, 2, ...., k.
Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q , there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

Λ γ F (u) L r ≤ C u ν-1 L q Λ γ u L p , (3.5) 
Λ γ F (u) L r ≤ C u ν-1 L q Λ γ u L p . (3.6)
The reader can find the proof of (3.5) in Lemma A.3 of [START_REF] Kato | On nonlinear Schrödinger equations. II. H s -solutions and unconditional wellposedness[END_REF]. The one of (3.6) follows from (3.5), the Hölder inequality and the fact that

Λ γ u L r ∼ u L r + Λ γ u L r , for 1 < r < ∞, γ > 0.
Another consequence of the fractional Leibniz rule given in Proposition 3.1 is the following result.

Corollary 3.4. Let F (z) be a homogeneous polynomial in z, z of degree ν ≥ 1. Then (3.5) and (3.6) hold true for any γ ≥ 0 and r, p, q as in Corollary 3.3.

Corollary 3.5. Let F (z) = |z| ν-1 z with ν > 1, γ ≥ 0 and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + ν-1 q . i. If ν is an odd integer or 1 γ ≤ ν otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

F (u) Ḣγ r ≤ C u ν-1 L q u Ḣγ p .
A similar estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. ii. If ν is an odd integer or γ ≤ ν -1 otherwise, then there exists C = C(d, ν, γ, r, p, q) > 0 such that for all u, v ∈ S ,

F (u) -F (v) Ḣγ r ≤ C ( u ν-1 L q + v ν-1 L q ) u -v Ḣγ p + ( u ν-2 L q + v ν-2 L q )( u Ḣγ p + v Ḣγ p ) u -v L q .
A similar estimate holds with Ḣγ r , Ḣγ p -norms are replaced by H γ r , H γ p -norms respectively. Proof. Item 1 is an immediate consequence of Corollary 3.3 and Corollary 3.4. For Item 2, we firstly write Proof of Theorem 1.1. We follow the standard process (see e.g. Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] or [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF]) by using the fixed point argument in a suitable Banach space. We firstly choose p > max(ν -1, 4) when d = 1 and p > max(ν -1, 2) when d ≥ 2 such that γ > d/2 -σ/p and then choose

F (u) -F (v) = ν 1 0 |v + t(u -v)| ν-1 (u -v)dt,
q ∈ [2, ∞) such that 2 p + d q ≤ d 2 .
Step 1. Existence. Let us consider

X := u ∈ L ∞ (I, H γ ) ∩ L p (I, H γ-γp,q q ) | u L ∞ (I,H γ ) + u L p (I,H γ-γp,q q ) ≤ M ,
equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L p (I,H -γp,q q ) ,
where I = [0, T ] and M, T > 0 to be chosen later. The persistence of regularity (see e.g. Theorem 1.2.5 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) shows that (X, d) is a complete metric space. By the Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = e itΛ σ ϕ + iµ t 0 e i(t-s)Λ σ |u(s)| ν-1 u(s)ds (4.1)
is a contraction on (X, d). The local Strichartz estimate (2.13) gives

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ϕ H γ + F (u) L 1 (I,H γ ) , Φ(u) -Φ(v) L ∞ (I,L 2 ) + Φ(u) -Φ(v) L p (I,H -γp,q q ) F (u) -F (v) L 1 (I,L 2 ) ,
where F (u) = |u| ν-1 u. By our assumptions on ν, Corollary 3.5 gives

F (u) L 1 (I,H γ ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I,H γ ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , (4.2) 
F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) T 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) u -v L ∞ (I,L 2 ) . (4.3) 
Using that γ -γ p,q > d/q, the Sobolev embedding implies L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ). Thus, we get

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ϕ H γ + T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) u L ∞ (I,H γ ) , and 
d(Φ(u), Φ(v)) T 1-ν-1 p u ν-1 L p (I,H γ-γp,q q ) + v ν-1 L p (I,H γ-γp,q q ) u -v L ∞ (I,L 2 ) .
This shows that for all u, v ∈ X, there exists C > 0 independent of ϕ ∈ H γ such that

Φ(u) L ∞ (I,H γ ) + Φ(u) L p (I,H γ-γp,q q ) ≤ C ϕ H γ + CT 1-ν-1 p M ν , d(Φ(u), Φ(v)) ≤ CT 1-ν-1 p M ν-1 d(u, v).
Therefore, if we set M = 2C ϕ H γ and choose T > 0 small enough so that CT 1-ν-1 p M ν-1 ≤ 1 2 , then X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique u ∈ X so that Φ(u) = u.

Step 2. Uniqueness. Consider u, v ∈ C(I, H γ ) ∩ L p (I, L ∞ ) two solutions of (NLFS). Since the uniqueness is a local property (see Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), it suffices to show u = v for T is small. We have from (4.3) that

d(u, v) ≤ CT 1-ν-1 p u ν-1 L p (I,L ∞ ) + v ν-1 L p (I,L ∞ ) d(u, v).
Since u L p (I,L ∞ ) is small if T is small and similarly for v, we see that if T > 0 small enough,

d(u, v) ≤ 1 2 d(u, v) or u = v.
Step ) ). We also have from (4.3) and the choice of T that

ϕ H γ + T 1-ν-1 p u ν-1 L p (I,L ∞ ) u L ∞ (I,H γ ) , provided ( 
d(u n , u) ≤ C ϕ n -ϕ L 2 + 1 2 d(u n , u) or d(u n , u) ≤ 2C ϕ n -ϕ L 2 .
This yields that

u n → u in L ∞ (I, L 2 ) ∩ L p (I, H -γp,q q 
). Strichartz estimate (2.13) again implies that

u n → u in L a (I, H -γ a,b b
) for any admissible pair (a, b) with b < ∞. The convergence in C(I, H γ-) follows from the boundedness in L ∞ (I, H γ ), the convergence in L ∞ (I, L 2 ) and that

u H γ-≤ u 1-γ H γ u γ L 2 . Remark 4.1.
If we assume that ν > 1 is an odd integer or γ ≤ ν -1 otherwise, then the continuous dependence holds in C(I, H γ ). To see this, we consider X as above equipped with the following metric

d(u, v) := u -v L ∞ (I,H γ ) + u -v L p (I,H γ-γp,q q ) .
Using Item ii of Corollary 3.5, we have

F (u) -F (v) L 1 (I,H γ ) ( u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) ) u -v L ∞ (I,H γ ) + ( u ν-2 L ν-1 (I,L ∞ ) + v ν-2 L ν-1 (I,L ∞ ) )( u L ∞ (I,H γ ) + v L ∞ (I,H γ ) ) u -v L ν-1 (I,L ∞ ) .
Using the Sobolev embedding, we see that for all u, v ∈ X,

d(Φ(u), Φ(v)) T 1-ν-1 p M ν-1 d(u, v).
Therefore, the continuity in C(I, H γ ) follows as in Step 4.

Proof of Theorem 1.3. Let (p, q) be as in (1.8). It is easy to see that (p, q) is admissible and γ p,q = 0 = γ p ,q + σ. We next choose (m, n) so that

1 p = 1 p + ν -1 m , 1 q = 1 q + ν -1 n . (4.4)
It is easy to see that

ν -1 m - ν -1 p = 1 - (ν -1)(d -2γ) 2σ > 0, q ≤ n = dq d -γq .
The Sobolev embedding implies

u ν-1 L m (I,L n ) |I| 1-(ν-1)(d-2γ) 2σ u ν-1 L p (I, Ḣγ q ) .
(4.5)

Step 1. Existence. Let us consider

X := u ∈ L p (I, H γ q ) | u L p (I, Ḣγ q ) ≤ M , equipped with the distance d(u, v) = u -v L p (I,L q ) ,
where I = [0, T ] and M, T > 0 to be determined. One can easily verify that (X, d) is a complete metric space (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]). The Strichartz estimate (2.12) implies Φ(u) L p (I, Ḣγ

q ) ϕ Ḣγ + F (u) L p (I, Ḣγ q ) , Φ(u) -Φ(v) L p (I,L q ) F (u) -F (v) L p (I,L q ) .
It follows from Corollary 3.5, (4.4) and (4.5) that

Φ(u) L p (I, Ḣγ q ) ϕ Ḣγ + T 1-(ν-1)(d-2γ) 2σ u ν L p (I, Ḣγ q ) , (4.6) 
Φ(u) -Φ(v) L p (I,L q ) T 1-(ν-1)(d-2γ) 2σ u ν-1 L p (I, Ḣγ q ) + v ν-1 L p (I, Ḣγ q ) u -v L p (I,L q ) . (4.7) 
This implies for all u, v ∈ X, there exists C independent of ϕ ∈ H γ such that

Φ(u) L p (I, Ḣγ q ) ≤ C ϕ Ḣγ + CT 1-(ν-1)(d-2γ) 2σ M ν , d(Φ(u), Φ(v)) ≤ CT 1-(ν-1)(d-2γ) 2σ M ν-1 d(u, v).
If we set M = 2C ϕ Ḣγ and choose T > 0 small enough so that CT 1-(ν-1)(d-2γ) 2σ M ν-1 ≤ 1 2 , then Φ is a strict contraction on X. Thus Φ has a unique fixed point in X. Since ϕ ∈ H γ and u ∈ L p (I, H γ q ), the continuity in H γ follows easily from Strichartz estimates (see e.g. [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]). This proves the existence of solution u ∈ C(I, H γ ) ∩ L p (I, H γ q ) to (NLFS).

Step 2. Uniqueness. The uniqueness is similar to Step 2 of the proof of Theorem 1.1 using (4.7). Note that u L p (I, Ḣγ q ) can be small if T is taken small enough.

Step 3. Item i. The blowup alternative is easy since the time of existence depends only on ϕ Ḣγ .

Step 4. Item ii. The continuous dependence is similar to that of Theorem 1.1. We have from Strichartz estimate (2.12) and (4.6) that Proof of Proposition 1.5. The assumption (1.9) allows us to apply Theorem 1.1 and Theorem 1.3 with γ = σ/2 and obtain the local well-posedness in H σ/2 . We now prove the global extension using the blowup alternative. Item i follows from the conservation of mass and energy. For Item ii and Item iii, we firstly use Gagliardo-Nirenberg's inequality (see e.g. the appendix of [START_REF] Tao | Nonlinear dispersive equations: local and global analysis[END_REF]) with the fact that

u L a (I, Ḣγ b ) ϕ Ḣγ + T 1-(ν-1)(d-2γ) 2σ u ν L p (I, Ḣγ q ) , u L a (I,L b ) ϕ L 2 + T 1-(ν-1)(d-2γ) 2σ u ν-1 L p (I, Ḣγ q ) u L p (I,L q ) ,
1 ν + 1 = 1 2 - θσ 2d or θ = d(ν -1) σ(ν + 1)
and the conservation of mass to get

u(t) ν+1 L ν+1 Λ σ/2 u(t) d(ν-1) σ L 2 u(t) ν+1- d(ν-1) σ L 2 = u(t) d(ν-1) σ Ḣσ/2 ϕ ν+1- d(ν-1) σ L 2
.

Note that here the assumption ν ≤ 1 + 2σ/d ensures that θ ∈ (0, 1). The conservation of mass then gives

1 2 u(t) 2 Ḣσ/2 = E s (u(t)) - µ ν + 1 u(t) ν+1 L ν+1 E s (ϕ) - µ ν + 1 u(t) d(ν-1) σ Ḣσ/2 ϕ ν+1- d(ν-1) σ L 2 . If ν ∈ (1, 1 + 2σ/d) or d(ν-1)
σ ∈ (0, 2), then u(t) Ḣσ/2 ≤ C. This together with the conservation of mass implies the boundedness of u(t) H σ/2 and Item ii follows. Item iii is treated similarly with ϕ L 2 is small. It remains to show Item iv. By Sobolev embedding with 1 2

≤ 1 ν+1 + σ 2d , we have ϕ L ν+1 ≤ C ϕ H σ/2 . This shows that E(ϕ) is small if ϕ H σ/2 is small. Similarly, 1 2 u(t) 2 Ḣσ/2 = E s (u(t)) - µ ν + 1 u(t) ν+1 L ν+1 ≤ E s (ϕ) + C u(t) ν+1 H σ/2 , with ν + 1 > 2.
This again implies that u(t) H σ/2 is bounded provided ϕ H σ/2 is small. This completes the proof.

Local well-posedness in critical cases

In this subsection, we give the proofs of Theorem 1.6 and Theorem 1.7.

Proof of Theorem 1.6. Let us recall the following result which gives a good control for the nonlinear term.

Lemma 4.2 ([22]

). Let σ ∈ (0, 2)\{1}, ν be as in (1.10), γ s as in (1.1). Then we have

u ν-1 L ν-1 (R,L ∞ )          u 4 L 4 (R, Ḃγs-γ 4,∞ ∞ u ν-5 L ∞ (R, Ḃγs 2 ) when d = 1, u p L p (R, Ḃγs-γ p,p p ) u ν-1-p L ∞ (R, Ḃγs 2 ) where ν -1 > p > 2 when d = 2, u 2 L 2 (R, Ḃγs-γ 2,2 2 ) u ν-3 L ∞ (R, Ḃγs 2 ) when d ≥ 3, where p = 2p/(p -2) and 2 = 2d/(d -2).
This result is a slight modification of Lemma 3.5 in [START_REF] Hong | On fractional Schrödinger equations in Sobolev spaces[END_REF] which generalizes Lemma 3.1 in [START_REF] Colliander | Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R 3[END_REF]. The main difference is the exponent power in R 2 . The proof is similar to the one given there, thus we omit it.

Step 1. Existence. We only treat for d ≥ 3, the ones for d = 1, d = 2 are completely similar. Let us consider

X := u ∈ L ∞ (I, H γs ) ∩ L 2 (I, B γs-γ 2,2 2 ) | u L ∞ (I, Ḣγs ) ≤ M, u L 2 (I, Ḃγs-γ 2, 2 2 ) 
≤ N , equipped with the distance

d(u, v) := u -v L ∞ (I,L 2 ) + u -v L 2 (I, Ḃ-γ 2, 2 2 ) 
, where I = [0, T ] and T, M, N > 0 will be chosen later. One can check (see again [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF] or Chapter 4 of [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) that (X, d) is a complete metric space. Using the Duhamel formula

Φ(u)(t) = e itΛ σ ϕ + iµ t 0 e i(t-s)Λ σ |u(s)| ν-1 u(s)ds =: u hom (t) + u inh (t), (4.8) 
the Strichartz estimate (2.2) yields

u hom L 2 (I, Ḃγs-γ 2, 2 2 ) 
ϕ Ḣγs .

A similar estimate holds for u hom L ∞ (I, Ḣγs ) . We see that u hom L 2 (I,

Ḃγs-γ 2, 2 2 ) 
≤ ε for some ε > 0 small enough which will be chosen later, provided that either ϕ Ḣγs is small or it is satisfied for some T > 0 small enough by the dominated convergence theorem. Therefore, we can take T = ∞ in the first case and T be this small time in the second. On the other hand, using again (2.2), we have

u inh L 2 (I, Ḃγs-γ 2,2 2 ) F (u) L 1 (I, Ḣγs ) .
A same estimate holds for u inh L ∞ (I, Ḣγs ) . Corollary 3.5 and Lemma 4.2 give

F (u) L 1 (I, Ḣγs ) u ν-1 L ν-1 (I,L ∞ ) u L ∞ (I, Ḣγs ) u 2 L 2 (I, Ḃγs-γ 2,2 2 ) u ν-2 L ∞ (I, Ḣγs ) . (4.9) 
Similarly, we have

F (u) -F (v) L 1 (I,L 2 ) u ν-1 L ν-1 (I,L ∞ ) + v ν-1 L ν-1 (I,L ∞ ) u -v L ∞ (I,L 2 ) (4.10) u 2 L 2 (I, Ḃγs-γ 2,2 2 
)

u ν-3 L ∞ (I, Ḣγs ) + v 2 L 2 (I, Ḃγs-γ 2,2 2 ) v ν-3 L ∞ (I, Ḣγs ) u -v L ∞ (I,L 2 ) .
This implies for all u, v ∈ X, there exists C > 0 independent of ϕ ∈ H γs such that Φ(u)

L 2 (I, Ḃγs-γ 2,2 2 ) ≤ ε + CN 2 M ν-2 , Φ(u) L ∞ (I, Ḣγs ) ≤ C ϕ Ḣγs + CN 2 M ν-2 , d(Φ(u), Φ(v)) ≤ CN 2 M ν-3 d(u, v).
Now by setting N = 2ε and M = 2C ϕ Ḣγs and choosing ε > 0 small enough such that CN 2 M ν-3 ≤ min{1/2, ε/M }, we see that X is stable by Φ and Φ is a contraction on X. By the fixed point theorem, there exists a unique solution u ∈ X to (NLFS). Note that when ϕ Ḣγs is small enough, we can take T = ∞.

Step 2. Uniqueness. The uniqueness in

C ∞ (I, H γs ) ∩ L 2 (I, B γs-γ 2,2 2 
) follows as in Step 2 of the proof of Theorem 1.1 using (4.10). Here u

L 2 (I, Ḃγs-γ 2,2 2 
) can be small as T is small.

Step 3. Scattering. The global existence when ϕ Ḣγs is small is given in Step 1. It remains to show the scattering property. Thanks to (4.9), we see that

e -it2Λ σ u(t 2 ) -e -it1Λ σ u(t 1 ) Ḣγs = iµ t2 t1 e -isΛ σ (|u| ν-1 u)(s)ds Ḣγs ≤ F (u) L 1 ([t1,t2], Ḣγs ) u 2 L 2 ([t1,t2], Ḃγs-γ 2,2 2 ) u ν-2 L ∞ ([t1,t2], Ḣγs ) → 0 (4.11)
as t 1 , t 2 → +∞. We have from (4.10) that

e -it2Λ σ u(t 2 ) -e -it1Λ σ u(t 1 ) L 2 u 2 L 2 ([t1,t2], Ḃγs-γ 2,2 2 ) u ν-3 L ∞ ([t1,t2], Ḣγs ) u L ∞ ([t1,t2],L 2 ) , (4.12) 
which also tends to zero as t 1 , t 2 → +∞. This implies that the limit

ϕ + := lim t→+∞ e -itΛ σ u(t)
exists in H γs . Moreover, we have

u(t) -e itΛ σ ϕ + = -iµ +∞ t e i(t-s)Λ σ F (u(s))ds.
The unitary property of e itΛ σ in L 2 , (4.11) and (4.12) imply that u(t) -e itΛ σ ϕ + H γs → 0 when t → +∞. This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. The proof is similar to the one of Theorem 1.6. Thus, we only give the main steps. It is easy to check that the admissible pair (p, q) given in (1.11) satisfies γ p,q = 0 = γ p ,q + σ. We next choose n so that

1 q = 1 q + ν -1 n or n = dq d -γ s q .
The Sobolev embedding gives

u L p (I,L n ) u L p (I, Ḣγs ) . (4.13) 
Step 1. Existence. We will show that the functional Φ given in (4.8) is a contraction on

X := u ∈ L p (I, H γs q ) | u L p (I, Ḣγs q ) ≤ M ,
which equipped with the distance

d(u, v) = u -v L p (I,L q ) ,
where I = [0, T ] and M, T > 0 to be determined. The Strichartz estimate (2.12) implies

u hom L p (I, Ḣγs q )
ϕ Ḣγs .

This shows that u hom L p (I, Ḣγs q ) ≤ ε for some ε > 0 small enough provided that T is small or ϕ Ḣγs is small. Similarly, we have

u inh L p (I, Ḣγs q ) F (u) L p (I, Ḣγs q ) .
It follows from Corollary 3.5, the choice of n and (4.13) that

F (u) L p (I, Ḣγs q ) u ν L p (I, Ḣγs q ) , (4.14) 
F (u) -F (v) L p (I,L q ) u ν-1 L p (I, Ḣγs q ) + v ν-1 L p (I, Ḣγs q ) u -v L p (I,L q ) . (4.15) 
Thus, the Strichartz estimate (2.12) implies for all u, v ∈ X, there exists

C independent of ϕ ∈ H γs such that Φ(u) L p (I, Ḣγs q ) ≤ ε + CM ν , d(Φ(u), Φ(v)) ≤ CM ν-1 d(u, v).
If we choose ε, M > 0 small so that

CM ν-1 ≤ 1 2 , ε + M 2 ≤ M,
then X is stable by Φ and Φ a contraction on X. Using the argument as in Step 1 of the proof of Theorem 1.3, we obtain the existence of solution u ∈ C(I, H γs ) ∩ L p (I, H γs q ) to (NLFS). Note that when ϕ Ḣγs is small, we can take T = ∞.

Step 2. Uniqueness. It follows easily from (4.15) by the same argument given in Step 2 of the proof of Theorem 1.1 using (4.15).

Step 3. Scattering. The global existence when ϕ Ḣγs is small follows from Step 1. The scattering is treated similarly as in Step 3 of the proof of Theorem 1.6. The main point is to show e -it2Λ σ u(t 2 ) -e -it1Λ σ u(t 1 ) H γs → 0 (4.16)

as t 1 , t 2 → +∞. To do so, we use the adjoint estimate to the homogeneous Strichartz estimate, namely ϕ ∈ L 2 → e itΛ σ ϕ ∈ L p (R, L q ) to get

e -it2Λ σ u(t 2 ) -e -it1Λ σ u(t 1 ) Ḣγs = iµ t2 t1 e -isΛ σ (|u| ν-1 u)(s)ds Ḣγs = R Λ γs e -isΛ σ (1 [t1,t2] |u| ν-1 u)(s)ds L 2 F (u) L p ([t1,t2], Ḣγs q ) .
Similarly,

e -it2Λ σ u(t 2 ) -e -it1Λ σ u(t 1 ) L 2 F (u) L p ([t1,t2],L q ) .
Using (4.14) and (4.15), we get (4.16). The proof is complete.

5 Nonlinear fractional wave equations

Local well-posedness in subcritical cases

In this subsection, we will give the proofs of Theorem 1.8 and Theorem 1.9.

Proof of Theorem 1.8. The proof is very close to the one of Theorem 1.1. Let (p, q) be the fractional pair in the proof of Theorem 1.1.

Step 1. Existence. We will solve (NLFW) in

Y := v ∈ C(I, H γ ) ∩ C 1 (I, H γ-σ ) ∩ L p (I, H γ-γp,q q ) | [v] L ∞ (I,H γ ) + v L p (I,H γ-γp,q q ) ≤ M ,
equipped with the distance

d(v, w) := [v -w] L ∞ (I,L 2 ) + v -w L p (I,H -γp,q q ) ,
where I = [0, T ] and T, M > 0 will be chosen later. The persistence of regularity implies that (Y, d) is a complete metric space. By the Duhamel formula, it suffices to prove that the functional

Ψ(v)(t) = cos(tΛ σ )ϕ + sin(tΛ σ ) Λ σ φ -µ t 0 sin((t -s)Λ σ ) Λ σ |v(s)| ν-1 v(s)ds (5.1) is a contraction on (Y, d). The local Strichartz estimates (2.21) imply [Ψ(v)] L ∞ (I,H γ ) + Ψ(v) L p (I,H γ-γp,q q ) [v](0) H γ + F (v) L 1 (I,H γ-σ ) [v](0) H γ + F (v) L 1 (I,H γ ) ,
where

F (v) = |v| ν-1 v.
As in the proof of Theorem 1.1, Corollary 3.5 implies

F (v) L 1 (I,H γ ) T 1-ν-1 p v ν-1 L p (I,L ∞ ) v L ∞ (I,H γ ) .
Similarly,

F (v) -F (w) L 1 (I,L 2 ) T 1-ν-1 p v ν-1 L p (I,L ∞ ) + w ν-1 L p (I,L ∞ ) v -w L ∞ (I,L 2 ) . (5.2) 
The Sobolev embedding L p (I, H γ-γp,q q

) ⊂ L p (I, L ∞ ) then implies that

[Ψ(v)] L ∞ (I,H γ ) + Ψ(v) L p (I,H γ-γp,q q ) [v](0) H γ + T 1-ν-1 p v ν-1 L p (I,H γ-γp,q q ) v L ∞ (I,H γ ) , and 
d(Ψ(v), Ψ(w)) T 1-ν-1 p v ν-1 L p (I,H γ-γp,q q ) + w ν-1 L p (I,H γ-γp,q q ) d(v, w).
Therefore, for all v, w ∈ Y , there exists a constant C > 0 independent of ϕ, φ such that

[Ψ(v)] L ∞ (I,H γ ) + Ψ(v) L p (I,H γ-γp,q q ) ≤ C [v](0) H γ + CT 1-ν-1 p M ν , and 
d(Ψ(v), Ψ(w)) ≤ CT 1-ν-1 p M ν-1 d(v, w).
Setting M = 2C [v](0) H γ and choosing T > 0 small enough so that CT 1-ν-1 p M ν-1 ≤ 1 2 , we see that Y is stable by Ψ and Ψ is a contraction on Y . By the fixed point theorem, there exists a unique solution v ∈ Y to (NLFW).

Step 2. Uniqueness. The uniqueness of solution v ∈ C(I, H γ ) ∩ C 1 (I, H γ-σ ) ∩ L p (I, L ∞ ) follows as in the proof of Theorem 1.1 using (5.2).

Step 3. The blowup alternative follows easily since the time of existence depends only on

[v](0) H γ .

Step 4. The continuous dependence is similar to that of Theorem 1.1.

Proof of Theorem 1.9. 1. Let us firstly consider Item 1. We note (see Remark 5.1) that under the assumptions (1.12), (1.13) and (1.14) (see Remark 5.1), the pair (p, q) given in (1.15) is admissible satisfying γ p,q = σ = γ 1,2 + 2σ and 1 -ν/p > 0. Consider now

Y := v ∈ C(I, Ḣσ ) ∩ C 1 (I, L 2 ) ∩ L p (I, L q ) | [v] L ∞ (I, Ḣσ ) + v L p (I,L q ) ≤ M ,
equipped with the distance

d(v, w) := [v -w] L ∞ (I, Ḣσ ) + v -w L p (I,L q ) ,
where I = [0, T ] and M > 0 will be chosen later. We will prove that the functional (5.1) is a contraction on Y . The Strichartz estimate (2.20) implies

[Ψ(v)] L ∞ (I, Ḣσ ) + Ψ(v) L p (I,L q ) [v](0) Ḣσ + F (v) L 1 (I,L 2 ) = [v](0) Ḣσ + v ν L ν (I,L 2ν ) [v](0) Ḣσ + T 1-ν p v ν L p (I,L q ) .
Similarly,

F (v) -F (w) L 1 (I,L 2 ) v ν-1 L ν (I,L 2ν ) + w ν-1 L ν (I,L 2ν ) v -w L ν (I,L 2ν ) T 1-ν p v ν-1 L p (I,L q ) + v ν-1 L p (I,L q ) v -w L p (I,L q ) . (5.3) 
This implies that for all v, w ∈ Y , there exists C > 0 independent of (ϕ, φ)

∈ Ḣσ × L 2 such that, [Ψ(v)] L ∞ (I, Ḣσ ) + Ψ(v) L p (I,L q ) ≤ C [v](0) Ḣσ + CT 1-ν p M ν , d(Ψ(v), Ψ(w)) ≤ CT 1-ν p M ν-1 d(v, w).
By setting M = 2C [v](0) Ḣσ , choosing T > 0 small enough so that CT 1-ν p M ν-1 ≤ 1 2 and arguing as in the proof of Theorem 1.8, we have the existence and uniqueness of solution v ∈ C(I, Ḣσ )∩C 1 (I, L 2 )∩L p (I, L q ). The blowup alternative is immediate since the time of existence only depends on [v](0) Ḣσ . Finally, the continuous dependence is proved by using (5.3). 2. The proof of Item 2 is similar, thus we only give the main steps. It is easy to see that under the assumption (1.16), the pair (p, q) defined in (1.17) is admissible and γ p,q = σ. Since ν ∈ [dσ * /(d + σ), σ * ), we see that q/ν ∈ [START_REF] Bahouri | Fourier analysis and non-linear partial differential equations[END_REF][START_REF] Bergh | Interpolation spaces[END_REF]. This allows to choose b ∈ [2, ∞] so that b = q/ν. We next choose a ∈ [2, ∞] such that (a, b) is admissible and γ a,b = -γ a ,b -σ = 0 or γ a ,b + 2σ = σ. Thanks to the fact that ν < σ * , we see that

1 a - ν p > 0.
This shows that 1

a = 1 p + ν-1 m with ν -1 m > ν -1 p .
We will prove that Ψ is a contraction on

Y := v ∈ v ∈ C(I, Ḣσ ) ∩ C 1 (I, L 2 ) ∩ L p (I, L q ) | [v] L ∞ (I, Ḣσ ) + v L p (I,L q ) ≤ M , equipped with the distance d(v, w) := [v -w] L ∞ (I, Ḣσ ) + v -w L p (I,L q ) . The Strichartz estimate (2.20) implies [Ψ(v)] L ∞ (I, Ḣσ ) + Ψ(v) L p (I,L q ) [v](0) Ḣσ + F (v) L a (I,L b ) = [v](0) Ḣσ + v ν-1 L m (I,L q ) v L p (I,L q ) [v](0) Ḣσ + T ν-1 m -ν-1 p v ν L p (I,L q ) .
Similarly,

F (v) -F (w) L a (I,L b ) v ν-1 L m (I,L q ) + w ν-1 L m (I,L q ) v -w L p (I,L q ) T ν-1 m -ν-1 p v ν-1 L p (I,L q ) + v ν-1 L p (I,L q ) v -w L p (I,L q ) .
This implies that for all v, w ∈ Y , there exists C > 0 independent of (ϕ, φ)

∈ Ḣσ × L 2 such that, [Ψ(v)] L ∞ (I, Ḣσ ) + Ψ(v) L p (I,L q ) ≤ C [v](0) Ḣσ + CT ν-1 m -ν-1 p M ν , d(Ψ(v), Ψ(w)) ≤ CT ν-1 m -ν-1 p M ν-1 d(v, w).
The conclusion is similar as in Item 1. The proof is now complete.

Remark 5.1. Let us give some comments on the assumptions (1.12), (1.13) and (1.14). In order to make (p, q) defined in (1.15) to be admissible satisfying γ p,q = σ = γ 1,2 + 2σ and 1 -ν/p > 0, we need the following conditions:

-A first condition is (d -2σ)ν > d which ensures p is a positive number. -The next one is p ≥ 4 when d = 1 and p ≥ 2 when d ≥ 2. Thus (2 -5σ)ν ≤ 2 when d = 1 and (d -3σ)ν ≤ d when d ≥ 2. -We also need 2 p + d q ≤ d 2 which implies (2d -4σ -dσ)ν ≤ 2d -dσ. When d = 1, we have (2 -5σ)ν ≤ 2 -σ. -Condition γ p,q = σ = γ 1,2 + 2σ is easy to check.
-Finally, we have (d -2σ)ν < d + 2σ which yields 1 -ν/p > 0. Therefore, we need

   (1 -2σ)ν > 1 (1 -2σ)ν < 1 + 2σ (2 -5σ)ν ≤ 2 -σ when d = 1 and        (d -2σ)ν > d (d -2σ)ν < d + 2σ (d -3σ)ν ≤ d (2d -4σ -dσ)ν ≤ 2d -dσ when d ≥ 2.
One can solve easily the above systems of inequalities and obtain (1.12), (1.13) and (1.14).

Local well-posedness in critical cases

In this subsection, we will give the proofs of Theorem 1.11 and Theorem 1.12.

Proof of Theorem 1.11. 1. Let us treat the first case (1.18). Consider

Y := v ∈ C(I, Ḣγw ) ∩ C 1 (I, Ḣγw-σ ) ∩ L p (I, L p ) ∩ L a (I, Ḣγw-σ 2 a ) [v] L ∞ (I, Ḣγw ) ≤ M, v L p (I,L p ) + v L a (I, Ḣγw-σ 2 a ) ≤ N equipped with the distance d(v, w) := [v -w] L ∞ (I, Ḣγw ) + v -w L p (I,L p ) + v -w L a (I, Ḣγw-σ 2 a ) ,
where (p, a) is given in (1.20), I = [0, T ] and T, M, N > 0 will be chosen later. Using the Duhamel's formula, it suffices to show that the functional 

Ψ(v)(t) = cos(tΛ σ )ϕ + sin(tΛ σ ) Λ σ φ -µ t 0 sin((t -s)Λ σ ) Λ σ |v(s)| ν-1 v(s)ds =: v hom (t) + v inh (t
v hom L p (I,L p ) + v hom L a (I, Ḣγw-σ 2 a ) [v](0) Ḣγw . (5.4) 
Thus the left hand side of (5.4) can be taken smaller than ε for some ε > 0 small enough provided that either [v](0) Ḣγw is small or it is true for some T > 0 small enough by the dominated convergence. On the other hand, the homogeneous Sobolev embedding with the fact that γ w -σ/2 ≥ 0 implies L p (I, Ḣγw-σ 2 q

) ⊂ L p (I, L p ) where d/q = d/p + (γ w -σ/2). For such q, we see that (p, q) is admissible satisfying

γ p,q = σ 2 = γ a,a = γ a ,a + 2σ.
The Sobolev embedding and Strichartz estimate (2.20) then yield

v inh L p (I,L p ) + v inh L a (I, Ḣγw-σ 2 a ) F (v) L a (I, Ḣγw-σ 2 a 
) .

Using (1.19) and the fact that 1 a = 1 a + ν-1 p , Corollary 3.5 gives

F (v) L a (I, Ḣγw-σ 2 a ) v ν-1 L p (I,L p ) v L a (I, Ḣγw-σ 2 a 
) .

Similarly, This implies for all v, w ∈ Y , there exists C > 0 independent of (ϕ, φ) ∈ Ḣγw × Ḣγw-σ such that Ψ(v) L p (I,L p ) + Ψ(v) ) can be small as T is small. We now prove the scattering property of the global solution. Let us denote

F (v) -F (w) L a (I, Ḣγw-σ 2 a ) ( v ν-1 L p (I,L p ) + w ν-1 L p (I,L p ) ) u -v L a (I, Ḣγw-σ 2 a ) + ( v ν-2 L p (I,L p ) + w ν-2 L p (I,L p ) )( v L a (I, Ḣγw-σ 2 a ) + w L a (I, Ḣγw-σ 2 
V (t) := v(t) ∂ t v(t) , A := 0 1 -Λ 2σ 0 , G(V (t)) := 0 F (v(t))
.

The (NLFW) can be written as Using the unitary property of e ±itΛ σ in L 2 and (5.6), we have [V (t) -e tA V + (0)] Ḣγw → 0 as t → +∞. This completes the proof of Item 1.

∂ t V (t) -AV (t) = G(V (t)
2. We next consider the case (1.21). The proof is similar as above, thus we only give the main steps. We will solve (NLFW) in Proof of Theorem 1.12. The proof is similar to the one of Theorem 1.11. We thus give a sketch of the proof. We emphasize that here ν = 1 + 4σ/(d -2σ) with σ as in (1.22). We will solve (NLFW) in 

Y := v ∈ C(I, Ḣσ ) ∩ C 1 (I, L 2 ) ∩ L ν (I, L 2ν ) | [v] L ∞ (I,

Theorem 1 . 6 .

 16 Let σ ∈ (0, 2)\{1} and ν > 5 when d = 1, ν > 3 when d ≥ 2 (1.10)

  and use the fractional Leibniz rule given in Proposition 3.1. Then the results follows by applying the fractional derivatives given in Corollary 3.3 and Corollary 3.4.

1

  see(1.5) for the definition of • .
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  Nonlinear fractional Schrödinger equations 4.1 Local well-posedness in sub-critical casesIn this subsection, we give the proofs of Theorem 1.1, Theorem 1.3 and Proposition 1.5.

  a, b) is admissible and b < ∞. This shows the boundedness of u n in L a (I, H γ-γ a,b b

  provided that (a, b) is admissible, b < ∞ and γ a,b = 0. This gives the boundedness of u n in L a (I, H γ b ). The convergence in L a (I, L b ) and H γ-follows similarly as in Step 4 of Theorem 1.1 using (4.7).

  a ) ) v -w L p (I,L p ) . (5.5)Similarly, by rewriting γ w = γ w -σ 2 + γ a,a , the Strichartz estimate (2.20) also gives[Ψ(v)] L ∞ (I, Ḣγw ) [v](0) Ḣγw + v ν-1 L p (I,L p ) v

L 2 ,σ 2 a

 22 a (I, Ḣγw-σ 2 a ) ≤ ε + CN ν , [Ψ(v)] L ∞ (I, Ḣγw ) ≤ C [v](0) Ḣγw + CN ν , d(Ψ(v), Ψ(w)) ≤ CN ν-1 d(v, w).Now by setting N = 2ε and M = 2C [v](0) Ḣγw and choosing ε > 0 small enough (provided either T is small or [v](0) Ḣγw is small) such thatCN ν ≤ min ε, C [v](0) Ḣγw , CN ν-1 ≤ 1we see that Y is stable by Ψ and Ψ is a contraction on Y . By the fixed point theorem, there exists a unique solution v ∈ Y to (NLFW). Note that when [v](0) Ḣγw is small enough, we can take T = ∞. The uniqueness in C(I, Ḣγw ) ∩ C 1 (I, Ḣγw-σ ) ∩ L p (I, L p ) ∩ L a (I, Ḣγw-) follows as in Theorem 1.1 by using (5.5). Here v L p (I,L p ) and v L a (I, Ḣγw-σ 2 a

σ 2 e ±isΛ σ Λ γw-σ 2 F 2 Ft 1 , t 2 →

 2212 ), orV (t) = e tA V (0) + t 0 e (t-s)A G(V (s))ds,wheree tA := cos tΛ σ sin tΛ σ Λ σ -Λ σ sin tΛ σ cos tΛ σ .The adjoint estimates of e ±itΛ σ :L a ([t 1 , t 2 ], L a ) → Ḣγa,a with γ a,a = σ/2 imply (v(s))ds L +∞. This implies that [e -t2A V (t 2 ) -e -t1A V (t 1 )] Ḣγw = t2 t1 e -sA G(V (s))ds Ḣγw → 0 (5.6)as t 1 , t 2 → +∞. Therefore, the limitV + (0) := lim t→+∞ e -tA V (t)exists in Ḣγw × Ḣγw-σ . We also haveV (t) -e tA V + (0) = -+∞ te (t-s)A G(V (s))ds.

YF 2 F 0 as t 1 , t 2 →

 2012 := v ∈ C(I, Ḣγw ) ∩ C 1 (I, Ḣγw-σ ) ∩ L p (I, L p ) | [v] L ∞ (I, Ḣγw ) ≤ M, v L p (I,L p ) ≤ N , equipped with the distance d(v, w) := [v -w] L ∞ (I, Ḣγw ) + v -w L p (I,L p ) , where p is as in Item 1. It is easy to check that under the assumption (1.21), (p, p) and (b, b) are admissible and γ p,p = γ w = γ b ,b + 2σ, where b = p/ν. The Strichartz estimate (2.20) implies v hom L p (I,L p )[v](0) Ḣγw . Therefore, v hom L p (I,L p ) ≤ ε for some ε > 0 small enough provided that T is small or[v](0) Ḣγw is small. Similarly, v inh L p (I,L p ) F (v) L b (I,L b ) v ν L p (I,L p ), where the last inequality follows from the Hölder inequality with the fact that (v) -F (w) L b (I,L b ) v ν-1 L p (I,L p ) + w ν-1 L p (I,L p ) v -w L p (I,L p ) .(5.7)This implies for all v, w ∈ Y , there exists C > 0 independent of (ϕ, φ) ∈ Ḣγw × Ḣγw-σ such thatΨ(v) L p (I,L p ) ≤ ε + CN ν , [Ψ(v)] L ∞ (I, Ḣγw ) ≤ C [v](0) Ḣγw + CN ν , d(Ψ(v), Φ(w)) ≤ CN ν-1 d(v, w).Now by setting N = 2ε and M = 2C [v](0) Ḣγw and choosing ε > 0 small enough, we have the existence of solution v ∈ Y to (NLFW). The uniqueness in C(I, Ḣγw ) ∩ C 1 (I, Ḣγw-σ ) ∩ L p (I, L p ) follows as in Theorem 1.1 by using (5.7). Here v L p (I,L p ) can be small as T is small. Using the adjoint Strichartz estimates with the fact that γ b,b = -γ b ,b -σ = -γ w + σ, we have t2 t1 e ±isΛ σ F (v(s))ds Ḣγw-σ = t2 t1Λ γw-σ e ±isΛ σ F (v(s))dsL (v) L b ([t1,t2],L b ) v ν L p ([t1,t2],L p ) → 0 as t 1 , t 2 → +∞. This implies [e -t2A V (t 2 ) -e -t1A V (t 1 )] Ḣγw = t2 t1e -sA G(V (s))ds Ḣγw → +∞. The same argument as in Item 1 proves the scattering property for the global solution. The proof of Theorem 1.11 is complete.

  Ḣσ ) ≤ M, v L ν (I,L 2ν ) ≤ N equipped with the distance d(v, w) := [v -w] L ∞ (I, Ḣσ ) + v -w L ν (I,L 2ν ) ,where I = [0, T ] and M, N > 0 will be chosen later. It is easy to check that under the assumption (1.22), (ν, 2ν) is admissible with γ ν,2ν = σ = γ 1,2 + 2σ. The Strichartz estimate (2.20) then implies v hom L ν (I,L 2ν )[v](0) Ḣσ . Thus v hom L ν (I,L 2ν ) ≤ ε for some ε > 0 small enough provided T is small or [v](0) Ḣσ is small. The Strichartz estimate (2.20) also givesv inh L ν (I,L 2ν ) F (v) L 1 (I,L 2 ) = v ν L ν (I,L 2ν ) .

  3. Item i. Since the time of existence constructed in Step 1 only depends on ϕ H γ . The blowup alternative follows by standard argument (see again Chapter 4 of [5]). Step 4. Item ii. Let ϕ n → ϕ in H γ and C, T = T (ϕ) be as in Step 1. Set M = 4C ϕ H γ . It follows that 2C ϕ n H γ ≤ M for sufficiently large n. Thus the solution u n constructed in Step 1 belongs to X with T = T (ϕ) for n large enough. We have from Strichartz estimate (2.

		13) and
	(4.2) that	
	u	γ-γ a,b b L a (I,H

  ), is a contraction on Y , where v hom (t) is the sum of the first two terms and v inh (t) is the last term. It is easy to check that under the assumptions (1.18), (p, p) and (a, a) are admissible with γ p,p = γ w and γ a,a = σ/2. The Strichartz estimate (2.20) then implies
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Similarly,

Thus for all v, w ∈ Y , there exists C > 0 independent of (ϕ, φ)

Now by setting N = 2ε and M = 2C [v](0) Ḣσ and choosing ε > 0 small enough, we have the existence of solution v ∈ Y to (NLFW). The uniqueness in C(I, Ḣσ ) ∩ C 1 (I, L 2 ) ∩ L ν (I, L 2ν ) follows as in Theorem 1.1 by using (5.8). Here v L ν (I,L 2ν ) can be small as T is small. The scattering property is very similar as in the proof of Theorem 1.11. We have

) -e -t1A V (t 1 )] Ḣσ → 0 as t 1 , t 2 → +∞. This completes the proof.